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ABSTRACT

Software supply-chain attacks target components that are inte-
grated into client applications. Such attacks often target widely-
used components, with the attack taking place via operations (for
example, file system or network accesses) that do not affect those
aspects of component behavior that the client observes. We pro-
pose new active library learning and regeneration (ALR) techniques
for inferring and regenerating the client-observable behavior of
software components. Using increasingly sophisticated rounds of
exploration, ALR generates inputs, provides these inputs to the
component, and observes the resulting outputs to infer a model
of the component’s behavior as a program in a domain-specific
language. We present HARP, an ALR system for string processing
components. We apply HARP to successfully infer and regenerate
string-processing components written in JavaScript and C/C++.
Our results indicate that, in the majority of cases, HARP completes
the regeneration in less than a minute, remains fully compatible
with the original library, and delivers performance indistinguish-
able from the original library. We also demonstrate that HARP can
eliminate vulnerabilities associated with libraries targeted in sev-
eral highly visible security incidents, specifically event-stream,
left-pad, and string-compare.
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Fig. 1: HARP usage scenario. A stealthy supply-chain vulnerability can
be activated long after deployment. HARP can be applied before or dur-
ing development (shown) to obtain a collection of safe regenerated string
libraries. HARP can also be deployed at later stages (during development
or even while in production, not shown) to replace potentially malicious
libraries with safe regenerated versions.
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1 INTRODUCTION

Malicious adversaries increasingly employ software supply-chain
attacks [7, 28-30, 60]. Rather than directly targeting a victim soft-
ware, these attacks target a victim’s supplier, exploiting the fact
that the victim software depends, directly or indirectly, on software
provided by the supplier. A common scenario is that the attacker
purposefully inserts vulnerabilities into open source software com-
ponents that are then integrated into the eventual victim software.
Modern software often integrates hundreds to thousands of small
components, with many components integrated not directly, but
only via transitive dependencies [28, 40, 72]. It is therefore impracti-
cal for developers to audit the code that implements the integrated
components—indeed, developers can easily be completely unaware
of the full range of components that their system may integrate.
For these reasons, even very simple, widely used components can
successfully carry vulnerabilities into client software systems.

For a compromised component to remain undetected, it must
typically deliver correct observable behavior to its client applica-
tions. Inserted vulnerabilities are therefore typically triggered only
in very specific execution contexts and exhibit malicious behav-
ior (such as stealthily exfiltrating sensitive data [5, 42], stealing
digital assets [43, 71], or performing covert computations on the
client computing platform [11, 61]) that does not interfere with
correct client-observable behavior. A common scenario is that the
client observes only the functional behavior of the component, i.e.,
the results that it returns to the client when invoked, and not any
malicious side effects, additional computation, or external commu-
nication that the component may perform when it executes.

Motivated by this observation, we investigate a new approach to
eliminating vulnerabilities in software components. This approach
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takes a potentially compromised component, explores the behavior
of the component in a controlled environment to learn a model of
its functional behavior (this model excludes behavior characteristic
of inserted vulnerabilities), then uses the model to regenerate a
new version of the component. We present a system, HARp, that
applies this approach to automatically regenerate vulnerability-free
versions of widely used string libraries, including libraries that
operate on collections (such as lists or streams) over strings and
higher-order computations that map or fold over such collections.

Deployment Scenarios: HARP supports a range of deployment
scenarios. It can be used before application development starts
to obtain a collection of safe regenerated string libraries that can
be integrated into multiple applications developed by one or more
organizations (Figure 1). It can also be deployed during development
as new string libraries are integrated into the application. Finally,
it can be deployed after the application is in production to replace
potentially malicious libraries with safe regenerated versions.

Scope and Limitations: Our current focus is simple libraries
that implement familiar utility computations with broad applicabil-
ity across a wide range of applications. Such libraries comprise a
compelling target for attackers because (1) they enable attackers
to effectively target a broad range of computations and (2) they
are often imported indirectly via higher-level libraries (as opposed
to imported directly by the application developer), and as a result
are typically not audited by the application’s nominal developers.
Indeed, many developers may easily be unaware that their applica-
tions integrate the target library.

Our approach also targets libraries whose behavior can be accu-
rately captured with a domain-specific language (DSL). The DSL
promotes effective inference and representation of the library be-
havior and eliminates malicious computations as inexpressible.

Our current HARP implementation targets string libraries. Such
libraries implement foundational baseline functionality used widely
in modern software systems. This is especially true for dynami-
cally typed language such as JavaScript that use runtime string
manipulation even for basic operations that in other languages
are performed via type-safe alternatives such as type-constructor
pattern matching. This is also true for many web applications,
in which strings and string manipulations play a prominent role.
Strings are therefore integrated, often indirectly, in the full range of
JavaScript applications and are typically treated as standard compo-
nents within the JavaScript ecosystem. We have developed a DSL
that effectively captures the semantics of string computations and
supports the efficient representation, manipulation, and inference
of the underlying behavior implemented by string libraries (§4.1).
Our experimental results highlight the benefits that our approach
can deliver for clients of such libraries (§7).

This focused approach comes with limitations. First, it works
best for widely used libraries whose computations can be captured
with an efficiently inferrable DSL. We anticipate that such libraries
will implement relatively simple, well understood computations.
We also anticipate that the approach will work best for functional
computations. Although it is possible to work with computations
that perform externally visible actions such as file system or net-
work accesses, we anticipate that it may be more difficult to ensure
that the regenerated computations contain no malicious code.

Results Summary: HARP successfully eliminates vulnerabilities
in 3 large-scale software supply-chain attacks by learning and regen-
erating the core functionality of the vulnerable library, eliminating
any dependency to dangerous code (§7). We are aware of no other
system that can successfully eliminate these attacks.

Applied to 17 JavaScript string-processing libraries (§7.5), HARP
learns 14 libraries within a minute and all 17 under an hour. It also
aborts within 5 seconds on 11 other JavaScript libraries that fall
outside the string-processing domain. HARP also successfully learns
and regenerates 5 C/C++ string processing modules imported as
JavaScript binary modules. The regenerated libraries execute be-
tween 2% faster and 7% slower than the original JavaScript libraries
and cannot use functionality beyond basic JavaScript primitives.

Key properties of HARP’s synthesis algorithm guarantee that, in
the limit, our proposed learning and regeneration techniques pro-
duce candidate programs with the same client-observable behavior
as the original string library, if such a candidate program exists in
the Harp DSL, and without malicious behaviors that fall outside
client-observable behavior.

Contributions: This paper makes the following contributions:

e Active Learning for Vulnerability Elimination: Given a com-
ponent to regenerate, HARP chooses inputs, feeds these inputs
to the component, and observes the resulting outputs to infer a
model of the client-observable functionality that the component
implements. HARP executes the component in a controlled en-
vironment to discard any behavior that is not observable in the
direct functional interactions with the HARP learning system.

e Domain-Specific Language: Harp builds the inferred model
as a program in a DSL for capturing string computations, includ-
ing computations over collections of strings and computations
that map or fold over such collections. This approach provides
important benefits: (1) Tractable Learning Without Overfitting:
The DSL acts as a strong regularizer that focuses the inference
on the target class of string computations. It prevents overfit-
ting and promotes efficient inference that typically requires only
automatically generated input-output observations to precisely
identify a specific string computation within the larger class of
string computations. (2) Safe Modeling: The DSL is designed to
express only legitimate string computations. The inferred model
therefore excludes behaviors that augment string computations
with auxiliary malicious computations.

o Regeneration: Given a string computation in the DSL, HArP
regenerates the computation in the desired target programming
language, with any malicious behavior in the original component
not learned during inference and discarded in the regeneration.

o Experimental Results: It presents results that characterize the
ability of HARP to learn and regenerate a range of string libraries
and highlight its ability to eliminate several software supply
chain attacks that target string libraries.

2 BACKGROUND & EXAMPLE

We use the event-streamincident [41, 61], where a popular stream-
processing library was modified to steal bitcoins from carefully
selected targets, as an example of the attacks HARP is designed
to eliminate. At the time of the incident, event-stream was used
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Fig. 2: Overview. In an isolated container environment, HARP loads a
library and inspects its interface. Using increasingly sophisticated rounds
of exploration, it generates inputs, provides these inputs to the library, and
observes the resulting outputs to infer a model of the library’s behavior as
a program in a domain-specific language.

(imported either directly or indirectly) by thousands of applications
and averaged about two million downloads per week. When its
author handed off maintenance to a volunteer—common practice
in open-source development projects—the new maintainer added
an obfuscated, malicious library called flatmap-stream as a de-
pendency to event-stream.

The malicious flatmap-stream library is designed to harvest
account details from select Bitcoin wallets. If run in the dependency
tree of a specific Bitcoin application called Copay, flatmap-stream
loads Copay’s account module containing the Bitcoin wallet cre-
dentials of the user using Copay. It then overwrites the account’s
getKeys method with one that copies and stores the credentials on
the side. It then loads the http module, and posts the credentials
to a remote server, before returning the results to the caller method.

The desired client-observable behavior of flatmap-stream maps
a function over a stream. Removing flatmap-stream therefore
breaks the client. The attack succeeds by performing effects—loading
account, overwriting getKeys, importing http, and calling post—
that do not interfere with the client-observable behavior. The attack
is not detectable by static analysis, because the attacker employed a
series of dynamic encryption passes, nor dynamic analysis because
the malicious code activates selectively far from development and
testing: only when event-stream was part of Copay’s dependency
tree, only when run on the “live” bitcoin network, and only on
users that had a balance of 100 bitcoin or more [52]. When run in
any other context, the compromised version of flatmap-stream
exhibits identical behavior as the correct version.

Applying HARP: HARP can directly target a specific dependency
or a library that integrates multiple dependencies. The following
line applies ALR directly to flatmap-stream:

harp -ft js flatmap-stream

HaRrp first loads flatmap-stream in an isolated container envi-
ronment and applies lightweight program transformations to in-
strument its execution ((D, Fig. 2). This instrumentation records
operations such as library imports, file-system reads, and global
variable accesses that flatmap-stream performs. HARP also ex-
tracts information about the library interface (). This information
includes the number of returned methods and fields and the number
of arguments for each method. HARP then runs flatmap-stream
on synthesized inputs, to extract information about the types of
each argument.

HARP next uses flatmap-stream to synthesize a program in the
Harp DSL as follows. It iteratively generates candidate programs in
the Harp DSL, filtering out candidate programs that do not match
the extracted type information ((®). It then executes the original
version of flatmap-stream and remaining candidate programs on
an iteratively increasing set of generated inputs ((9). It observes
the parameter and return values of the original library and the
candidate DSL programs (these parameter and return values are
the client-observable behavior). It filters out candidate programs
that exhibit different client-observable behavior than the original
library ((®).

As the Harp inference algorithm executes, it maintains a set
of candidate DSL programs that exhibit identical behavior as the
original library on the current set of generated inputs. If the input
generation algorithm enumerates all possible inputs in the limit
(many such algorithms exist for countably infinite inputs such as
strings), this process will, again in the limit, produce a DSL program
with the same client-observable behavior as the original library
(®®), if such a DSL program exists (§5). In practice, HARP is usually
able to synthesize a unique successful candidate program within
an hour and typically within minutes (§7). Harp also implements
a --quick-abort option that immediately aborts the search if the
HaRrp instrumentation detects any non-client-observable behavior
such as file system, environment variable, or network access.

In our example, the malicious flatmap-stream behavior is not
triggered in our isolated container environment and flatmap-stream
exhibits fully correct behavior. Working with 2,536 inputs, HARP
takes 1.4 seconds to synthesize the following correct DSL pro-
gram, which exhibits identical behavior as the correct version of
flatmap-stream:

f s = map (squash n) | "{(c)}"

Here f maps the function squash n over the elements of s, thereby
flattening s, and then pipes each of the results to an output pattern,
which simply outputs its input element.

Harp then compiles the synthesized DSL program to the follow-
ing JavaScript library:
const libHarp = require('./lib-harp.js');
let program = (f, isAsync) => {

const stream = new libHarp.Stream();

stream.addOperation(libHarp.squash);

stream.addUserOperation(f, isAsync);

return stream;

3;

module.exports = program;

The compiled regenerated library is a direct translation of the in-
ferred HArp DSL program. It links to lib-harp, a module that
supports HARP’s core functionality (part of the TCB, §3).

3 THREAT MODEL

HARP protects against an adversary that fully controls a target
component and can modify it in any way. By preserving the client-
observable functionality, the adversary aims to execute undetected
attacks when the component is integrated into an application. Ex-
amples of modifications include added functionality that reads from
the file system, sends messages over the network, reads environ-
ment variables, or writes to global variables.
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Fig. 3: The HARP library DSL. The domain-specific language (DSL) cap-
tures the space of inferrable program libraries.

For ALR to regenerate a successful replacement, the library must
exhibit the correct behavior during testing and this correct behavior
must conform to the ALR DSL. We anticipate that our target class
of vulnerabilities will typically satisfy these two requirements—the
goal is typically to provide the client with the correct functionality
while either (1) stealthily opening up a remotely exploitable vul-
nerability or (2) silently exfiltrating data or modifying the system
on which it runs. To avoid exploitation during learning, ALR runs
the target library in a controlled isolated environment.

An attacker may also simply remove the library from the ecosys-
tem, disabling any application that depends on the library. By replac-
ing the library with a regenerated local version before the original
library is removed, ALR eliminates the dependence and enables
applications to continue to operate successfully even in the absence
of the original library.

The language’s runtime environment, bindings for locating and
loading libraries, a small compiler offered by Harp and the as-
sociated lib-harp. js runtime-support library are all part of the
trusted computing base (TCB). To capture possible interactions
between libraries, we assume HARP is loaded before other libraries.
We also assume that other libraries do not cooperate with the target
library to attack the system.

4 ACTIVE LEARNING & REGENERATION

HaRP combines three components: a DSL for specifying string-
processing computations (§4.1), an algorithm for inferring com-
putations in the DSL (§4.2), and an input generation component
that produces the inputs for the inference algorithm (§4.3). The
three components work in tandem, aided by lightweight runtime
interposition for mapping the interface of a library (§4.4).

4.1 Domain-specific Language

Fig. 3 presents the Harp DSL. The DSL specifies the set of all
programs that can be constructed by Harp, broken down into
a few broad classes: (1) computational primitives, which apply
transformations on their input, (2) built-in primitives for number
and string manipulation commonly offered by high-level languages,
(3) input ranges, over which these primitives are applied, and (4)

character classes, used for pattern ranges and primitives. More
complex classes often combine less complex ones.

Computational primitives: Computational primitives are either
statements or pipelines. Statements include add and del primitives
for introducing and deleting characters and higher-order map and
fold primitives for applying a first-order primitive over a range.
Pipelines apply a series of operators to a collection of elements in an
input stream—optionally recursively to elements of their elements.

These primitives are HARP’s primary building blocks. Fig. 4
presents the operational semantics. The transition function =
maps a computational primitive within our DSL to its output value.
For example, the primitive add accepts a character c, a location
I, and a string s, and returns a string that is the result of adding
the character c at location [ in s. All primitives accept a string s on
which to operate as their final argument. Strings are encoded as
lists of characters, list concatenation is encoded as -, and operations
encoded in sans — serif are built into HARP—for example, match
accepts a predicate p and a string s and returns three character lists:
(1) a string s1 up to (but not including) the match, (2) the matching
string s2, and (3) the rest of the string s3 following s in s.

Built-in primitives: This class contains primitives offered com-
monly by the standard libraries of different high-level programming
languages, including operations for arithmetic—e.g., log, sqrt, etc.—
and string manipulation—e.g., toUpper, toAsciiCode. The class of
built-in primitives reimplements these operators from scratch to
address two challenges. The first challenge is that different lan-
guages offer different operators under different names; the HArp
DSL unifies a common subset under a common set of identifiers.
The second challenge is that the invocation patterns of such primi-
tives are different for different languages—for example, JavaScript’s
n.toString is invoked directly on a number n, whereas Python
str(n) takes n directly as an argument. HArp DSL introduces these
operators as functions whose first argument is the input string.

Input ranges: Computational primitives often take as arguments
a location within the string. In their simplest form, locations are
indices relative to the start of an input segment, which can be a
string or a substring within that. For example, the index start in
the expression (at start String.toUpper) matches the beginning
of the string.

Locations can also be predicates that pattern-match on the form
of the string. Predicates are formed by the composition of a simpler
set of base predicates. Composition operators include negation,
disjunction, and conjunction. Base predicates are centered around
a simple pattern-matching language that includes characters, num-
bers, “*” (Kleene-star superscript), and “*” (Kleene-plus superscript).
For example, the predicate /a*/ in at (/a*/) (String.toUpper)
matches one or more a characters.

Character Classes: The DSL includes three sets of characters.
Two of these sets come pre-configured and built into the DSL:
(1) the set of integer numbers and (2) the set of alphanumerics—
including number characters “0” to “9”, lowercase letters “a” to “z”,
uppercase letters “A” to “Z”, and punctuation symbols. The third
set contains characters that are special to a particular computation.
The members of this set are discovered during the learning phase

via input generation (§4.3).
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Fig. 4: DSL Semantics. A subset of HARP’s DSL semantics, describing HARP’s computational primitives.

Capture and output expressions: Two examples of how simple
elements like character classes and built-in primitives are used
to construct more powerful primitives are capture and output
expressions. toggle’s second argument is an output expression,
which can be thought of as a format string that one would pass
into a function like C’s printf, describing the formatting of the
function’s output. It can contain literal characters, as well as special
identifiers, which are bound to strings that were matched as part
of toggle’s first argument, its predicate, and captured using a
capture expression. For instance, whenever toggle encounters any
character preceding an uppercase character in the program:

toggle f'{/./Ca)}{/LA-21/(b)}" "{(a)}- {
— to_lower (b)}'

it will output the first character it matched—which it assigned to
variable a in the capture expression—followed by a dash, followed
by the captured uppercase character (assigned to b) converted into
lowercase.

4.2 Synthesis Algorithm

Alg. 1 outlines the HARP program inference algorithm. The algo-
rithm takes as input a black-box reference implementation r and
produces as output a DSL program with identical behavior as r on
the generated inputs I. Given a reference library R, HARP invokes
Alg. 1 on all functions r in R.

As Alg. 1 runs, it maintains an iteratively increasing size n of
DSL programs and list of generated inputs I to consider. At each
step of the algorithm it first executes generateInputs(I) to aug-
ment the current list of inputs I with additional generated inputs as
described in the next section (§4.3). It then runs the reference imple-
mentation r on the inputs I, producing a list of input/output pairs

I0 = [(i1,01), ..., ir,0r)]. These outputs are considered ground-
truth outputs, because they are generated by the reference imple-
mentation r. For example, applying run(r, [)tor = lengthandl =
["a","bb", "ccc"] produces IO = [("a", 1), ("bb",2),("ccc", 3)].

Alg. 1 next invokes typeConstraints(10) to collect a set of
sound type information T for the values in JIO. This procedure
includes several type-inference tests checking whether the values
in IO represent numbers, whether their length is longer or shorter
than the input length, and whether they contain any special char-
acters. For example, the result of calling typeConstraints(I0) on
IO =["bb", 2] would return String — Number.

Navigating the search space: The algorithm next prepares the
search space of candidate DSL programs, which is parametric over
the maximum number n of terms used in the program—i.e., the
size of the abstract syntax tree (AST) of each candidate DSL pro-
gram. The algorithm generates the search space by invoking all-
Programs(n,T), which takes a number n and a set of sound type
constraints T and returns a set P, containing all of the programs of
size n that satisfy the type constraints T. Consider an example where
(1) all programs of AST size 1 are captured by the set of single-term
programs {count, toString, +, -, *}, and (2) the type constraints
include Number —Number—Number. Then P; = {+, -, x}.

The algorithm then invokes filter(Py,, I0) to eliminate all candi-
date programs in P, whose input-output behavior does not conform
to (I, O). This procedure eliminates candidate DSL programs with
behavior that is not identical to r—i.e., programs for which not all
inputs in I produce outputs in O. As appropriate, filter(Pp,, 10)
may also generate more input-output examples to further differ-
entiate between candidates and thus prune the search space even
further. The result is a set of candidate programs P, all of which
implement r’s input-output behavior on the input-output examples.



Input: Reference Implementation r
Output: List of Inferred DSL programs < d1, . . ., dg >
n—0;I<0
while not done do
I « generateInputs(l)
I0 « run(r,I)
T « typeConstraints(10)
P,, < allPrograms(n, T)
P « filter(P,, I0O)
ne—n+1
end

return getOpt(P)
Algorithm 1: The HARP program inference algorithm. Given as
input a black-box reference implementations r, the algorithm produces
a DSL program with identical behavior as r on the generated inputs I.

Termination: In principle, Alg. 1 can run indefinitely. In practice,
the algorithm maintains some additional information on the side
(not shown in Alg. 1). First, the algorithm is configured to run up to
a time limit—either a limit ¢7 per reference implementation r in the
reference library R or a limit tg for R overall. If only t7 has been
specified, then tg is calculated as t7 X |r1—,| spread fairly across all
functions r;_, in R; when HARP timeouts for one of the methods,
it simply outputs Nil and moves to the next r; in R. When tg is
specified, HARP can allocate this time as it sees fit (see parallelism in
§6.2). The combination of the two limits is possible too, instructing
HARrP to spend no more than tg minutes overall, with no more than
t7 minutes per function r in L.

Using timeouts, Alg. 1 may need to exit the inner loop with a P
equal to the empty set. If this happens, L’.r is assigned Nil which
is important for partial regeneration, in cases where only a fraction
of a library’s functionality has been successfully regenerated.

Finally, Alg. 1 inspects the set P. If P is not empty, it ranks the
candidate programs in P by invoking and returning getOpt(P),
which returns the highest-performance program in P. During the
filter(Py,, 10) procedure, the synthesis algorithm collects informa-
tion about the runtime performance of the candidate DSL programs.
Some of the inputs in this phase are large, to make any differences
in overhead more pronounced. This information is then used by
getOpt(P) to rank candidates based on their runtime performance,
returning the DSL program with the best performance.

4.3 Input Generation

HARP generates inputs for each reference function r in R and exe-
cutes r to obtain the input-output pairs. HARP chooses these inputs
to gather a variety of output values that, combined, highlight key
properties of ’s behavior. As HARP does not know beforehand what
input streams are the most appropriate for inferring the behavior
of a black-box r, it adopts an active learning algorithm to gener-
ate the inputs. There are two kinds of inputs HARP is interested
in: (1) primary inputs, which are the strings on which the string-
processing computation is applied and (2) secondary inputs, which
are other parameters of r affecting the specifics of the string com-
putation. All mutations described below are applied concurrently
in iterative rounds providing information or eliminating candidates.
When a mutation iteration results in no candidate eliminations, this
phase of input generation terminates and saves the set of candidate
regenerations.

Value v = pl{s:v,...}|[v,...]
| Alx,...).x | Alx, .. .).str(x)
Primitive p := s|n|b]|L
Boolean b := true|false
String s € X
Number n € N

Fig. 5: HARP’s secondary-input DSL. This language captures the space
of possible inputs to secondary arguments.

Primary inputs: The primary input of a string processing func-
tion is a string—a collection of characters—or a collection of strings.
Input characters are particularly important because they may affect
r’s processing locations—thus HARP attempts to quickly discover a
set of special characters X1. HARP generates primary inputs that
exercise certain properties in an attempt to understand which of
their characteristics affect r’s output. The key insight behind such
discovery is that that string computations are generally applied
over linear data structures that encode control and data characters
in a single data stream. For example, consider the following string:

one:two three-four

Different processing primitives may be affected by different charac-
ters. For example, a (to-upper) function converting to upper-case
operates on the entire string, a (split :) function splitting on
“:” will match only the corresponding character, and a “mask *”
function replacing characters with “*” will only match a subset of
characters. These and other examples are shown below:

one:two three-four
one:two three-four
one:two three-four
one:two three-four
one:two three-four

To discover this set, HARP generates strings with a combination
of letters, numbers, and punctuation symbols. As soon as some of
these inputs start affecting the results, HARP narrows down the set
of symbols by mutating only parts of the input string.

Secondary inputs: Functions in the reference library R rarely
accept only strings as their inputs. That is, while the processing tar-
gets the primary input string, other arguments part of the method’s
interface need to be provided. For example, a simple count(s, c)
method that counts all occurrences of c in s takes two arguments.
To understand the effect of other inputs to the computation, HArp
introduces a small DSL describing possible secondary values (Fig. 5).
To maintain acceptable performance, HARP generates only con-
strained inputs of these types—both in terms of size and complexity.

These values can be summarized into two broad classes. The first
class is composite values such as lists, objects (maps), and functions.
The DSL includes only two functions, helpful for cases when r is a
higher-order function. These two functions are designed to have
types that are permissive and will likely not throw exceptions. The
first function simply returns its first argument, matching any fold-
like operations; the second function returns its first argument as a
string, covering additional use cases where the first-order function
is expected to return strings—highly likely due to the domain of
Harp. Both functions take a variable number of arguments so as to
be compatible with any invocation in the black-box r.



The second class involves primitive values such as strings, num-
bers, booleans. The value L corresponds to null or undefined
values; such values are important for understanding the default
parameters or behavior of a computation.

Enumerability: As Alg. 1 executes, it considers larger and larger
sets of programs and inputs I, with the current set of programs
P,, containing all programs of size n or less and the current set of
inputs I generated by (repeated calls to) generatelnputs(l). The
algorithm will eventually consider every program in the DSL. If
generatelnputs(l) will eventually enumerate every possible input,
then in the limit the algorithm will either (1) converge to a DSL
program or programs P all of which have identical behavior as
the reference library R on all inputs (if such program or programs
exist in the DSL) or (2) determine that no such program exists (see
Section §5). To promote fast convergence to a correct DSL program,
the current HARP generatelnputs(I) algorithm is designed to pri-
oritize strings that quickly disambiguate candidate computations
over strings.

4.4 Mapping Library Structure

We next cover a few details on how HARP (1) regenerates constant
fields, and (2) discovers the structure of a reference library R.

Constant fields: The majority of string-related functionality is
expected to be exposed as functions. At times, however, R may
contain fields other than functions—e.g., a map of country names
to dial-in prefix codes. In these cases, HARP can copy the struc-
ture into the regenerated library using runtime meta-programming
facilities: it traverses R’s return object to identify and copy such
values directly.

In rare cases, these inputs are hidden behind a functional inter-
face that does not allow meta-programming facilities to permeate
through. In these cases, HARP resorts again to active learning—but
its input generation leverages a built-in dictionary of common Eng-
lish words. HARP attempts these words under various combinations
and capitalizations to gain more information about the mapping.

Field discovery: To apply the techniques described earlier, HArRP
needs to know how to interact with R and how to feed it inputs. To
answer this, HARP first loads the original library, an operation that
returns an object that contains the values exported by the library.
These values may include functions or other directly accessible
fields. The way HARP interacts with these fields depends on whether
the functionality about to be regenerated has been explicitly named
by the developer using Harp. If it has been named, HARP indexes
only the named functions from the returned object. If there is no
explicit naming involved, HARP uses runtime meta-programming to
traverse the returned object in order to understand and regenerate
the structure of the library.

5 GUARANTEES

A key correctness guarantee is that the HARp synthesis algorithm
(Alg. 1) will only produce string computations whose behavior is
captured by the DSL in Figure 3. Recall that Algorithm 1 maintains
a current program search size n, set of input-output examples I, O
obtained from executions of the original library L, and set of pro-
grams P in the Harp DSL. The Harp synthesis algorithm provides
the following key correctness guarantees:

o All programs in P exhibit identical behavior as the original library
L on the list of generated inputs I (the call to pruneSpace in
Algorithm 1 filters out all DSL programs whose behavior differs).

e The set of DSL programs P contains all DSL programs of size n
or less that exhibit identical behavior as the original library L on
the list of generated inputs I.

These guarantees have an immediate corollary:

o If the original library L has the same behavior on all inputs as
some DSL program f” and f is of a given size n or less, then
f € P. Moreover, if P = {f} (i.e., f is the only program in P),
then the newly synthesized library L has identical behavior as
the original library L on all inputs.

If the generateInputs function eventually enumerates every pos-
sible input, then, in the limit Alg. 1 will consider all programs in
the DSL. More precisely, for any specific input and program of
some size n, there is some finite execution of the algorithm that will
generate that input and consider that program. This fact ensures
the following guarantees:

o If the original library L has the same behavior as some DSL
program f (of some size m), then at some finite point in the
execution of Algorithm 1, f € P for all future execution points.

o If the original library L has different behavior than some DSL
program f (of some size m), then at some finite point in the
execution of Algorithm 1, f ¢ P for all future execution points.

These guarantees provide a form of correctness in the limit—as
the algorithm runs, it (1) will eventually (in finite time) find the
correct DSL implementation of the original library L if such a correct
program exists in the DSL, and (2) will eventually (in finite time)
filter out any DSL program whose behavior does not match the
original library L on all inputs.

6 REFINEMENTS

We next present several HARP refinements.

6.1 Isolated Learning

To avoid exploitation during ALR, HaRP interacts with target li-
braries in an isolated container environment. HARP first launches
a Docker container and imports the library in the context of an
TCP server. HARP then traverses the object returned by the import
statement to create a remote-procedure-call (RPC) shim, which it
then writes in the host file-system.

HARP’s ALR scaffolding infrastructure on the host environment
loads the shim module to interact with the target library. For every
invoked library function, the RPC shim serializes the arguments
and send them to the server executing in the Docker container.
Harp invokes the corresponding function and returns the results
back to the shim, which delivers them to HARP running on the host
environment. The channel between the RPC client function and
the corresponding function running in the container is encrypted
using NaCl authenticated encryption primitives [4].

6.2 Synthesis Acceleration

Type Guidance: HARrP leverages sound type information to guide
its choice of DSL terms. This is achieved through a few different
means, starting by checking the size and type of the output. If the



let _o =0, 0o ={};

o.f = (...args) => {
accesses[_o.f] = true;
return o.f(...args);

} other 138 sin

}

var context = {

(a) Object-wrapping fragment

eval: harp.wrap(eval),
Number: harp.wrap(Number),
Array: harp.wrap(Array),

(b) Custom context creation

function (cxt) {
let eval = cxt.eval; HARP
let Number = ctx.Number; T

additions
10 39 si I ines i

(c) Context rebinding

Fig. 6: HARP’s detection of library-external side-effects. HARP’s basic wrapping traverses objects and wraps fields with inline monitors. HARP uses this

transformation to create a new name-to-value context by wrapping all values available in a library’s top-level scope (b). The modified context is bound to the
library by enclosing the module source (half-visible code fragment, in its original indentation) in a closure that redefines all non-local variable names as

closure-local ones, pointing to values from the modified context.

output is significantly smaller, then a fold-like reduction is likely to
play a prominent role in the regenerated computation. Additionally,
if the output has a certain type—such as a number or a boolean
value—then that type should featured in the first-order function
used as part of the reduction. Outputs whose size is close to that of
the input string often correspond to add or at constructs.

The study of more complex outputs is also possible, as HArp
can leverage meta-programming available by the source language
to introspect the value returned by L. This is different from other
domains where active learning is applied through serialization-
deserialization interfaces that encode all values as strings, and
thus obscure the true types of the values returned by a program
fragment. These refinements can prune the synthesis search space
significantly.

Term Weights: Different (classes of) terms from Harp’s DSL
have different likelihoods of appearing in learned DSL programs.
For example, many regenerated string-processing libraries add or
delete characters. HARP uses such likelihood information to guide
synthesis, by generating higher-likelihood terms in the DSL with
higher probability HARP explores the space of candidate programs.

Term weights depend significantly on the types of the inputs
and outputs. For example, if the output is a number then reduction
statements such as fold and built-ins such as X and + are more
likely to appear in the regenerated program.

Parallel Synthesis: HARP’s synthesis features ample opportuni-
ties for parallelization. One opportunity occurs in candidate gener-
ation, in which different worker processes explore disjoint subsets
of the candidate space. Another opportunity occurs in input gener-
ation and testing—i.e., calling the same synthesized candidate on
multiple inputs.

As scaling out involves constant overheads for process spawning
and interprocess communication, scaling out makes sense only after
constant costs are negligible relative to synthesis. This is achieved
by having HARP scale out after a few AST levels have been explored.

6.3 Partial Regeneration

HaRrpr may only partially regenerate L, if (1) a subset of library
functions in L fail regeneration, e.g., due to side-effects, or (2) if some
developer tests—HARP’s very last stage—fail. Partial regeneration
can still be useful to developers in a variety of ways. For example,
the regenerated library can operate side-by-side with a hardened
version of the original library.

The latter fast-slow setup combines ) fast /
improved security properties with ac- L' incomplete
ceptable overall performance. The par-
tially regenerated L’ serves the major-
ity of the calls, and it does so efficiently
and securely. At times, however, L re-
ceives input that falls outside its ex-
pected range of operation—but not out- harde nzzmplete
side that of L. These inputs result into a runtime exception, caught
by a HARP controller component, which then forwards the input
to L. As L now executes with additional hardening in place, it is
significantly less efficient, but still computes the correct output
securely. The exact hardening mechanism and thus its performance
overhead can vary significantly [27, 33, 39, 65, 66], and depends
directly on details related to the threat model—for example, native
memory-unsafe binaries require additional care.
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6.4 Quick Aborts

Harp implements a -—quick-abort option that quits searching
if HARP detects behaviors such as file-system and environment-
variable access are not observable to clients that work only with
values returned from the target library. Such behaviors signal that
the original library may be falling outside HARP’s model of compu-
tation, allowing HARP to quickly abort the ALR process.
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top-level scope

of the library—i.e., ones that are not bound to values in the library.
Harp starts from a few well-known root names—a static list of
names provided by default by the language and runtime environ-
ment. For example, in server-side JavaScript these names include
the global variable table, the require function for importing other
libraries, and the process object for providing access to environ-
ment variables, process arguments, and other information in the
broader environment.

Load-Time Transformations: Modern dynamic languages fea-
ture a module-import mechanism that loads code at runtime as a
string. HARP applies lightweight load-time code transformations on
the string representation of each module, as well as the context to



which it is about to be bound, to insert instrumentation wrappers
into the module before it is loaded.

HARP’s transformations first create a modified copy of a mod-
ule’s runtime context. The context is a name-value mapping for all
free name variables available to the module by default. The modifi-
cations target the values in this mapping—traversing and wrapping
each value with an interposition mechanism that records the access
in a global access table. HARP then binds the modified context to
the module, using a source-to-source transformation that redefines
names in the context as library-local ones and assigns to them the
values of the modified context.

Harp’s transformations have a common structure that traverses
objects recursively—a base transform wrap, which we review first
(and whose effects are shown in Fig. 6a). The wrap transform takes
an object O and returns a new object O’, where every field f of O
is wrapped with and replaced by a method f”’. If called, f’ adds a
record to a global map noting that this particular field f has been
accessed and then passes arguments to f.

Context Creation: To prepare a new context to be bound to a
library being loaded, HARP first creates an auxiliary hash table
(Fig. 6b), mapping names to newly transformed values: names cor-
respond to implicit modules—globals, language built-ins, module-
locals, etc.; transformed values are created by wrapping individual
values in the context to insert instrumentation hooks.
User-defined global variables are stored in a well-known location
(e.g., a map accessible through a global variable named global).
However, traversing the global scope for built-in objects is generally
not possible. To solve this problem, HARP collects such values by
resolving well-known names hard-coded in a list. Using this list,
HARP creates a list of pointers to unmodified values upon startup.
Care must be taken with module-local names such as the mod-
ule’s absolute filename, its exported values, and whether the mod-
ule is invoked as the application’s main module. These names refer
to a different value for each module, and thus attempting to ac-
cess the values directly from within HARP’s transformation scope
will fail subtly: the names will end up resolving to module-local
values of HARP itself. HARP solves this issue by deferring these
transformations to the context-binding phase (discussed next).

Context Binding: To bind the code whose context is being trans-
formed with the freshly created context, HARP applies a source-
to-source transformation that wraps the module with a function
closure (Fig. 6¢.). By enclosing and evaluating a closure, HARP lever-
ages lexical scoping to inject a non-bypassable step in the variable
name resolution mechanism.

The closure starts by redefining default-available non-local names
as module-local ones, pointing to transformed values that exist in
the newly-created context. It accepts as an argument the customized
context and assigns its entries to their respective variable names in
a preamble consisting of assignments that execute before the rest
of the module. Module-local variables (a challenge outlined earlier)
are assigned the return value of a call to wrap, which will be applied
only when the module is evaluated and the module-local value be-
comes available. HARP evaluates the resulting closure, invokes it
with the custom context as an argument, and applies further wrap
transformations to its return value.

7 IMPLEMENTATION & EVALUATION
In summary, HARP’s evaluation answers the following questions:

e Q1: Can HaRrP eliminate real vulnerabilities? HARP success-
fully eliminates vulnerabilities that enable 3 large-scale software
supply-chain attacks (§7.2-7.4) by learning and regenerating
the core functionality of the vulnerable library, eliminating any
dependency to dangerous code. To the best of our knowledge,
HARP is the first system that can eliminate these attacks.

Q2: How long does ALR take? Applied to 17 JavaScript string-
processing libraries (§7.5), HARP learns 14 libraries within a
minute and all under an hour. It also aborts within 5 seconds on
11 other JavaScript libraries that fall outside the string-processing
domain. HARP’s domain-specific performance refinements (§6.2)
improve the runtime performance of ALR by 179.27x.

e Q3: What are the characteristics of regenerated libraries?
The regenerated libraries execute between 2% faster and 7%
slower than the original JavaScript libraries. The regenerated
libraries import nothing and use only basic JavaScript language
primitives. The original libraries, in contrast, have access to
the entire JavaScript ecosystem, including standard JavaScript
and Node js libraries, the file system, the network, environment
variables, and process arguments.

e Q4:Is ALR applicable outside JavaScript? Harp successfully
regenerates JavaScript versions of 5 native string-processing li-
braries (Appendix B). The regenerated libraries incur a maximum
overhead of 1% and enjoy memory and type safety benefits not
present in the original libraries.

7.1 Methodology

Workloads: To investigate Q1, we obtained 3 widely-publicized
software supply-chain security incidents from the JavaScript ecosys-
tem: (1) event-stream [41, 61], a popular library that was modified
to steal bitcoins from specific Bitcoin wallets (§7.2), (2) left-pad [37,
69], a popular library replaced by a no-op after a package name
dispute, breaking thousands of projects including Facebook and
PayPal (§7.3); and (3) string-compare [10], where two different
versions of the same string comparison library—one benign and
one malicious—appear in the same dependency tree (§7.4).

To investigate Q2 and Q3, we obtained 14 additional JavaScript
string processing libraries from npm with the help of an experi-
enced JavaScript developer and a senior undergraduate student.
The student used the npm’s search feature to search for libraries
using a variety of string-processing terms such as “padding”, “strip,”
and “change case.” For each term, the student sorted the list of re-
turned libraries by popularity [44] to inspect the first five pages of
search results and select the library that provided the most complete
corresponding functionality. We note that this process excludes
duplicates—for example, the student found and discarded more than
10 left-pad libraries with similar or identical functionality. This
phase produced 17 unique string-processing libraries that are used
pervasively and can affect a large part of the ecosystem [72]: collec-
tively, these libraries are directly imported by several applications
and transitively imported via other dependencies by more than
100K applications. The phase also produced 11 libraries that were
misclassified as string processing libraries. We applied HarP to all
28 libraries.



To investigate Q4, we obtained C/C++ libraries by searching
GitHub using the same search terms as for the JavaScript libraries.
Since many of these libraries did not have tests or client programs,
we opted for C/C++ libraries with JavaScript bindings to check
compatibility via tests and client programs from the JavaScript
ecosystem. This search process produced five libraries.

Evaluation metrics: We evaluate security improvements qualita-
tively and quantitatively. For known attacks (Q1), we first used the
original (compromised) library to reproduce the attack. We then
inferred and regenerated the original library and replaced the orig-
inal library with the regenerated version. We confirmed that the
regenerated version eliminated the attack. For all libraries (Q2-5),
we report the privilege reduction achieved after applying HARP.
This quantitative security metric was developed recently [66] and
corresponds to a ratio «/t, where « is the count of all APIs that are
not invocable by the library any more, due to the defense applied,
and ¢ is the total count of APIs made available to a library by default
by the combined built-in or third-party libraries.

We evaluate the correctness of regenerated libraries (Q3, Q5) us-
ing a combination of developer tests, client libraries or applications,
and manual inspection. We ran the developer-provided test suites
for the libraries and verified that the regenerated libraries provide
correct results. We also imported the regenerated libraries into
the top 10 client libraries or applications that directly import the
original libraries and ran the test suites for these client libraries
or applications. Finally, we manually inspected the regenerated
code to confirm that it correctly implements the intended correct
behavior of the original version.

For the learning time (Q2), we report wall-clock time after the
call npm-install up to the point where HARP either (1) aborts,
reporting intractability, (2) timeouts, failing to synthesize a library,
or (3) succeeds, regenerating a library and its appropriate bindings.
We set the timeout limit to 12 hours. We measured the runtime
performance of regenerated-libraries (Q4, Q5) using a combination
of developer tests and synthetic workloads operating in tight loops.
We repeated all performance-related experiments 100 times and
report averages.

Implementation Details: HaRrP currently works with black-box
libraries available in JavaScript, Python (not shown here; reported
in the extended version [blind]), and binary object files developed,
for example, in C/C++ and wrapped as native add-ons. We expect
native add-ons to be wrapped by some form of language-level
interface such as Node’s NaN or N-API and Python’s ctypes or
CFFL Harp’s ALR components, including the synthesis and DSL,
are written in JavaScript. The base set of DSL terms as well as
the resulting programs are compiled to their respective language
using a small Python compiler: the compiler currently can emit
JavaScript and Python programs, which are then executed using the
interpreter of the respective language. The regenerated programs
link against a small utility library that provides runtime support,
ported once for each target language supported by Harp.

HaRrp currently has a few limitations. First, it does not sup-
port libraries whose functions mutate built-in, prototype, or other
objects—such as String.prototype in JavaScript. Additionally,
HaRP’s input generation algorithm does not generate non-ASCII
strings or ones with special—possibly hierarchical—structure such

as JSON, HTML, and CSS; generating the latter without any addi-
tional domain information would be impractical.

Software and Hardware Setup: All experiments were conducted
on a server with 512GB of memory and 64 physical x 2.1GHz Intel
Xeon E5-2683 cores, running Debian 4.9.144-3.1. The JavaScript
setup uses Node.js v12.19, bundled with V8 v7.8.279.23, LibUV
v1.39.0, and npm version v6.14.8; the Python setup uses CPython
3.7.5. To perform timeline-accurate supply-chain attacks, we set up
a private registry using verdaccio [64] available only to the server
running the experiments.

7.2 Use Case: Event-Stream

The event-stream incident [41, 61], discussed extensively ear-
lier (§2), introduced a malicious dependency harvesting Bitcoin
account credentials through a popular stream-processing library.
This dependency, flatmap-stream, targeted a very specific pro-
duction environment of a cryptocurrency application; other envi-
ronments were not affected.

Security: We reconstruct the malicious library and payloads from
a variety of sources [21, 45, 52]. The library applies several checks
to verify it runs on production, as part of a specific application, and
as part of a specific build. If all these conditions hold, it then writes
to the file-system. HARP’s active learning phase does not infer any
file-system accesses—because there are no such accesses during
the learning phase and because the Harp DSL does not include file
system operations. As a result, HARP regenerates an exploit-free
version of the library, confirmed by manual inspection. It makes
no use of built-in APIs, achieving a privilege-reduction of 332x.

Performance & correctness: HARP takes on average 1.4 sec-
onds to complete flatmap-stream’s active learning and regen-
eration. We manually inspected the regenerated code and found
it implements the full functionality of the original library. The
original library does not come with any test cases and the ver-
sion of event-stream that uses the malicious flatmap-stream
version has been removed permanently from npm. We therefore
manually modified event-stream commit e316336, introducing
flatmap-stream to import the regenerated flatmap-stream, and
apply event-stream’s tests. All 14 (100%) of event-stream’s tests
pass successfully: 13/14 tests are not affected by the flatmap-
-stream addition, and 1/14 that tests flatmap-stream passes suc-
cessfully. Applying the regenerated flatmap-stream to an array
of 1000 elements over 10K runs takes 48.99 seconds—an overhead
of about 107pus per run over the performance of the original library.

7.3 Use Case: Left-Pad

The left-pad incident [37, 69] was caused by unpublishing a pop-
ular JavaScript library, effectively replacing it permanently with a
No-Op. While left-pad itself was an 11-line moderately-popular
string-padding function, it was used by many popular projects such
as React and Babel. The unpublishing corrupted production envi-
ronments, denying them the ability to revert to an older version of
the library. As a result, the incident affected more than one third
of the Node.js ecosystem, and led to significant changes in the
un-publishing policies of public library registries.



Security: We apply HARP to an identical library built by npm
as a response to the incident, replacing the original left-pad li-
brary copied to our local registry (§7.1). HARP regenerates all of
left-pad’s functionality, fully eliminating the dependency. As a
result, left-pad’s tests still succeed after we unpublish left-pad
from our local registry because they no longer depend on the origi-
nal left-pad module. The regenerated left-pad makes no use of
built-in APIs, resulting in a privilege-reduction score of 332x.
Performance & correctness: HARp completes left-pad’s ac-
tive learning and regeneration in an average of 3.6 seconds. We
manually inspect the regenerated code and confirm it implements
left-pad’s full functionality. We apply the full test suite (35 tests)
from left-pad’s repository, all of which (100%) pass successfully.
One test is particularly interesting as it supplies ill-defined input to
trigger left-pad’s default behavior, by providing a padding length
of false, it invokes one of left-pad’s padding behaviors that
HaRrP learned through other false-y values. The runtime perfor-
mance of the regenerated left-pad on 10K runs is 45.66 seconds—
an overhead of about 20us per run over the performance of the
original library.

7.4 Use Case: String-Compare

The string-compare attack involves two versions of a single li-
brary in the same codebase [10]. An earlier version of this library,
used as part of a sort function, is benign. A later version, used in
the authentication module, is malicious: if provided the (authen-
tication) string gbabWhaRQ, it access the file system of the server
running the program.

Security: We apply HARP to both versions of string-compare
library. The regenerated version is identical in both cases. It does not
contain any side-effects—nor the check that launches the attack in
the second case. HARP eliminates the string-compare dependency
from both sort and auth, replacing it with vulnerability-free code.
The regenerated string-compare makes no use of built-in APIs,
resulting in a privilege-reduction score of 332x.

Performance & correctness: HARP completes string-compare’s
active learning and regeneration in an average of 0.7 seconds. We

manually inspect the regenerated code and confirm it implements

string-compare’s full functionality. As string-compare comes

with no test cases, we apply the test cases of the sort function over a

shuffled version of Ubuntu’s wamerican dictionary words file (102K

elements); all 3 (100%) test cases pass. The runtime performance of

10K sort iterations using the regenerated string-compare takes

46.01 seconds—an overhead of about 41us per run over the perfor-
mance of the original library.

7.5 Applying Harp to More Libraries

In this section, we apply HARP to 25 JavaScript libraries—17 string-
processing libraries and 11 other libraries—and 5 C/C++ libraries
collected from GitHub.

Table 1 shows results for 17 JavaScript string-processing libraries.
The statistics columns D1—-D4 count the number of weekly down-
loads, direct dependents, total dependents, and direct dependencies
of these libraries as reported by the npm tool: collectively, these li-
braries can affect a significant fraction of the ecosystem—they total
102M downloads per week, are directly depended upon by a total of
4.3K libraries, and are indirectly depended upon by more than 15K

libraries and applications. The Learning columns t and t2 show
the time it took HARP to apply active learning and regeneration;
t1 is full HARP, whereas t does not include HARP’s performance
refinements (§6). The Regeneration columns Performance and Cor-
rectness show the characteristics of the regenerated library with
respect to the original: Performance is measured using 10K itera-
tions of several tests; and Correctness is measured by running all
the tests of the original library and 10 client-libraries against the
regenerated library, followed by manual inspection.

Learning: HARP’s active learning and regeneration takes between
0.7 seconds and 50.9 minutes (avg.: 204.83 seconds) to complete,
with 14 out of 17 libraries regenerated within a minute and 16
out of 17 libraries regenerated within 145 seconds (2.4 minutes).
The regenerated camel-case library stands out in terms of size,
containing 8 computational statements, two of which are split
operators, taking 3059 seconds (50.9 minutes) to regenerate.

HaRrP’s performance refinements (§6) offer significant improve-
ments. Without any refinements, HARp takes at least 179.27x longer.
This value is a conservative estimate because HARP reaches a time-
out limit of 12 hours for 7 out of 17 libraries. This speedup includes
a 1.1x slowdown for 5 small libraries that are penalized by HARP’s
refinements. As the regeneration of these libraries remains within
a few seconds, their slowdown is considered acceptable—especially
given the overall speedup of long-running regenerations.

In terms of code coverage, the input generation algorithm exer-
cises 100% of library code for 11 out of 17 libraries. For the remaining
six libraries, the majority of the functionality not exercised is re-
lated to exception handling. In the case of decamelize (80%), HARP
does not exercise four lines handling erroneous input (non-string
arguments), and 11 lines related to a flag preserving consecutive
upper case. In the case of flatmap-stream (62.2%), HArP does not
exercise a subset of the stream-specific functionality—stream pause,
resume, destroy and end handlers—that are part of superclass func-
tionality. HARP also does not exercise exception handlers in the
write method, which are meant to handle errors propagating up
from the stream consumer. In the case of repeat-string (95.45%),
HARP misses an exception-raising statement meant to cover cases
where the first argument is not a string. The trim library (33.3%)
first checks if the input string’s prototype includes a trim method
and if so it invokes it; otherwise, implements a left and right trim
by invoking other methods—but HARP’s primary inputs always sup-
port trimas part of the string prototype. In the case of upper-case
(44%), Harp misses all the locale-specific code (confirmed by the
tests). In the case of zero-fill (80%), HARP misses a branch for
when the second argument (the “filler” string) is not provided—in
which case the library returns a partially applied function.

Performance: To understand the runtime performance of regen-
erated libraries, we apply them on the tests of the original libraries
in tight loops of 10K iterations. Their performance is between -1.6%
(speedup) and 6.4% (slowdown), with an average of 2.3%. Profil-
ing shows that the overhead comes from HARP’s complex pattern
matching primitives which compile down to the language’s regular-
expression language (REL). REL is in fact not regular, as it supports
back-references and other non-regular constructs, and thus does
not perform as efficiently as the simpler string-matching constructs
found in the original libraries.



Tab. 1: Applying HARP to JavaScript libraries. Columns D;_4 show weekly downloads, direct dependents, total dependents, and direct dependencies;
columns #; and ¢ show the time it took to complete ALR, with and without refinements; column Coverage shows the percentage of the source code covered
by the input generation algorithm; other columns show the characteristics of the regenerated libraries compared to the original libraries.

Popularity Learning Regeneration
Library D1y Do D3 Dy t1 (s) ta (s) Cov/ge (%) Perf/nce (s) (%) Correctness (%)
camel-case 13,007,997 603 1484 2 3059  >12h 100 1015 (5.6%)  9/9 (100%)
constant-case 3,104,230 88 1651 3 22 >12h 100 9.86 (3.8%)  9/9 (100%)
decamelize 22,883,567 1042 1132 0 4 14340 80 9.61 (2.9%) 40/40  (100%)
flatmap-stream 70 0 0 0 14 >12h 71.21 48.99 (2.2%)  14/14  (100%)
left-pad 3,077,112 509 518 0 3.6 1.3 100 45.66 (0.4%) 35/35  (100%)
no-case 13,051,868 114 2463 2 28 >12h 100 9.89 (53%) 31/31 (100%)
pascal-case 8,995,694 540 2979 2 145 >12h 100 1015 (6.4%) 8/8 (100%)
repeat-string 17,921,038 580 832 0 19 8 95.45 9.18 (-1.6%) 28/30  (93.3%)
sentence-case 2,809,582 58 1636 3 129 >12h 100 10.02 4.9%) 77 (100%)
snake-case 3,045,948 293 1386 2 36 >12h 100 9.95 (3.4%) 8/8 (100%)
string-compare 46 0 0 1 0.7 1.2 100 46.01 (0.9%)  3/3 (100%)
trim-left 789 6 8 0 3 35 100 9.36 (03%)  4/4 (100%)
trim-right 3,874,815 200 249 0 2 3.2 100 9.43 (2.9%)  4/4 (100%)
trim 3,684,237 206 472 0 21 111 33.33 9.45 (1.2%) 4/4 (100%)
upper-case 6,888,443 115 331 1 3 1.9 44.44 9.38 (0.0%) 4/6 (66.7%)
write-pad 15 0 0 1 3 14 100 9.26 (0.9%) 1/10 (100%)
zero-fill 35,143 43 175 0 3 1.6 80 9.27 (-0.9%) 11/16  (68.8%)
Min 15 0 0 0 0.7 1.2 33.33 (-1.6%) (66.7%)
Max 22,883,567 1042 2979 3 3K >12h 100 (6.4%) (100.0%)
Avg 6,022,388 258.6 9009 1 204.83 >10.2h  86.04 (2.3%) (95.8%)

Correctness: Out of 17 libraries, 14 are fully regenerated, pass-
ing 100% of developer-provided and client-application tests. Three
libraries are partially regenerated, passing between 4/6 (66.7%)
and 28/30 (99.3%) of tests. Two of repeat-string’s tests are de-
signed to generate exceptions—not expressible in HaArp’s DSL. Two
of upper-case’s tests are locale-dependent, with string locales
that fall outside HARP’s input generation algorithm. Finally, 5 of
zero-fill’s tests expect a partially evaluated function, which is
currently not expressible in HArp’s DSL.

8 RELATED WORK

Active Learning: Active learning is a classical topic in machine
learning [54]. Recent research has introduced the concept of using
a domain-specific language to define and infer classes of target
computations [9, 50, 56, 57]. This approach promotes the clean
identification of target computations across a range of domains
and the development of efficient inference algorithms for these
computations. The approach has been used to infer and regenerate
computations with additional safety checks, increased functionality,
enhanced user interfaces, the ability to operate in new execution
contexts, expressed in different programming languages, and to syn-
thesize combine operations that enable the exploitation of divide
and conquer parallelism in stream computations [9, 50, 55-57, 67].
Example application domains include data parallelism in Unix shell
scripts [55], programs that access databases [56, 57], work with
key/value stores [50], or interact with external or internal com-
ponents [9, 67]. Functionality developed in this context includes
an efficient top-down inference algorithm [56, 57], and algorithms
that use input shapes to generate inputs that productively disam-
biguate potential candidate inferred computations (HARp and [55]).
HARP is the first active learning and regeneration system to target

string computations and the first to successfully eliminate software
supply-chain vulnerabilities in widely used libraries.

Input-Output Synthesis: Program synthesis and programming
by example automatically generate programs that satisfy a given
set of input-output examples [2, 15, 17, 18, 22, 47, 48, 59, 68]. HARP
differs in that it works with an existing component as opposed to
a fixed set of input-output examples and interacts with the com-
ponent to build a model of its behavior. The goal is to eliminate
dependencies and vulnerabilities by replacing the original version
with the regenerated version, without requiring developers to pro-
vide input-output examples manually.

Component-based synthesis [14, 16, 32, 58] aims to generate a
program consisting of library calls to a provided API. It synthesizes
code for making library calls by executing the candidate program
on a set of test cases. HARP, in contrast, infers and regenerates
complete string computations. Instead of working with a provided
set of test cases, HARP uses active learning to automatically and
adaptively generate custom inputs that enable HARP to infer each
string computation.

Component Protection: Runtime component protection tech-
niques provide monitoring, instrumentation, and policy enforce-
ment, typically through sandboxing, wrapping, or transformation [1,
19, 24, 31, 34-36, 38, 51, 53, 63]. HARP differs in that it replaces the
library with a regenerated version instead of executing the library
in a sandbox or wrapping the library to dynamically enforce a
security policy. The regenerated library therefore executes with
no runtime instrumentation overhead and requires no sandboxing.
We note that, to avoid exploitation during inference, HARP uses
a combination of sandboxing and wrapping during inference. Un-
like sandboxing or wrapping, HARP also protects against library
deletion attacks.



Software Debloating: Software debloating [3, 20, 25, 26] lowers
the potential for vulnerabilities by eliminating unused code in a
program. Functionality excision [49] removes code that implements
counterproductive, irrelevant, or undesirable functionality. Like de-
bloating and functionality excision, HARP can eliminate code in the
inferred library. Unlike debloating, which prunes computation in
the original library but leaves unpruned code intact, HARP replaces
the original library with a regenerated version that is guaranteed
to conform to a safe model of computation. HARP can also dis-
card potentially malicious code in the regeneration, including code
that executes during inference but does not affect the client-visible
behavior of the inferred library.

Vulnerability Detection: Prior work on static [8, 12, 13, 23, 62]
and dynamic [46, 70] analysis can detect malicious code at devel-
opment or production time. HARP does not attempt to detect a
vulnerability—rather, it assumes libraries as a potential liability
with stealthy Turing-complete vulnerabilities, and rewrites them
into functionally equivalent, side-effect-free versions.

9 DISCUSSION & LIMITATIONS

Synthesis Limitations: There are desirable guarantees that Al-
gorithm 1 does not satisfy. First, if the behavior of the original
library L does not correspond to any program in the DSL, there
is no guarantee that the algorithm will determine this fact in any
finite time—it is possible that the difference in behavior will be
exposed only by an input that the algorithm has yet to consider.
Second, if the behavior of the original library L does correspond to
some program in the DSL, there is no guarantee that the algorithm
will find that DSL program in any finite time—it is possible that the
program is larger than programs that the algorithm has considered.

So given a set of DSL programs P at some point in execution
of Algorithm 1, what must be true of the relationship between the
DSL programs f € P and the original library L? First, P and all
f exhibit identical behavior on all considered inputs I. Second, if
there is some program f of size n or less that has the same behavior
as L on all inputs, then f € P.If additionally P = {f}, then the
algorithm will return a new library L’ that has identical behavior as
the original library L. There are two key preconditions here which
Algorithm 1 does not check: (1) there is some DSL program f which
has identical behavior on all inputs as the original library L, and
(2) this DSL program is of size n or less for some known n. These
preconditions may come, for example, from the general domain
knowledge of the programmer.

Attacks on outputs: As outlined earlier (§3), the primary targets
of active library learning and regeneration are (1) side-effectful
attacks—e.g., ones targeting the file system, global variables, the
module system, process arguments, or environment variables, (2)
attacks via low-level, memory-unsafe, and type-unsafe code such
as ones typical in C and C++ code. Could ALR additionally protect
against attacks targeting the output of a library function?

For attacks that target function outputs, there are two broad
possibilities. If the malicious behavior is hidden and therefore not
exposed during testing/normal use, HARp will not learn the mali-
cious behavior and thus the regenerated code will not contain the
corresponding vulnerability. If, however, the malicious behavior is

exposed during testing/normal use, HARP would either (1) deter-
mine that the observed behavior is outside the scope of the DSL
and reject the library, or (2) learn and regenerate the behavior. In
the latter case, HARP is relying on the exposure of the malicious
behavior during testing/normal use to detect and eliminate the
behavior—i.e., we would expect the behavior to be detected by the
developer during development and before deployment. We antici-
pate that, at least for string processing programs, almost all such
malicious behaviors will be outside the scope of the Harp DSL.

Generalizing ALR: Active learning and regeneration is a black-
box program inference approach that fixes (1) a specific computa-
tional domain (SCD) such as string processing, tensor operators,
database interfaces, (2) a corresponding language (DSL) for model-
ing computations in that domain, and (3) an input generation algo-
rithm (IGA) for interacting with the black-box computation. These
three elements are interlinked and are designed to complement
each other. For example, the DSL is designed to enable differential
testing, using the IGA to guide efficient inference—by inferring
the existence or absence of certain DSL terms in the regenerated
programs while minimizing ambiguity.

An active learning and regeneration system such as HARP is
an instantiation of these three elements (SCD, DSL, IGA) for a
particular domain. We do not expect a single system to be expanded
to capture all or even a large range of computation of interest. Such
an expansion can quickly result in general computations and thus
quickly hit known intractability limits.

Applying ALR to further domains: Instead, we anticipate mul-
tiple active learning and regeneration systems, each targeting a
certain class of libraries. HARp exemplifies this approach for string
computations—a central, widely used class of computations. Other
classes of computation and associated DSLs include: arithmetic-
operation libraries, linear algebra and tensor operations, key-value
operations, spreadsheet-style computations, components that ac-
cess SQL databases, blockchain smart contracts, and stream-based
parallelizing combiners.

The technique has been applied successfully in some of these
domains—e.g., programs that access stateful key-value stores [50],
applications that access relational databases [56, 57], binary data
parsing and transformation [9], and synthesis of parallel Unix shell
commands [55]. HARP is the first active learning and regeneration
system to target security vulnerabilities in software supply chains.

10 CONCLUSION

Supply-chain attacks are becoming a critical security concern. This
paper presented a new approach, active library learning and re-
generation (ALR), to infer and regenerate the client-observable
functionality of a black-box, third-party software dependency. The
regenerated dependency leverages domain-specific modeling, in
which the target class of attacks cannot be expressed. We demon-
strate ALR in HARP, a prototype system for inferring and regener-
ating components that implement string computations.
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A PROOF SKETCHES

Definition A.1. (I0-Correctness) Given a function f, the syn-
thesized function f” is said to be IO-correct, if and only if, f” is
expressible in the Harp DSL (with constants extracted from f) and
for all input i consistent with the input type of f, f(i) = f’(i).

Definition A.2. (Consistentency w.r.t. function f, inputset ,
and maximum program size n) A synthesized function f is said
to be consistent w.r.t. a function f, input set I of size m containing
inputs consistent with the input type of f, and a maximum program
size n, if f” is expressible in the Harp DSL (with constants extracted
from f) and is of size less than equal to n, and for all inputs i € I:

f@)=f'Q)
Note that, given a function f, the IO-correct function f” is con-
sistent w.r.t. function f, for any input set I (consistent with the

input type of f), and any maximum program size n greater than
the size of f”.

THEOREM A.3. (Initial State) For any function f, all functions f’
in P,, are consistent w.r.t function f, input set I = 0, and maximum
program size size n. Also, if there exists a function [’ of size less than
equal to n, which is IO-correct with respect to f, then f’ € Py,.

Proor. The Harp algorithm extracts all constants from function
f and instantiates all sketches is the Harp DSL of size n. The Type T
(extracted using typeConstraints) is a sound approximation of the
actual output type of f. A function f” € Py, if and only if f’ of size
less than equal to n, is expressible in the Harp DSL (with constants
extracted from f), and T is a sound approximation of f”’s output
type. Therefore, given I = 0, all functions in f’ € P, are consistent
with f (input set I = () and max size n).

Also, if there exists a IO-correct function f’ of size less than
equal to n, then f’ is consistent with respect to f (I = 0 and max
size n) and T is a sound approximation of the output type of f”.
Therefore, if there exists a IO-correct function f” of size less than
equal to n, then f” € P,,. o

THEOREM A.4. (Consistency) Given a function f € L, let I be
the set of inputs returned by the function generatelnputs, P, be the
set of programs returned by allPrograms, and P be the set of pruned
program pruneSpace. If P # 0 and f’ is equal to getOpt(P),then f’
is consistent w.r.t. function f, input set I, and maximum program size
n. Also, if the IO-correct function f’ € Py, then ' € P.

Proor. pruneSpace only prunes a function f” € P, if and only
if 3i € I, such that f’(i) # f(i). Therefore, all f’ € P are consistent
with respect to f (input set I and max size n). The getOpt returns
a function f’ € P, therefore if the algorithm synthesis a function
f for function f, then f” is consistent with respect to f (input set
I and max size n).

pruneSpace will never prune out the IO-correct function f” as
for all inputs f(i) = f’(i). Therefore, if f’ € P,,then f’ € P. O

THEOREM A.5. (Convergence) Given a function f and a maxi-
mum function size n, let F, be the set of functions in the HARP DSL
of size less than equal to n, such that, a IO-correct function f’ € Py,.
As we add more inputs to the set of inputs generated by function
generatelnputs, HArP will synthesize a function f’’, such that, "’
and f have the same output on an increasing set of inputs.


https://doi.org/10.1145/3276954.3276959
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://doi.org/10.1145/945445.945448
https://arxiv.org/abs/2012.15443
https://arxiv.org/abs/2012.15443
https://doi.org/10.1145/3314221.3314591
https://doi.org/10.1145/3430952
https://snyk.io/
https://github.com/dominictarr/event-stream/issues/116
https://doi.org/10.14722/ndss.2018.23071
https://doi.org/10.14722/ndss.2018.23071
https://verdaccio.org/
https://doi.org/10.14722/ndss.2018.23131
https://doi.org/10.1145/3460120.3484535
https://bit.ly/3ofwkz2
https://doi.org/10.1145/1315245.1315261
https://eslint.org/

PROOF. Py, is equal to the set returned by allPrograms(n, T).
From Theorem A.3, f’ € Pp. Let I be the set of input set con-
structed by generatelnputs. Let Py be the set of programs returned
by the function pruneSpace. Note that if f’ € P, then for all I,
f’ € Pr (Theorem A.4).

Note that, if Iy C Iy, then Py, C Py, (as for any function f”’ € Py,
then f”/ has the same output as f on inputs in I).

A larger set of inputs allows HARP to prune out functions which
do not have the same output as f on this larger set of inputs. There-
fore, by adding more inputs, HArp will synthesize a function f”/,
such that, f”” and f have the same output on an increasing set of
inputs. m}

B ADDITIONAL EVALUATION RESULTS

Non-string-processing Libraries: We also apply HArp on 11
libraries that were misclassified as processing strings, to evalu-
ate HARP’s -—quick-abort mechanism. On these libraries, HARP
aborts ALR within 5 seconds with a warning that they contain
side-effectful computations that cannot be learned. Eight of these
libraries import built-in modules that are not supported by HArp
such as debug, http, or fs—for example, minimatch depends on
f's and is thus not inferable. One of these libraries, chalk, depends
indirectly on os and tty for checking the environment for color

support and thus it not inferable. Finally, ignore and attn pro-
vide their functionality by extending the runtime context with an
auxiliary value.

C/C++ Libraries: Fig. 7 sum- L ALR P(L) C(L')
marizes results of applying HArp
to 5 C/C++ libraries, including
the time to complete learning
(column ALR), the regenerated-
library performance (column P(L’)
with positive values for slowdown
and negative for speedup), and
its correctness with respect to
the original one (column C(L’), counting percentages of test cases).
These libraries export a single function and are wrapped with
Node’s NAN module [6]. (NAN is an abstraction layer meant to
simplify the development and maintenance of native add-ons over
a constantly changing V8 APL)

HaArP’s ALR ranges between 2.6-17.1s (avg.: 14.4s), driven by the
size of the regenerated library. Naturally, the performance of the
regenerated JavaScript libraries is lower that that of the original
compiled libraries, and ranges between 0.4-1.8% (avg.: 1.0%) of the
original library’s runtime performance (Col. P(L")). HARP regener-
ated full library behavior, except string-upper’s locale-dependent
functionality.

string-upper 2.9s 1.3% 66.7%
right-trim  2.7s 1.8% 100%
left-trim 2.6s 0.7% 100%
Ir-trim 46.7s 0.4% 100%
repeat-text 17.1s 0.7% 100%

Fig. 7: C/C++ ALR. Harp applied
to C/C++ libraries.
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