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Summary
Background Pancreatic Duct Adenocarcinoma (PDAC) screening can enable early-stage disease detection and long-
term survival. Current guidelines use inherited predisposition, with about 10% of PDAC cases eligible for
screening. Using Electronic Health Record (EHR) data from a multi-institutional federated network, we developed
and validated a PDAC RISk Model (Prism) for the general US population to extend early PDAC detection.

Methods Neural Network (PrismNN) and Logistic Regression (PrismLR) were developed using EHR data from 55 US
Health Care Organisations (HCOs) to predict PDAC risk 6–18 months before diagnosis for patients 40 years or older.
Model performance was assessed using Area Under the Curve (AUC) and calibration plots. Models were internal-
externally validated by geographic location, race, and time. Simulated model deployment evaluated Standardised
Incidence Ratio (SIR) and other metrics.

Findings With 35,387 PDAC cases, 1,500,081 controls, and 87 features per patient, PrismNN obtained a test AUC of
0.826 (95% CI: 0.824–0.828) (PrismLR: 0.800 (95% CI: 0.798–0.802)). PrismNN’s average internal-external validation
AUCs were 0.740 for locations, 0.828 for races, and 0.789 (95% CI: 0.762–0.816) for time. At SIR = 5.10 (exceeding the
current screening inclusion threshold) in simulated model deployment, PrismNN sensitivity was 35.9% (specificity
95.3%).

Interpretation Prism models demonstrated good accuracy and generalizability across diverse populations. PrismNN
could find 3.5 times more cases at comparable risk than current screening guidelines. The small number of features
provided a basis for model interpretation. Integration with the federated network provided data from a large, het-
erogeneous patient population and a pathway to future clinical deployment.
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Introduction
Most cases of Pancreatic Duct Adenocarcinoma (PDAC)
are diagnosed as advanced-stage disease, leading to a
five-year relative survival rate of only 11%.1 Expanding
the population currently being screened is crucial for
increasing early detection and improving survival. Cur-
rent screening guidelines2–4 targeting stage I cancers
and high-grade PDAC precursors have significantly
improved long-term survival.5,6 Current guidelines
target patients with a family history or genetic predis-
position to PDAC,7,8 with screening eligibility based on
*Corresponding author.
E-mail addresses: lappelb1@bidmc.harvard.edu (L. Appelbaum), jiakai@

chuk@trinetx.com (M.B. Palchuk), jeff.warnick@trinetx.com (J. Warnick), k
(I.D. Kaplan), rinard@csail.mit.edu (M. Rinard).
dCo-senior authors.

www.thelancet.com Vol 98 December, 2023
estimated absolute (5%) and relative (five times) risk
compared to the general population.6 These patients
comprise only about 10% of all PDAC cases. No
consensus or guidelines exist for PDAC screening in the
general population,9 where the majority of PDAC cases
are found.

Several groups have developed PDAC risk models for
the general population using various data sources.10–12

Most such models aim for integration with Electronic
Health Record (EHR) systems for clinical implementa-
tion. One effort used EHR data from an aggregated
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Research in context

Evidence before this study
We searched PubMed for publications on pancreatic cancer
risk prediction models for the general population. We focused
on articles published between 2013 and 2023, using the
search terms “pancreatic cancer”, “risk prediction models”,
and “general population”. Previous studies have developed
and validated Pancreatic Duct Adenocarcinoma (PDAC) risk
models on large populations. However, they are limited by
their lack of racial and geographic diversity, external
validation, and a clear pathway to clinical implementation.
Moreover, while other models use standard classification
metrics such as AUC for performance evaluation, they provide
little insight into the comparison with currently utilised PDAC
screening inclusion criteria for high-risk individuals with an
inherited predisposition.

Added value of this study
We used Electronic Health Record (EHR) data from 55 Health
Care Organisations (HCOs) across the US within a federated
network platform including over 1.5 million PDAC cases and

controls. We developed, internally and internal-externally
validated, and simulated the deployment of PDAC risk models
for early prediction of 6–18 months before diagnosis. Our
PDAC RISk Model (Prism) uses 87 features derived from EHR
diagnosis, medication, lab, and demographic data from a
racially and geographically diverse population. Prism
maintained its accuracy across internal-external validation and
simulated deployment within the network platform and can
now be tested prospectively on multiple institutional data
within the network. The model captured 3.5 times more
patients than the current inclusion criteria used to identify
patients for PDAC screening programs at similar risk levels.

Implications of all the available evidence
Prism can potentially help primary care providers nationwide
noninvasively identify high-risk individuals for PDAC
screening or serve as a first filter before subsequent biomarker
testing. Prism sets the stage for model deployment within a
federated network to identify high-risk patients at multiple
institutions participating in the network.
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multi-institutional database.13 Their evaluation focused
on risk prediction up to one month before diagnosis
without evaluating generalizability across locations or
races. Several other efforts using EHR data had limited
validation across locations and races.14–16 Other efforts
worked with small sample sizes10,17 and internal valida-
tion only.12,17

We used EHR data from 55 US Health Care Orga-
nisations (HCOs) from a federated data network to
develop and validate PDAC risk prediction models for
the general population. Our models enable identifying
individuals at high risk for PDAC from the general
population, so they can be offered early screening or
referred for lower overhead testing such as biomarker
testing.

The data network provides access to harmonised, de-
identified EHR data of over 89 million patients for
model development and testing. Because the network is
connected to the EHR systems of the participating
HCOs, it provides a pathway to model deployment in a
clinical setting, a critical step in the progression toward
successful clinical adoption.18

We developed a methodology to train PDAC RISk
prediction Model (Prism) on federated network EHR
data. We worked with two classes of models: neural
networks (PrismNN) and logistic regression
(PrismLR). Prism models identify high-risk patients
6–18 months before an initial PDAC diagnosis. Our
evaluation reports Area Under the Curve (AUC) and
risk calibration. We also conducted three types of
internal-external validation: location-based, race-based,
and temporal. Furthermore, we simulated the deploy-
ment of Prism models with temporally separate
training/test data to evaluate their performance in a
more realistic setting. Evaluation metrics include
sensitivity and Standardised Risk Ratio (SIR). SIR was
based on demographically matched PDAC incidence
rates of the general US population from the SEER
database.19 Fig. 1 summarises the process of our model
development.
Methods
Data source and setting
This is an observational retrospective study with both a
case–control and cohort design. Our goal is to develop
machine learning models to predict risk of PDAC
diagnosis 6–18 months in the future based on existing
EHRs of a patient. We used data from the federated
EHR database platform of TriNetX.20 TriNetX is global
research network that specialises in EHR data collection
and distribution. The network consists of mostly large,
academic medical centres, community hospitals, and
outpatient clinics. TriNetX supports pulling data from
any EHR systems used by HCOs.

We used retrospective de-identified EHR data from
55 HCOs across the United States. On average, each
HCO provides approximately 13 years of historical data.
Data include values from structured EHR fields (e.g.,
demographics, date-indexed encounters, diagnoses,
procedures, labs, and medications) as well as facts and
narratives from free text (e.g., medications identified
through Natural Language Processing (NLP)). TriNetX
harmonises all data from each HCO’s EHR to the Tri-
NetX standard data model and a common set of
controlled terminologies.
www.thelancet.com Vol 98 December, 2023
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Fig. 1: Flowchart of our study, including data collection and training/evaluation of simulated deployment.

Articles
Study population
We worked with a PDAC case group and a control
group. We obtained all data during Nov and Dec, 2022.
We obtained the PDAC group by querying TriNetX to
obtain EHR data for patients currently 40 years old or
older with one of the following ICD-10/ICD-9 codes:
C25.0, C25.1, C25.2, C25.3, C25.7, C25.8, C25.9, and
157. We obtained n = 132,789 PDAC cases. We excluded
patients who were diagnosed before 40 years of age
(n = 1924), patients with entries two months after their
death record (n = 484, likely due to mixed entries of
different patients), and patients with insufficient medi-
cal history (n = 94,994, defined in Section 2.3), to obtain
a PDAC group with n = 35,387 cases.

For the control group, we queried TriNetX for pa-
tients at least 40 years old without any of the above ICD-
10 or ICD-9 codes. The query matched n = 51,139,587
patients. From them, we uniformly sampled
n = 6,499,996 patients. We excluded patients with a
PDAC tumour registry entry but no PDAC diagnosis
entries (n = 304), patients with records two months after
their death record (n = 26,783), and patients with
insufficient medical history (n = 4,972,828, defined in
Section 2.3) to obtain a control group with n = 1,500,081
cases.

Model development
We trained and evaluated two model classes, neural
networks (PrismNN) and logistic regression (PrismLR).
Data were randomly partitioned into training (75%),
validation (10%), and test (15%) sets. Note that the
validation set refers to the dataset for model
www.thelancet.com Vol 98 December, 2023
hyperparameter selection and should not be confused
with our internal-external validation that accesses model
performance.

Our training and testing procedures work with a
cutoff date C for every patient. We derived features from
entries available before C to predict PDAC risk between
C +6 months and C +18 months. We sampled C uni-
formly between 6 and 18 months before diagnosis for
each PDAC case and matched the cutoff dates for con-
trol cases. Patient age was assessed at the cutoff date.
Given a cutoff date C, we empirically defined a patient to
have sufficient medical history if their total number of
diagnosis, medication, or lab entries within 2 years
before C is at least 16, their first entry is at least 3
months earlier than their last entry before C, and their
age at C is at least 38.5 years (40 years minus 18
months). We removed patients without sufficient med-
ical history as described in Section 2.2.

We derived four classes of features from EHR: basic
features, diagnosis features, medication features, and
lab features. Basic features have six values, four for de-
mographic information (age and sex, and their existence
bits) and two for frequencies of clinical encounters. We
counted the number of diagnosis, medication, or lab
entries greater than 18 months before the cutoff date as
the number of early records, and entries within 18
months as the number of recent records. The numbers
of records serve as a proxy of clinical encounter fre-
quencies, which are correlated with cancer diagnosis.21

Other features encode information about the existence,
frequency, time span, and lab results (if applicable) of
the corresponding type of EHR entries. We ignored
3
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EHR entry types appearing in less than 1% of the PDAC
cases in the training set.

For each EHR entry type, we included an existence
bit feature (0 or 1) indicating if the patient’s EHR con-
tains such entries. This encoding accounts for the
additional effect of the healthcare process on EHR
data.22 The encoding also enables model predictions
based on whether a feature is present or missing.
Because PrismNN can use sophisticated nonlinear
reasoning, data imputation provides little to no useful
additional information for these models. Therefore, we
did not use any imputation.

The above process generates over five thousand fea-
tures. To improve interpretability, we automatically
selected fewer features by L0 regularisation on a binary
input mask23 and iterative feature removal. We will
present all the selected features ranked by their uni-
variate predictive power with the PrismNN model,
calculated as the AUC achieved by using each type of
feature while zeroing all other features.

Model was calibrated with a variant of the Platt cali-
bration.24 Calibration was evaluated with calibration
plots on the test set. We also calculated the Geometric
Mean of Over Estimation (GMOE), the geometric mean
of the ratios of predicted risks to the actual risks, for
quantitative calibration evaluation.

We evaluated the mean AUC and GMOE on test sets
in nine independent runs with different random seeds
for dataset split and model initialisation. We also eval-
uated model AUC and GMOE for a few age subgroups:
40–49, 50–69, 70+, and 50+ years old. Since boot-
strapping has shown more accurate performance esti-
mations in certain settings,25 we further evaluated the
model AUC using optimism-corrected bootstrapping.

The Supplemental Material (Sections A.2 and A.3)
provides more details on model development, including
details on feature selection, model training/calibration,
and model evaluation.

Internal-external validation
Our use of a large federated network enabled internal-
external validation by splitting data within the
network.26,27 Our internal-external validation considered
three attributes: geographic location of the HCO (or its
headquarter if an HCO covers multiple locations), pa-
tient race, and training data time. For each attribute, we
split the dataset accordingly, trained models on one
split, and tested on the other. We repeated all model
development steps, including the automatic feature se-
lection, on the training set for each internal-external
validation.

For location and race-based validations, we assessed
model generalizability by comparing the AUCs of
internal-external-validation models with corresponding
control models. Control models used the same sizes of
training and test sets as the attribute-based split but
used random splitting that ignores attribute values. We
also calculated the gap between AUCs on the validation
and test sets as an extra generalizability assessment. We
further calculated the I2 index of the AUCs of
geographic or racial subgroups to assess the heteroge-
neity of model performance. Table 1 provides the loca-
tion and race distributions. We excluded patients with
unknown HCO locations or races in the internal-
external validation.

For temporal validation, we selected the 50%,
60%,...,90% percentile of diagnosis dates as split dates.
We trained models on data available prior to those split
dates. We used the data available after Oct 10, 2021 (the
90% percentile) as the test set for all models. Since the
split date also impacts the size of the training set, we
trained control models with the same number of
randomly sampled cases (i.e., the control models used
data available before each split dates but sampled only N
PDAC cases from them, where N is half the total
number of PDAC cases, corresponding to the number
of cases with 50% percentile).

Simulated deployment
We estimated the model performance in a clinical
setting by simulating model deployment using a pro-
spective cohort study design. We trained the model on
data available before Apr 11, 2020 (70% percentile of
diagnosis dates) as the above temporal validation. We
then simulated a clinical study. We periodically enrolled
new patients into the study when they first satisfied the
age and sufficient medical history requirements (see
Section 2.3) after Apr 11, 2020. For each enrolled pa-
tient, we evaluated their PDAC risk using our models
every 90 days until there was no more sufficient data
(i.e., 18 months before dataset query date, or no more
sufficient medical history on future dates) or the patient
got a PDAC diagnosis. We followed up each enrolled
patient starting 6 months after their first risk evaluation
until 18 months after their last risk evaluation to see if
they were diagnosed with PDAC during the follow up
period. The selection of enrolment, risk evaluation, and
follow up dates was independent of the model. We
computed model performance statistics, including
sensitivity, specificity, Positive Predictive Value (PPV),
and Standardised Incidence Ratio (SIR), based on
whether a patient ever received a high-risk prediction
between 6 and 18 months before their PDAC diagnosis.

We chose multiple high-risk thresholds according to
the 89.00%, 92.00%, 96.60%, 97.80%, 99.70%, and
99.95% specificity levels on the validation set. Overall,
our design simulated the anticipated clinical application
of our models to periodically evaluating every patient’s
PDAC risk. Supplemental Material (Section A.4) pro-
vides more details on the study design.

We accounted for unbalanced data sampling (we
used all PDAC cases but a subset of the control cases) to
estimate the PPV and SIR that would be obtained if we
had evaluated the model on the entire TriNetX
www.thelancet.com Vol 98 December, 2023
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Attribute Cancer group (n = 35,387) Control group (n = 1,500,081)

N (%) N (%)

Sex

Female 18,341 (51.83) 841,042 (56.07)

Male 17,045 (48.17) 637,674 (42.51)

Unknown 1 (0.00) 21,365 (1.42)

Age at cutoff

Mean (SD) 67.55 (10.61) 59.50 (12.87)

<40 135 (0.38) 103,566 (6.90)

40–50 2052 (5.80) 285,492 (19.03)

50–60 5762 (16.28) 342,037 (22.80)

60–70 10,727 (30.31) 354,907 (23.66)

70–80 10,531 (29.76) 251,333 (16.75)

>80 4175 (11.80) 86,841 (5.79)

Unknown 2005 (5.67) 75,905 (5.06)

Race

AIAN 93 (0.26) 5527 (0.37)

Asian 504 (1.42) 32,998 (2.20)

Black 5315 (15.02) 228,256 (15.22)

NHPI 21 (0.06) 1883 (0.13)

White 25,634 (72.44) 1,046,240 (69.75)

Unknown 3820 (10.79) 185,177 (12.34)

HCO location

Midwest 8371 (23.66) 230,088 (15.34)

Northeast 11,831 (33.43) 426,469 (28.43)

South 12,246 (34.61) 682,417 (45.49)

West 2595 (7.33) 120,961 (8.06)

Unknown 344 (0.97) 40,146 (2.68)

No. medical records

Mean (SD) 854.06 (1501.89) 440.23 (939.50)

Race abbreviations: AIAN: American Indian or Alaska Native; Black: Black or African American; NHPI: Native Hawaiian or Other Pacific Islander. The numbers in brackets
indicate percentages of the corresponding category, except for the two rows with Mean (SD) where the bracketed numbers are standard deviations.

Table 1: Demographics of our dataset.

Articles
population. SIR is the ratio of the observed PDAC cases
(true positives) in the high-risk group to the expected
number of PDAC cases of that group. To calculate the
expected number of cases, we used the SEER database,19

matched with age, sex, race, and calendar year for each
individual in the high-risk group, as done by Porter,
Laheru, Lau, He, Zheng, Narang et al.28

Ethics
All EHR data were obtained through TriNetX and de-
identified by TriNetX. We accessed the data under a
no-cost collaboration agreement. Some EHR entries
were obfuscated by TriNetX to protect patient privacy.
No human subjects were directly involved in this
study. No patient could be re-identified from the data
used in this study. Because this study used only de-
identified patient records and did not involve the
collection, use, or transmittal of individually identifi-
able data, this study was exempted from Institutional
Review Board approval, as determined by the Western
IRB.
www.thelancet.com Vol 98 December, 2023
Statistics
The PDAC group used all available cases on TriNetX.
The sample size of control group (6,499,996) was
determined by the size that can be effectively handled by
our storage capacity and computational resources.

Our dataset took up 734 GiB of storage. We aimed to
include everyone satisfying our age and medical history
sufficiency requirements, with minimum exclusion to
improve data quality.

Bootstrapping was performed with 16 repetitions;
each repetition included all model development steps
including automatic feature selection and took about an
hour. We followed the algorithm for optimism-corrected
bootstrapping described by Steyerberg, Section 5.3.4.29

Confidence intervals of AUCs were calculated with
an optimised version of the DeLong’s algorithm.30,31

Confidence intervals of binomial proportions (e.g.,
sensitivity, specificity) were calculated with the exact
Clopper-Pearson method.32 Confidence intervals of the
AUC mean in internal-external validation were calcu-
lated assuming a Gaussian mixture model to avoid the
5
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assumption of a global mean. The Supplemental
Material (Section A.4) provides more details for calcu-
lation in simulated deployment.

Calculation of I2 for geographic/racial subgroups
assumes a random effects model yi = μ + ei + Ei where μ
is assumed as the “true” AUC, yi is the measurement
of μ based on subgroup i, ei ∼ N (0, σ2i ) models the
measurement uncertainty, and Ei ∼ N (0, τ2) models
the heterogeneity between subgroups.33 We used the
definition I2 = (Q − (k − 1))/Q.34 We calculated the Q
statistics using the log-odds of AUCs to better match
the normal assumption.35 We estimated Q’s confidence
interval using Monte Carlo simulation with 3 × 106

samples.

Role of funders
TriNetX provided cloud computing resources and access
to the TriNetX data platform. A few TriNetX employees,
listed as coauthors, made direct contributions to this
research (see the Contributors section). Other funders
did not have any role in the study design, data collection,
data analyses, interpretation, or writing.
Results
Model evaluation
Both PrismNN and PrismLR used 35,387 patients with
cancer and 1,500,081 controls up to 98.1 years old.
Table 1 shows demographics, including sex, age, race,
and HCO location. Fig. 1 presents a flowchart of dataset
creation. The Supplemental Material (Table A1) has
more demographic details.

The average AUCs of PrismNN and PrismLR on
nine random runs were 0.826 (95% CI: 0.824–0.828)
and 0.800 (95% CI: 0.798–0.802), respectively. With
bootstrapping, the optimism-corrected AUCs of.
PrismNN and PrismLR were 0.825 (95% CI:
0.823–0.827) and 0.801 (95% CI: 0.799–0.804), respec-
tively. Because our models incorporate the presence or
absence of features, each feature is a predictor and we
have no participants with missing predictors.22 The
average GMOE on nine random runs was 1.169 (95%
CI: 1.145–1.192) and 0.969 (95% CI: 0.945–0.993) for
PrismNN and PrismLR, respectively.

Fig. 2a shows the ROC curve of one of the nine
random runs, with AUCs being 0.825 (95% CI:
0.819–0.830) (PrismNN) and 0.798 (95% CI:
0.793–0.804) (PrismLR). Fig. 2b shows the correspond-
ing log-scale calibration plots on the test set. GMOE was
1.161 (PrismNN) and 0.982 (PrismLR).

The PrismNN AUCs for different age groups were
0.847 (95% CI: 0.826–0.869), 0.796 (95% CI:
0.787–0.806), 0.775 (95% CI: 0.765–0.785), and 0.797
(95% CI: 0.790–0.804) for 40–49, 50–69, 70+, and 50+
years old, respectively. The corresponding GMOEs were
11.277, 1.057, 1.400, and 1.201. The PrismLR AUCs
were 0.822 (95% CI: 0.799–0.846), 0.767 (95% CI:
0.757–0.777), 0.741 (95% CI: 0.730–0.752), and 0.766
(95% CI: 0.759–0.773) and GMOEs were 90.107, 0.804,
1.253, and 1.068. Fig. 3 presents all the selected features
ranked by feature predictive power with PrismNN.
Model features include known PDAC risk factors such
as age, sex, diabetes mellitus, pancreatitis, pancreatic
cysts, and abdominal pain; other features include hy-
pertension, hypercholesterolemia, kidney function, and
frequency of clinical visits preceding PDAC diagnosis.
Figure A1 in the Supplemental Material presents how
model performance varies with different numbers of
selected features.

Internal-external validation results
Fig. 4 shows the results for location-based, race-based,
and temporal internal-external validation. The number
of patients of each HCO location or racial group can be
seen in Table 1. Note that as stated in Section 2.4, the
results were obtained by training models on non-
random data splits according to race/location/time.
Fig. 4a presents location-based internal-external valida-
tion results. PrismNN AUCs on the test sets were 0.735
(95% CI: 0.730–0.741), 0.723 (95% CI: 0.719–0.728),
0.747 (95% CI: 0.743–0.751), and 0.754 (95% CI:
0.745–0.764) for the Midwest, Northeast, South, and
West, respectively. PrismLR AUCs were 0.748 (95% CI:
0.743–0.753), 0.748 (95% CI: 0.744–0.753), 0.751 (95%
CI: 0.746–0.755), and 0.730 (95% CI: 0.720–0.740). AUC
drop between test and control models was between
0.078 and 0.099 for PrismNN, and between 0.049 and
0.072 for PrismLR. The average test AUCs on the four
locations were 0.740 (95% CI: 0.716–0.764) and 0.744
(95% CI: 0.727–0.762) for PrismNN and PrismLR,
respectively. The I2 indexes of PrismNN and PrismLR
were 99.2% (95% CI: 86.7%–99.8%) and 95.9% (95%
CI: 33.5%–98.8%), respectively.

Fig. 4b presents race-based internal-external valida-
tion results. PrismNN AUCs on the test sets were 0.822
(95% CI: 0.782–0.862), 0.835 (95% CI: 0.818–0.851),
0.821 (95% CI: 0.816–0.827), 0.893 (95% CI:
0.839–0.947), and 0.768 (95% CI: 0.765–0.771) for
AIAN, Asian, Black, NHPI, and White, respectively. The
PrismLR AUCs were 0.787 (95% CI: 0.745–0.829), 0.809
(95% CI: 0.791–0.828), 0.803 (95% CI: 0.798–0.809),
0.877 (95% CI: 0.809–0.945), and 0.793 (95% CI:
0.790–0.796). AUC drop between test and control
models was between −0.067 and 0.018 for PrismNN,
and between −0.054 and 0.018 for PrismLR. The average
test AUCs on the five races were 0.828 (95% CI:
0.744–0.912) and 0.814 (95% CI: 0.740–0.888) for
PrismNN and PrismLR, respectively. The I2 indexes of
PrismNN and PrismLR were 99.8% (95% CI: 92.9%–

100.0%) and 96.4% (95% CI: 2.9%–99.2%), respectively.
Fig. 4c present temporal validation results. Models

achieved average test AUCs 0.789 (95% CI: 0.762–0.816)
(PrismNN) and 0.780 (95% CI: 0.763–0.798) (PrismLR).
Performance tends to become better with more recent
www.thelancet.com Vol 98 December, 2023
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a b

Fig. 2: Model evaluation results. (a) ROC (Receiver Operating Characteristic) curves on the test set. (b) Log-scale calibration plots on the test set.
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training data and larger training sets, but the change is
not statistically significant.

Simulated deployment results
We simulated model deployment on 185,932 patients
(with 7095 PDAC cases) in the test set, with enrolment
from Apr 11, 2020 to Apr 6, 2021. Mean age at enrol-
ment was 61.62 (SD 11.98). Mean age at PDAC diag-
nosis was 69.75 (SD 10.37). Each patient was followed
up for 1.82 (SD 0.31) years (Table 2).

The estimated model PPV range on the whole Tri-
NetX population was 0.28%–8.62% for PrismNN and
0.29%–2.88% for PrismLR. PrismNN and PrismLR SIR
ranges were 2.38–96.0 and 2.22–24.2, respectively. The
SIR of all the enrolled patients during the follow-up
period was 1.00 (95% CI: 0.98–1.01). A SIR close to
one indicates that our TriNetX test population with pa-
tient exclusion has similar PDAC incidence as the
general US population.

We determined the high-risk group to be individuals
with a SIR of 5.10 or above, based on PrismNN, which is
correlated with a 35.9% sensitivity and 95.3% specificity.
This SIR threshold is similar to the current eligibility
cutoff for inclusion into screening programs.2

The Supplemental Material has more comprehensive
simulated deployment results with more risk levels
(Tables A2 and A3) and breakdowns of final model
performance within different race/location/age/sex
subgroups (Tables A4–A9).
Discussion
Our study leveraged routinely collected EHR data from
a federated network including 55 US HCOs to develop
and validate two families of models (PrismNN and
PrismLR) for identifying patients in the general pop-
ulation at high PDAC risk, 6–18 months before the first
PDAC diagnosis. Both models were trained on 35,387
PDAC cases and 1,500,081 controls with features
www.thelancet.com Vol 98 December, 2023
derived from demographics, diagnosis, medication,
and lab entries in EHR. Both models used 87 features
(Fig. 3) automatically selected using the training data.
PrismNN achieved better AUC than PrismLR on the
test set, delivering test AUCs of 0.826 (95% CI:
0.824–0.828) and 0.800 (95% CI: 0.798–0.802),
respectively. Bootstrapping gave similar AUC estima-
tions. Both models showed worse performance for
patients over 50 years old compared to over 40 years
old, while PrismNN maintained better performance
than PrismLR for different age groups; the deviation of
GMOE from 1 indicates recalibration is needed if an
age-based subgroup of patients is targeted. PrismNN
showed worse average AUC in location-based valida-
tion than PrismLR, but performed favourably
compared to PrismLR in other validations. The large
capacity and flexibility of neural networks make them a
good choice for modelling complex relationships in
EHR data, but such capacity may hinder generaliz-
ability compared to simpler models. Although inter-
pretation of neural networks is more challenging, our
automatic feature selection provides insight into the
reasoning process of the models.

We anticipate two potential clinical use cases for
Prism. The first is to expand the eligibility for current
screening programs that utilise imaging modalities such
as Endoscopic UltraSound (EUS) and MRI/MRCP.6

Current eligibility criteria are based on familial PDAC
or a known germline mutation syndrome (e.g., Lynch,
Peutz-Jeghers).6 The identified population have a mini-
mum lifetime SIR of 5 and includes only about 10% of
PDAC cases.7,8 Depending on the chosen high-risk
threshold, PrismNN exhibited a two-year SIR of
2.38–96.0. At a SIR of 5.10, PrismNN identified 35.9%
of the PDAC cases as high risk 6–18 months before
diagnosis, a significant improvement over current
eligibility criteria.

The second use case is to identify an enriched group
for lower overhead testing (such as biomarker testing)
7
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Fig. 3: List of selected features ranked by univariate AUC of PrismNN. The label diag refers to diagnosis features, med to medication features,
and lab to lab features. Letters in the brackets indicate the types of derived features: e for existence, fd for first date, ld for last date, p for time
span, f for frequency, v for latest lab value, ve for whether a valid lab value exists, s for lab value slope, and se for whether lab value slope can be
computed.
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Fig. 4: Internal-external validation results. Error bars indicate 95% CI. Dashed horizontal lines and the surrounding regions indicate the original
NN/LR test AUCs and 95% CI without attribute-based splitting. NN is short for PrismNN, LR short PrismLR, and ctrl- for control models that use
random data split with matched training set size for race/location validation and use matched training size to separate the effect of data size
increase for temporal validation. (a) Location-based internal-external validation. (b) Race-based internal-external validation. See notes under
Table 1 for race abbreviations. (c) Model performance over time in temporal validation.

Articles
followed by screening based on the lower overhead test.
In this use case, the model could be deployed at a higher
sensitivity than in our first use case. For example, at
85.3% specificity, PrismNN exhibited 54.6% sensitivity.

To facilitate the integration of this model into clinical
practice, a prospective study that examines the impact of
implementing a PDAC risk model in real-time on
screening behaviour is needed. This study would involve
deploying the Prism models on patient EHR data and
screening the high-risk group. The aim would be to
evaluate both quantitative clinical outcome measures,
such as the identification of a higher number of early-
stage PDAC cases compared to typical hospital figures,
www.thelancet.com Vol 98 December, 2023
and qualitative measures of model adoption by practi-
tioners such as end-user (primary care provider)
satisfaction.

We considered three types of internal-external vali-
dation to evaluate model generalizability. We split the
dataset according to some attribute, trained models on
one part, and tested the models on the other. Results of
race-based validation highlight the generalizability
across diverse racial populations. When tested on White,
there was a small AUC drop, which we attribute to the
fact that the White group constituted about 70% of the
dataset while training was performed on the remaining
30% of data. Location-based validation showed modest
9
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Model Risk level Sensitivity Specificity PPV (TrxPop. Est.) SIR (TrxPop. Est.)

PRISMNN 1 54.6% (53.4–55.8) 85.3% (85.1–85.5) 0.28% (0.27–0.29) 2.38 (2.34–2.41)

2 48.7% (47.5–49.9) 89.1% (89.0–89.3) 0.34% (0.33–0.35) 2.87 (2.82–2.91)

3 35.9% (34.8–37.1) 95.3% (95.2–95.4) 0.58% (0.56–0.60) 5.10 (5.02–5.18)

4 31.4% (30.4–32.5) 96.9% (96.9–97.0) 0.77% (0.74–0.80) 7.07 (6.96–7.17)

5 17.3% (16.4–18.2) 99.5% (99.5–99.6) 2.81% (2.59–3.06) 29.0 (28.6–29.5)

6 11.9% (11.2–12.7) 99.9% (99.9–99.9) 8.62% (7.42–10.0) 96.0 (94.3–97.6)

PRISMLR 1 52.3% (51.1–53.4) 86.2% (86.1–86.4) 0.29% (0.28–0.29) 2.22 (2.19–2.25)

2 46.4% (45.2–47.6) 89.9% (89.7–90.0) 0.35% (0.34–0.36) 2.66 (2.61–2.70)

3 31.8% (30.7–32.9) 95.4% (95.3–95.5) 0.53% (0.50–0.55) 4.06 (3.99–4.12)

4 26.4% (25.3–27.4) 97.0% (96.9–97.1) 0.66% (0.63–0.69) 5.17 (5.09–5.25)

5 8.95% (8.30–9.64) 99.6% (99.5–99.6) 1.51% (1.36–1.67) 13.1 (12.9–13.3)

6 2.93% (2.55–3.35) 99.9% (99.9–99.9) 2.88% (2.32–3.56) 24.2 (23.7–24.7)

Numbers in brackets are 95% CI. PPV: Positive Predictive Value. SIR: Standardised Incidence Ratio. TrxPop. Est.: Estimation on the whole TriNetX population that accounts
for unbalanced sampling. All calculations were based on the outcome during the followup period of individual patients. Followup period was determined by the age and
EHR data availability of each patient. More details can be found in Section 2.5 and in the Supplemental Material.

Table 2: Simulated deployment results.
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AUC drops, implying potentially systematic differences
between EHR data from geographically different HCOs.
Additional validation is urged for model deployment to
HCOs outside of the network. The high values of I2

indicate that model performance differences between
locations or races were more likely due to intrinsic
heterogeneity instead of randomness, while PrismLR
exhibited slightly less heterogeneity. Temporal valida-
tion results showed good performance across time and
suggested (with insufficient statistical significance) that
model performance may improve with more recent
training data and/or larger training data.

We evaluated the effectiveness of Prism in clinical
implementation by simulated deployment. A key aspect
is training models on data available before a simulated
enrolment date to identify high-risk individuals after
that date. We periodically evaluated PDAC risk for each
individual and followed the identified high-risk in-
dividuals over time to evaluate model performance. This
simulated deployment methodology contrasts previous
methodologies that do not temporally separate the
training and test data or test each individual at multiple
cutoff dates.10,13 By tracking the envisioned deployment
scenario more closely, we eliminated a potential source
of inaccuracy and obtained a potentially more accurate
prediction of model performance in clinical use. Simu-
lated deployment also reveals model performance dif-
ferences overlooked by traditional evaluation; although
PrismNN and PrismLR have numerically close AUCs,
the gap between their sensitivities in simulated deploy-
ment with SIR ≥5 is large.

A significant strength of our work is using a feder-
ated EHR network that ingests EHR data from multiple
HCOs and presents data as a single format. This
network enabled our three types of external validation
and simulated deployment.
Integration with EHR systems is crucial in clinical
deployment of risk prediction models. Without proper
integration, clinicians must manually enter information
into a program, which forms a significant barrier to
model adoption.18 By contrast, federated networks allow
seamless model integration due to their close interac-
tion with existing HCO EHR systems. Federated net-
works provide a clear pathway for integrated model
development, validation, and clinical deployment, all
within a single platform.36

Other researchers have used EHR data to develop
PDAC risk prediction models for the general
population.10,13–16 Data set sizes ranged from 1792 PDAC
cases/1.8 M controls15 to 24,000 PDAC cases/6.2 M
controls.14 Some studies lacked an external validation,13

completed the external validation/evaluated model
generalizability only with data from a single geographic
area,14,16 or validated only on one sex (male)15 or race.11

While some studies worked with data obtained from
multiple organisations,13–15 none worked with a feder-
ated network that harmonises and standardises the data,
none provided a clear path to clinical deployment, and
none supported seamlessly deploying the model to new
HCOs joining the federated network. Some previous
studies evaluated the ability of their models to identify
high-risk individuals either until or shortly before PDAC
diagnosis,13–15 when the clinical benefit is improbable.
By contrast, our evaluation focused on risk identification
at least six months before diagnosis, when early-stage
disease detection and potential cure are more likely.

Our study has a few limitations: (i) Model develop-
ment and validation were retrospective. Prospective
studies are needed to evaluate the efficacy of clinical
detection of early-stage disease; (ii) Despite the favour-
able generalizability across racial groups demonstrated
in our internal-external validation, certain racial groups
www.thelancet.com Vol 98 December, 2023
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may have biased presentation in our data because their
socioeconomic status limits their access to the health-
care system. Future research should further evaluate the
fairness of Prism, particularly concerning underrepre-
sented groups; (iii) Although TriNetX incorporates a
diverse set of US HCOs, they are still a small portion on
the global scale; future work should evaluate Prism on
more geographically diverse data. The lack of stand-
ardisation in data collection and the heterogeneity of
EHR systems may have impacted model generaliz-
ability, as hinted by the PDAC prevalence differences
and the performance drop in location-based validation;
and (iv) Our study does not try to interpret the model
reasoning process or extract clinical knowledge from
models. Future work should improve model interpret-
ability to make the decision process more reliable and
transparent.

In conclusion, we have built, validated, and simu-
lated the deployment of PDAC risk prediction models
for the general population on multi-institutional EHR
data from a federated network. Prism models can be
used to help primary care providers across the country
identify high-risk individuals for PDAC screening or
used as a first filter before subsequent biomarker
testing. Both PrismNN and PrismLR maintained their
accuracy across diverse racial groups and geographic
regions in the US and over time, outperforming widely-
used clinical guideline criteria2,3 for PDAC screening
inclusion.

Our approach enables potential expansion of the
population targeted for screening beyond the tradition-
ally screened minority with an inherited predisposition.
Prism models set the stage for model deployment
within the network to identify high-risk patients at
multiple institutions within the network. The next step
is a prospective study to validate the models before full
clinical deployment.
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