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ABSTRACT

Abstract data types are used to control the complexity of developing serial pro-
grams. They promote modular programming by encapsulating state and operations
on that state. In parallel environments abstract data types must also encapsulate the
synchronization required to correctly sequence the invocation of specific opera-
tions. An abstract data type is implicitly synchronized if it completely encapsulates
the synchronization required for its use. Implicitly synchronized abstract data types
promote modularity and help programmers manage the complexity of developing
parallel software. This paper introduces the concept of implicitly synchronized
abstract data types and shows how the implicitly parallel language Jade supports
their development and use.

1. Introduction

Over the last decade, research in parallel computer architecture has lead to the
development of many new parallel machines. Collectively, these machines have
the potential to dramatically increase the resources available to solve important
computational problems. The widespread use of these machines, however, has
been limited by the difficulty of developing useful parallel software.

Programmers have traditionally developed software for parallel machines us-
ing explicitly parallel languages.4;11 These languages provide constructs that pro-
grammers use to create parallel tasks. The tasks typically interact using syn-
chronization operations such as locks, condition variables and barriers and/or
communication operations such as send and receive. Explicitly parallel languages



give programmers maximum control over the parallel execution, and they can
exploit this control to generate extremely efficient computations.

The problem is that explicitly parallel languages present a complex program-
ming environment. A major source of this complexity is the need to manage many
of the low level aspects associated with mapping a computation onto the parallel
machine. The programmer must decompose the program into parallel tasks and
generate the synchronization operations that coordinate the execution of the com-
putation. Because the synchronization code controls the interactions between all
of the parallel tasks, the programmer must develop a comprehensive mental model
of the global concurrency structure and keep that model in mind when writing the
synchronization code.

In serial environments programmers use abstract data types to effectively man-
age the construction of complex programs. Each abstract data type encapsulates
the complexity of implementing a specific piece of functionality. Building the
application in terms of abstract data types allows programmers to control the
complexity of building a given application.

In parallel environments abstract data types must encapsulate more than just the
representation of state and the implementation of operations that manipulate that
state. Each abstract data type must also encapsulate the concurrency generation
and synchronization code required for its correct use and present an interface that
requires no information about the global concurrency pattern. If an abstract data
type satisfies these properties we say that it is implicitly synchronized.

Implicitly synchronized abstract data types allow programmers to control the
complexity of building parallel applications. Programmers can build complex
parallel applications by combining implicitly synchronized abstract data types,
with the task of synchronizing the parallel program effectively decomposed into the
task of synchronizing each abstract data type. But explicitly parallel environments
undermine this software development strategy. The fundamental problem with
abstract data types in explicitly parallel environments is that their behavior depends
on the order in which their operations are performed. In general, when parallel
threads invoke the operations of a given abstract data type, the operations must
execute in a specific order for the program to generate the correct result. This order
typically depends on the semantics of the abstract data type’s client, not on the
semantics of the abstract data type itself. The synchronization required to generate
this order leaks outside the abstract data type, forcing the client to deal with the
complexity directly and destroying the modularity of the resulting program.

In this paper we demonstrate how to develop implicitly synchronized abstract
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data types in the context of the implicitly parallel language Jade.7;6 Instead of
using synchronization operations to directly control the parallel execution, Jade
programmers declaratively provide information about how parts of the program
access data. The Jade implementation analyzes this data access information to
automatically exploit the concurrency present in the application. This declarative
approach promotes modular parallel programming by allowing programmers to
build abstract data types that encapsulate all of the code required to correctly
exploit the concurrency.

The rest of the paper is organized as follows. In Section 2 we introduce the basic
concepts of Jade and sketch how they can be used to build implicitly synchronized
abstract data types. In Section 3 we describe the basic Jade construct and show
how it can be used to build a simple abstract data type. In Section 4 we show how
to build layered abstract data types and in Section 5 we briefly describe the more
advanced Jade constructs. In Section 6 we describe how the Jade implementation
supports implicitly synchronized abstract data types. In Section 7 we analyze how
well other parallel programming paradigms support the construction of abstract
data types and discuss how programmers synchronize computations written in
languages that do not support implicitly synchronized abstract data types.

2. Jade

Jade is an implicitly parallel language designed for the exploitation of coarse
grain, task level concurrency. Jade programmers start with a serial program and
use Jade constructs to specify how parts of the program access data. The Jade
implementation dynamically analyzes this information to automatically extract
the task level concurrency present in the application. For pragmatic reasons the
current version of Jade is structured as an extension to C. Stable implementations of
Jade exist for a wide range of computational platforms, included shared memory
multiprocessors (the Stanford DASH machine), homogeneous message passing
machines (the Intel iPSC/860) and heterogeneous networks of workstations. Jade
programs port without modification between all of the platforms.

Jade is based on three fundamental concepts: shared objects, tasks and access
specifications. Shared objects and tasks are the mechanisms that the programmer
uses to specify the granularity of the data and the computation, respectively. The
programmer uses access specifications to specify how tasks access shared objects.
The next few sections describe how programmers can use these mechanisms to
build implicitly synchronized abstract data types.
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2.1. Shared Objects

Jade supports the abstraction of a single mutable memory that all parts of
the computation can access. Each piece of data allocated in this memory is
called a shared object. Programmers use shared objects to implement the mutable
state encapsulated in each abstract data type. Outside the abstract data type each
reference to a shared object is treated as an opaque handle passed to abstract
data type operations. Inside the abstract data type the operations manipulate the
encapsulated state by reading and writing the corresponding shared objects.

2.2. Tasks

Jade programmers explicitly decompose the serial computation into tasks by
identifying the blocks of code whose execution generates a task. In many parallel
programming languages tasking constructs explicitly generate parallel computa-
tion. Because Jade is an implicitly parallel language with serial semantics, Jade
programmers ostensibly use tasks only to specify the granularity of the parallel
computation. The implementation, and not the programmer, then decides which
tasks execute concurrently.

Programmers typically create a task to perform the computation associated
with each operation on an abstract data type. The tasking construct itself is
encapsulated inside the implementation of the abstract data type. If there is con-
currency available within the operation, the task creates child tasks that cooperate
to concurrently perform the independent parts of the operation.

2.3. Access Specifications

Each task has an access specification that declares how it will access individual
shared objects. It is the responsibility of the programmer to provide an initial
access specification for each task when that task is created. As the task runs, the
programmer may dynamically update its access specification to more precisely
reflect how the remainder of the task accesses shared objects.

The key to building implicitly synchronized abstract data types in Jade is
developing a programming methodology that encapsulates all access specifications
inside the definition of the abstract data type. The simplest abstract data types
bundle the access specifications with the encapsulated tasking construct. Abstract
data types that are used in more sophisticated contexts export operations that
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encapsulate access specifications.

2.4. Parallel and Serial Execution

The Jade implementation analyzes access specifications to determine which
tasks can execute concurrently. This analysis takes place at the granularity of
individual shared objects. The dynamic data dependence constraints determine
the concurrency pattern. If one task declares that it will write an object and another
declares that it will access the same object, there is a dynamic data dependence
between the two tasks and they must execute sequentially. The task that would
execute first in the serial execution of the program executes first in all parallel
executions. If there is no dynamic data dependence between two tasks, they can
execute concurrently.

This execution strategy preserves the relative order of reads and writes to
each shared object. If a program only declares read and write accesses, the
implementation guarantees that all parallel executions preserve the semantics of the
original serial program and therefore execute deterministically. More sophisticated
access specifications may allow the implementation to further relax the sequential
execution order. For example, if two tasks declare that their accesses to a given
object commute, the implementation has the freedom to execute the tasks in either
order. In this case the implementation determines the execution order dynamically,
with different orders possible in different executions.

This parallelization strategy correctly synchronizes the execution of programs
that use abstract data types. The client simply invokes abstract data type opera-
tions and each operation generates a task to perform its computation. The Jade
implementation analyzes the access specifications to determine which operations
can execute concurrently. If operations must execute serially the implementation
automatically generates the synchronization required to enforce the appropriate
precedence constraints. The resulting parallel execution preserves the semantics
of both the client and the abstract data type.

3. The Tasking Construct

We start our discussion of how to build implicitly synchronized abstract data
types in Jade by presenting the withonly construct. This construct allows the
programmer to identify a task and specify how it accesses shared objects. Each
abstract data type operation uses this construct to generate a task to perform its
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computation. Figure 1 contains the general syntactic form of the construct.

withonly { specification } do (parameters) { body }

Figure 1: The withonly Construct

The body section contains the serial code executed when the task runs. The
parameters section contains a list of variables from the enclosing environment.
When the task is created, the implementation copies the values of these variables
into a new environment; the newly created task will execute in this environment.

When a task is created, the Jade implementation executes thespecification
section to generate an initial access specification for the task. This section is an
arbitrary piece of code containing access declaration statements. Each such state-
ment declares how the task will access a given shared object; the task’s access
specification is the union of all such declarations. For example, the rd(o) (read)
statement declares that the task may read the object o, and the wr(o) (write)
statement declares that the task may write o. The specification section may
contain dynamically resolved variable references and control flow constructs such
as conditionals, loops and function calls. The programmer is therefore free to use
information available only at run time when generating a task’s access specifica-
tion. The Jade implementation dynamically checks each task’s accesses to ensure
that it respects its access specification. If a task attempts to perform an access that
it did not declare, the implementation will detect the violation and generate a run
time error identifying the undeclared access.

3.1. An index Example

typedef struct { int key, data; } entry;
typedef entry shared *index;

Figure 2: Index Data Structure Declarations

We demonstrate how to develop implicitly synchronized abstract data types in
Jade by presenting the implementation of a simple index abstract data type. This
data type implements a mapping from keys to data items. The implementation of
the index uses a closed hash table implemented with an array. Figure 2 defines
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the hash table data structure. The programmer uses the shared keyword to
declare that the hash table is a shared object.

void lookup(index h,
int k, int shared *d) {

withonly {
rd(h); wr(d);

} do (h, k, d) {
j = hash(k);
first = j;
while (TRUE) {
if (h[j].key == k) {

*d = h[j].data;
break;

}
j++;
if (j == SIZE_HASH)

j = 0;
if (j == first) {

/* not found */
*d = 0;
break;

}
}

}
}

Figure 3: Index Lookup Operation

void insert(index h,
int k, int d) {
withonly {
cm(h);
} do (h, k, d) {
j = hash(k);
first = j;
while (TRUE) {

if (h[j].key == 0) {
h[j].key = k;
h[j].data = d;
break;

}
j++;
if (j == SIZE_HASH)

j = 0;
if (j == first) {

/* table full */
break;

}
}
}

}

Figure 4: Index Insert Operation

The index exports two operations: lookup, which retrieves the data item
indexed under a given key, and insert, which inserts a data item into the index
under a given key. Figure 3 contains the definition of the lookup operation. This
operation takes three parameters: h, which points to the shared object containing
the hash table, k, which is the key to look up, and d, which holds the result of
the lookup. Following our programming methodology, this operation uses the
withonly construct to create a task to perform the lookup. This task’s access
specification uses the rd(h) access declaration statement to declare that the task
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will read the hash table and the wr(d) access declaration statement to declare that
the operation will write the result. Similarly, the insert operation in Figure 4
creates a task to perform the insertion. The semantics of the index abstract data
type allow successive insertions to execute in any order as long as they each have
exclusive access to the hash table. The programmer expresses this commutativity
information with the cm(h) access declaration statement. This statement declares
that the operation may read and write the hash table, but that its accesses commute
with other operations that also declare commuting accesses.

The access specifications determine whether index operations execute serially
or in parallel. Successive insert operations execute serially, although the actual
execution order may vary from run to run. Successive lookup operations can
execute concurrently. The implementation executes interleaved lookup and
insert operations in the same order as in the original serial program.

An index is an implicitly synchronized abstract data type. It encapsulates the
representation of the state, the implementations of the operations that manipulate
the state, and, of equal importance, the constructs required to exploit correctly
synchronized parallel execution both within and between operations. This full
encapsulation means that client has no dependence on any aspect of the index
implementation.

3.2. Using the index Abstraction

lookup(h, 1, d1);
insert(h, 2, 5);
insert(h, 3, 6);
lookup(h, 2, d2);
lookup(h, 3, d3);

Figure 5: Client Code

lookup(i,2,d2) lookup(i,3,d3)

lookup(i,1,d1)

insert(i,2,5) insert(i,3,6)

mutual exclusion constraint precedence constraint

Figure 6: Task Graph

To use the index abstraction, the client just invokes the operations. Figure
5 contains a code fragment that uses an index. Figure 6 contains the dynamic
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task graph that this computation generates. The first lookup operation executes
before the two insert operations. The insert operations commute, executing
with exclusive access to the hash table. The final two lookup operations execute
concurrently. The client contains no code that deals with the parallel execution.

4. Layered Abstract Data Types

Programmers often structure large, complex programs using nested layers of
abstract data types, implementing one layer in terms of the abstraction presented
by the next layer. In our methodology the logical nesting of abstract data types
generates nested task creation. The task that performs a given operation will
invoke operations on the next layer of abstract data types. These operations will
in turn create child tasks to perform their operations.

In Jade, each task must declare how its entire computation accesses shared
objects, including how its child tasks access shared objects. This requirement
ensures that the Jade implementation has enough information to correctly syn-
chronize the computation in the face of hierarchically created tasks that update
mutable data. To satisfy this requirement, each operation’s task must declare both
how it will access data and how the operations that it invokes will access data.

4.1. Encapsulating Access Declarations

In layered contexts implicitly synchronized abstract data types preserve their
encapsulation boundary by exporting operations that declare how other operations
access data. In this methodology operations on abstract data types come in pairs.
One operation performs the actual computation while an associated access decla-
ration operation declares how the first operation will access shared objects. If a
task invokes an operation, it includes the associated access declaration operation
in its access specification section. Access declaration operations extend abstract
data types for use in layered contexts without compromising encapsulation.

void declare_insert(h) { df_cm(h); }
void declare_lookup(h,d) { df_rd(h); df_wr(d); }

Figure 7: Index Access Declaration Operations

Figure 7 shows the access declaration operations required to use the index
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abstract data type in layered contexts. The operations use the deferred form of the
access specification statements. Deferred access specification statements declare
that the task or its child tasks may eventually access the given object, but that
the task itself will not do so immediately. It can therefore execute concurrently
with earlier tasks that do access the object. When the task needs to access the
object it upgrades the deferred declaration to an immediate declaration (Section
5 describes the construct used to perform the upgrade) and suspends until it can
legally perform the access. In our example the client of the index abstraction
will never directly access the index’s hash table. It will instead invoke index
operations, which in turn create child tasks that actually perform the access.

4.2. A Layered Abstract Data Type

We now demonstrate how to construct a layered abstract data type built on
the index abstraction. This new abstract data type is part of an employee
database system and, given an employee number, stores that employee’s phone
number and salary. Figure 8 contains the declaration of the shared object that
implements this record abstraction. This shared object contains two index
abstract data types. Figure 9 presents the implementation of the store operation,
which stores a phone number and salary into the record. This operation uses the
declare insert access declaration operation to declare the accesses that the
nested insert operations will perform. Because the two insert operations
access different hash tables, they can execute concurrently.

5. Advanced Constructs

Jade also provides several more advanced constructs that allow the programmer
to achieve more sophisticated parallel behavior. We next provide a brief overview
of these constructs.

Figure 10 contains the general syntactic form of the with construct. As for
the withonly construct, the specification section is an executable piece
of code containing access declaration statements. Instead of creating a new access
specification for a new task, however, the construct updates the access specification
of the current task to more precisely reflect how the rest of the task will access
shared objects. If the task originally declared a deferred access, for example, it
may use a with construct to declare that it now needs to actually perform the
access. The task will then suspend until it can legally perform the access. The
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typedef struct {
index salary,

phone;
} shared *record;

Figure 8: Record Data
Structure Definition

void store(record r,
int e, int s, int p) {

withonly {
rd(r);
declare_insert(r->salary);
declare_insert(r->phone);

} do (r,e,s,p) {
insert(r->salary, e, s);
insert(r->phone, e, p);

}
}

Figure 9: Store Operation

task may also use a with construct to declare that it will no longer access a given
object, potentially eliminating conflicts between the task executing the with and
later tasks. In this case the later tasks may execute as soon as the with completes
rather than waiting until the task itself finishes.

with { specification } cont;

Figure 10: The with Construct

Finally, the tasks in parallel programs that manipulate recursive data structures
such as lists and trees often incrementally refine the set of list or tree nodes that
they can potentially access as they traverse the list or tree. Jade supports these
programs by allowing programmers to expose the hierarchical nature of the data
structure. The basic idea is that there are parent objects and child objects. If a task
declares that it will access a parent object, this implicitly gives the task the right to
declare that it will also access a child object of the parent object, or to create child
tasks that access child objects. If a task traverses a tree, for example, it initially
declares that it will access the root node. At each step of the traversal it declares
that it will next access one of the child nodes of the current node and no longer
access the parent. Hierarchical data structures allow the programmer to express
such concurrency patterns in an efficient and succinct manner.
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6. Implementation

The Jade implementation uses an object queue mechanism to detect concur-
rency and synchronize the computation. There is a queue associated with each
object that controls when tasks can access that object. Each task has an entry in the
queue of every object that it declares that it will access. Each entry declares how
the task will access the object. Entries appear in the queue in the same order as
the corresponding tasks would execute in a sequential execution of the program.
Each entry stays in the queue until the task finishes or uses a with construct to
eliminate the corresponding access declaration.

A task’s entry is enabled when it can legally perform the declared access. A
read entry is enabled when there are only read entries before it in the queue. A write
entry is enabled when it is the first entry in the queue. A commuting entry becomes
enabled when there are only other commuting entries before it in the queue and it
has obtained exclusive access to the shared object. Because deferred declarations
do not give tasks the right to actually access the object (the task must use a with
construct to change the deferred declaration to an immediate declaration before
performing the access), the corresponding entries are always enabled. Each task
has a count of the number of its queue entries that are not enabled. When this
count drops to zero the task is enabled and can legally execute. The DASH
implementation uses a distributed task queue algorithm to assign enabled tasks
to processors, applying a dynamic load balancing algorithm for good processor
utilization. The current iPSC/860 implementation uses a centralized algorithm,
with a single processor tracking processor usage and dynamically balancing the
load.

In the current implementation almost all activities take place at run time. A
simple preprocessor converts the with and withonly constructs into procedure
calls into the Jade library. The execution of the access specifications, concur-
rency detection and processor scheduling all take place dynamically. The access
checking required to ensure that tasks respect their access specifications, however,
has significant preprocessor support. Conceptually, all access checks take place
dynamically. But there is a mechanism in the Jade type system that programmers
can use to ensure that each task performs at most one dynamic check per object.
Because the checking overhead is amortized over many object accesses, in practice
the total overhead is negligible.

Figures 11 and 12 graph the dynamic overhead per task as a function of the
number of access specification statements for the current version of Jade. Com-
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Figure 12: Task Overhead on iPSC/860

munication costs are a significant part of the overhead for remote task execution.
Jade is designed for applications that exploit task level concurrency. These

programs contain tasks large enough to profitably amortize the dynamic task
creation overhead. Because Jade is structured as a declarative extension to a serial
programming language, it is possible to apply compiler techniques developed for
analyzing serial programs directly to Jade programs. Static analysis would allow
the implementation to implement statically analyzable concurrency patterns very
efficiently. Such an implementation would support the exploitation of finer grain
concurrency.

7. Related Work

Jade supports implicitly synchronized abstract data types that encapsulate
mutable state. Other parallel languages support implicitly synchronized abstract
data types that can be used in more restricted contexts. In this section we discuss
several other languages and describe how programmers synchronize programs
written in explicitly parallel languages.

7.1. Futures and I-Structures

Futures3 and I-Structures5 support implicitly synchronized data structures that
are written only once. A future is a place holder that holds the result of a
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function that may execute concurrently with its caller. Parts of the computation
that read the future implicitly suspend until the function generates the result. Like
futures, I-structures implicitly support the producer/consumer synchronization
patterns characteristic of many parallel programs. An I-structure initially starts out
undefined, with parts of the program that read the I-structure implicitly suspending
until the computation defines it.

Both futures and I-structures allow programmers to build implicitly synchro-
nized abstract data types for computations with no mutable data. All synchroniza-
tion is implicit; the producer need have no knowledge of how the consumer will
use the value and the consumer needs to know nothing about how the producer
will generate the value. Programmers can represent the state of abstract data types
with data structures containing futures and I-structures. The operations either
incrementally define the encapsulated data structure or read some part of it. These
operations can be invoked from any part of the program with no additional syn-
chronization. The only restriction is that the data structure cannot contain mutable
data.

7.2. Concurrent Object Oriented Languages

Concurrent object oriented languages2;1 combine the monitor concept with
concepts from serial object oriented languages. The resulting languages are built
on the abstraction of atomic object operations: each operation executes with ex-
clusive access to the object. Some languages extend this model to allow operations
that only read the object to execute concurrently. Many languages also provide
condition variables. If an operation cannot complete without violating the object’s
internal consistency requirements, it suspends on a condition variable. When
another operation makes it possible for the suspended operation to consistently
complete, it signals the condition variable and the suspended operation continues.

These mechanisms support the construction of implicitly synchronized abstract
data types when all operations from different parallel threads commute or when
the objects’ internal consistency enforcement mechanisms implement all of the
precedence constraints required to correctly execute the program. But in many
cases the program requires additional precedence constraints. In these cases
the programmer must augment the program with the synchronization operations
required to enforce these constraints. Because these operations must appear in the
client of the object, they destroy the object’s modularity.
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7.3. Explicitly Parallel Languages

Programmers who use explicitly parallel languages can only build implicitly
synchronized abstract data types for a restricted set of contexts. Other contexts
impose precedence constraints that require the parallel tasks to perform the opera-
tions in a specific order. Because this order depends on the semantics of the client,
it is impossible to encapsulate the required synchronization inside the abstract data
type. Programmers have therefore evolved a set of less modular synchronization
strategies.

Many parallel programs can be structured as a sequence of phases in which
precedence constraints occur only between phases. Within phases all operations on
a given data structure either commute or can execute concurrently. For example,
the Barnes-Hut application for solving gravitational N-body problems organizes
its data into an octree.10 The computation can be decomposed into a tree building
phase (in which all tree operations commute) and a tree use phase (in which all
tree operations execute concurrently). For such computations programmers can
easily build abstract data types that are implicitly synchronized within each phase.

The only problem left is generating the synchronization required to separate
phases. The most common way to do this is to insert barriers between phases.
When a thread completes its computation for one phase, it waits until all other
threads have completed that phase. The threads then proceed to the next phase.

Barrier synchronization can reduce the cognitive complexity of generating the
synchronization code by eliminating the need to consider interactions between
phases. But it also wastes concurrency potentially available between phases and
can cause poor performance if the computational load of each phase is not evenly
balanced across the processors. The rigidity of barriers also limits the range of
applications that they can effectively synchronize.

Event counts are another synchronization mechanism. The programmer may
know that one operation on a data structure must be performed a certain num-
ber of times before another operation can legally execute. The programmer can
synchronize the computation by maintaining a count of the number of times the
first operation has been performed. If the second operation is invoked too early,
the invoking task suspends until the required number of other operations execute.
Many parallel sparse Cholesky factorization algorithms use this synchronization
mechanism.8 The problem with this mechanism is that some part of the program
must know enough about the global structure of the computation to generate the
number of times the different parts of the computation will update each data struc-
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ture. SAM9 introduces a similar mechanism: allowing the program to associate a
version number with each mutable object. The version number counts the number
of times the object has been modified to generate the current version. When a part
of the program reads the object it specifies which version it needs to access, wait-
ing until that version is generated. New versions are generated into new storage,
leaving the old version intact for tasks to access.

8. Conclusion

We have described a methodology for parallel programming based on implic-
itly synchronized abstract data types. These abstract data types promote the de-
velopment of modular parallel programs by encapsulating all of the code required
to generate correct parallel execution. This paper also shows how to implement
implicitly synchronized abstract data types in Jade, demonstrating how Jade’s
implicitly parallel approach allows programmers to adapt a proven methodology
from serial computing for use in parallel contexts.
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