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ABSTRACT

We consider a usage model for automated machine learning (Au-
toML) inwhich users can influence the generated pipeline by provid-
ing aweak pipeline specification: an unordered set ofAPI components
fromwhich the AutoML system draws the components it places into
the generated pipeline. Such specifications allow users to express
preferences over the components that appear in the pipeline, for ex-
ample a desire for interpretable components to appear in the pipeline.
We present AMS, an approach to automatically strengthen weak
specifications to include unspecified complementary and function-
ally related API components, populate the space of hyperparameters
and their values, and pair this configuration with a search procedure
to produce a strong pipeline specification: a full description of the
search space for candidatepipelines.AMSusesnormalizedpointwise
mutual information on a code corpus to identify complementary
components, BM25 as a lexical similarity score over the target API’s
documentation to identify functionally related components, and
frequency distributions in the code corpus to extract key hyperpa-
rameters and values. We show that strengthened specifications can
produce pipelines that outperform the pipelines generated from the
initial weak specification and an expert-annotated variant, while
producing pipelines that still reflect the user preferences captured
in the original weak specification.
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1 INTRODUCTION

Automated machine learning (AutoML) [15, 23, 27, 37] promises to
democratize the use of machine learning techniques by end users,
allowing non-experts access to a tool that has become standard
for tackling research and applications across domains as diverse as
medicine, finance, and software engineering [17, 29, 34, 36]. AutoML
tools typically take as input a tabular dataset along with a classifica-
tion or regression task (i.e. predict a particular column) and generate
an optimized composition of machine learning operators, drawn
from a target API, to produce an executable pipeline.

At the core of AutoML tools lie search procedures that generate
and evaluate possible pipeline candidates. Under the prevailing us-
age model [48], the end user treats the AutoML tool as a black box
which produces a pipeline that outperforms other generated candi-
dates based on some predictive performance metric (e.g. F1 score).
In this setting the end user has no direct way of influencing the
pipeline chosen by the system. However, a user may need to express
preferences, beyondmaximizing a predictive performancemetric, to
satisfy constraints such as pipeline interpretability, domain-specific
best practices, and data scaling constraints, for example.

We propose the use of a weak pipeline specification as a way to
provide partial user preferences to theAutoML tool. Aweak pipeline
specification consists of an unordered set of API components that
the end user may want to appear in the resulting pipeline. This spec-
ification can be automatically extended to produce a strong pipeline
specification that captures additional API components of interest, de-
fines a set of hyperparameters and values to search over, and a search
procedure to sample candidate pipelines. The strengthened pipeline
specification can then influence the output pipeline produced by the
AutoML tool by constraining the search space.

For example, the user might provide the Scikit-Learn component
{ LogisticRegression } as a weak specification. Strengthening this
specification could add other linear models (e.g. linear SVM), would
specifydifferent typesof regularization (e.g. L1/L2) and theirweights,
and would include the search procedure (e.g. genetic programming)
used to sample pipelines. This proposed model of interaction allows
the end user greater control over the eventual output pipeline, with-
out negating the key advantage of AutoML: the user need not be an
ML expert.

WeintroduceAMS(Figure1), a systemthatautomaticallystrength-
ens AutoML search space specifications. To carry out this strength-
ening, AMS exploits information in a code corpus and the target
API’s documentation. First, AMS automatically mines pairs of com-
plementary API components from the selected code corpus, where
two components are complementary if they co-occur frequently. To
formalize this mining procedure, AMS uses normalized pointwise
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Figure 1: AMS system diagram. System boundaries are

depicted as a dashed line. The user provides a weak specifi-

cation, which is automatically extended by AMS to include

complementary, functionally related API components, and

key hyperparameters and a set of possible values.

mutual information [5] to rigorously characterize co-occurrence in
probabilistic terms. These mined associations can then be used to
extend the initial weak specification. Next, AMS identifies unspeci-
fied API components that may be functionally related to those in the
original specification. To reason about component similarity, AMS
applies BM25 [42], a popular and effective measure of lexical similar-
ity, over theAPI’s documentation.With thismetric,AMScan identify
components with the highest degree of relation to those in the orig-
inal specification. Next, given that machine learning pipelines are
known to exhibit different performance based on hyperparameter
values [40], AMS uses frequency distributions, estimated from the
selected code corpus, to define a hyperparameter search space for
each component in the extended specification. Finally, AMS pairs
this component configuration with a search procedure, which is
used to sample candidate pipelines from the given space.

We empirically evaluate AMS’s predictive performance, in terms
of macro-averaged F1 score, over 9 datasets and 15 weak pipeline
specifications. Our results show that, with two different search pro-
cedures, AMS produces pipelines that outperform the pipelines ob-
tained using the initial weak specification and an expert-annotated
version of the weak specification including hyperparameters and
values. To quantify the extent of outperformance,we use the concept
of awin. A pipeline wins when it obtains the highest score on a spec-
ification/dataset combination, and satisfies a minimum predictive
score difference to rule out comparable scores.

When using genetic programming as a search procedure, AMS’s
specifications result in 38wins compared to 12 under theweak speci-
fication extendedwith an expert hyperparameter space.When using
random search as a search procedure, AMS’s specifications result
in 41 wins compared to 14 wins under the weak specification ex-
tended with an expert hyperparameter space. We also find that the
pipelines produced using AMS’s specification qualitatively reflect
the influence of the weak specification.

To summarize, this paper makes the following contributions:

• We present a novel approach to automatically strengthen
pipeline specifications for AutoML tools, allowing users to
influence the final generated pipeline. Our approach relies

on a probabilistic characterization of co-occurring API com-
ponents, lexical similarity over alternative components’ API
documentation, and frequency distributions for hyperparam-
eter spaces.
• Weimplement thisapproach (andshareourevaluationdataset)
in an open-source system called AMS1.
• We evaluate AMS using 9 datasets from an existing AutoML
paper [37], 15 weak pipeline specifications, and two different
search procedures.Our results show thatAMS’s strengthened
specifications produce higher performing pipelines. When
using genetic programming, AMS specifications produce 38
wins compared to 12 from an expert-annotated variant of the
weak specification, and 9 from the originalweak specification.
We see a similar number ofwinswhen comparing approaches
using random search.
• We qualitatively show that the distribution of components
in the output pipelines produced using AMS specifications
reflect the influence of the initial weak specification.

In the following sections we review the background on AutoML
(Section 2), introduce the notion of pipeline specifications (Section 3),
provide an illustrative scenario for the use of AMS (Section 4), detail
the approach and design ofAMS (Section 5), present experimental re-
sults (Section 6), provide context on related work (Section 7), outline
possible threats (Section 8) and conclude (Section 9).

2 AUTOMLBACKGROUND

Wefirst formally introduceAutoML for classification [27]. Letd ∈D :
R
n×m×Nn be a dataset comprised of amatrix ofn observations, each

withm real covariates, and a vector of n natural number labels. Let
H :Rn×m→Nn be the type of a pipeline program defined as a com-
position of preprocessing and learning algorithms ś implemented as
API components in a target library ś along with their corresponding
hyperparameter settings. A pipeline takes a dataset and predicts
labels based on covariates. LetS be the search space of all possible
pipeline programs. Let e ∈E :H×D→R be an evaluation function
that scores the ability of a pipeline to successfully predict labels and
generalize to unseen observations (e.g. cross-validated F1 score). Let
cost ∈ C : H ×D → R be a cost function that evaluates pipeline
execution time on a dataset d , and b ∈ R be a search time budget.
Then AutoML corresponds to the optimization problem

argmax
h∈S

e (h,d ) s .t .
∑

h∈S

cost(h,d )≤b

Given that the possible space of pipelinesS is exponentially large,
it is impractical to evaluate every pipeline in S within the given
budget b. Effective AutoML systems will therefore typically have to
performa search over the space, evaluating only a subset of pipelines.
The AutoML system iteratively searches and evaluates pipelines in
S, keeping track of its estimate of the best pipeline.

Existing AutoML systems employ a variety of search strategies
to identify candidate pipelines. These strategies include genetic
programming [37], Bayesian optimization [15], reinforcement learn-
ing [11], program-analysis-based search [7], and random search [18].

1https://github.com/josepablocam/ams
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To improve the effectiveness of these strategies, systemsmay also
incorporate prior knowledge about pipeline performance or impose
additional structure on the candidate pipelines that can be gener-
ated. For example, an AutoML systemmay warm start the search by
incorporating previously successful pipelines [15, 47], condition on
textual dataset and algorithm descriptions [12], manually constrain
the subset of algorithms available for pipeline definitions [37], or
constrain the shape of possible pipelines [10, 11]. The latter two pro-
vide ways to restrict the type of pipelines produced, however, they
require user involvement and expertise. In the following section, we
present an approach that bridges this gap.

3 PIPELINE SPECIFICATIONS

The current usage model for AutoML typically emphasizes the lack
of user involvement [48]. Under thismodel, the user presents the tool
with their target dataset, forwhich theywant to learn a classification
pipeline, sets some computational budget, runs the tool, and accepts
the pipeline produced by the AutoML tool. In this context, the Au-
toML tool receives no user feedback (beyond the input dataset), and
the user is unable to influence the pipelines considered by the search
procedure.Without any formal user feedback, theAutoML tool is un-
able to 1) exploit any user domain knowledge or 2) provide a pipeline
that satisfies any desired user constraints (e.g. interpretability).

Most existing AutoML tools construct a pipeline by composing
and configuring API components drawn from a higher-level ML
library, such as Scikit-Learn [39].

Definition 3.1. APIComponent.AnAPI component, in the context
of our paper, refers to a public library function or class that can be
composed with other components to create an ML pipeline. Most
API components provide additional configuration options through
the use of optional/default parameters.

We propose the use ofweak specifications as a way for AutoML
users to influence the pipelines produced by automatically subset-
ting the relevant set ofAPI components, thus constraining the search
space for candidates generated by the AutoML tool.

Definition 3.2. Weak Specification. A weak specification is an
(unordered) set of API components, at least one of which is a regres-
sor (if performing a regression task) or a classifier (if performing a
classification task).

By providing a set of API components a user provides (partial) in-
formation regarding what they want: specifically a set of algorithms
(e.g. classifiers, preprocessors) that should be considered for pipeline
generation.We call this type of specificationweak as it is incomplete
along four key dimensions:

(1) it does not specify what hyperparameters are relevant
(2) it does not specify what values hyperparameters can take on
(3) other relevant API components may be missing
(4) it does not specify any order or compositional operators used

to generate new pipelines from these components

Providing a weak specification allows a user to exert influence
on the final pipeline produced, while at the same time not requir-
ing deep API or machine learning expertise, as they do not have to
manually detail the complete space. For example, a user can enforce
a degree of interpretability on the optimized pipeline by writing a
specification with a single linear model (e.g. logistic regression).

Definition 3.3. Strong Specification. Lethc be amap from a subset
ofhyperparameters for componentc to a collectionofpossible values.
LetC be amap fromcomponent i to its respectivehi . LetP be a search
procedure to generate candidate pipelines. A strong specification is
a triple of the form ⟨C,(h1,...,hn ),P⟩.

A strong specification, in effect, defines a search space for an
AutoML tool. We propose that this space can be derived from the
weak specification, which expresses (partial) user preferences.

In the following sections, we detail our approach to automati-
cally strengthening weak specifications to influence the AutoML
search process. But first, we introduce an illustrative scenario to
demonstrate a use case for AMS.

4 ILLUSTRATIVE SCENARIO

We follow the journey of a forensic scientist who is not a machine
learning expert but wants to classify glass fragments [9, 13]. The
forensic scientist has a high level understanding of different learn-
ing and preprocessing algorithms but is not aware of the various
hyperparameters, possible values, or other suitable algorithms to
consider. The scientist has heard of AutoML and thinks this might
be a suitable tool to explore pipelines. However, they have clear
constraints: no tree-based ensemble models, as the pipelines need
to be easily interpretable. Unfortunately, AutoML tools are known
to often produce tree-based ensemble models [14, 20], which are
challenging to interpret [21].

They spent some time on the internet and found a related tutorial
that detailed a Scikit-Learn [39] pipeline that may work for their use
case (case 1 in Table 1).

The scientist will use this example pipeline (with no hyperparam-
eters or values) as a weak specification. To evaluate their progress,
they will use an existing classification dataset, łglassž [13], consist-
ing of continuous measurements for 7 types of glass. The scientist
performs a random 80/20 split for training/testing and evaluates
pipelines using macro-averaged F1 score.

The scientist starts by naively running their specification directly
as a pipelinewithdefault hyperparameters,which results in an initial
F1 score of 0.43. Next the scientist uses the specification components,
with default hyperparameters, as a configuration for the AutoML
tool TPOT [37], which uses genetic programming to generate can-
didate pipelines. Applying TPOT to the weak specification (with
no hyperparameters defined in the search space) results in a better
score of 0.51.

After consulting with a machine learning colleague, the scientist
sets up a defined hyperparameter space (i.e. which hyperparameters
to tune and set of possible values) for each component in the spec-
ification. The scientist then applies the same genetic programming
search to the new configuration, resulting in pipeline number 3 in
Table 1. Note that the shape of the optimized pipeline is the same as
in the prior step, but now the regularization penalty and its weight
varies. This step raised their score to 0.57.

The scientist now goes back to the original weak specification
and uses AMS to automatically strengthen this weak specification
(rather than manually specifying the full space). AMS extends the
weak specification using a code corpus and theAPI’s documentation.
Applying the same search procedure to AMS’s specification now re-
sults in thehighest scoreof 0.75. Thefinal pipeline retainspolynomial
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features, but replaces the variance threshold selector with a selector
based on a specified false positive rate. The pipeline then stacks a
SGDClassifier (with hinge loss) and uses logistic regression with an
L1 penalty (to produce sparse coefficients). This embodies the spirit
of the initially given specification, but substantially outperforms the
rest of the approaches.

Table 1: Summary of scenario iterations based on the łglassž

dataset showing the progression of score improvements.

Note that component names are abbreviated for brevity.

# Pipeline Description Score

1

PolyFeatures,
MinMaxScaler,
VarianceThreshold,
LogisticRegression

Initial (naive) weak specification as a
pipeline with default hyperparameters.

0.43

2

StackingEstimator(
LogisticRegression

),
LogisticRegression

Applying AutoML tool TPOT (Ge-
netic Programming) to the original
specification without defining any
hyperparameters.

0.51

3

StackEstimator(
LogisticRegression ([
Penalty: L1,
Cost: 10]),

LogisticRegression

Same as #2, but with expert-defined hy-
perparameter space for regularization
(cost) and penalty.

0.57

4

PolyFeatures,
SelectFPR,
StackingEstimator(
SGDClassifier
[Loss: Hinge] ),

LogisticRegression [
Penalty: L1,
Cost: 100 ]

Applying genetic programming to
the strong specification generated by
our approach (AMS) given the weak
specification.

0.75

5 AMS

We introduce AMS, a system that automatically strengthens weak
pipeline specifications using an existing code corpus, an API’s docu-
mentation, and a plug-in search procedure. Figure 1 shows a diagram
of the system. AMS takes the user’s weak specification as input. The
system first extends the set of API components considered in the
specification. Toperform this extension,AMS relies on a code corpus,
which exercises the target API, and on the API’s natural language
documentation. After the specification has been extended, AMS uses
the code corpus to identify key hyperparameters for the API compo-
nents in the specification and include sets of possible values they can
take on. AMS then pairs this set of component configurations with a
search procedure to produce a strong specification. The search pro-
cedure can then be used to iteratively sample and evaluate candidate
pipelines, resulting in a final optimized pipeline.

We now present details on each step in the AMS system.

5.1 Unspecified (but Useful) API Components

AMS first extends the initial specification with additional compo-
nents, which the user may not have included. Given a specification
S and a new component c , c may be added to S if it satisfies one of
the following two conditions: c is commonly used with a component
already in S , or c could replace a component already in S .

The goal of the first condition is to identify complementary com-

ponents. For example, if a classifier is often used with a particular
preprocessing step, we say these components are complementary.
The goal of the second condition is to identify functionally related

components, which are alternatives to each other. For example, two
different linear classifiers would be considered functionally related.

AMS relies on two different sources of information to identify
components that satisfy each of these conditions. We first address
complementary components.

5.1.1 Complementary Components. To identify complementary
components, AMS exploits information from a crowd-sourced cor-
pus of scripts,which exercise the targetAPI. Each script in the corpus
was written to target a single dataset, therefore two components
used in the same script may be complementary. By using a code cor-
pus to identify such components, AMS can automatically produce
and update its inventory of complementary components to reflect
current ML practices.

From the code corpus, the system extracts all scripts that contain
a call to our target API library and records the set of API components
used in each script. The intuition is that these sets can be used to
measure the likelihoodof components co-occurring, and that comple-
mentary components must (by definition) co-occur more frequently.

Formally, we compute the normalized pointwise mutual infor-
mation (NPMI) [5] over the collection of all (unordered) pairs of
co-occurringAPI calls in our code corpus to identify complementary
components. Let X and Y be two random variables, representing
possible components, defined over the the domain of our target API
library. We define NPMI for two components x ∈X andy ∈Y as

NPMI(x ,y)=
log2
(

p (x,y )
p (x )p (y )

)

−log2 (p (x ,y))
(1)

wherep (x ) is the fraction of pairs where either element is x divided
by thenumber of all pairs, similarly forp (y), andp (x ,y) is the fraction
of pairs (x ,y) or (y,x ) divided by the number of all pairs.

NPMI ranges between -1 and 1, where -1 means the components
never co-occur, 1 means the components always co-occur, and 0
means the components are independent.We compute theNPMI over
the set of all pairs of co-occurring components (i.e. API components
called in the same script). Eliminating pairs with an NPMI less than
or equal to zero yields pairs of varying degree of complementarity.

When given a weak specification, we can identify all NPMI-
positive pairs that share a componentwith the specification. For each
such pair, the new potential component corresponds to the element
in the pair that is not in the original specification. If more than one
component in the original specification supports (i.e. co-occurswith)
a new component, we compute an average NPMI. For each possible
new component, we compute a weighted sum of the average NPMI
and the fraction of original specification components that support
it. The weighted sum balances average NPMI and support fraction
based on a user-definedweightα ∈ [0,1].We then take the topKcomp

new components and add them as complementary components to
the original specification. Algorithm 1 describes this procedure.

5.1.2 Functionally Related Components. The goal of identifying
functionally related components is to include algorithm alternatives
in the specification. For example, the user’s weak specification may
indicate that they are interested in using linear models, but they
may have not exhaustively listed all linear model alternatives. This
task raises the challenge of reasoning about the semantics of API
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Algorithm 1 Extracting Complementary Components

INPUT: A collection P of pairs of API components co-occurring in a code
corpus; a function npmi that computes the normalized pointwise mutual
information of two API components; a specification S = {c1, ..., cn }; a
weight α ∈ (0,1) to combine NPMI and support fraction; and an integer
Kcomp for the maximum number of complementary components to take.

OUTPUT: A new specification S ′ extended with at most Kcomp new com-
ponents.
procedure ComplementaryComponents

▷Map from co-occurring pair to accumulator list of NPMI scores

npmis← {}
for c ∈S, (p1,p2) ∈P do

if (c ∈ (p1,p2))∧ (p1 <S∨p2 <S ) then

new←p2 if c1=p1 else p2
▷ Accumulate the npmi score

npmis[new]←npmis[new] ::NPMI(p1,p2)

▷ Compute average npmi and support fraction

▷ Combine using α to create score

scores← {}
n←len(S )

for comp ∈npmis do
vals←npmis[comp]

scores[comp]←Avg(vals)∗α+
(

Len(vals)
n

)

∗ (1−α )

S ′←S∪GetTopK(scores,Kcomp)

components. Rather than reason about component semantics, we
rely on a simpler notion of similarity.

We would like to define a function sim(c1,c2) that computes a
score for two API components, c1 and c2, such that a higher score
corresponds to higher degree of semantic similarity. Given a compo-
nent ci , we can then sort all possible components in our target API in
descending order based on their similarity score with respect to ci .

AMS exploits the fact that the target library has natural language
documentation for each component (as part of its developer docu-
mentation), which we assume details key aspects about their func-
tional behavior. By mining the API’s documentation, AMS can be
used to automatically identify functionally related components in
new target libraries or new versions of previously used libraries
without the need for extensive expert annotation.

We define sim(c1,c2) to be computed over the documentation2 for
c1 and c2 and instantiate it to a classical relevance/similarity scoring
technique: BM25 [42]. BM25, detailed below, produces a score for
a document, given a query and a corpus of documents. A higher
score indicates a higher degree of lexical correlation between the
document and the query.

BM25(D,Q )=

n
∑

i

IDF(C,qi )
f (qi ,D)∗ (k1+1)

f (qi ,D)+k1∗
(

1−b+b∗ Len(D )
AvgLen(C )

)

(2)

where D is a document,Q = (q1,...,qn ) is a query comprised of qi
terms,C is a corpus of documents, and k1 and b are score hyperpa-
rameters3.

2We perform standard preprocessing of the documentation strings such as tokenization,
stemming, and extension with the path of the given component in the library’s module
structure.
3We use the gensim [41] BM25 implementation, where k1 = 1.5 and b = 0.75 are
implementation-defined constants.

Inour setting, thedocumentation for anexisting component in the
weak specification corresponds to the query, a particular API compo-
nent’s documentation corresponds to the document, and the entirety
of the API’s documentation corresponds to the document corpus.

AMS uses sim to retrieve, and append, the top Krel new compo-
nents for each component in the original weak specification (i.e., we
do not consider any complementary components added for purposes
of this procedure). Algorithm 2 describes this procedure 4.

Algorithm 2 Extracting Functionally Related Components

INPUT: A collectionC of API components; a mapM from API component
to documentation; a function sim that computes the BM25 score between
a query string and a document; a specification S = {c1, ..., cn }; and an
integer Krel for the maximum number of functionally related components
to take per component in S .

OUTPUT: A new specification S ′ extended with at most Krel functionally
related components per component in the original specification.
procedure FunctionallyRelatedComponents

▷ Set of empty API components

extension←∅
for c ∈S do

scored← {(c′,sim(M[c],M[c′])) for c′ ∈C if c′<S }
cK←GetTopK(scored,Krel)

extension←extension∪ck
S ′←S∪extension

5.2 Identifying Hyperparameters and Values

Machine learning practitioners often spend a significant amount
of time not just choosing pipeline components, but also tuning the
hyperparameters associatedwith each component. Performance can
significantly increase by identifying the appropriatehyperparameter
values for a given dataset and pipeline [40].

AMS relies on the corpus of scripts that make calls to the target
API to identify the set of relevant hyperparameters and possible val-
ues. This design choice hypothesizes that an AutoML system should
focus on tuning the set of hyperparameters and hyperparameter
values that human developers focus on tuning.

For each script in our code corpus that imports the target API, we
parse the source code and identify calls to API class constructors.
We extract the set of optional arguments in each constructor call and
record each pair of (argument name, argument value) as a hyperpa-
rameter setting. The value recorded corresponds to a constant in the
constructor call, or points to an unknown placeholder.

When given a specification, AMS takes each API component and
identifies the set of topKparams hyperparameter names observed in
the mined code for that component, along with the topKvals values
observed for each of the names. AMS adds the default value for each
hyperparameter to the set of possible values (obtained by introspect-
ing the class definition), and then emits this as the corresponding
hyperparameter search space. Algorithm 3 describes this procedure.

Figure2showsaspecification,originally justsklearn.linear_model
.LogisticRegression, extended with a complementary component
(Algorithm 1), a functionally related component (Algorithm 2), and
hyperparameters and values (Algorithm 3).

4AMS also exposes functionality to label a weak specification component as łincludež
(by appending :1) or łexcludež (by appending :0), indicating that it must be included
or excluded from the strengthened specification, respectively.
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Algorithm3Adding API Component Hyperparameters and Values

INPUT: A map P from API components to hyperparameter names and
frequencies observed in calls; a mapV from hyperparameters to values
and their frequencies observed in calls; a specification S = {c1, ...,cn }; an
integer Kparams for the maximum number of hyperparameters to consider
per component; and an integer Kvals for the maximum number of values
per hyperparameter to consider.

OUTPUT: A new specification S ′ with at most Kparams hyperparameters
per component and at most Kvals+1 (including default value) per hyper-
parameter.
procedureHyperParamsAndValues

▷ Empty map from component to hyperparameter space

S ′← {}

for c ∈S do

params←GetTopK(P [c],Kparams)

▷ Empty configuration for component c

cconfig← {}

for p ∈params do
values←GetTopK(V [p],Kvals)

▷ Append default value, if not included

values←values ::GetDefaultValue(p )
cconfig[p]←values

S ′[c]←cconfig

{ ' s k l e a r n . l i n e a r _mode l . L o g i s t i c R e g r e s s i o n ' : {
'C ' : [ 1 0 0 0 0 0 . 0 , 7 , 1 . 0 ] , ' pena l ty ' : [ ' l 1 ' , ' l 2 ' ] } ,

' s k l e a r n . f e a t u r e _ e x t r a c t i o n . t e x t . T f i d fT r an s f o rme r ' : { } ,
' s k l e a r n . l i n e a r _mode l

. SGDC l a s s i f i e r ' : { ' l o s s ' : [ ' log ' , ' hinge ' ] ,
' pena l ty ' : [ ' l 2 ' , ' e l a s t i c n e t ' ] } }

Figure 2: A weak specification extended with one comple-

mentary component, one functionally related components,

and two hyperparameters/values per component (plus a

potential default value, if different).

5.3 Search Procedure

To fully satisfy the definition of a strong specification, AMS must
add in a specific search procedure to the extended specification.
AMS allows the use of different search procedures, which can be
plugged into the system. In particular, the current implementation of
AMS exposes a plug-in genetic programming search procedure, us-
ing TPOT [37] and a conceptually simple random search procedure
implemented as part of AMS’s codebase.

5.3.1 Genetic Programming. We use TPOT [37], a genetic program-
ming based AutoML tool, as a search procedure. When using TPOT,
we use the search space defined by AMS as the configuration avail-
able to the optimization process.

5.3.2 Random Search. AMS’s implementation includes a hierarchi-
cal random search procedure to generate sequential (i.e. API compo-
nents are chained in sequence) pipelines. Random search is known to
perform better for algorithm configuration than equally simple alter-
natives such as grid search [4] and has also been successfully applied
to related software engineering areas such as product line configura-
tion [35]. To generate a pipeline, the search module samples a depth
(up to a bound), then for each step in the pipeline it samples an API

Table 2: NPMI-based association rules mined from our

code corpus to identify complementary API components

categorized by algorithmic role. When both components in

the association have the same role, we elide one for brevity.

Rule Type # Rules Mean Norm. PMI SD Norm. PMI

classifier 78 0.18 0.11
(classifier, cluster) 1 0.37 -
(classifier, decomposition) 3 0.16 0.13
(classifier, feature extraction/selection) 29 0.19 0.15
(classifier, preprocessor) 31 0.20 0.13
(cluster, decomposition) 2 0.45 0.26
(cluster, preprocessor) 1 0.27 -
(cluster, regressor) 3 0.10 0.05
(decomposition, feature extraction/selection) 7 0.17 0.19
(decomposition, preprocessor) 4 0.24 0.26
(decomposition, regressor) 3 0.20 0.25
feature extraction/selection 3 0.35 0.25
(feature extraction/selection, preprocessor) 10 0.25 0.20
(feature extraction/selection, regressor) 4 0.17 0.12
preprocessor 3 0.32 0.26
(preprocessor, regressor) 6 0.20 0.21
regressor 97 0.19 0.07

component from the configuration specified. For each hyperparam-
eter in the chosen component’s configuration, the search samples a
value and sets it in that component’s constructor. The search distin-
guishes between preprocessing and classifier components to gener-
ate valid candidate pipelines (i.e. the last stepmust always be a classi-
fier). Candidate pipelines are cached to avoid re-training/evaluating
pipelines, however, there is no effort to exhaustively search the space
and if a pipeline is re-sampled a given number of times (100 in our
implementation), the search procedure terminates.

6 EVALUATION

We now present our experimental results, which evaluate individual
parts of our system (RQ1-RQ3, RQ5) and the overall performance of
AMS (RQ4). First, we characterize the complementary API compo-
nents extracted from our code corpus (RQ1). We evaluate AMS’ abil-
ity to retrieve functionally related API components (RQ2). We then
characterize the use of hyperparameters and their values in our code
corpus, and evaluate the possibilities for improving classifier perfor-
mance based on this information (RQ3). We evaluate AMS’s ability
to produce specifications that result in higher performance (RQ4).
And finally, we explore the impact of the code corpus size on AMS’s
mined hyperparameters and complementary components (RQ5).

For our evaluation, we implemented AMS and its evaluation in
approximately 5000 lines of Python.We use Scikit-Learn [39], a pop-
ular Python machine learning library, as the target API for pipelines.
To mine complementary components and identify hyperparameter-
s/values, we use the meta-Kaggle [28] dataset as our code corpus.
The meta-Kaggle dataset contains over 3300 Python scripts.

6.1 RQ1: Complementary API Components

AMSmined 285 normalized PMI (NPMI) positive association pairs
from our code corpus. These associations cover 69 different compo-
nents (39.2% of all components in Scikit-Learn).

Table 2 details the distribution of associations based on the algo-
rithmic role of each of the components, along with their mean and
standard deviation NPMI.
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Figure 3: NPMI-based component extension can produce at

least one complementary component for 82.68% of our test

observations, with precision of approximately 60% when

Kcomp=1.

To evaluate the effectiveness of these NPMI-based component ex-
tensions, we conduct the following experiment. We take each script
in our code corpus, and extract the set of Scikit-Learn components
used. Using 10-fold cross validation (CV), we split this collection of
components into a training fold and test fold. We use each training
fold to compute NPMI, and we use the corresponding test fold to
evaluate. For each set (ground truth) in the test fold, we take each
component individually and use it as a query term to retrieve the top
Kcomp ∈ [1,5] complementary components based on our approach
(Algorithm 1, with α =0.5). We then compute precision as the frac-
tion of retrieved components that are present in the full ground truth
component set. Note that recall is not an appropriate measure of
performance for evaluating complementary components, as recall
implies our extensions need to be complete, but by definition we
will only be able to cover components with strong co-occurrence
patterns. Given this, we focus on precision.

We found that 82.68% of the sets in the test folds were covered (i.e.
we were able to identify at least one complementary component).
For Kcomp = 1, we found that our NPMI-based approach yields a
precision of 60%. This precision declines as expected when we in-
creaseKcomp, with a precision of approximately 28%whenKcomp=5.
Based on these results, we configuredAMS to useKcomp ≤ 3. Figure 3
summarizes these results. These levels of complementary compo-
nent retrieval sufficed for improved performance on our end-to-end
benchmarks, but further improving complementary component pre-
cision could deliver additional gains.

6.2 RQ2: Functionally Related API Components

To evaluate AMS’s retrieval of functionally related components, we
manually annotated our BM25-based ranking of API components
for a given query component. To determine if two components were
functionally related, we outlined a set of conditions that they should
satisfy. Given a specification component Q (for query) and a possible
extension component R (for related), we say they are functionally
related if they satisfy the following:

• R could replace Q in a pipeline without raising an exception
for the same dataset.
• Q and R belong to the same class of operators (e.g. classifier,
regressor, value normalizer, decomposition algorithm, loss
function).
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Figure 4: For 50 randomly sampled query API components,

BM25 can retrieve close to 72%, 55%, and 44% functionally

related components based on top 1, 5, and 10 cutoffs.

• If Q/R are classifiers/regressors, they must respect output
shape constraints: a multi-task model can replace a single
task model, but not vice-versa.
• If Q is (non-)linear, R must be always (non-)linear or must
be (non-)linear based on a hyperparameter (e.g. SVMwith a
linear kernel)
• If Q is ensemble-based, R must be ensemble-based with one
exception: R can be non-ensemble based if it is related (based
on these rules) to the weak model class ensembled in Q.
• If Q is not ensemble-based, Rmay be ensemble-based if it uses
a weak model class related to Q to create its ensemble.

To carry out our experiment, we randomly sampled 50 classes
from Scikit-Learn and used these as queries. We chose to sample 50
classes as this covers approximately 28%of the components available
inScikit-Learnandbalanced theneed fordetailedmanual annotation.
For each query, we retrieved the top 10 API components based on: 1)
ourBM25metric, 2) cosine similarity using averagedpre-trainedneu-
ral embeddings (whichhavebeenshowntobeeffective for the related
task of code search [6]), and 3) a uniform randommetric. We used
(2) to compare the use of BM25with another unsupervised approach
to semantic similarity. We used BERT embeddings derived from a
scientific text corpus [3]. We used (3) as a baseline to control for the
extent to which our target API (Scikit-Learn) may have redundant
components resulting in functionally related results through chance.

Figure 4 presents our results. The BM25-based ranking performed
comparably (withno statistically significant difference) to the embed-
dings based approach. A random ranking results in approximately
10% functionally related results, across the top 1, 5, and 10 query
results. In contrast, BM25 results in close to 72%, 55%, and 44% func-
tionally related results across the same cutoffs, respectively. We
opted to use BM25 in AMS, in contrast to the neural embeddings
approach, given their comparable performance and the added ad-
vantage of avoiding the additional storage requirements imposed
by per-token embeddings.

Note that while for purposes of this experiment, we allow func-
tionally related components to include ensembled-variants of non-
ensemble models, in our tool implementation users can exclude
ensembles through a simple command line flag.

Whilewe evaluated functionally-relatedAPI component retrieval
using BM25 and cosine-similarity using BERT embeddings, AMS
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can use other information retrieval metrics. We also note that the
task of specification strengthening, in the context of AutoML, is
related but orthogonal to pure information retrieval. In particular,
we generate a new search space configuration based on a weak spec-
ification, rather than searching over a stored (and pre-enumerated)
set of configurations.

6.3 RQ3: Hyperparameters and Values

Figure 5 characterizes the hyperparameter tuning observed in our
code corpus. In particular, we found that over 50% of the calls tune
(i.e. explicitly set a value in the call) for under 20% of the hyperpa-
rameters available (5a); for about a third of API components the set
of hyperparameters tuned is similar across calls (5b); and for over
70% of the hyperparameters observed, user calls choose few values
(under 10 distinct values) (5c). This aligns with our intuition that
human developers tend to tune a small set of hyperparameters, these
are consistent across datasets/pipelines, and there are popular values
that developers choose for each.

To demonstrate the possible impact of hyperparameter tuning,
we performed the following experiment. We collected five datasets
from the Penn Machine Learning Benchmarks (PMLB) [38]. The
five datasets are healthcare-related classification tasks. We collected
these 5 dataset to be independent from those used in RQ4. We then
identified the top 5 most common classifiers5 from our code corpus.
For each classifier, we extracted the top 3 hyperparameters and top
3 values for each hyperparameter, along with the default values.
We performed grid search over these values to evaluate all possi-
ble configurations. We then compared the best macro-averaged F1
score [16] from the grid search with the score obtained under the
default configuration.

Figure 6 shows our results. In almost all cases, the hyperparameter
space defined by the code examples in our corpus contained a setting
whichwould have improved performancewith respect to the default
configuration. For the ensemble-based classifiers, ExtraTreesClassi-
fier and RandomForestClassifier, this improvement could have been
up to 10% on two of the datasets.

6.4 RQ4: Performance of Strong Specifications

Our performance experiments compare the following approaches:

• Weak Spec.: runs an ordered version of the original weak
specification as a pipeline directly.
• Weak Spec. + Search: carries out a specified search procedure
over the components defined in the weak specification (with
default hyperparameters).
• Expert + Search: uses the set of hyperparameters/values de-
fined in TPOT’s default classifier configuration [1] for each
component in the specification, and applies the specified
search procedure. This choice of hyperparameter space cor-
responds to an expert AutoML developer identifying key
hyperparameters and values. We also evaluated writing our
own hyperparameter space and found that it performed com-
parably or worse, so we elide for brevity.

5 excluding SVM, which did not terminate within a reasonable computing budget
without additional data pre-processing for these datasets

Table 3: Components used to produce weak specification.

Expert + Search uses TPOT’s pre-defined hyperparameter

search space [1] for each component.

Short name Component

lr Logistic Regression
rf Random Forest
dt Decision Tree
scale Min-max value scaling
poly Extract polynomial features
var Variance-based feature selection
pca PCA decomposition

• AMS + Search: applies AMS to the weak specification to pro-
duce a full search space and then applies the specified search
procedure.

For these experiments, we consider both search procedures avail-
able in AMS: genetic programming and random search.

Table 3 presents the individual components used to create the
weak specifications for our experiments. We chose components that
covered common machine learning operations: value scaling, fea-
ture derivation, feature selection, dataset decomposition, and varied
forms of classification. For each such component, we also outline a
subset of hyperparameters identified for tuning and their possible
values, which are used in the Expert + Search approach.

Weproduced 15weak specifications by combining the following 5
pre-processing weak specifications with each of the three classifiers
(lr, rf, dt) - as outlined in Table 3: {} (no-preprocessing), {scale}, {poly,
scale}, {poly, scale, var}, and {poly, scale, pca, var}.

For our experiments we used all classification datasets from the
original TPOT paper [37]; 9 in total. These datasets are: Hill-Valley-
with-Noise, Hill-Valley-Without-Noise, breast-cancer-wisconsin,
car-evaluation, glass, ionosphere, spambase, wine-quality-red, and
wine-quality-white. All datasets are available through PMLB [38].

Our experiments used macro-averaged F1 score as a performance
metric, where a higher score corresponds to better performance.
Each search procedure uses this same score metric in their internal
search loop. For each benchmark, dataset, and search procedure com-
bination, we carried out 5-fold cross-validation (CV)with each of the
approaches outlined previously. In each CV iteration, the training
fold is used to find an optimized pipeline, and the test fold is used
for evaluation. All approaches were provided a budget of 5 minutes
per CV iteration (i.e. 25 minutes per dataset, for each specification
and approach combination).

We evaluate AMSwith the following configuration: a weak speci-
fication can be extended with at most 3 complementary components
(Kcomp=3), where the npmi/support fraction weighing parameter is
set to 0.5 (α =0.5), for each specification component we include up
to 4 functionally related components (Krel=4), and we tune the top
3 hyperparameters per component (Kparams=3) by choosing from
the 3 most common values per hyperparameter (Kvals=3). We set
the depth bound for the random search procedure to 4.

Figure 7 presents a count of the wins for each approach across
both search procedures [8]. An approach wins when the average
of the 5-fold CV test-fold performance metric is the highest across
approaches for a given dataset and weak specification combination,
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Figure 5: Characterizing hyperparameter tuning in our code corpus.

Figure 6: Possible improvements in macro-averaged F1

score by using hyperparameter settings in our code corpus,

compared to the performance using defaults.

and the score is at least 1% (in absolute terms) higher than the next
best score.We introduced aminimumperformance difference thresh-
old to eliminate cases where multiple approaches perform roughly
equally on a specification/dataset combination. We varied the min-
imum difference threshold from 1% to 5% (absolute) and found that
AMS obtained more wins than other approaches in all cases.

When using genetic programming as a search procedure, we see
thatWeak Spec. obtained 6 wins compared to 9 wins forWeak Spec. +

Search. Under random search,Weak Spec. obtained 1 win andWeak

Spec. + Search obtained 12 wins. Expert + Search obtained 12 wins
when using genetic programming, and 14 wins when using random
search. Under both search procedures, using AMS produced the ma-
jority of wins: 38 in the genetic programming experiments and 41
in the random search experiments.

Figure 8 presents the distribution of the top-10 Scikit-Learn opera-
tors as a fraction of the total count of operators in pipelines produced
by genetic programming using AMS’s strengthened specification
for two different weak specifications. For comparison, running ge-
netic programming over the full search space (as defined in TPOT’s
default classification configuration) produces pipelines where 60%
of them have an ensemble-based model (one of GradientBoosting,
ExtraTrees, XGBoost, or RandomForest), and at least one pipeline
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Figure 7: Wins for each approach across 270 experiments.

Within a given search procedure, an approach wins when it

obtains the highest average 5-fold CV test-fold performance

for a dataset and weak specification combination, and this

score is at least 1% higher (in absolute terms) than the next

best score.

produced in 8 of the 9 datasets includes such a component. The
skew towards ensemble-based models has been observed in other
AutoML tools as well [14]. By using AMS a user can restrict the use
of ensemble-based models, for example, if desired.

Comparison to other program-mining based AutoML tools. We also
compared AMS to AL [7]. AL mines dynamic program traces to
learn a probabilistic model for ML pipelines and uses this to gener-
ate sequential pipelines. A key advantage of AMS is that users can
strengthen specifications without the need to collect a new corpus
that reflects their initial specification. AMS can also mine informa-
tion from otherwise un-executable programs and without access to
the programs’ target datasets, while AL requires program execution
for its dynamic analysis.

To compare AL and AMS, we consider the weak specification of
Scikit-Learn components 6:

{ L o g i s t i c R e g r e s s i o n , LinearSVC , S t a n d a r d S c a l e r }

6names abbreviated for brevity
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Figure 8: Example distributions of Scikit-Learn components

in pipelines produced by genetic programming, based on

AMS strengthening of the initial weak specification.

and run experiments on our 9 datasets. We use 5-fold CV, pair
pipelines between CV folds in order to appropriately perform com-
parisons after removing pipelines that don’t satisfy the weak specifi-
cation, and then computewins on the paired pipelines. If the pipeline
for a system does not satisfy the specification, the other system’s
pipeline is assigned the win. AL is trained on the corpus presented
in [7], which is restricted to programs it has already executed and
fromwhich it has extracted dynamic traces.

When AL is trained on the subset of programs that use at least
one weak specification component, and AMS mines this same set
of programs, we find that AL can produce pipelines that still deviate
from the weak specification (as the full program traces may con-
tain additional components). 21 of the 45 pipelines generated by AL
did not satisfy the weak spec, while all of AMS do. After removing
specification-violating pipelines, AMS obtains 29 wins and AL ob-
tains 9. When AMS is trained on the full AMS corpus, AMS’s wins
increase to 35 (and all pipelines continue to satisfy the specifica-
tion) and AL’s decrease to 4. Finally, when AMS is trained on the
AMS corpus and AL is trained on the full AL corpus (without any
specification-related program pruning), 26 of the 45 AL pipelines do
not satisfy the weak specification. After removing these pipelines,
AMS obtains 42 wins and AL obtains 1 win.

6.5 RQ5: Impact of Corpus Size

AMSmines hyperparameters, their corresponding values, and com-
plementary component association rules from a corpus of code ex-
amples. To evaluate the impact of varying corpus sizes on AMS, we
sampled from 10% to 90% (in 10% increments) of the original 3,300
scripts. We repeated this sampling five times per sampling ratio. For
each sampled corpus, we ran AMS’s hyperparameter mining and
complementary component mining.

Figure 9a shows the average fraction of hyperparameters missing
for a given component, with respect to the hyperparameters found
through the full corpus. For very small corpora, e.g. 10% (330 scripts),
as expected the reduction in hyperparameters mined can be substan-
tial. A moderate sized corpus, e.g. 50% (1650 scripts) covers most of
the hyperparameters found in the full corpus.

Figure 9b shows the average reduction in possible hyperparame-
ter valueswith respect to the full corpus. If wemine 5 possible values
for a hyperparameter in the full corpus, and we mine 3 possible val-
ues in a downsampled corpus, we say that is a reduction of 2 possible
values.We see that for amoderate sized corpus (e.g. 50%) the average
reduction is approximately one possible value per hyperparameter.

Figure 9c shows the decrease in number of complementary com-
ponents mined, when compared to the full corpus. Small corpora
(< 30% of the original size) display large decreases in the number of
association rules found, but moderate sized corpora (e.g. 50%) mine
approximately 80% as many rules as the full corpus. Figure 9d shows
that for moderated sized corpora, the rules mined are relatively sim-
ilar (approximately 0.8 jaccard similarity) to those mined from the
full corpus.

7 RELATEDWORK

Automated machine learning (AutoML) has received increased at-
tention in the recent past. TPOT [37] uses genetic programming to
automatically produce tree-structured classification and regression
pipelines composed of Scikit-Learn [39] operators. Autosklearn [15]
uses sequential model-based algorithm configuration (SMAC) [26]
to generate Scikit-Learn pipelines and their hyperparameter settings.
ReinBo [46] uses reinforcement learning to generate pipeline can-
didates and Bayesian optimization to tune their parameters. AL [7]
learns a pipeline likelihoodmodel from dynamic program traces and
uses this to generate sequential Scikit-Learn pipelines, with default
hyperparameter values. MLBazaar [45] builds up an AutoML system
through a library of composable operators with a clean and unified
interface.

In contrast to these systems, AMS focuses on providing AutoML
users with a simple way of influencing the pipeline generation
process: writing a weak specification, which can be automatically
strengthened.Thisusagemodelempowersusers to influencepipeline
generation on a per-specification basis, rather than relying on dis-
tributional characteristics of a pipeline corpus (as in AL), on the
developer pre-defined search spaces in the original AutoML tool (as
in TPOT, ReinBo and Autosklearn), or manually specifying a new
complete search space that reflects their preferences (as in TPOT’s
optional configurations or MLBazaar’s top-down templates/config-
urations).

Search-basedSoftwareEngineering (SBSE) [22]providesageneral
framework through which to design and analyze AutoML systems,
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Figure 9: Impact of downsampling the full corpus. (a) shows the fraction ofmissing hyperparameters per component; (b) shows

the number of missing possible values per hyperparameter; (c) shows the percent reduction in number of complementary

component association rule; and (d) shows the jaccard similarity of the complementary component rules.

with the latter effectively being a instance of the former. SBSE has
been successfully applied to problems such as automated testing of
software with large test suites [32], synthesizing equivalent method
call sequences [19], and optimizing product line configurations [35],
among others. AMS allows users to approach AutoML in a grey-
box setting, where their weak specification can influence the search
process. Feedback of this form can enable an łiterative process of

refinementž [22] to obtain solutions that satisfy user preferences.
Code corpora have enabled advances in various areas of soft-

ware engineering. Code idioms mined from a corpus can be used
to improve program synthesis and semantic parsing [44], as well
as enabling context-sensitive developer queries [43]. At a smaller
scale, automated example extraction [24] from specific scripts allows
allows users to produce minimal working snippets. Large-scale cor-
pora that exercise particular APIs can be used to mine preconditions
formethodcalls [33], order-based specifications for chainingcalls [2],
code repair patterns [31], and drive semantic code search [6, 25, 30].

8 THREATS TOVALIDITY

We discuss potential limitations of this research based on design
choices. In particular, we focus on threats to generalizability. First,
our evaluation uses a particular ML framework (Scikit-Learn). We
believe this threat is mitigated by the fact that Scikit-Learn is a
widely-adopted ML library, used by over 92,000 GitHub repositories
as of March 2020. Extending AMS to other popular libraries, such
as Tensorflow, may be possible as long as these have high quality
API documentation, with relevant keywords and explanations, and
enough online examples for a code corpus7.

Our code corpus (meta-Kaggle) represents a wide range of scripts
written by different users targeting different datasets. ApplyingAMS
tosmaller codecorporamay impactperformance. Inourexperiments,
we found our corpus of approximately 3,300 scripts delivered good
performance, and our experiments with varying sizes of code corpus
show that a moderate size (approximately 1650 scripts) can deliver
reasonably high coverage of hyperparameters and complementary
components when compared to our full sized corpus. Further in-
creasing the size of the corpus can help mitigate this risk.

We evaluated two search procedures: genetic programming and
randomsearch.Othersearchproceduresmaypotentiallyfindpipelines

7e.g. as of April 28th 2020 72,000 source code projects on GitHub used Tensorflow

with different characteristics and performance. However, both ran-
domand genetic search are commonly usedmethods in search-based
software engineering andhave showngoodperformance over awide
range of AutoML problems. The choice of evaluation datasets could
also influence our results. We used the classification datasets from
the original TPOTpaper,whichhave also beenused in the evaluation
of existing AutoML research [8, 10]. The weak specifications in our
evaluation arenaturally a sample of possible specifications.However,
we aimed to incorporate common operations and components in
these specifications to reflect standard usage.

Finally, weak specificationsmust include at least one task-specific
(i.e. regression/classification) component. We believe satisfying this
requirement is facilitated by thewide availability of online resources
(e.g. tutorials, blogs) describing basic library usage.

9 CONCLUSION

We introduced anewusagemodel forAutoML,where auser provides
a set ofAPI components as aweak specification and this specification
can be automatically strengthened. Specifications enable users to
exert control and express preferences over the resulting pipeline.We
implement our strengthening approach ś extending the specifica-
tion with complementary components using normalized pointwise
mutual information on an existing code corpus, functionally related
components using a lexical similarity score over the target API’s
documentation, frequency distributions on constructor calls in the
code corpus to extract key hyperparameters and values, and a search
procedure ś in the AMS system. We evaluated AMS on 9 datasets
and 15 weak specifications using two different search procedures.
We show that the pipelines produced using AMS’s strengthened
specifications outperform pipelines produced using the initial weak
specifications and variants of the initial specifications annotated
with expert-defined hyperparameter spaces.
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