
Technical Commentary

Martin C. Rinard
MIT EECS and CSAIL
{rinard}@csail.mit.edu

Big data combined with machine learning has revolution-
ized fields such as computer vision, robotics, and natural lan-
guage processing. In these fields, automated techniques that
detect and exploit complex patterns hidden within large data
sets have repeatedly outperformed techniques based on hu-
man insight and intuition.

But despite the availability of enormous amounts of code
(big code) that could, in theory, be leveraged to deliver
similar advances for software, programming has proved to
be remarkably resistant to this kind of automation. Much
programming today consists of developers deploying key-
word searches against online information aggregators such
as Stack Overflow to find, then manually adapt, code se-
quences that implement desired behaviors.

The current paper presents new techniques for leveraging
big code to automate two programming activities: 1) select-
ing understandable names for JavaScript identifiers and 2)
generating type annotations for JavaScript variables. The ba-
sic approach leverages large JavaScript code bases to build
a probabilistic model that predicts names and type anno-
tations given the surrounding context (which includes con-
stants, JavaScript API calls, and variable uses in JavaScript
expressions and statements).

When run on programs with the original variable names
obfuscated, the implemented system was able to recover
the original variable names over 60% of the time. The re-
sults for type annotations are even more intriguing — the
implemented system generates correct type annotations for
over half of the benchmark programs. For comparison, the
programmer-provided annotations are correct for only a bit
over a quarter of these programs. The system is accessible
via the Internet at jsnice.org with hundreds of thousands of
users.

These results demonstrate how this approach can help
JavaScript programmers produce more easily readable and
understandable programs. One potential longer range conse-
quence could be the gradual emergence of a de facto stan-
dard for aspects of JavaScript programs such as variable
names and the relationship between program structure and
types. More broadly, the results also highlight the substan-
tial redundancy present in JavaScript code worldwide and
raise questions about just how much human effort is really
required to produce this code.

So why was this research so successful? First, the investi-
gators chose a problem that was a good fit for machine learn-
ing over big code. Current machine learning techniques do
not provide correct results; they instead only provide results
that look like previous results in the training set. A variable
name or type annotation predictor does not have to always
be correct; it only needs to be correct enough of the time to
be useful. And JavaScript programs share enough variable
name and type annotation patterns to support a reasonably
accurate model.

A second reason is technical, specifically the develop-
ment of a program representation that exposes relevant rela-
tionships between variables and the surrounding context, in-
cluding how variables are used in JavaScript statements and
expressions. Features exposed in this program representa-
tion enable the immediate application of conditional random
fields, a standard technique in machine learning for struc-
tured prediction previously shown to be effective for solving
problems in areas such as natural language processing and
computer vision, to solve the learning and prediction prob-
lem. The development of a new approximate MAP inference
algorithm for this domain enables the performance required
for interactive use when working with thousands of labels
per node (in contrast to many previous applications, which
only work with tens of labels per node).

So what can we expect to see in the future from this line
of research? The most obvious next steps include a vari-
ety of automated programming assistants for tasks such as
code search, code completion, and automatic patch genera-
tion. Here the assistant would interact with the programmer
to guide the process of turning vague, uncertain, or under-
specified goals into partially or fully realized code, with pro-
grammer supervision required to complete and/or ensure the
correctness of the resulting code.

It is less clear how to make progress on programming
tasks with more demanding correctness, autonomy, or nov-
elty requirements. One critical step may be finding produc-
tive ways to integrate probabilistic reasoning with more tra-
ditional logical reasoning as applied to computer programs.
Future research, potentially inspired in part by the results
presented in this paper, will determine the feasibility of this
goal.

1


