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ABSTRACT
We present a new framework and associated synthesis algorithms

for program synthesis over noisy data, i.e., data that may contain in-

correct/corrupted input-output examples. This framework is based

on an extension of finite tree automata called state-weighted finite
tree automata. We show how to apply this framework to formulate

and solve a variety of program synthesis problems over noisy data.

Results from our implemented system running on problems from

the SyGuS 2018 benchmark suite highlight its ability to successfully

synthesize programs in the face of noisy data sets, including the abil-

ity to synthesize a correct program even when every input-output

example in the data set is corrupted.

CCS CONCEPTS
• Theory of computation→ Formal languages and automata the-
ory; • Software and its engineering → Programming by ex-
ample; • Computing methodologies→Machine learning.
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1 INTRODUCTION
In recent years there has been significant interest in learning pro-

grams from input-output examples. These techniques have been

successfully used to synthesize programs for domains such as

string and format transformations [10, 18], data wrangling [7],

data completion [20], and data structure manipulation [8, 12, 21].

Even though these efforts have been largely successful, they do

not aspire to work with noisy data sets that may contain corrupted

input-output examples.

We present a new program synthesis technique that is designed

to work with noisy/corrupted data sets. Given:

• Programs: A collection of programs p defined by a grammar G
and a bounded scope threshold d ,
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• Data Set: A data setD = {(σ1,o1), . . . , (σn ,on )} of input-output
examples,

• Loss Function: A loss function L (p,D) that measures the cost

of the input-output examples on which p produces a different

output than the output in the data set D,

• Complexity Measure: A complexity measure C (p) that mea-

sures the complexity of a given program p,
• Objective Function: An arbitrary objective function U (l , c ),
which maps loss l and complexity c to a totally ordered set, such

that for all values of l , U (l , c ) is monotonically nondecreasing

with respect to c ,

our program synthesis technique produces a program p that mini-

mizesU (L (p,D),C (p)). Example problems that our program syn-

thesis technique can solve include:

• Best Fit Program Synthesis: Given a potentially noisy data

set D, find a best fit program p for D, i.e., a p that minimizes

L (p,D).
• Accuracy vs. Complexity Tradeoff: Given a data set D, find

p that minimizes the weighted sum L (p,D) +λ ·C (p). This prob-
lem enables the programmer to define and minimize a weighted

tradeoff between the complexity of the program and the loss.

• Data Cleaning and Correction: Given a data setD, find p that

minimizes the lossL (p,D). Input-output examples with nonzero

loss are identified as corrupted and either 1) filtered out or 2)

replaced with the output from the synthesized program.

• Bayesian Program Synthesis: Given a data set D and a prob-

ability distribution π (p) over programs p, find the most probable

program p given D.

• Best Program for Given Accuracy: Given a data set D and a

bound b, find p that minimizesC (p) subject to L (p,D) ≤ b. One
use case finds the simplest program that agrees with the data set

D on at least n − b input-output examples.

• Forced Accuracy: Given data sets D ′, D, where D ′ ⊆ D, find

p that minimizes the weighted sum L (p,D) + λ ·C (p) subject to
L (p,D ′) ≤ b. One use case finds a program p which minimizes

the loss over the data set D but is always correct for D ′.

• Approximate Program Synthesis: Given a clean (noise-free)

data set D, find the least complex program p that minimizes the

loss L (p,D). Here the goal is not to work with a noisy data set,

but instead to find the best approximate solution to a synthe-

sis problem when an exact solution does not exist within the

collection of considered programs p.

1.1 Noise Models and Discrete Noise Sources
We work with noise models that assume a (hidden) clean data

set combined with a noise source that delivers the noisy data set

presented to the program synthesis system. Like many inductive

program synthesis systems [10, 18], one target is discrete problems
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that involve discrete data such as strings, data structures, or tablular

data. In contrast to traditional machine learning problems, which

often involve continuous noise sources [4], the noise sources for

discrete problems often involve discrete noise — noise that involves

a discrete change that affects only part of each output, leaving the

remaining parts intact and uncorrupted.

1.2 Loss Functions and Use Cases
Different loss functions can be appropriate for different noise sources

and use cases. The 0/1 loss function, which counts the number

of input-output examples where the data set D and synthesized

program p do not agree, is a general loss function that can be ap-

propriate when the focus is to maximize the number of inputs for

which the synthesized program p produces the correct output. The

Damerau-Levenshtein (DL) loss function [5], which measures the

edit difference under character insertions, deletions, substitutions,

and/or transpositions, extracts information present in partially cor-

rupted outputs and can be appropriate for measuring discrete noise

in input-output examples involving text strings. The 0/∞ loss func-

tion, which is∞ unless p agrees with all of the input-output exam-

ples in the data set D, specializes our technique to the standard

program synthesis scenario that requires the synthesized program

to agree with all input-output examples.

Because discrete noise sources often leave parts of corrupted

outputs intact, exact program synthesis (i.e., synthesizing a program
that agrees with all outputs in the hidden clean data set) is often

possible even when all outputs in the data set are corrupted. Our

experimental results (Section 9) indicate that matching the loss

function to the characteristics of the discrete noise source can

enable very accurate program synthesis even when 1) there are

only a handful of input-output examples in the data and 2) all of

the outputs in the data set are corrupted. We attribute this success

to the ability of our synthesis technique, working in conjunction

with an appropriately designed loss function, to effectively extract

information from outputs corrupted by discrete noise sources.

1.3 Technique
Our technique augments finite tree automata (FTA) to associate

accepting states with weights that capture the loss for the output as-

sociated with each accepting state. Given a data setD, the resulting

state-weighted finite tree automata (SFTA) partition the programs

p defined by the grammarG into equivalence classes. Each equiv-

alence class consists of all programs with identical input-output

behavior on the inputs in D. All programs in a given equivalence

class therefore have the same loss overD. The technique then uses

dynamic programming to find the minimum complexity program p
in each equivalence class [9]. From this set of minimum complexity

programs, the technique then finds the program p that minimizes

the objective functionU (p,D).

1.4 Experimental Results
We have implemented our technique and applied it to various pro-

grams in the SyGuS 2018 benchmark set [1]. The results indicate

that the technique is effective at solving program synthesis prob-

lems over strings with modestly sized solutions even in the presence

of substantial noise. For discrete noise sources and a loss function

that is a good match for the noise source, the technique is typi-

cally able to extract enough information left intact in corrupted

outputs to synthesize a correct program even when all outputs are

corrupted (in this paper we consider a synthesized program to be

correct if it agrees with all input-output examples in the original

hidden clean data set). Even with the 0/1 loss function, which does

not aspire to extract any information from corrupted outputs, the

technique is typically able to synthesize a correct program even

with only a few correct (uncorrupted) input-output examples in

the data set. Overall the results highlight the potential for effective

program synthesis even in the presence of substantial noise.

1.5 Contributions
This paper makes the following contributions:

• Technique: It presents an implemented technique for inductive

program synthesis over noisy data. The technique uses an exten-

sion of finite tree automata, state-weighted finite tree automata,
to synthesize programs that minimize an objective function in-

volving the loss over the input data set and the complexity of the

synthesized program.

• Use Cases: It presents multiple uses cases including best fit pro-

gram synthesis for noisy data sets, navigating accuracy vs. com-

plexity tradeoffs, Bayesian program synthesis, identifying and

correcting corrupted data, and approximate program synthesis.

• Experimental Results: It presents experimental results from

our implemented system on the SyGuS 2018 benchmark set.

These results characterize the scalability of the technique and

highlight interactions between the DSL, the noise source, the loss

function, and the overall effectiveness of the synthesis technique.

In particular, they highlight the ability of the technique to, given

a close match between the noise source and the loss function,

synthesize a correct program p even when 1) there are only a

handful of input-output examples in the data set D and 2) all

outputs are corrupted.

2 PRELIMINARIES
We next review finite tree automata (FTA) and FTA-based inductive

program synthesis.

2.1 Finite Tree Automata
Finite tree automata are a type of state machine which accept trees

rather than strings. They generalize standard finite automata to

describe a regular language over trees.

Definition 1 (FTA). A (bottom-up) finite tree automaton (FTA)
over alphabet F is a tupleA = (Q, F ,Qf ,∆) whereQ is a set of states,
Qf ⊆ Q is the set of accepting states and ∆ is a set of transitions of
the form f (q1, . . . ,qk ) → q where q,q1, . . .qk are states, f ∈ F .

Every symbol f in alphabet F has an associated arity. The set

Fk ⊆ F is the set of all k-arity symbols in F . 0-arity terms t in F
are viewed as single node trees (leaves of trees). t is accepted by an

FTA if we can rewrite t to some state q ∈ Qf using rules in ∆. The
language of an FTAA, denoted by L (A), corresponds to the set

of all ground terms accepted by A.

Example 1. Consider the tree automaton A defined by states
Q = {qT ,qF }, F0 = {True, False}, F1 = not, F2 = {and}, final states
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and

True

not False

Figure 1: Tree for formula and(True, not(False))

JcKσ ⇒ c
(Constant)

JxKσ ⇒ σ (x )
(Variable)

Jn1Kσ ⇒ v1 Jn2Kσ ⇒ v2 . . . Jnk Kσ ⇒ vk

Jf (n1,n2, . . .nk )Kσ ⇒ f (v1,v2, . . .vk )
(Function)

Figure 2: Execution semantics for program p

Qf = {qT } and the following transition rules ∆:

True→ qT False→ qF
not(qT ) → qF not(qF ) → qT

and(qT ,qT ) → qT and(qF ,qT ) → qF
and(qT ,qF ) → qF and(qF ,qF ) → qF
or(qT ,qT ) → qT or(qF ,qT ) → qT
or(qT ,qF ) → qT or(qF ,qF ) → qF

The above tree automaton accepts all propositional logic formu-

las over True and False which evaluate to True. Figure 1 presents
the tree for the formula and(True, not(False)).

2.2 Domain Specific Languages (DSLs)
We next define the programs we consider, how inputs to the pro-

gram are specified, and the program semantics. Without loss of

generality, we assume programs p are specified as parse trees in

a domain-specific language (DSL) grammar G. Internal nodes rep-
resent function invocations; leaves are constants/0-arity symbols

in the DSL. A program p executes in an input σ . JpKσ denotes the

output of p on input σ (J.K is defined in Figure 2).

All valid programs (which can be executed) are defined by a DSL

grammar G = (T ,N , P , s0) where:

• T is a set of terminal symbols. These may include constants and

symbols which may change value depending on the input σ .
• N is the set of nonterminals that represent subexpressions in our

DSL.

• P is the set of‘ production rules of the form

s → f (s1, . . . , sn ), where f is a built-in function in the DSL and

s, s1, . . . , sn are non-terminals in the grammar.

• s0 ∈ N is the start non-terminal in the grammar.

We assume that we are given a black box implementation of each

built-in function f in the DSL. In general, all techniques explored

within this paper can be generalized to any DSL which can be

specified within the above framework.

Example 2. The following DSL defines expressions over input x,
constants 2 and 3, and addition and multiplication:

n := x | n + t | n × t ;
t := 2 | 3;

t ∈ T , JtKσ = c

qct ∈ Q
(Term)

qos0 ∈ Q

qos0 ∈ Qf
(Final)

s → f (s1, . . . sk ) ∈ P , {q
c1
s1 , . . . ,q

ck
sk } ⊆ Q,

Jf (c1, . . . ck )Kσ = c

qcs ∈ Q, f (q
c1
s1 , . . . ,q

ck
sk ) → qcs ∈ ∆

(Prod)

Figure 3: Rules for constructing a CFTA A = (Q, F ,Qf ,∆)
given input σ , output o, and grammar G = (T ,N , P , s0).

2.3 Concrete Finite Tree Automata
We review the approach introduced by [19, 20] to use finite tree

automata to solve synthesis tasks over a broad class of DSLs. Given

a DSL and a set of input-output examples, a Concrete Finite Tree
Automaton (CFTA) is a tree automaton which accepts all trees rep-

resenting DSL programs consistent with the input-output examples

and nothing else. The states of the FTA correspond to concrete

values and the transitions are obtained using the semantics of the

DSL constructs.

Given an input-output example (σ ,o) and DSL (G, J.K), construct
a CFTA using the rules in Figure 3. The alphabet of the CFTA

contains built-in functions within the DSL. The states in the CFTA

are of the form qcs , where s is a symbol (terminal or non-terminal)

inG and c is a concrete value. The existence of state qcs implies that

there exists a partial program which can map σ to concrete value

c . Similarly, the existence of transition f (qc1s1 ,q
c2
s2 . . .q

ck
sk ) → qcs

implies f (c1, c2 . . . ck ) = c .
The Term rule states that if we have a terminal t (either a constant

in our language or input symbol x ), execute it with the input σ and

construct a state qct (where c = JtKσ ). The Final rule states that,
given start symbol s0 and we expect o as the output, if qos0 exists,
then we have an accepting state. The Prod rule states that, if we

have a production rule f (s1, s2, . . . sk ) → s ∈ ∆, and there exists

states qc1s1 ,q
c2
s2 . . .q

ck
sk ∈ Q , then we also have state qcs in the CFTA

and a transition f (qc1s1 ,q
c2
s2 , . . .q

ck
sk ) → qcs .

The language of the CFTA constructed from Figure 3 is exactly

the set of parse trees of DSL programs that are consistent with our

input-output example (i.e., maps input σ to output o).
In general, the rules in Figure 3 may result in a CFTA which has

infinitely many states. To control the size of the resulting CFTA, we

do not add a new state within the constructed CFTA if the smallest

tree it will accept is larger than a given threshold d . This results
in a CFTA which accepts all programs which are consistent with

the input-output example but are smaller than the given threshold

(it may accept some programs which are larger than the given

threshold but it will never accept a program which is inconsistent

with the input-output example). This is standard practice in the

synthesis literature [13, 19].

2.4 Intersection of Two CFTAs
Given two CFTAs A1 and A2 built over the same grammar G
from input-output examples (σ1,o1) and (σ2,o2) respectively, the
intersection of these two automata A contains programs which

satisfy both input-output examples (or has the empty language).

Given CFTAs A = (Q, F ,Qf ,∆) and A
′ = (Q ′, F ′,Q ′f ,∆), A

∗ =
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(Q∗, F ,Q∗f ,∆
∗) is the intersection ofA andA ′, where Q∗,Q∗f , and

∆∗ are the smallest set such that:

qc⃗1s ∈ Q and qc⃗2s ∈ Q
′
then qc⃗1:c⃗2s ∈ Q∗

qc⃗1s ∈ Qf and qc⃗2s ∈ Q
′
f then qc⃗1:c⃗2s ∈ Q∗f

f (qc⃗1s1 , . . .q
c⃗k
sk ) → qc⃗s ∈ ∆ and f (q

c⃗ ′
1

s1 , . . .q
c⃗ ′k
sk ) → qc⃗

′

s ∈ ∆
′

then f (q
c⃗1:c⃗ ′

1

s1 , . . .q
c⃗k :c⃗ ′k
sk ) → qc⃗ :c⃗

′

s ∈ ∆∗

where c⃗ denotes a vector of values and c⃗1 : c⃗2 denote a vector

constructed by appending vector v⃗2 at the end of vector v⃗1.

3 LOSS FUNCTIONS
Given a data set D = {(σ1,o1), . . . , (σn ,on )} and a program p, a
Loss Function L (p,D) calculates how incorrect the program is

with respect to the given data set. We work with loss functions

L (p,D) that depend only on the data set and the outputs of the

program for the inputs in the data set, i.e., given programs p1,p2,
such that for all (σi ,oi ) ∈ D, Jp1Kσi = Jp2Kσi , then L (p1,D) =
L (p2,D). We also further assume that the loss function L (p,D)
can be expressed in the following form:

L (p,D) =
n∑
i=1

L(oi , JpKσi )

where L(oi , JpKσi ) is a per-example loss function.

Definition 2. 0/1 Loss Function: The 0/1 loss function
L
0/1 (p,D) counts the number of input-output examples where p does

not agree with the data set D:

L
0/1 (p,D) =

n∑
i=1

1 if (oi , JpKσi ) else 0

Definition 3. 0/∞ Loss Function: The 0/∞ loss function
L
0/∞ (p,D) is 0 if p matches all outputs in the data set D and ∞

otherwise:

L
0/∞ (p,D) = 0 if (∀(σ ,o) ∈ D .o = JpKσ ) else∞

Definition 4. Damerau-Levenshtein (DL) Loss Function:
The DL loss function LDL (p,D) uses the Damerau-Levenshtein met-
ric [5], to measure the distance between the output from the syn-
thesized program and the corresponding output in the noisy data
set:

LDL (p,D) =
∑

(σi ,oi )∈D

LJpKσi ,oi

( ��JpKσi �� , |oi | )
where, La,b (i, j ) is the Damerau-Levenshtein metric [5].

This metric counts the number of single character deletions, in-

sertions, substitutions, or transpositions required to convert one

text string into another. Because more than 80% of all human mis-

spellings are reported to be captured by a single one of these four

operations [5], the DL loss function may be appropriate for compu-

tations that work with human-provided text input-output examples.

4 COMPLEXITY MEASURE
Given a program p, a Complexity Measure C (p) ranks programs

independent of the input-output examples in the data set D. This

measure is used to trade off performance on the noisy data set

vs. complexity of the synthesized program. Formally, a complexity

measure is a functionC (p) that maps each program p expressible in

the given DSLG to a real number. The followingCost(p) complexity

measure computes the complexity of given program p represented

as a parse tree recursively as follows:

Cost(t ) = cost(t )

Cost( f (e1, e2, . . . ek )) = cost( f ) +
k∑
i=1

Cost(ei )

where t and f are terminals and built-in functions in our DSL

respectively. Setting cost(t ) = cost( f ) = 1 delivers a complexity

measure Size(p) that computes the size of p.
Given an FTA A, we can use dynamic programming to find the

minimum complexity parse tree (under the above Cost(p) measure)

accepted by A [9]. In general, given an FTA A, we assume we are

provided with a method to find the program p accepted byA which

minimizes the complexity measure.

5 OBJECTIVE FUNCTIONS
Given loss l and complexity c , anObjective FunctionU (l , c ) maps

l , c to a totally ordered set such that for all l ,U (l , c ) is monotonically

nondecreasing with respect to c .

Definition 5. Tradeoff Objective Function: Given a tradeoff
parameter λ > 0, the tradeoff objective functionUλ (l , c ) = l + λc .

This objective function trades the loss of the synthesized program

off against the complexity of the synthesized program. Similarly

to how regularization can prevent a machine learning model from

overfitting noisy data by biasing the training algorithm to pick

a simpler model, the tradeoff objective function may prevent the

algorithm from synthesizing a program which overfits the data

by biasing it to pick a simpler program (based on the complexity

measure).

Definition 6. Lexicographic Objective Function: A lexico-
graphic objective functionUL (l , c ) = ⟨l , c⟩ maps l and c into a lexico-
graphically ordered space, i.e., ⟨l1, c1⟩ < ⟨l1, c2⟩ if and only if either
l1 < l2 or l1 = l2 and c1 < c2.

This objective function first minimizes the loss, then the com-

plexity. It may be appropriate, for example, for best fit program

synthesis, data cleaning and correction, and approximate program

synthesis over clean data sets.

6 STATE-WEIGHTED FTA
State-weighted finite tree automata (SFTA) are FTA augmented with

a weight function that attaches a weight to all accepting states.

Definition 7 (SFTA). A state-weighted finite tree automaton
(SFTA) over alphabet F is a tuple A = (Q, F ,Qf ,∆,w ) where Q is
a set of states, Qf ⊆ Q is the set of accepting states, ∆ is a set of
transitions of the form f (q1, . . . ,qk ) → q where q,q1, . . .qk are
states, f ∈ F andw : Qf → R is a function which assigns a weight
w (q) (from domainW ) to each accepting state q ∈ Qf .
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t ∈ T , JtKσ = c

qct ∈ Q
(Term)

qcs0 ∈ Q

qcs0 ∈ Qf
w (qcs0 ) = L(o, c )

(Final)

s → f (s1, . . . sk ) ∈ P , {q
c1
s1 , . . . ,q

ck
sk } ⊆ Q,

Jf (c1, . . . ck )Kσ = c

qcs ∈ Q, f (q
c1
s1 , . . . ,q

ck
sk ) → qcs ∈ ∆

(Prod)

Figure 4: Rules for constructing a SFTA A = (Q, F ,Qf ,∆,w )
given input σ , per-example loss function L, and grammar
G = (T ,N , P , s0).

Because CFTAs are designed to handle synthesis over clean

(noise-free) data sets, they have only one accept state qos0 (the state
with start symbol s0 and output value o). We weaken this condition

to allow multiple accept states with attached weights using SFTAs.

Given an input-output example (σ ,o) and per-example loss func-

tion L(o, c ), Figure 4 presents rules for constructing a SFTA that,

given a program p, returns the loss for p on example (σ ,o). The
SFTA Final rule (Figure 4) marks all states qcs0 with start symbol

s0 as accepting states regardless of the concrete value c attached
to the state. The rule also associates the loss L(o, c ) for concrete
value c and output o with state qcs0 as the weight w (qcs0 ) = L(o, c ).
The CFTA Final rule (Figure 3), in contrast, marks only the state

qos0 (with output value o and start state s0) as the accepting state.

A SFTA divides the set of programs in the DSL into subsets.

Given an input σ , all programs in a subset produce the same output

(based on the accepting state), with the SFTA assigning a weight

w (qcs0 ) = L(o, c ) as the weight of this subset of programs.

We denote the SFTA constructed fromDSLG , example (σ ,o), per-

example loss function L, and threshold d as Ad
G (σ ,o,L). We omit

the subscript grammar G and threshold d wherever it is obvious

from context.

Example 3. Consider the DSL presented in Example 2. Given input-
output example ({x → 1}, 9) and weight function l (c ) = (c − 9)2,
Figure 5 presents the SFTA which represents all programs of height
less than 3.

For readability, we omit the states for terminals 2 and 3. For all

accepting states the first number (the number in black) represents

the computed value and the second number (the number in red)

represents the weight of the accepting state.

6.1 Operations over SFTAs
Definition 8 (+ Intersection). Given two SFTAs

A1 = (Q1, F ,Q
1

f ,∆1,w1) and A2 = (Q2, F ,Q
2

f ,∆2,w2), a SFTA
A = (Q, F ,Qf ,∆,w ) is the + intersection A1 and A2, if the CFTA
in A is the intersection of CFTAs of A1 and A2, and the weight of
accept states in A is the sum of weight of corresponding weights in
A1 and A2. Formally:

• The CFTA (Q, F ,Qf ,∆) is the intersection of CFTAs
(Q1, F ,Q

1

f ,∆1) and (Q2, F ,Q
2

f ,∆2)

• w (qc⃗1:c⃗2s ) = w1 (q
c⃗1
s ) +w2 (q

c⃗2
s ) (for qc⃗1:c⃗2s ∈ Qf ).

1x 1, 64 2, 49

4, 25

3, 36

6, 9

5, 16

9, 0

8, 112, 9 7, 4

id

+
2,×

3

×2

+
3

+
2
,×

2

×
3

+
3

×
2
,+
3

+2

×
3

×2

+2

×3 +3

Figure 5: The SFTA constructed for Example 3

Given two SFTAs A1 and A2, A1 +A2 denotes the + intersection

of A1 and A2.

Definition 9 (/ Intersection). Given a SFTA
A = (Q, F ,Qf ,∆,w ) and a CFTA A∗ = (Q∗, F ,Q∗f ,∆

∗), a SFTA
A ′ = (Q ′, F ,Q ′f ,∆

′,w ′) is the / intersection of A and A∗, if the
FTA A ′ is the intersection of CFTA A and A∗, and the weight of the
accepting state in A ′ is the same as the weight of the corresponding
accepting state in A. Formally:

• The CFTA (Q ′, F ,Q ′f ,∆
′) is the intersection of FTAs

(Q, F ,Qf ,∆) and (Q∗, F ,Q∗f ,∆
∗)

• w ′(qc⃗1:c⃗2s ) = w (qc⃗1:c⃗2s ) (for qc⃗1:c⃗2s ∈ Q ′f ).

Given a SFTAA and a CFTAA∗,A/A∗ denotes the / intersection

of A and A∗.

Given a single input-output example, a CFTA built on that exam-

ple only accepts programs which are consistent with that example.

/ intersection is a simple method to prune a SFTA to only contain

programs which are consistent with an input-output example.

Definition 10 (w0-pruned SFTA). A SFTA
A ′ = (Q, F ,Q ′f ,∆,w

′) is thew0-pruned SFTA of
A = (Q, F ,Qf ,∆,w ) if we remove all accept states with weights
greaterw0 from Qf . Formally, Q ′f = {q |q ∈ Qf ∧w0 <= w (q)} and
w ′(q) = w (q) if q ∈ Q ′f .

Given a SFTA A, A ↓w0
denotes thew0-pruned SFTA of A.

Definition 11 (q-selection). Given a SFTA
A = (Q, F ,Qf ,∆,w ) and a accept stateq ∈ Qf , the CFTA (Q, F , {q},∆)
is called the q-selection of SFTA A.

Given a SFTA A, the notation Aq denotes the q-selection of SFTA

A.
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7 SYNTHESIS OVER NOISY DATA
Given a data set {(σ1,o1), . . . , (σn ,on )} of input-output examples

and loss function L (p,D) with per-example loss function L, we
construct SFTAs for each input-output example A1,A2, . . .An
where Ai = A (σi ,oi ,L).

Theorem 1. Given a SFTA A = A (σ ,o,L) = (Q, F ,Qf ,∆,w ),
for all accepting states q ∈ Qf and for all programs p accepted by the
q-selection automata Aq :

L(o, JpKσ ) = w (q)

Proof. Consider any state q ∈ Qf . All programs accepted by

state q compute the same concrete value c on the given input σ .
Hence for all programs accepted by the q-selection automata Aq ,

JpKσ = c . By construction (Figure 4),w (q) = L(c ) = L(JpKσ ) □

Let SFTA A (D,L) be the + intersection of SFTAs defined on

input-output examples in D. Formally:

A (D,L) = A (σ1,o1,L) +A (σ2,o2,L) + . . .A (σn ,on ,L)

Since the size of each SFTA A (σi ,oi ,L) is bounded, the cost of

computing A (D,L) is O ( |D|).

Theorem 2. Given A (D,L) = (Q, F ,Qf ,∆,w ) as defined above,
for all accepting states q ∈ Qf , for all programs p accepted by the
q-selection automata A (D,L)q :

L (p,D) = w (q)

i.e., the weight of the state q measures the loss of programs by q on
data set D.

Proof. Consider any accepting state q ∈ Qf . Since A (D,L) is
an intersection of SFTAs A1 . . .An (where Ai = A (σi ,oi ,L) =
Qi , F , (Qf )i ,∆i ,wi )), there exist accepting states
q1 ∈ (Qf )1,q2 ∈ (Qf )2, . . .qn ∈ (Qf )n such that all programs p
accepted by Aq are accepted by (A1)q1 , (A2)q2 . . . (An )qn .
From Theorem 1, for all programs p accepted by Aq , wi (qi ) =
L(oi , JpKσi ) From definition of + intersection,

w (q) =
n∑
i=1

wi (qi ) =
n∑
i=1

L(oi , JpKσi ) = L (p,D)

□

Algorithm 1: Synthesis Algorithm
Input :DSL G, threshold d , data set D, per-example loss

function L, complexity measure C , and objective

functionU
Result: Synthesized program p∗

A (D,L) = (Q, F ,Qf ,∆,w )
#the SFTA over data set D and per-example loss function L
foreach q ∈ Qf do

pq ← argminp∈A (D,L)qC (p)

# For each accepting state q, find the most optimal

program pq
end
q∗ ← argminq∈Qf

U (w (q),C (pq ))

p∗ ← pq∗

Algorithm 1 presents the base algorithm to synthesize programs

within various noisy synthesis settings.

Theorem 3. The program p∗ returned by Algorithm 1 is equal to
p′ where

p′ = argminp∈Gd
U (L (p,D),C (p))

Proof. Given A (D,L) = (Q, F ,Qf ,∆,w ). p∗ returned by Algo-

rithm 1 is equal to pq∗ , where q
∗ = argminq∈Qf

U (w (q),C (pq )),

where pq = argminp∈A (D,L)qC (p). We can rewrite q∗ as

argminq∈Qf
U (w (q), min

p∈A (D,L)q
C (p))

Since for any l ,U (l , c ) is non-decreasing with respect to c , we can
rewrite q∗ as

argminq∈Qf
min

p∈A (D,L)q
U (w (q),C (p))

By Theorem 2, for any p ∈ A (D,L)q :

w (q) = L (p,D)

q∗ = argminq∈Qf
min

p∈A (D,L)q
U (L (p,D),C (p))

Because q∗ is the accepting state of p∗ and p ∈ A (D,L) if and only
if ∃ q ∈ Qf .p ∈ A (D,L)q , we can rewrite the above equation as:

p∗ = argminp∈A (D,L)U (L (p,D),C (p))

The set of programs accepted by A (D,L) is the same set of pro-

grams in grammar Gd . Hence proved. □

We next present several modifications of the core algorithm to

solve various synthesis problems.

7.1 Accuracy vs. Complexity Tradeoff
Given a DSL G, a data set D, loss function L, complexity measure

c , and positive weight λ, we wish to find a program p∗ which min-

imizes the weighed sum of the loss function and the complexity

measure. Formally:

p∗ = argminp∈Gd
(L (p,D) + λ ·C (p))

where Gd is the set of programs in DSL G with size less than the

threshold d . By using the objective function U (l , c ) = l + λc , we
can use Algorithm 1 to synthesize program p∗ which minimizes

the objective function given above.

7.2 Best Program for Given Accuracy
Given a DSL G, a data set D, loss function L, complexity measure

C and bound b, we wish to find a program p∗ that minimizes the

complexity measure C but has loss less than b. Formally: p∗ =
argminp∈Gd

C (p) s.t. L (p,D) < b. Note that this condition can be

rewritten as

p∗ = argminp∈A′C (p)

where A ′ = A (D,L) ↓b .
By the definition of ↓b , all accepting states of A ′ have weight

less than b. Therefore all programs accepted by A ′ have loss less

than b (i.e. L (p,D) < b). Also note that if a program p is not inA ′

then either it has loss greater than b or it is not within the threshold

d .
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7.3 Forced Accuracy
Given DSL G, a data set D, a subset D ′ ⊆ D, loss function L,

complexity measure C , and objective function U , we wish to find a

program p∗ which minimizes the objective function with an added

constraint of bounded loss over data set D ′. Formally:

p∗ = argminp∈Gd
U (L (p,D),C (p)) s.t. L (p,D ′) ≤ b

We first construct a SFTA A (D ′,L) ↓b which contains all pro-

grams consistent with loss less than or equal to b over data set D ′.

After constructingA (D,L) as in Algorithm 1, we modifyA (D,L)
by / intersection A (D ′,L) (after dropping the weights of the ac-

cepting states) with A (D,L) (i.e. A (D,L) ← A (D,L)/A (D ′,L)
as in Algorithm 1). By definition of / intersection andA, loss of all

programs returned by the modified algorithm on D ′ will be less

than equal to b.

8 USE CASES
Definition 12. Bayesian Program Synthesis: Given a set of

input-output examples D = {(σi ,oi ) |i = 1 . . .n}, DSL grammar G,
and a probability distribution π , p∗ is the solution to the Bayesian
program synthesis problem, if p∗ is the most probable program in DSL
G, given the data set D. Formally p∗ = argmaxp∈Gπ (p | D).

By Bayes rule p∗ = argmaxp∈Gπ (D|p)π (p), so

p∗ = argmaxp∈G
[
(logπ (D|p)) + (logπ (p))

]

Assuming independence of observations:

p∗ = argmaxp∈Gd

[( ∑
(σi ,oi )∈D

logπ (oi |JpKσi )
)
+ (logπ (p))

]

Where π (oi |JpKσi ) denotes the probability of output observation

oi in the data set D, given a program p With complexity measure

logπ (p), per-example loss function logπ (oi |JpKσi ) (given example

(σi ,oi )), and the following loss function:

L (p,D) =
∑

(σi ,oi )∈D

logπ (oi |JpKσi ))

the technique in Section 7.1 (Algorithm 1) synthesizes the most

probable program p∗

At Most k Wrong: Consider a setting in which, given a data set, a

random procedure is allowed to corrupt at most k of these input-

output examples. Given this noisy data setD, our task is to synthe-

size the simplest program p∗ which is wrong on at most k of these

input-output examples. Formally, given data set D, bound k , DSL
G, and a complexity measure C:

p∗ = argminp∈GC (p) s.t. L0/1 (p,D) ≤ k

where L
0/1 is the 0/1 loss function. The best program for a given

accuracy framework (subsection 7.2) allows us to synthesize p∗

subject to a threshold d .

9 EXPERIMENTAL RESULTS
String transformations have been extensively studied within the

Programming by Example community [10, 13, 18]. We implemented

our technique (in 6k lines of Java code) and used it to solve bench-

mark program synthesis problems from the SyGuS 2018 benchmark

suite [2]. This benchmark suite contains a range of string trans-

formation problems, a class of problems that has been extensively

studied in past program synthesis projects [10, 13, 18].

String expr e := Str( f ) | Concat( f , e );
Substring expr f := ConstStr(s ) | SubStr(x ,p1,p2);

Position p := Pos(x ,τ ,k,d ) | ConstPos(k )
Direction d := Start | End;

Figure 6: DSL for string transformation, τ is a token, k is an
integer, and s is a string constant

We use the DSL from [19] (Figure 6) with the size complexity

measure Size(p). The DSL supports extracting and contatenating

(Concat) substrings of the input string x ; each substring is extracted
using the SubStr function with a start and end position. A position

can either be a constant index (ConstPos) or the start or end of the

kth occurrence of the match token τ in the input string (Pos).

9.1 Implementation Optimizations
Instead of computing individual SFTAs for each input-output ex-

ample, then combining the SFTAs via + intersections to obtain the

final SFTA, our implementation computes the final SFTA directly

working over the full data set. The implementation also applies

two techniques that constrain the size of the final SFTA. First, it

bounds the number of recursive applications of the production

e := Concat( f , e ) by applying a bounded scope height threshold d .
Second, during construction of the SFTA, a state with symbol e is
only added to the SFTA if the length of the state’s output value is

not greater than the length of the output string plus one.

9.2 Scalability
We evaluate the scalability of our implementation by applying it

to all problems in the SyGuS 2018 benchmark suite [1]. For each

problem we use the clean (noise-free) data set for the problem pro-

vided with the benchmark suite. We use the lexicographic objective

function UL (l , c ) with the 0/∞ loss function and the c = Size(p)
complexity measure. We run each benchmark with bounded scope

height threshold d = 1, 2, 3, and 4 and record the running time on

that benchmark problem and the number of states in the SFTA. A

state with symbol e is only added to the SFTA if the length of its

output value is not greater than the length of the output string.

Because the running time of our technique does not depend on

the specific utility function (except for the time required to evaluate

the utility function, which is typically negligible for most utility

functions, and except for search space pruning techniques appro-

priate for specific combinations of utility functions and DSLs), we

anticipate that these results will generalize to other utility functions.

All experiments are run on an 3.00 GHz Intel(R) Xeon(R) CPU E5-

2690 v2 machine with 512GB memory running Linux 4.15.0. With a

timeout limit of 10 minutes and bounded scope height threshold of

4, the implementation is able to solve 64 out of the 108 SyGuS 2018

benchmark problems. For the remaining 48 benchmark problems a

correct program does not exist within the DSL at bounded scope

height threshold 4.

Table 7 presents results for selected SyGuS 2018 benchmarks. We

omit all *-long-repeat benchmarks. We also omit all name-combine-

4-*, phone-3-*, phone-4-*, phone-9-*, phone-10-*, and univ-* bench-

marks — all runs for these benchmarks either do not synthesize a

correct program or do not terminate. The full paper presents results

for all SyGuS 2018 benchmarks.
1
There is a row for each benchmark

1
The full paper is available at https://arxiv.org/abs/2009.10272.
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Threshold 1 2 3 4

Benchmark Name time(sec) SFTA size time(sec) SFTA size time(sec) SFTA size time(sec) SFTA size

bikes 0.16 1.08 0.73 10.56 4.72 56.4 19.83 145.8

bikes-long 0.21 1.02 1.37 9.42 6.04 49.9 26.99 139.35

bikes-short 0.15 1.08 0.79 10.56 3.98 56.4 18.62 145.8

dr-name X X 7.54 107.5 107.18 1547.2 - -

dr-name-long X X 17.4 70.28 300.9 1077.6 - -

dr-name-short X X 10.2 107.5 101.5 154.8 - -

firstname 0.28 1.02 1.46 4.34 4.024 4.33 3.97 4.34

firstname-long 1.72 1.04 12.03 4.36 39.08 4.36 41.22 4.36

firstname-short 0.26 1.02 1.47 4.37 3.93 4.34 3.9 4.34

initials X X X X 8.7 42.3 30.4 42.34

initials-long X X X X 86.44 42.36 376.56 42.36

initials-short X X X X 8.92 42.34 31.72 42.34

lastname 0.43 2.56 4.78 28.3 27.29 208.35 159.41 741.44

lastname-long 1.93 1.37 15.1 11.34 112.04 50.81 485.98 50.8

lastname-short 0.6 2.56 3.07 28.3 28.3 208.35 160.54 741.44

name-combine X X 8.49 269.9 224.074 7485.83 - -

name-combine-long X X 32.28 161.54 - - - -

name-combine-short X X 6.5 269.9 207.86 7485.83 - -

name-combine-2 X X X X 63.490 855.34 - -

name-combine-2-long X X X X 591.6 851.44 - -

name-combine-2-short X X X X 57.26 855.34 - -

name-combine-3 X X X X 43.082 911.53 527.29 8104.7

name-combine-3-long X X X X 193.42 649.13 - -

name-combine-3-short X X X X 42.266 911.53 526.13 8104.7

reverse-name X X 6.9 269.9 217.19 7495.9 - -

reverse-name-long X X 29.55 161.53 - - - -

reverse-name-short X X 6.84 269.9 228.24 7485.8 - -

phone 0.12 0.46 0.47 1.58 0.87 1.58 0.78 1.58

phone-long 0.8 0.46 3.9 1.58 7.79 1.58 32.79 1.58

phone-short 0.12 0.46 0.37 1.58 0.804 1.578 4.97 1.58

phone-1 0.15 0.46 0.44 1.58 0.84 1.58 3.017 1.58

phone-1-long 0.99 0.46 3.8 1.58 8.23 1.58 16.58 1.58

phone-1-short 0.14 0.46 0.45 1.58 0.8 1.58 1.5 1.58

phone-2 0.13 0.46 0.44 1.58 0.83 1.58 3.176 1.58

phone-2-long 0.64 0.46 2.84 1.58 8.36 1.58 16 1.58

phone-2-short 0.09 0.46 0.47 1.58 0.83 1.58 2.78 1.58

phone-5 0.18 0.23 0.16 0.23 0.11 0.23 0.7 0.23

phone-5-long 1.24 0.23 0.94 0.23 0.75 0.23 4.2 0.23

phone-5-short 0.17 0.23 0.17 0.23 0.11 0.23 0.9 0.23

phone-6 0.27 0.64 1.38 2.6 2.67 2.61 9.3 2.61

phone-6-long 1.84 0.64 6.48 2.6 24.66 2.61 103.3 2.61

phone-6-short 0.28 0.64 0.76 2.6 2.27 2.61 11.19 2.61

phone-7 0.24 0.64 1.04 2.6 2.87 2.61 11.141 2.61

phone-7-long 2.6 0.64 7.8 2.6 26.1 2.61 108.1 2.61

phone-7-short 0.23 0.64 1.13 2.6 3.26 2.61 10.71 2.61

phone-8 0.23 0.64 1 2.6 2.65 2.61 8.51 2.61

phone-8-long 2.33 0.64 7.58 2.6 25.87 2.61 114.54 2.61

phone-8-short 0.27 0.64 0.97 2.6 2.45 2.61 13.81 2.61

Figure 7: Runtimes and SFTA sizes for selected SyGuS 2018 benchmarks
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Benchmark Data Set

Number of Required

Size

Correct Examples

1-Delete DL 0/1

bikes 6 0 0 2

dr-name 4 0 0 1

firstname 4 0 0 2

lastname 4 0 2 4

initials 4 0 2 2

reverse-name 6 0 0 2

name-combine 4 0 0 2

name-combine-2 4 0 0 2

name-combine-3 4 0 0 2

phone 6 0 2 3

phone-1 6 0 3 3

phone-2 6 0 2 3

phone-5 7 0 2 3

phone-6 7 0 2 3

phone-7 7 0 2 3

phone-8 7 0 0 1

Figure 8: Minimum number of correct examples required to
synthesize correct a program.

problem. The first column presents the name of the benchmark.

The next four columns present results for the technique running

with bounded scope height threshold d = 1, 2, 3, and 4, respectively.

Each column has two subcolumns: the first presents the running

time on that benchmark problem (in seconds); the second presents

the number of states in the SFTA (in thousands of states). An entry

X indicates that the implementation terminated but did not synthe-

size a correct program that agreed with all provided input-output

examples. An entry - indicates that the implementation did not

terminate.

In general, both the running times and the number of states

in the SFTA increase as the number of provided input-output ex-

amples and/or the bounded height threshold increases. The SFTA

size sometimes stops increasing as the height threshold increases.

We attribute this phenomenon to the application of a search space

pruning technique that terminates the recursive application of the

production e := Concat( f , e ); when the generated string becomes

longer than the current output string — in this case any resulting

synthesized program will produce an output that does not match

the output in the data set.

We compare with a previous technique that uses FTAs to solve

program synthesis problems [20]. This previous technique requires

clean data and only synthesizes programs that agree with all input-

output examples in the data set. Our technique builds SFTAs with

similar structure, with additional overhead coming from the evalu-

ation of the objective function. We obtained the implementation

of the technique presented in [20] and ran this implementation on

all benchmarks in the SyGuS 2018 benchmark suite. The running

times of our implementation and this previous implementation are

comparable.

9.3 Noisy Data Sets, Character Deletion
We next present results for our implementation running on small

(few input-output examples) data sets with character deletions. We

use a noise source that cyclically deletes a single character from

each output in the data set in turn, starting with the first character,

proceeding through the output positions, then wrapping around

to the first character again. We apply this noise source to corrupt

every output in the data set. To construct a noisy data set with k
correct (uncorrupted) outputs, we do not apply the noise source to

the last k outputs in the data set.

We exclude all *-long, *long-repeat, and *-short benchmarks

and all benchmarks that do not terminate within the time limit

at height bound 4. For each remaining benchmark we use our

implementation and the generated corrupted data sets to determine

the minimum number of correct outputs in the corrupted data

set required for the implementation to produce a correct program

that matches the original hidden clean data set on all input-output

examples. We consider three loss functions: the 0/1 and DL loss

functions (Section 3) and the following 1-Delete loss function, which

is designed to work with noise sources that delete a single character

from the output stream:

Definition 13. 1-Delete Loss Function: The 1-Delete loss func-
tion L1D (p,D) uses the per-example loss function L that is 0 if the
outputs from the synthesized program and the data set match exactly,
1 if a single deletion enables the output from the synthesized program
to match the output from the data set, and∞ otherwise:

L1D (p,D) =
∑

(σi ,oi )∈D

L1D (JpKσi ,oi ), where

L1D (o1,o2) =




0 o1 = o2

1 a · x · b = o1 ∧ a · b = o2 ∧ |x | = 1

∞ otherwise

We use the lexicographic objective function UL (l , c ) with c =
Size(p) as the complexitymeasure and bounded scope height thresh-

old d = 4. We apply a search space pruning technique that termi-

nates the recursive application of the production e := Concat( f , e );
when the generated string becomes more than one character longer

than the current output string.

Table 8 summarizes the results. TheData Set Size Column presents

the total number of input-output examples in the corrupted data set.

The next three columns, 1-Delete, DL, and 0/1, present theminimum

number of correct (uncorrupted) input-output examples required

for the technique to synthesize a correct program (that agrees with

the original hidden clean data set on all input-output examples)

using the 1-Delete, DL, and 0/1 loss functions, respectively.

With the 1-Delete loss function, the minimum number of re-

quired correct input-output examples is always 0 — the implemen-

tation synthesizes, for every benchmark problem, a correct program

that matches every input-output example in the original clean data

set even when given a data set in which every output is corrupted.

This result highlights how 1) discrete noise sources produce noisy

outputs that leave a significant amount of information from the

original uncorrupted output available in the corrupted output and

2) a loss function that matches the noise source can enable the

synthesis technique to exploit this information to produce correct

programs even in the face of substantial noise.

With the DL loss function, the implementation synthesizes a

correct program for 8 of the 16 benchmarks when all outputs in the

data set are corrupted. For 7 of the remaining 8 benchmarks the
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technique requires 2 correct input-output examples to synthesize

the correct program. The remaining benchmark requires 3 correct

examples. The general pattern is that the technique tends to require

correct examples when the output strings are short. The synthesized

incorrect programs typically use less of the input string.

These results highlight how the DL loss function still extracts

significant useful information available in outputs corrupted with

discrete noise sources. But in comparison with the 1-Delete loss

function, the DL loss function is not as good a match for the charac-

ter deletion noise source. The result is that the synthesis technique,

when working with the DL loss function, works better with longer

inputs, sometimes encounters incorrect programs that fit the cor-

rupted data better, and therefore sometimes requires correct inputs

to synthesize the correct program.

With the 0/1 loss function, the technique always requires at least

one and usually more correct inputs to synthesize the correct pro-

gram. In contrast to the 1-Delete and DL loss functions, the 0/1 loss

function does not extract information from corrupted outputs. To

synthesize a correct program with the 0/1 loss function in this sce-

nario, the technique must effectively ignore the corrupted outputs

to synthesize the program working only with information from

the correct outputs. It therefore always requires at least one and

usually more correct outputs before it can synthesize the correct

program.

9.4 Noisy Data Sets, Character Replacements
We next present results for our implementation running on larger

data sets with character replacements. The phone-*-long-repeat

benchmarks within the SyGuS 2018 benchmarks contain transfor-

mations over phone numbers. The data sets for these benchmarks

contain 400 input-output examples, including repeated input-output

examples.

For each of these phone-*-long-repeat benchmark problems on

which our technique terminates with bounded scope height thresh-

old 4 (Section 9.2), we construct a noisy data set as follows. For

each digit in each output string in the data set, we flip a biased coin.

With probability b, we replace the digit with a uniformly chosen

random digit (so that each digit in the noisy output is not equal

to the original digit in the uncorrupted output with probability

9/10 × b).
We then run our implementation on each benchmark prob-

lem with the noisy data set using the tradeoff objective function

Uλ (l , c ) = l + λ × c with complexity measure c = Size(p) and the

following n-Substitution loss function:

Definition 14. n-Substitution Loss Function:
The n-Substitution loss function LnS (p,D) uses the per-example loss
function LnS that counts the number of positions where the noisy
output does not agree with the output from the synthesized program.
If the synthesized program produces an output that is longer or shorter
than the output in the noisy data set, the loss function is∞:

LnS (p,D) =
∑

(σi ,oi )∈D

LnS (JpKσi ,oi ), where

LnS (o1,o2) =




∞ |o1 | , |o2 |
|o1 |∑
i=1

1 if o1[i] , o2[i] else 0 |o1 | = |o2 |

Benchmark Data set DL Output Program

Size Loss Size Size

name-combine-4 5 10 49 16

phone-3 7 14 91 11

phone-4 6 6 66 17

phone-9 7 14 99 21

phone-10 7 14 120 21

Figure 9: Approximate program synthesis with DL loss.
We run the implementation for all combinations of the bounded

scope threshold b ∈ {0.2, 0.4, 0.6} and λ ∈ {0.001, 0.1}. For every
combination of b and λ, and for every one of the phone-*-long-

repeat benchmarks in the SyGuS 2018 benchmark set, the imple-

mentation synthesizes a correct program that produces the same

outputs as in the original (hidden) clean data set.

These results highlight, once again, the ability of our technique

to workwith loss functions that match the characteristics of discrete

noise sources to synthesize correct programs even in the face of

substantial noise.

9.5 Approximate Program Synthesis
For the benchmarks in Table 9, a correct program does not exist

within the DSL at bounded scope threshold 2. Table 9 presents re-

sults from our implementation on the clean (noise-free) benchmark

data sets with theDL loss function, Size(p) complexitymeasure, lexi-

cographic objective functionUL (LDL (p,D), Size(p)), and bounded
scope threshold 2. The first column presents the name of the bench-

mark. The next four columns present the number of input-output

examples in the benchmark data set, the DL loss incurred by the

synthesized program over the entire data set, the sum of the lengths

of the output strings of the data set (the DL loss for an empty output

would be this sum), and the size of the synthesized program.

For the phone-* benchmarks, a correct program outputs the

entire input telephone number but changes the punctutation, for

example by including an area code in parentheses. The synthesized

approximate programs correctly preserve the telephone number

but apply only some of the punctuation changes. The result is

2 = 14/7 characters incorrect per output for all but phone-4, which

has 1 character per output incorrect. Each output is between 13 =

91/7 and 17 = 120/7 characters long. For name-combine-4, the

synthesized approximate program correctly extracts the last name,

inserts a comma and a period, but does not extract the initial of the

first name. These results highlight the ability of our technique to

approximate a correct program when the correct program does not

exist in the program search space.

9.6 Discussion
Practical Applicabilty: The experimental results show that our

technique is effective at solving string manipulation program syn-

thesis problems with modestly sized solutions like those present

in the SyGuS 2018 benchmarks. More specifically, the results high-

light how the combination of structure from the DSL, a discrete

noise source that preserves some information even in corrupted

outputs, and a good match between the loss function and noise

source can enable very effective synthesis for data data sets with

only a handful of input-output examples even in the presence of

substantial noise. Even with as generic a loss function as the 0/1

loss function, the technique is effective at dealing with data sets
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in which a significant fraction of the outputs are corrupted. We

anticipate that these results will generalize to similar classes of

program synthesis problems with modestly sized solutions within

a tractable and focused class of computations.

We note that our current implementation does not scale to Sy-

GuS 2018 benchmarks with larger solutions. These benchmarks

were designed to test the scalability of current and future program

synthesis systems. No currently extant program analysis system of

which we are aware can solve these larger problems.

To the extent that the SyGuS 2018 bencharks accurately represent

the kinds of program synthesis problems that will be encountered

in practice, our results provide encouraging evidence that our tech-

nique can help program synthesis systems work effectively with

noisy data sets. Important future work in this area will more fully

investigate interactions between the DSL, the noise source, the loss

function, the classes of synthesis problems that occur in practice,

and the scalability of the synthesis technique. A full evaluation of

the immediate practical applicability of program synthesis for noisy

data sets, as well as a meaningful evaluation of program synthesis

more generally, awaits this future work.

Noise SourcesWithDifferentCharacteristics:Our experiments

largely consider discrete noise sources that preserve some informa-

tion in corrupted outputs. The results highlight how loss functions

like the 1-Delete, DL, and n-Substitution loss functions can enable

our technique to extract and exploit this preserved information

to enhance the effectiveness of the synthesis. The question may

arise how well may our technique perform with noise sources that

leave little or even no information intact in corrupted outputs?

Here the results from the 0/1 loss function, which does not aspire

to extract any information from corrupted inputs, may be relevant

— if the corrupted outputs considered together do not conform to a

target computation in the DSL, the technique will, in effect, ignore

these corrupted outputs to synthesize the program based on any

remaining uncorrupted outputs. A final possibility is that the noise

source may systematically produce outputs characteristic of a valid

but incorrect computation. Here we would expect the algorithm

to require a balance of correct outputs before it would be able to

synthesize the correct program.

10 RELATEDWORK
The problem of learning programs from a set of input-output ex-

amples has been studied extensively [10, 16, 18]. These techniques

can be largely broken down into the following four categories:

Synthesis Using Solvers: These systems require the user to pro-

vide precise semantics for the operators for the DSL they are using

[11]. Our technique, in contrast, only requires black-box implemen-

tations of these operators. A large class of these systems depend

on solvers which do not scale as the number of examples increases.

Since our techniques are based on tree automata, our cost linearly

increases as the number of examples increase. These systems re-

quire all input-output examples to be correct and only synthesize

programs that match all input-output examples.

Enumerative Techniques: These techniques search the space of

programs to find a single program that is consistent with the given

examples [8, 12]. Specifically, they enumerate all programs in the

given DSL and terminate when they find the correct program. These

techniques may apply different heuristics/techniques to prune the

search space/speed up this process [12]. These techniques require all

input-output examples to be correct and only synthesize programs

that match all input-output examples.

VSA-based/Tree Automata-based Techniques: These
techniques build complex data structures representing all possible

programs compatible with the given examples [13, 18, 20]. Current

work requires users to provide correct input-output examples. Our

work modifies these techniques to handle noisy data and to syn-

thesize approximate programs that minimize an objective function

over the provided potentially noisy data set.

Neural Program Synthesis/ML Approaches: There is extensive
work that uses machine learning/deep neural networks to synthe-

size programs [3, 6, 15]. These techniques require a training phase

and a differentable loss function. Our technique requires no train-

ing phase and can work with arbitrary loss functions including,

for example, the 0/1 loss function. Machine learning techniques

are incompatible with this type of loss function. These systems

provide no guarantees over the completeness and the optimality of

their result, whereas our technique, due to its property of exploring

all programs of size less than a threshold, always finds a program

within the bounded scope that minimizes the objective function.

Data Set Sampling or Cleaning: There has been recent work

which aspires to clean the data set or pick representative examples

from the data set for synthesis [10, 14, 15], for example by using

machine learning or data cleaning to select productive subsets of

the data set over which to perform exact synthesis. In contrast to

these techniques, our proposed techniques 1) provide deterministic

guarantees (as opposed to either probabilistic guarantees as in [15]

or no guarantees at all as in [10, 14]), 2) do not require the use of

oracles as in [15], 3) can operate successfully even on data sets in

which most or even all of the input-output examples are corrupted,

and 4) do not require the explicit selection of a subset of the data

set to drive the synthesis as in [10, 15].

Active Learning: Recent research exploits the availability of a

reference implementation to use active learning for program syn-

thesis [17]. Our technique, in contrast, works directly from given

input-output examples with no reference implementation.

11 CONCLUSION
Dealing with noisy data is a pervasive problem in modern comput-

ing environments. Previous program synthesis systems target data

sets in which all input-output examples are correct to synthesize

programs that match all input-output examples in the data set.

We present a new program synthesis technique for working

with noisy data and/or performing approximate program synthesis.

Using state-weighted finite tree automata, this technique supports

the formulation and solution of a variety of new program synthe-

sis problems involving noisy data and/or approximate program

synthesis. The results highlight how this technique, by exploiting

information from a variety of sources — structure from the un-

derlying DSL, information left intact by discrete noise sources —

can deliver effective program synthesis even in the presence of

substantial noise.
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