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We present a dataflow model for modelling parallel Unix shell pipelines. To accurately capture the semantics
of complex Unix pipelines, the dataflow model is order-aware, i.e., the order in which a node in the dataflow
graph consumes inputs from different edges plays a central role in the semantics of the computation and
therefore in the resulting parallelization. We use this model to capture the semantics of transformations that
exploit data parallelism available in Unix shell computations and prove their correctness. We additionally
formalize the translations from the Unix shell to the dataflow model and from the dataflow model back to a
parallel shell script. We implement our model and transformations as the compiler and optimization passes of
a system parallelizing shell pipelines, and use it to evaluate the speedup achieved on 47 pipelines.
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1 INTRODUCTION
Unix pipelines are an attractive choice for specifying succinct and simple programs for data
processing, system orchestration, and other automation tasks [McIlroy et al. 1978]. Consider, for
example, the following program based on the original spell written by Johnson [Bentley 1985],
lightly modified for modern environments:1

cat f1.md f2.md | tr A-Z a-z | tr -cs A-Za-z '\n' | sort | uniq | # (Spell)
grep -vx -f dict.txt - > out ; cat out | wc -l | sed 's/$/ mispelled words!/'

The first command streams two markdown files into a pipeline that converts characters in the
stream into lower case, removes punctuation, sorts the stream in alphabetical order, removes
duplicate words, and filters out words from a dictionary file (lines 1 and 2, up to “;”). A second
∗Equal contribution.
1Johnson’s program additionally used troff, prepare, and col -bx to clean up now-legacy formatting metadata that does
not exist in markdown. Moreover, comm -13 was replaced with grep -xvf to highlight crucial features of the model.
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pipeline (line 2, after “;”) counts the resulting lines to report the number of misspelled words to
the user.

As this example illustrates, the Unix shell offers a programming model that facilitates the
composition of commands using unidirectional communication channels that feed the output
of one command as an input to another. These channels are either ephemeral, unnamed pipes
expressed using the | character and lasting for the duration of the producer and consumer, or
persistent, named pipes (Unix FIFOs) created with mkfifo and lasting until explicitly deleted. Each
command executes sequentially, with pipelined parallelism available between commands executing
in the same pipeline. Unfortunately, this model leaves substantial data parallelism, i.e., parallelism
achieved by splitting inputs into pieces and feeding the pieces to parallel instances of the script,
unexploited.

This fact is known in the Unix community and has motivated the development of a variety of
tools that attempt to exploit latent data parallelism in Unix scripts [Raghavan et al. 2020; Tange
2011; Vasilakis et al. 2021]. On the one hand, tools such as GNU Parallel [Tange 2011] can be used
by experienced users to achieve parallelism, but could also easily lead to incorrect results. On the
other hand, two recent systems, PaSh [Vasilakis et al. 2021] and POSH [Raghavan et al. 2020], focus
respectively on extracting data parallelism latent in Unix pipelines to improve the execution time
of (i) CPU-intensive shell scripts (PaSh), and (ii) networked IO-intensive shell scripts (POSH). These
systems achieve order-of-magnitude performance improvements on sequential pipelines, but their
semantics and associated transformations are not clearly defined, making it difficult to ensure that
the optimized parallel scripts are sound with respect to the sequential ones.

To support the ability to reason about and correctly transform Unix shell pipelines, we present a
new dataflow model. In contrast to standard dataflow models [Kahn 1974; Kahn and MacQueen
1977; Karp and Miller 1966; Lee and Messerschmitt 1987a,b], our dataflow model is order-aware—i.e.,
the order in which a node in the dataflow graph consumes inputs from different edges plays a
central role in the semantics of the computation and therefore in the resulting parallelization. This
model is different from models that allow multiplexing different chunks of data in a single channel,
such as sharding or tagging, or ones that are oblivious to ordering, such as shuffling—and is a direct
byproduct of the ordered semantics of the shell and the opacity of Unix commands. In the Spell
script shown earlier, for example, while all commands consume elements from an input stream in
order—a property of Unix streams e.g., pipes and FIFOs—they differ in how they consume across
streams: cat reads input streams in the order of its arguments, sort -m reads input streams in
interleaved fashion, and grep -vx -f first reads dict.txt before reading from its standard input.

We use this order-aware dataflow model (ODFM) to express the semantics of transformations
that exploit data parallelism available in Unix shell computations. These transformations capture
the parallelizing optimizations performed by both PaSh [Vasilakis et al. 2021] and POSH [Raghavan
et al. 2020]. We also use our model to prove that these transformations are correct, i.e., that they do
not affect the program behavior with respect to sequential output. Finally, we formalize bidirectional
translations between the shell and ODFM, namely from the shell language to ODFM and vice versa,
closing the loop for a complete shell-to-shell parallelizing compiler.

To illustrate the applicability of our model, we extend PaSh by reimplementing its compilation and
optimization phases with ODFM as the centerpiece. The new implementation translates fragments
of a shell script to our dataflow model, applies a series of parallelizing transformations, and then
translates the resulting parallel dataflow graph back to a parallel shell script that is executed instead
of the original fragment. The implementation improves modularity, facilitates the development
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of different transformations independently on top of ODFM, has been incorporated into the PaSh
mainline, and is available as part of the PaSh open-source repository.2

We use the new implementation to evaluate the benefit of a specific transformation by paral-
lelizing 47 unmodified shell scripts with and without this transformation and measuring their
execution times. Finally, we present a case study in which we parallelize two scripts using GNU
Parallel [Tange 2011]; our experience indicates that while it is easy to parallelize shell scripts using
such a tool, it is also easy to introduce bugs, leading to incorrect results.

In summary, this paper makes the following contributions:
• Order-AwareDataflowModel: It introduces the order-aware dataflowmodel (ODFM), a dataflow

model tailored to the Unix shell that captures information about the order in which nodes con-
sume inputs from different input edges (§4).
• Translations: It formalizes the bidirectional translations between shell and ODFM required to

translate shell scripts into dataflow graphs and dataflow graphs back to parallel scripts (§5).
• Transformations and Proofs of Correctness: It presents a series of ODFM transformations

for extracting data parallelism. It also presents proofs of correctness for these transformations (§6).
• Results: It reimplements the optimizing compiler of PaSh and presents experimental results

that evaluate the speedup afforded by a specific dataflow transformation (§7).
The paper starts with an informal development building the necessary background (§2) and expound-
ing on Spell (§3). It then presents the three main contributions outlined above (§4–7), compares
with prior work (§8), and offers a discussion (§9), before closing the paper (§10).

2 BACKGROUND
This section reviews background on commands and abstractions in the Unix shell.
Unix Streams: A key Unix abstraction is the data stream, operated upon by executing commands
or processes. Streams are sequences of bytes, but most commands process them as higher-level
sequences of line elements, with the newline character delimiting each element and the EOF
condition representing the end of a stream. Streams are often referenced using a filename, that is
an identifier in a global name-space made available by the Unix file-system such as /home/user/x.
Streams and files in Unix are isomorphic: some streams can persist as files beyond the execution of
the process, whereas other streams are ephemeral in that they only exist to connect the output of
one process to the input of another process during their execution. The sequence order is maintained
when changing between persistent files and ephemeral streams.
Commands: Each command is an independent computation unit that reads one or more input
streams, performs a computation, and produces one or more output streams. Contrary to languages
with a closed set of primitives, there is an unlimited number of Unix commands, each one of which
may have arbitrary behaviors—with the command’s side-effects potentially affecting the entire
environment on which it is executing. These commands may be written in any language or exist
only in binary form, and thus Unix is not easily amenable to a single parallelizability analysis.
Parallelization tools such as GNU parallel leave such analysis to developers that have to ensure
that the script behavior will not be affected by parallelization, whereas transformation-based tools
such as PaSh and POSH identify key invariants that hold for entire classes of commands and then
resort to annotation libraries to infer whether each invariant is satisfied by each command. For
example, an invariant that is used in both PaSh and POSH is whether a command is stateless, i.e.,
whether it maintains state when processing its inputs, or whether it processes each input line
2The PaSh repository can be found at github.com/binpash/pash. The results of this paper are maintained in a frozen icfp-ae
branch, and replicated as an image on Zenodo [Handa et al. 2021].
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independently. Commands that satisfy this invariant can be parallelized by splitting their inputs in
lines and then combining their outputs.
Command flags: Unix commands are often configurable, customizing their behavior based on
the task at hand. This is usually achieved via environment variables and command flags. Tools like
PaSh and POSH address command behavior variability due to flags by including flags and command
arguments in their annotation frameworks. Given command annotations, PaSh and POSH can
abstract specific command invocations in a pipeline to black boxes for which some assumptions
hold. This makes them applicable in the context of the shell where the space of possible command
and flag combinations is exceedingly large.
Order of input consumption: In Unix, all streams are ordered and all commands can safely
assume that they can consume elements from their streams in the order they were produced.
Additionally, most commands have the ability to operate on multiple files or streams. The order
in which commands access these streams is important. In some cases, they read streams in the
order of the stream identifiers provided. In other cases, the order is different—for example, an
input stream may configure a command, and thus must be read before all the others. Consider for
example grep -f words.txt input.txt, which first reads words.txt to determine the keywords for
which it needs to search, and then reads input.txt line by line, emitting all lines that contain one
of the words in words.txt. In other cases, reads from multiple streams are interleaved according to
some command-specific semantics.
Composition:UnixOperators: Unix provides several primitives for program composition, each
of which imposes different scheduling constraints on the program execution. Central among them is
the pipe (|), a primitive that passes the output of one process as input to the next. The two processes
form a pipeline, producing output and consuming input concurrently and possibly at different
rates. The Unix kernel facilitates program scheduling, communication, and synchronization behind
the scenes. For example, Spell’s first tr transforms each character in the input stream to lower
case, passing the stream to the second tr: the two trs form a parallel producer-consumer pair of
processes.

Apart from pipes, the language of the Unix shell provides several other forms of program
composition—e.g., the sequential composition operator (;) for executing one process after another
has completed, and control structures such as if and while. All of these constructs enforce execution
ordering between their components. To preserve such ordering and thus ensure correctness, systems
such as PaSh and POSH do not “push” parallelization beyond these constructs. Instead, they focus
on exploiting parallelism in script regions that do not face ordering constraints—which, as they
demonstrate, is enough to significantly improve the performance of scripts found out in the
wild [Raghavan et al. 2020; Vasilakis et al. 2021].

3 EXAMPLE AND OVERVIEW
This section provides intuition of the order-aware dataflow model proposed in this paper by
following the different phases of a shell-to-shell parallelizing compiler (inspired by PaSh and
POSH), formalized in the later sections. Given a script such as Spell (§1), the compiler identifies
its dataflow regions, translates them to DFGs (Shell→ODFM), applies graph transformations that
expose data parallelism on these DFGs, and replaces the original dataflow regions with the now-
parallel regions (ODFM→Shell).
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DFG1uniq 

|

>

out
cat 1.md 2.md

|

grep

DFG2
wc out

|

sed

;
Shell→ODFM: Provided a shell script, the compiler starts
by identifying subexpressions that are potentially paralleliz-
able. The first step is to parse the script, creating an abstract
syntax tree like the one presented on the right. Here we
omit any non-stream flags and refer to all the stages be-
tween (and including) tr and sort as a dotted edge ending
with cat.

The compiler then identifies parallelism barriers within
the shell script: these barriers are operators that enforce synchronization constraints such as the
sequential composition operator (“;”). We call any set of commands that does not include a dataflow
barrier a dataflow region. Dataflow regions are then transformed to dataflow graphs (DFGs), i.e.,
instances of our order-aware dataflow model. In our example, there are two dataflow regions
corresponding to the following dataflow graphs:

DFG1
grep

DFG2
uniq wc sedcat cat

f1

f2
tr

dict

out out

As mentioned earlier (§2), the compiler exposes parallelism in each DFG separately to preserve the
ordering requirements imposed to ensure correctness. For the rest of this section we focus on the
parallelization of DFG1.

Command Aggreg. Function

cat cat $*
tr A-Z a-z cat $*
tr -d a cat $*
sort sort -m $*
uniq uniq $*
grep -f a - cat $*
wc -l paste -d+ $*|bc
sed 's/a/b/' cat $*

Parallelizable Commands: Individual nodes of the dataflow
graphs are shell commands. Systems like PaSh and POSH as-
sume key information for individual commands, e.g., whether
they are amenable to divide-and-conquer data parallelism. Such
data parallelism is achieved by splitting the input into pieces
(at stream element boundaries), processing partial inputs in
parallel, and finally applying an aggregation function to partial
outputs to produce the final output. This decomposition breaks
a command into two components—a data-parallel function,
which is often the command itself, and an aggregation function. The table on the right presents
aggregation functions for the shell commands in our example (all of which are parallelizable).

tr
catsplit

tr

For example, consider the decomposition of the tr command. Applying tr

over the entire input produces the same result as splitting the input into
two, applying tr to the two partial inputs, and then merging the partial

results with a cat aggregation function. Note that both split and cat are order-aware, i.e., split
sends the first half of its input to the first tr and the rest to the second, while cat concatenates
its inputs in order. This guarantees that the output of the DFG is the same as the one before the
transformation.
Parallelization Transformations: Given the decomposition of individual commands, the com-
piler’s next step is to apply graph transformations to exploit parallelism present in the computation
represented by the DFG. As each parallelizable Unix command comes with a corresponding ag-
gregation function, the compiler’s transformations first convert the DFG into one that exploits
parallelism at each stage. After applying the transformation to the two tr stages, the DFG looks as
follows:

split
tr
tr

cat
DFG1

split
tr
tr

catcat sort
f1

f2
out
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After these transformations are applied to all DFG nodes, the next transformation pass is applied
to pairs of cat and split nodes: whenever a cat is followed by a split of the same width, the
transformation removes the pair and connects the parallel streams directly to each other. The
goal is to push data parallelism transformations as far down the pipeline as possible to expose the
maximal amount of parallelism. Here is the resulting DFG for the transformation applied to the
two tr stages:

tr
tr

cat
DFG1

split
tr
tr

cat
f1

f2
outgrepuniqsort

Applying this transformation to the first three stages—i.e., cat, tr, and tr—of DFG1 produces the
following transformed DFG.

DFG1
grepuniqsort

trtr

trtr
cat

cat

catf1

f2
out

The next node to parallelize is sort. To merge the partial output of parallel sorts, we need to apply
a sorted merge. (In GNU systems, this is available as sort -m so we use this as the label of the
merging node.) The transformation then removes cat, replicates sort, and merges their outputs
with sort -m:

DFG1
grepuniqsort -m

trtr

trtr

sort

sort

f1

f2

cat

cat
out

It then continues pushing parallelism down the pipeline, after applying a split function to split
sort -m’s outputs.

DFG1
splitsort -m

trtr

trtr

sort

sort

uniq

uniq

cat

cat

f1

f2
cat

As mentioned earlier, a similar pass of iterative transformations is applied to DFG2, but the two
DFGs are not merged to preserve the synchronization constraint of the dataflow barrier “;”.
Order Awareness: Data-parallel systems [Dean and Ghemawat 2008; Zaharia et al. 2012] often
achieve parallelism using sharding, i.e., partitioning input based on some key, or using shuffling,
i.e., arbitrary partitioning of inputs to parallel instances of an operator.

However, these techniques cannot be directly applied to the context of the shell, since (1) Unix
commands and pipelines assume strict ordering of their input elements, (2) most commands are
not independent on the basis of some key (to enable sharding), and (3) many commands are not
commutative (e.g., uniq, cat -n). Since our goal is to define a model that applies directly to existing
shell scripts, we cannot simply introduce new primitives that support sharding or shuffling, as is
done in the case of systems that design an abstraction that fits their needs (e.g., MapReduce, Spark).
Thus, data parallelism in the shell requires a careful treatment of input and output ordering.

1

2

split

cat

uniq

uniq

f1

f2

To further explain the need for order-awareness in a model for data parallel Unix
pipelines, let’s look at the following examples. Consider Spell’s cat f1.md f2.md

command that starts reading from f2.md only after it has completed reading f1.md;
note that any or both input streams may be pipes waiting for results from other processes. This
order can be visualized as a label over each input edge. Correctly parallelizing this command
requires ensuring that parallel cat (and possibly followup stages) maintains this order.
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grep
cat

uniq

uniq

uniq
uniq

1

2
1

2

dictAs a more interesting example, consider Spell’s grep, whose DFG is
shown on the right. Parallelizing grep without taking order into account
is not trivial, because grep -vx -f’s set difference is not commutative:
we cannot simply split its input streams into two pairs of partial inputs
fed into two copies of grep. Taking input ordering into account, however, highlights an important
dependency between grep’s inputs. The dict stream can be viewed as configuring grep, and thus
grep can be modeled as consuming the entire dict stream before consuming partial inputs.

grep
dict cat

uniq

uniq
grep

tee 1

2

2

1

2
1

Armed with this insight, the compiler parallelizes grep by pass-
ing the same dict.txt stream to both grep copies. This requires
an intermediary tee for duplicating the dict.txt stream to both
copies of grep, each of which consumes the stream in its entirety
before consuming the results of the preceeding uniq.

Order-awareness is also important for the DFG translation back to a shell script. In the specific
example we need to know how to instantiate the arguments of each grep of all possible options—e.g.,
grep -vx -f p1 p2, cat p1 | grep -vx -f - p2, etc. Aggregators are Unix commands with their
own ordering characteristics that need to be accounted for.

The order of input consumption in the examples of this section is statically known and can
be represented for each node as a set of configuration inputs, plus a sequence of the rest of its
inputs. To accurately capture the behavior of shell programs, however, ODFM is more expressive,
allowing any order of input consumption. The correctness of our parallelization transformations is
predicated upon static but configurable orderings: a command reads a set of configuration streams
to setup the consumption order of its input streams which are then consumed in-order, one after
the other.
ODFM→Shell: The transformed graph is finally compiled back to a script that uses POSIX shell
primitives to drive parallelism explicitly. A benefit of the dataflow model is that it can be directly
implemented on top of the shell, simply translating each node to a command, and each edge to a
stream. The generated parallel script for Spell can be seen below.

mkfifo t{0..14} # DFG1: start
tr A-Z a-z < f1.md > t0 &
tr A-Z a-z < f2.md > t1 &
tr -d[:punct:] < t0 > t2 &
tr -d[:punct:] < t1 > t3 &
sort < t2 > t4 &
sort < t3 > t5 &
sort -m t4 t5 > t6 &
split t7 t8 < t6 &
# ...
tee t9 > t10 < dict.txt &
grep -vx -f t9 - < t11 > t13 &
grep -vx -f t10 - < t12 > t14 &
cat t13 t14 > out &
wait
rm t{0..14} # DFG1: end

mkfifo t{0..8} # DFG2: start
split t0 t1 < out &
wc -l < t0 > t2 &
wc -l < t1 > t3 &
paste -d+ t2 t3 | bc > t4 &
split t5 t6 < t4 &
sed 's/$/ mispelled words!/' < t5 > t7 &
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P := I;O; E
I := input x
O := output x
E := xo ← f (x i )

Fig. 1. Dataflow Description Language (DDL).

sed 's/$/ mispelled words!/' < t6 > t8 &
cat t7 t8 &
wait
rm t{0..8} # DFG2: end

The two DFGs are compiled into the two fragments that start with mkfifo and end with rm. Each
fragment uses a series of named pipes (FIFOs) to explicitely manipulate the input and output streams
of each data-parallel instance, effectively laying out the structure of the DFG using explicit channel
naming (Unix FIFOs are named in the filesystem similar to normal files.) Aggregation functions
are used to merge partial outputs from previous commands coming in through multiple FIFOs—for
example, sort -m t4 t6 and cat t11 t12 for the first fragment, and paste -d+ t2 t3 | bc and
cat t7 t8 for the second. A wait blocks until all commands executing in parallel complete.

The parallel script is simplified for clarity of exposition: it does not show the details of input
splitting, handling of SIGPIPE deadlocks, and other technical details that are handled by the current
implementation.

Readers might be wondering about the correctness of having two sed commands in the parallel
script: won’t the string “mispelled words” appear twice in the output? Note, however, that the
output of the wc stage (fifo t4) contains a single line. As a result, the second sed will not be given
any input line and thus will not produce any output.

4 AN ORDER-AWARE DATAFLOWMODEL
In this section we describe the order-aware dataflow model (ODFM) and its semantics.

4.1 Preliminaries
As discussed earlier (§2), the two main shell abstractions are (i) data streams, and (ii) commands
communicating via streams. We represent streams as named variables and commands as functions
that read from and write to streams.

We first introduce some basic notation formalizing data streams on which our dataflow description
language works. For a set D, we write D∗ to denote the set of all finite words over D. For words
x,y ∈ D∗, we write x ·y or xy to denote their concatenation. We write ϵ for the empty word and ⊥
for the End-of-File condition. We say that x is a prefix of y, and we write x ≤ y, if there is a word z
such that y = xz. The ≤ order is reflexive, antisymmetric, and transitive (i.e., it is a partial order),
and is often called the prefix order. We use the notation D∗ · ⊥ to denote a closed stream, abstractly
representing a file/pipe stream that has been closed, i.e., one which no process will open for writing.
The notation D∗ is used to denote an open stream, abstractly representing an open pipe. Later, other
process may add new elements at the end of this value. In the rest of out formalization we focus on
terminating streams, and therefore terminating programs, since all of the data processing scripts
that we have encountered are terminating. We discuss extensions for infinite streams in §9.
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⟨x ′1, . . . x
′
p⟩ ← f (x1, . . . xk . . . xn) ∈ E vk · vx ≤ Γ(xk )

|vx | = 1 ∨vx = ⊥ i ∈ [1,k − 1] ∪ [k + 1,n].vi = σ (xi )
k ∈ choicef (v1, . . .vn) ⟨vm1 , . . .v

m
p ⟩ = Jf (v1, . . .vk ◦vx . . .vn)Ks

I,O, E ⊢ Γ[x ′1 → v ′1, . . . x
′
p → v ′p ],σ [xk → vk ]⇝

Γ[x ′1 → v ′1 · v
m
1 , . . . x

′
p → v ′p · v

m
p ],σ [xk → vk · vx ]

Step

Fig. 2. Small Step Execution Semantics

4.2 Dataflow Description Language
Figure 1 presents the Dataflow Description Language (DDL) for defining dataflow graphs (DFG). A
program p ∈ P in DDL is of the form I;O; E. I and O represent sets of edges, vectors of the form
x = ⟨x1, x2, . . . xn⟩. Variables x1, x2, . . . represent DFG edges, i.e., streams used as a communication
channel between DFG nodes and as the input and output of the entire DFG.
I is of the form input x , where x is the set of the input variables. Each variable x ∈ I represents

a file file(x) that is read from the Unix filesystem. Note that multiple input variables can refer to
the same file.
O is of the form output x , where x is the set of output variables. Each variable x ∈ O represents

a file file(x) that is written to the Unix filesystem.
E represents the nodes of the DFG. A node xo ← f (x i ) represents a function from list of input

variables (edges) x i to output variables (edges) xo . We require that f is monotone with respect to a
lifting of the prefix order for a sequence of inputs; that is,∀,v,v ′,vi , ifv ≤ v ′, ⟨v1, . . .vn⟩ = f (v,vi )
and ⟨v ′1, . . .v

′
n⟩ = f (v ′,vi ), then ∀ k ∈ [1,n]. vk ≤ v ′k . This captures the idea that a node cannot

retract output that it has already produced.
We wrap all functions f with an execution wrapper J·K that ensures that all outputs of f are

closed when its inputs are closed:
Jf (v1 · ⊥,v2 · ⊥, . . .vn · ⊥)K = ⟨v ′1 · ⊥,v

′
2 · ⊥, . . .v

′
k · ⊥⟩

This is helpful to ensure termination. From now on, we only refer to the wrapped function semantics.
We also assume that commands do not produce output if they have not consumed any input, i.e.,

the following is true:
⟨ϵ, . . . , ϵ⟩ = Jf (ϵ, . . . , ϵ)K

A variable in DDL is assigned only once and consumed by only one node. DDL does not allow the
dataflow graph to contain any cycles. This also holds for variables in I and O, which cannot refer
to the same variables in I and never assigned a different value in E. Similarly, variables in O are
not read by any node in E. All variables which are not included in I and O abstractly represent
temporary files/pipes which are created during the execution of a shell script. We assume that
within a dataflow program, all variables are reachable from some input variables.
Execution Semantics: Figure 2 presents the small step execution semantics for DDL. Maps
Γ associates variable names to the data contained in the stream it represents. Map σ associates
variable names to the data in the stream that has already been processed—representing the read-
once semantics of Unix pipes. Let ⟨x ′1, . . . x

′
p⟩ ← f (x1, . . . xn) be a node in our DFG program. The

function choicef represents the order in which a commands consumes its inputs by returning a
set of input indexes on which the function blocks on waiting to read. For example, the choicecat
function for the command cat always returns the next non-closed index—as cat reads its inputs in
sequence, each one until depletion.

{k + 1} = choicecat (v1· ⊥, . . .vk · ⊥,vk+1, . . .vn)
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⟨x ′1, . . . x
′
p⟩ ← f (x1, . . . xn) ∈ E ⟨v ′1 · ⊥, . . .v

′
p · ⊥⟩ = Jf (v1 · ⊥, . . .vn · ⊥)K

I,O, E ⊢ Γ[x ′1 → v ′1 · ⊥, . . . x
′
p → v ′p · ⊥, x1 → v1 · ⊥, . . . xn → vn · ⊥]

Completion

Fig. 3. Execution Constraints

For a choicef function to be valid, it has to return an input index that has not been closed yet.
Formally,

S = choicef (v1, . . .vk · ⊥, . . .vn) =⇒ k < S

We assume that the set returned by choicef cannot be empty unless all input indexes are closed,
meaning that all nodes consume all of their inputs until depletion even if they do not need the rest
of it for processing.

The small step semantics nondeterministically picks a variablexk , such thatk ∈ choicef (v1, . . .vn),
i.e., f is waiting to read some input from xk , and σ (xk ) < Γ(xk ), i.e., there is data on the stream
represented by variable xk that has to be processed. The execution then retrieves the next message
vx to process, and computes new messages vm1 , . . .v

m
p to pass on to the output streams x ′1, . . . x

′
p .

Note that any of these messages (input or output) might be ⊥. We pass vk ◦ vx , which denotes
that the previous data vk is now being combined with the new message vx , to function f . For
all functions f and new messages v , given ⟨v ′1,v

′
2, . . .v

′
p⟩ = Jf (v1, . . . ,vk , . . .vn)K we assume the

following constraint holds:

⟨vm1 , . . .v
m
p ⟩ = Jf (v1, . . .vk ◦vx , . . .vn)Ks

⇐⇒ ⟨v ′1 · v
m
1 , . . .v

′
p · v

m
p ⟩ = Jf (v1 . . . ,vk · vx , . . .vn)K

This constraint ensures that first processing arguments v1, . . .vk , . . .vn and then message vx
append to argument kth stream is equivalent to processing messages v1, . . .vk · vx , . . .vn at once.
Having this property, allows our system to process messages as they arrive or wait for all the
messages to arrive, without changing the semantics of the execution.

The messages vm1 , . . .v
m
p are passed on to their respective output streams (by updating Γ). Note

that the size of the output messages could vary, and they could even be empty. Finally, σ is updated
to denote that vx has been processed.
Execution: Let ⟨I,O, E⟩ be a dataflow program, where I = input x i are the input variables, and
output xo are the output variables. Let σi be the initial mapping from all variable names in the
dataflow program ⟨I,O, E⟩ to empty string ϵ . Let Γi be the initial mapping for variables in the
dataflow program, such that all non-input variables x < x i , map to the empty string Γi (x) = ϵ . In
contrast, all input variables x ∈ x i , i.e., files already present in the file system, are mapped to the
contents of the respective input file Γi (x) = v · ⊥.

When no more small step transitions can take place (i.e., all commands have finished processing),
the dataflow execution terminates and the contents of output variables in O can be written to
their respective output files. Figure 3 represents the constraint that has to be satisfied by Γ at the
end of execution, i.e., when all variables are processed. We now prove some auxiliary theorems
and lemmas to show that dataflow programs always terminate and that when they terminate, the
constraint in Figure 3 holds.

Theorem 4.1. Let ⟨x ′1, x
′
2, . . . , x

′
p⟩ ← f (x1, . . . xn) ∈ E. During any point within the execution of

the DFG, the following statement is true:

⟨Γ(x ′1), . . . Γ(x
′
p )⟩ = Jf (σ (x1), . . . σ (xn))K
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Proof. Proof by induction on the number of execution steps.
Base Case: Let Γi and σi be the initial mappings. For x ∈ ⟨x1, . . . xn⟩, σi (x) = ϵ . For x ∈ ⟨x ′1, . . . x

′
p⟩,

Γi (x) = ϵ (since x ′1, . . . x
′
p are not input variables to the DFG, they will be initialized to ϵ). The

following property is true for all functions f :

⟨ϵ, . . . ϵ⟩ = Jf (ϵ, . . . ϵ)K

Therefore, or the initial mappings, Γi and σi ,

⟨Γi (x
′
1), . . . Γi (x

′
p )⟩ = Jf (σi (x1), . . . σi (xn))K

Induction Hypothesis: Let Γ and σ be a snapshot of stream mappings during the execution of the
DFG such that the following statement is true:

⟨Γ(x ′1), . . . Γ(x
′
p )⟩ = Jf (σ (x1), . . . σ (xn))K

Induction Case: Let Γ and σ be a snapshot of stream mappings such that the induction hypothesis
is true. Let Γ′ and σ ′ be the snapshot after a single step of the execution takes place, given the
snapshots Γ and σ .

If for all i ∈ [1,n], σ (xi ) = σ ′(xi ), then a message updating x ′1, . . . x
′
p was not processed (they

can only be written by this node). Therefore, for all k ∈ [1,p].Γ(x ′p ) = Γ′(x ′p ) and the following
statement is true (assuming Induction Hypothesis)

⟨Γ′(x ′1), . . . Γ
′(x ′p )⟩ = Jf (σ ′(x1), . . . σ ′(xn))K

If there exists an i ∈ [1,n] such that σ ′(xi ) = σ (xi ) ·vx , vx , ϵ , then a message vx was processed.
Note that the above statement can only be true for a single i . For all k , i , σ (xk ) = σ ′(xk ).

The following statement is true from Induction Hypothesis:

⟨Γ(x ′1), . . . Γ(x
′
p )⟩ = Jf (σ (x1), . . . σ (xk ), . . . σ (xn))K

and from small step semantics, for all k ∈ [1,p]:

Γ′(xk ) = Γ(xk ) · v
m
k

where:
⟨vm1 , . . .v

m
p ⟩ = Jf (σ (xi ), . . . σ (xk ) ◦vx , . . . σ (xn))Ks

Using the definition of J·Ks , the following statement is true:

⟨Γ(x ′1) · v
m
1 , . . . Γ(x

′
p ) · v

m
p ⟩ = Jf (σ (x1), . . . σ (xk ) · vx , . . . σ (xn))K

Therefore, the following is true:

⟨Γ′(x ′1), . . . Γ
′(x ′p )⟩ = Jf (σ ′(x1), . . . σ ′(xk ), . . . σ ′(xn))K

The small step semantics will preserve this property. Therefore, by induction, for all ⟨x ′1, x
′
2, . . . , x

′
p⟩ ←

f (x1, . . . xn) ∈ E, the following is always true about Γ and σ , during any point within the execution:

⟨Γ(x ′1), . . . Γ(x
′
p )⟩ = Jf (σ (x1), . . . σ (xn))K

□

Lemma 4.2. Let ⟨x ′1, x
′
2, . . . , x

′
p⟩ ← f (x1, . . . xn) ∈ E. If ∀i ∈ [1,n] Γ(xi ) = vi · ⊥, then eventually

∀i ∈ [1,n], σ (xi ) = vi · ⊥ and eventually ∀i ∈ [1,p], Γ(x ′i ) = v
′
i · ⊥.

Proof. If for all i ∈ [1,n], Γ(xi ) is closed and choicef is non empty unless σ (xi ) is closed for all
i , then eventually the execution will take a step to update σ till, for all i ∈ [1,n], σ (xi ) is closed.
When all inputs are closed, J·K dictates that all outputs will be closed as well. Using theorem 4.1,
Γ(x ′i ) will be closed. □
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Commands c := (s = w)∗wr ∗ | pipe | c+&? | c r+
| c & | (c) | c1; c2 | c1 && c2
| c1 || c2 | ! c | while c1 c2
| for s w c | if c1 c2 c3 | casew cb∗

| s() c
Redirections r := . . .
Words w := (s | ␣ | k)∗
Control Codes k := . . .
Strings s ∈ Σ+

Fig. 4. A relevant subset of shell syntax presented in Smoosh [Greenberg and Blatt 2020].

Theorem 4.3. Eventually for all variables x , ∃ v .Γ(x) = v · ⊥, i.e., all variables will eventually be
closed.

Proof. Let C be the set of variables which will be closed eventually. Note that I ⊆ C (all input
variables to the DFG will be eventually closed). Using Lemma 4.2, for any node ⟨x ′1, x

′
2, . . . , x

′
p⟩ ←

f (x1, . . . xn) ∈ E, if x1, . . . xn ∈ C, then x ′1, . . . x
′
p ∈ C. Since the dataflow program contains no

cycles, eventually all variables reachable from the input variables are in C. □

Theorem 4.4. The Dataflow program will always terminate. Let Γ and σ be the stream mappings
when the DFG terminates. The for Γ and σ , the constraint 3 will be true.

Proof. The DFG graph terminates when all variables are closed. From Theorem 4.3, all variables
will eventually be closed. Constraint 3 follows from Theorem 4.1, all variables being closed when
DFG terminates, and the properties of J·K. □

5 FROM SHELL SCRIPTS TO DFGS AND BACK AGAIN
This section formalizes the translations between the shell and our order-aware dataflow model.

5.1 Shell to ODFM
Given a shell script the compiler starts by recursing on the AST, replacing subtrees in a bottom-up
fashion with dataflow programs. Fig. 4 shows a relevant subset of shell syntax, adapted from
Smoosh [Greenberg and Blatt 2020]. Intuitively, some shell constructs (such as pipes |) allow for
the composition of the dataflow programs of their components, while others (such as ;) prevent it.
Figure 5 shows the translation rules for some interesting constructs, and Figure 6 shows several
auxiliary relations that are part of this translation. We denote compilation from a shell AST to
a shell AST as c ↑ c ′, and compilation to a dataflow program as c ↑ ⟨p,b⟩ where p is a dataflow
program and b ∈ {bg, fg} denotes whether the program is to be executed in the foreground or
background .

The first two rules CommandTrans and CommandId describe compilation of commands. The
bulk of the work is done in cmd2node, which, when possible, defines a correspondence between
a command and a dataflow node. Predicate pure indicates whether the command is pure, i.e.,
whether it only interacts with its environment by reading and writing to files. All commands that
we have seen until now (grep, sort, uniq) satisfy this predicate. The relations ins and outs define
a correspondence between a commands arguments and the nodes inputs and outputs. We assume
that a variable is uniquely identified from the file that it refers too, therefore if two variables have
the same name, then they also refer to the same files. Finally, relation func extracts information
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cmd2node(w, xo ← f (x i )) add_metadata(f ,as, r ) = f ′

redir(xo, x i , r , x ′o, x
′
i )

aswr ↑ ⟨inputx ′i ; outputx ′o ;x
′
o ← f ′(x ′i ), fg⟩

CommandTrans

cmd2node(w,⊥)

aswr ↑ aswr
CommandId

c ↑ ⟨p,b⟩

c & ↑ ⟨p, bg⟩
BackgroundDfg

c ↑ c ′

c & ↑ c ′ &
BackgroundCmd

c1 ↑ ⟨p1, bg⟩ c2 ↑ ⟨p2,b⟩

c1 ; c2 ↑ ⟨compose(p1,p2),b⟩
SeqBothBg

c1 ↑ c
′
1 c2 ↑ ⟨p2, bg⟩

opt(p2) ⇓ c ′2
c1 ; c2 ↑ c

′
1; (c

′
2 &)

SeqRightBg

c1 ↑ ⟨p1, fg⟩ c2 ↑ ⟨p2, bg⟩
opt(p1) ⇓ c ′1 opt(p2) ⇓ c ′2

c1 ; c2 ↑ c
′
1; (c

′
2 &)

SeqBothFgBg

c1 ↑ c
′
1 c2 ↑ ⟨p2, fg⟩

opt(p2) ⇓ c ′2
c1 ; c2 ↑ c

′
1 ; c

′
2

SeqRightFg
c1 ↑ c

′
1 c2 ↑ c

′
2

c1 ; c2 ↑ c
′
1 ; c

′
2

SeqNone

c1 ↑ ⟨p1,b1⟩, . . . cn ↑ ⟨pn,bn⟩, p ′1 . . .p
′
n−1 = map(connectpipe,p1 . . .pn−1)

p = fold_left(compose,p ′1 p
′
2 . . .p

′
n−1 pn)

pipe |c1 c2 . . . cn & ↑ ⟨p,bд⟩
PipeBG

c1 ↑ ⟨p1,b1⟩, . . . cn ↑ ⟨pn,bn⟩, p ′1 . . .p
′
n−1 = map(connectpipe,p1 . . .pn−1)

p = fold_left(compose,p ′1 p
′
2 . . .p

′
n−1 pn)

pipe |c1 c2 . . . cn ↑ ⟨p, f д⟩
PipeFG

Fig. 5. A subset of the compilation rules.

about the execution of the command (such as its choice function and w) to be able to reconstruct it
later on. Note that the four relations pure, ins, outs, and func act as axioms, and the soundness of
our model and translations depends on their correctness. Prior work [Raghavan et al. 2020; Vasilakis
et al. 2021] has shown how to construct such relations for specific commands using annotation
frameworks, with PaSh providing annotations for more than 50 commands in POSIX and GNU
Coreutils—two large and widely used sets of commands.

The rule BackgroundDfg sets the background flag for the underlying dataflow program; if the
operand of a & is not compiled to a dataflow program then it is simply left as is. The last part holds
for all shell constructs, we currently only create dataflow nodes from a single command.

The next set of rules refer to the sequential composition operator “;”. This operator acts as a
dataflow barrier since it enforces an execution ordering between its two operands. Because of that,
it forces the dataflow programs that are generated from its operands to be optimized (with opt)
and then compiled back to shell scripts (with ⇓). However, there is one case (SeqBothBg) where a
dataflow region can propagate through a “;” and that is if the first component is to be executed in
the background. In this case “;” does not enforce an execution order constraint between its two

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 65. Publication date: August 2021.



65:14 Shivam Handa, Konstantinos Kallas, Nikos Vasilakis, and Martin C. Rinard

(vars(E1) \ vars(I1)) ∩ (vars(E2) \ vars(I2)) = ∅ I ′ = I1 \ O2 ∪ I2 \ O1
O ′ = O1 \ I2 ∪ O2 \ I1 p ′ = I ′;O ′; E1 ∪ E ′2

vars(E1) \ (vars(I1) ∪ vars(O1) ∩ vars(I2) = ∅ valid(p ′)
vars(E2) \ (vars(I2) ∪ vars(O2) ∩ vars(I1) = ∅

®x1 = vars(E1) ∩ vars(E2) \ (vars(I1) ∪ vars(I2) ∪ vars(O3) ∪ vars(O2))

®x2 < vars(E1) ∪ vars(E2) | ®x1 | = | ®x2 | E ′2 = E2[®x2/®x1]
∀x ∈ (I1 ∪ I2 \ I

′) ∪ (O1 ∪ O2 \ O
′).pipe(x)

compose(I1;O1; E1,I2;O2; E2) = p ′

pure(w) ins(w, x i , f ) outs(w, xo, f ) func(w, f )

cmd2node(w, xo ← f (x i ))

¬pure(w)

cmd2node(w,⊥)

insf (x i ,w, xin?) outsf (xo,w, xout ?) func(w, f )

node2cmd(xo ← f (x i ),w, xin?, xout ?)

O ′ = O[xstdin/xstdout]

connectpipe(I;O; E) = I;O ′; E

node2cmd(x ′o ← f (x ′i ),w, xin?, xout ?) get_metadata(f ) = ⟨as, r ⟩
redir(x ′o, x

′
i , r , xo, x i ) r ′ = in_out(r , xin?, xout ?)

instantiate(xo ← f (x i )) = aswr

Fig. 6. Auxiliary relations for translating commands to nodes and back.

operands and the generated dataflow programs can be safely composed into a bigger one. The rules
for “&&” and “||” are similar (omitted).

The relation compose unifies two dataflow programs by combining the inputs of one with the
outputs of the other and vice versa. Before doing that, it ensures that the composed dataflow graph
will be valid by checking that there is at most one reader and one writer for each internal and output
variable, as well as all the rest of the dataflow program invariants, e.g., the absence of cycles (§4).

The remaining rules (not shown) introduce synchronization constraints and are not part of our
parallelization effort—for example, we consider all branching operators as strict dataflow barriers.

5.2 ODFM to Shell
Figure 7 presents the compilation ⇓ of a dataflow program p = I;O; E to a shell program. The
compilation can be separated in a prologue, the main body, and an epilogue.

The prologue creates a named pipe (i.e., Unix FIFO) for every variable in the program. Named
pipes are created in a temporary directory using the mkfifo command, and are similar in behavior
to ephemeral pipes except that they are explicitly associated to a file-system identifier—i.e., they
are a special file in the file-system. Named pipes are used in place of ephemeral pipes (|) in the
original script.

The epilogue inserts a wait to ensure that all the nodes in the dataflow have completed execution,
and then removes all named pipes from the temporary directory using rm. The design of the
prologue-epilogue pair mimics how Unix treats ephemeral pipes, which correspond to temporary
identifiers in a hidden file-system.

The main body expresses the parallel computation and can also be separated into three compo-
nents. For each of the input variables xi ∈ I, we add a command that copies the file f = file(xi ) to
its designated pipe. Similarly, for all output variables xi ∈ O we add a command that copies the
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I = input xi1, . . . xin O = output xo1, . . . xom E = n1, . . .nk
cin = cat f ile(xi1) >pipe(xi1) & ; . . . ;cat f ile(xk ) >pipe(xin) &

cin = cat pipe(xo1) >f ile(xo1) & ; . . . ;cat pipe(xom) >f ile(xom) &
cnodes = instantiate(n1) & ; . . . ;instantiate(nk ) &

body(I,O, E) = cin ; cout ; cnodes

vars(p) = ⟨v1, . . . ,vn⟩

prologue(p) = mkfifo /tmp/p{1..n}

prologue(p) = pr epilogue(p) = ep

p ⇓ pr ;body(p) ;ep

vars(p) = ⟨v1, . . . ,vn⟩

epilogue(p) = wait ; rm /tmp/p{1..n}

Fig. 7. DFG to shell transformations.

designated pipe to the output file in the filesystem f = file(xi ). Finally, we translate each node in
E to a shell command that reads from the pipes corresponding to its input variables and writes
to the pipes corresponding to its output variables. In order to correctly translate a node back to a
command, we use the node-command correspondence functions (similar to the ones for ↑) that
were used for the translation of the command to a node. Since a translated command might get
its input from (or send its output to) a named pipe, we need to also add those as new redirections
with in_out. For example, for a node x3 ← f (x1, x2) that first reads x1 and then reads x2, where
f = grep -f, the following command would be produced:

grep -f p1 p2 > p3 &

6 PARALLELIZATION TRANSFORMATIONS
In this section we define a set of transformations that expose data parallelism on a dataflow
graph. We start by defining a set of helper DFG nodes and a set of auxiliary transformations to
simplify the graph and enable the parallelization transformations. Then we identify a property on
dataflow nodes that indicates whether the node can be executed in a data parallel fashion. We then
define the parallelization transformations and we conclude with a proof that applying all of the
transformations preserves the semantics of the original DFG.

6.1 Helper Nodes and Auxiliary Transformations
Before we define the parallelization transformations, we introduce several helper functions that
can be used as dataflow nodes. The first function is split. split takes a single input variable (file or
pipe) and sequentially splits into multiple output variables. The exact size of the data written in
each output variable is left abstract since it does not affect correctness but only performance.

x ← split(xi )

v = ⟨v1· ⊥,v2· ⊥, . . .vk−1· ⊥,vk , ϵ, . . . ϵ⟩,
vc = v1 · v2 . . . · vk

∀ vc . Jsplit(vc )K = v

v = ⟨v1 · ⊥,v2 · ⊥, . . .vm · ⊥⟩, vc = v1 · v2 . . . · vm · ⊥

∀ vc . Jsplit(vc )K = v
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The second function is cat, which coincidentally behaves the same as the Unix command cat. cat,
given a list of input variables, combines their values and assigns it to a single output variable.
Formally cat is defined below:

xi ← cat(x)

v = ⟨v1 · ⊥,v2 · ⊥, . . .vk−1 · ⊥,vk , . . .vm⟩,
vc = v1 · v2 . . . · vk

∀ v . Jcat(v)K = vc
v = ⟨v1 · ⊥,v2 · ⊥, . . .vm · ⊥⟩,vc = v1 · v2 . . . · vm · ⊥

∀ v . Jcat(v)K = vc
The third function is tee, which behaves the same way as the Unix command tee, i.e. copying its
input variable to several output variables. Formally tee is defined below:

x ← tee(xi )

v = ⟨vc ,vc , . . . ,vc ⟩,

∀ vc . Jtee(vc )K = v

v = ⟨vc · ⊥,vc · ⊥, . . . ,vc · ⊥⟩,

∀ vc . Jtee(vc · ⊥)K = v
The final function is relay. relay works as an identity function. Formally relay is defined below:

xi ← relay(x j ),∀ v . Jrelay(v)K = v,∀ v . Jrelay(v · ⊥)K = v · ⊥

Using these helper nodes our compiler performs a set of auxiliary transformations that are
depicted in Figure 8. relay acts an identity function, therefore any edge can be transformed to
include a relay between them. Spliting in multiple stages to get n edges is the same as splitting in
one step into n edges. Similarly, combining n edges in multiple stages is the same as combining n
edges in a single stage. If we split an edge into n edges, and then combine the n edges back, this
behaves as an identity. A cat can be pushed following a tee by creating n copies of the tee function.
If a cat has single incoming edge, we can convert it into a relay. If a split has a single outgoing
edge, we can convert it into a relay.

The first seven transformations can be performed both ways. The last transformations is one
way. A split after a cat can be converted into relays, if the input arity of cat is the same as output
arity of split. The reverse transformation in this case is not allowed as, using (Relay) rule, we can
cat and split any two or more streams in the dataflow graph. This will allow us to pass the output
of any function in our graph to any other function as an input. This will break the semantics of our
Dataflow graph.

6.2 Data Parallelism and Transformations
The dataflow model exposes task parallelism as each different node can execute independently—
only communicating with the other nodes through their communication channels. In addition to
that, it is possible to achieve data parallelism by executing some nodes in parallel by partitioning
part of their input.
Sequential Consumption Nodes: We are interested in nodes that produce a single output and
consume their inputs in sequence (one after the other when they are depleted), after having con-
sumed the rest of their inputs as an initialization and configuration phase. Note that there are several
examples of shell commands that correspond to such nodes, e.g. grep, sort, grep -f, and sha1sum.
Let such a node x ′ = f (x1, . . . , xn+m), where w.l.o.g. x1, x2, . . . , xn represent the configuration
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x j ← Unused(I,O, E), E ′ = E[x j/xi ]

I,O, E ⇐⇒ I,O, E ′ ∪ {x j ← relay(xi )}
Relay

xs , x
′
s ← Unused(I,O, E),

E =
{
⟨xs , x

′
s ⟩ ← split(x), ⟨x1, . . . xk ⟩ ← split(xs ), ⟨xk+1, . . . xm⟩ ← split(x ′s )

}
I,O, E ∪

{
⟨x1, . . . xm⟩ ← split(x)

}
⇐⇒ I,O, E ∪ E

Split-Split

xc , x
′
c ← Unused(I,O, E),

E =
{
xc ← cat(⟨x1, . . . xk ⟩), x ′c ← cat(⟨xk+1, . . . xm⟩), x ← cat(⟨xc , x ′c ⟩)

}
I,O, E ∪

{
x ← cat(⟨x1, . . . xm⟩)

}
⇐⇒ I,O, E ∪ E

Concat-Concat

x ← Unused(I,O, E), E =
{
x ← split(x j ), xi ← cat(x)

}
I,O, E ∪

{
xi ← relay(x j )

}
⇐⇒ I,O, E ∪ E

Split-Concat

xu1 , x
d
1 , x

u
2 , x

d
2 , . . . x

u
n , x

d
n ← Unused(I,O, E),

E =
{
⟨xu1 , x

d
1 ⟩ ← tee(x1), ⟨xu2 , x

d
2 ⟩ ← tee(x2), . . . ⟨xun , x

d
n ⟩ ← tee(xn),

xo ← cat(xu1 , x
u
2 , . . . x

u
n ), x

′
o ← cat(xd1 , x

d
2 , . . . x

d
n )
}

I,O, E ∪
{
x ← cat(x1, x2, . . . xn), ⟨xo, x ′o⟩ ← tee(x)

}
⇐⇒ I,O, E ∪ E

Tee-Concat

I,O, E ∪ {x j ← cat(xi )} ⇐⇒ I ′,O, E ′ ∪ {x j ← relay(xi )}
One-Concat

I,O, E ∪ {x j ← split(xi )} ⇐⇒ I ′,O, E ′ ∪ {x j ← relay(xi )}
One-Split

x ← Unused(I,O, E),
x i = ⟨x1, x2, . . . xn⟩, x j = ⟨x

′
1, x
′
2, . . . x

′
n⟩,

E =
{
x ′1 ← relay(x1), x ′2 ← relay(x2), . . . x ′n ← relay(xn)

}
I,O, E ∪

{
x ← cat(x i ), x j ← split(x)

}
=⇒ I,O, E ∪ E

Concat-Split

Fig. 8. Auxiliary Transformation

xr , xm, x
m
1 , . . . x

m
n , x

r
1 , . . . x

r
n, x

t
1, . . . x

t
n, x

p
1 , . . . x

p
n ← Unused(I,O, E) dp(f , fm, fr )

E =
{
⟨xc1 , . . . , x

c
n, x

c
n+1⟩ ← tee(xc ) : ∀xc ∈ x

}
∪{

xmi ← fm(xi , x i ) : ∀i ∈ {1 . . .n}
}
∪
{
xr ← fr (x

m
1 , . . . , x

m
n , xn+1)

}
I,O, E ∪

{
x ← cat(x1, . . . , xn), xi ← f (x, x)

}
=⇒ I,O, E ∪ E

Parallel

Fig. 9. Parallelization Transformation

inputs and xn+1, . . . , xn+m represent the sequential consumption inputs. The consumption order of
such a command is shown below:

choicef (v) =

{
{i : i ≤ n ∧ ¬closed(vi )} if¬∀i ≤ n, closed(vi )

{i : ∀j < i, closed(vj )} otherwise
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If we know that a command f satisfies the above property we can safely transform it to a x i =
cat(xn+1, . . . , xn+m) followed by a command x ′ = f ′(x i , x1, . . . , xn), without altering the semantics
of the graph.
Data Parallel Nodes: We now shift our focus to a subset of the sequential consumption nodes,
namely those that can be executed in a data parallel fashion by splitting their inputs. These are
nodes that can be broken down in a parallel map fm and an associative aggregate fr . Formally,
these nodes have to satisfy the following equation:

∀n,Jf (vi1 · · ·v
i
n,v)K = Jfr (v1, . . . ,vn,v)K

where ∀i ∈ {1 . . .n}vi = Jfm(vii ,v)K

We denote data parallel nodes as dp(f , fm, fr ) Example of such a node that satisfies this property is
the sort command, where fm = sort and fr = sort -m.

In addition to the above equation, a map function fm should not output anything when its input
closes.

Jfm(v,v)K = Jfm(v · ⊥,v)K

Note that fm could have multiple outputs and be different than the original function f . As has
been noted in prior research [Farzan and Nicolet 2017] this is important as some functions require
auxiliary information in the map phase in order to be parallelized. An important observation is
that a subset of all data parallel nodes are completely stateless, meaning that fm = f and fr = cat,
and therefore are embarrasingly parallel.

We can now define a transformation on any data parallel node f , that replaces it with a map
followed by an aggregate. This transformation is formally shown in Figure 9. Essentially, all the
sequential consumption inputs (that are concatenated using cat) are given to different fm nodes
the outputs of which are then aggregated using fr while preserving the input order. Note that the
configuration inputs have to be duplicated using tee to ensure that all parallel fms and fr s will be
able to read them in case they are pipes and not files on disk.

Using the auxiliary transformations—by adding a split followed by cat before a data parallel
node, we can always parallelize them using the parallelization transformation.
Correctness of Transformations: We now proceed to prove a series of statements regarding
the semantics-preservation properties of dataflow programs.
Program Equivalence: Let p = ⟨I,O, E⟩ and p ′ = ⟨I ′,O ′, E ′⟩ be two dataflow programs, where
I = ⟨x i1, . . . x

i
n⟩, I ′ = ⟨yi1, . . .y

i
n⟩, O = ⟨xo1 , . . . x

o
m⟩, and O ′ = ⟨yo1 , . . .y

o
m⟩. These programs are

equivalent if and only if, assuming initial value of input values are equal (for all k ∈ [1,n]. x ik is
equal to the value of yik ), for the value of the output variables is the same, when both of these DFGs
terminate. Formally, for all values v1, . . .vn , if

∀ j ∈ [1,n].Γi (x ij ) = Γ′i (y
i
j ) = vj

∀ j ∈ [1,m].Γo(xoj ) = Γ′o (y
o
j )

where Γi , Γ′i are the initial mappings for p and p ′ respectively, and Γo , Γ′o are the mappings when p
and p ′ have completed their execution.

Theorem 6.1. Let p = ⟨I,O, E ∪ E⟩ and p ′ = ⟨I,O, E ∪ E ′⟩ be two dataflow programs. Let Si
be the set of input variables in node set E (variables read in E but not assigned inside E). Let So be
the set of output variables in the node set E (variables assigned in E but not read inside E). Let S′i , S

′
o

be the input variables and output variables of E ′. We assume Si = S′i and So = S
′
o . If ⟨Si ,So, E⟩ is

equivalent to ⟨Si ,So, E ′⟩, then program ⟨I,O, E ∪ E ′⟩ is equivalent to ⟨I,O, E ∪ E⟩.
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Proof. Given any initial mapping Γi , let Γo , Γ′o be the mappings when p and p ′ complete their
execution. For all x ∈ Si , Γo(x) = Γ′o (x) as there are no cycles in the dataflow graph, and the
subgraph which computes Si is same in both p and p ′.

Since ⟨Si ,So, E⟩ is equivalent to ⟨Si ,So, E ′⟩, and for all x ∈ Si , Γo(x) = Γ′o (x), for all x ∈ So ,
Γo(x) = Γ′o (x).

Only variables in set So are the variables assigned in E and E ′, that are used in computing the
value of the output variables O. Since the value of the variables is same in both these programs,
given the same input mapping Γi , for all output variables x ∈ O, Γo(x) = Γ′o (x).

Therefore, both these programs are equivalent. □

Theorem 6.2. Transformations presented in Figure 8 and Figure 9 preserve program equivalence.

Proof. The (Relay) transformation preserves program equivalence as the program terminates,
the value of xi is equal to the value of x j .

The remaining transformations, transforming an input program ⟨I,O, E ∪ E⟩ to an output
program ⟨I ′,O ′, E ∪ E ′⟩. For all transformations Si = S′i and So = S′o (where Si ,S′i ,So,S

′
o are

defined above). First seven transformations, equivalence of programs ⟨Si ,So, E⟩ and ⟨Si ,So, E ′⟩
follow from the execution semantics for cat, relay, split, tee, the properties of fm and fr for data
parallel commands f .

The (Concat-Split) transformation relies on the additional property that the program produces
the same output independent of how the split breaks the input stream. Choice of a particular
way of breaking the stream does not change the value of the program’s output variables when it
terminates.

Since, ⟨Si ,So, E⟩ is equivalent to ⟨Si ,So, E ′⟩, these transformations preserve equivalence (Theo-
rem 6.1). □

7 EVALUATION
Our evaluation consists of two parts. The first part is a case study of applying GNU Parallel to
two scripts, demonstrating the difficulty of manually reasoning about parallel shell pipelines and
the challenges that one has to address in order to achieve a parallel implementation. The second
part demonstrates the performance benefits of our transformations on 47 unmodified shell scripts.
Before discussing our evaluation, we offer a brief outline of the compiler implementation.
Implementation: We reimplement the compilation and optimization phases of PaSh [Vasilakis
et al. 2021] according to our model and associated transformations. The new implementation
is about 1500 lines of Python code and uses the order-aware dataflow model as the centerpiece
intermediate representation. It is also more modular and facilitates the development of additional
transformations, closely mirroring the back-and-forth shell-to-ODFM translations described in
Section 5 and the parallezing transformations described in Section 6. While we expect that most
users would use PaSh by writing shell scripts, completely ignoring the ODFM, it is also possible
to manually describe programs in the intermediate representation, enabling other frontend and
backend frameworks to interface with it.

By reimplementing PaSh’s optimization phase to mirror our transformations we also discovered
and solved a bug in PaSh. The old implementation did not tee the configuration inputs of a
parallelized command, but rather allowed all parallel copies to read from the same input. While
this is correct if the configuration input is a file on disk, the semantics indicated that in the general
case it leads to incorrect results—for example, in cases where this input is a stream—because all
parallel commands consume items from a single stream, only reading a subset of them.
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7.1 Case Study: GNU Parallel
We describe an attempt to achieve data parallelism in two scripts using GNU parallel [Tange
2011], a tool for running shell commands in parallel. We chose GNU parallel because it compares
favorably to other alternatives in the literature [Tange 2020], but note that GNU parallel sits
somewhere between an automated compiler, like PaSh and POSH, and a fully manual approach—
illustrating only some of the issues that one might face while manually trying to parallelize their
shell scripts.
Spell: We first apply parallel on Spell’s first pipeline (§1):

TEMP_C1="/tmp/{/}.out1"
TEMP1=$(seq -w 0 $(($JOBS - 1)) | sed 's+^+/tmp/in+' | sed 's/$/.out1/' | tr '\n' ' ')
TEMP1=$(echo $TEMP1)
mkfifo $TEMP1
parallel "cat {} | col -bx | tr -cs A-Za-z '\n' | tr A-Z a-z | \

tr -d '[:punct:]' | sort > $TEMP_C1" ::: $IN &
sort -m $TEMP1 | parallel -k --jobs ${JOBS} --pipe --block "$BLOCK_SIZE" "uniq" |

uniq | parallel -k --jobs ${JOBS} --pipe --block "$BLOCK_SIZE" "grep -vx -f $dict -"
rm $TEMP1

It took us a few iterations to get the parallel version right, leading to a few observations. First, despite
its automation benefits, parallel still requires manual placement of the intermediate FIFO pipes and
aдд functions. Additionally, achieving ideal performance requires some tweaking: setting --block

to 10K, 250K, and 250M yields widely different execution times—27, 4, and 3 minutes respectively.
Most importantly, omitting the -k flag in the last two fragments breaks correctness due to re-

ordering related to scheduling non-determinism. These fragments are fortunate cases in which the
-k flag has the desired effect, because their output order follows the same order as the arguments
of the commands they parallelize. Other commands face problems, in that the correct output order
is not the argument order nor an arbitrary interleaving.
Set-difference: We apply parallel to Set-diff, a script that compares two streams using sort and
comm:

mkfifo s1 s2
TEMP_C1="/tmp/{/}.out1"
TEMP1=$(seq -w 0 $(($JOBS - 1)) | sed 's+^+/tmp/in+' | sed 's/$/.out1/' | tr '\n' ' ')
TEMP1=$(echo $TEMP1)
TEMP_C2="/tmp/{/}.out2"
TEMP2=$(seq -w 0 $(($JOBS - 1)) | sed 's+^+/tmp/in+' | sed 's/$/.out2/' | tr '\n' ' ')
TEMP2=$(echo $TEMP2)
mkfifo ${TEMP1} ${TEMP2}
parallel "cat {} | cut -d ' ' -f 1 | tr [:lower:] [:upper:] | sort > $TEMP_C1" ::: $IN &
sort -m ${TEMP1} > s1 &
parallel "cat {} | cut -d ' ' -f 1 | sort > $TEMP_C2" ::: $IN2 &
sort -m ${TEMP2} > s2 &
cat s1 | parallel -k --pipe --jobs ${JOBS} \

--block "$BLOCK_SIZE" "grep -vx -f s2 -"
rm ${TEMP1} ${TEMP2}
rm s1 s2

In addition to the issues highlighted in Spell, this parallel implementation has a subtle bug. GNU
parallel spawns several instances of grep -vx -f s2 - that all read FIFO s2. When the first parallel
instance exits, the kernel sends a SIGPIPE signal to the second sort -m. This forces sort to exit, in
turn leaving the rest of the parallel grep -vx -f instances blocked waiting for new input.
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The most straightforward way we have found to address this bug is to remove (1) the “&” operator
after the second sort -m, and (2) s2 from mkfifo. This modification sacrifices pipeline parallelism,
as the first stage of the pipeline completes before executing grep -vx -f. The parallel pipeline
modified for correctness completes in 4m54s. Our compiler does not sacrifice pipeline parallelism
by using tee to replicate s2 for all parallel instances of grep -vx -f (§2), completing in 4m7s.

7.2 Performance Results

Methodology: We use three sets of benchmark programs from various sources, including GitHub,
StackOverflow, and the Unix literature [Bentley 1985; Bentley et al. 1986; Bhandari 2020; Jurafsky
2017; McIlroy et al. 1978; Taylor and Perry 2016].
• Expert Pipelines: The first set contains 9 pipelines: NFA-regex, Sort, Top-N, WF, Spell, Dif-

ference, Bi-grams, Set-Difference, and Shortest-Scripts. Pipelines in this set contain 2–7 stages
(mean: 5.2), ranging from a scalable CPU-intensive grep stage in NFA-regex to a non-parallelizable
diff stage in Difference. These scripts are written by Unix experts: a few pipelines are from
Unix legends [Bentley 1985; Bentley et al. 1986; McIlroy et al. 1978], one from a book on Unix
scripting [Taylor and Perry 2016], and a few are from top Stackoverflow answers [Jurafsky 2017].
• Unix50 Pipelines: The second set contains 34 pipelines solving the Unix 50 game [Labs 2019].

This set is from a recent set of challenges celebrating of Unix’s 50-year legacy, solvable by
Unix pipelines. The problems were designed to highlight Unix’s modular philosophy [McIlroy
et al. 1978]. We found unofficial solutions to all-but-three problems on GitHub [Bhandari 2020],
expressed as pipelines with 2–12 stages (mean: 5.58). They make extensive use of standard
commands under a variety of flags, and appear to be written by non-experts—contrary to the
previous set, they often use sub-optimal or non-Unix-y constructs. We execute each pipeline
as-is, without any modification.
• COVID-19 Mass-Transit Analysis Pipelines: The third set contains 4 pipelines that were

used to analyze real telemetry data from bus schedules during the COVID-19 response in one of
Europe’s largest cities [Tsaliki and Spinellis 2021]. The pipelines compute several statistics on the
transit system per day—such as average serving hours per day and average number of vehicles
per day. Pipelines range between 9 and 10 stages (mean: 9.2) and use typical Unix staples such
as sed, awk, sort, and uniq.

We use our implementation of PaSh to parallelize all of the pipelines in these benchmark sets,
working with three configurations:
• Baseline: Our compiler simply executes the script using a standard shell (in our case bash)

without performing any optimizations. This configuration is used as our baseline. Note that it is
not completely sequential since the shell already achieves pipeline and task parallelism based on
| and &.
• No Cat-Split: Our compiler performs all transformations except Concat-Split. This configura-

tion achieves parallelism by splitting the input before each command and then merging it back.
It is used as a baseline to measure the benefits achieved by the Concat-Split transformation.
• Parallel: Our compiler performs all transformations. The Concat-Split transformation, which

removes a cat with n inputs followed by a split with n outputs, ensures that data is not merged
unnecessarily between parallel stages.

Experiments were run on a 2.1GHz Intel Xeon E5-2683 with 512GB of memory and 64 physical
cores, Debian 4.9.144-3.1, GNU Coreutils 8.30-3, GNU Bash 5.0.3(1), OCaml 4.05.0, and Python
3.7.3. All pipelines are set to (initially) read from and (finally) write to the file system. For “Expert
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Fig. 10. Execution times with configurations Baseline, Parallel, and No Cat-Split, with 16×-parallelism.

Pipelines”, we use 10GB-collections of inputs from Project Gutenberg [Hart 1971]; for “Unix50
Pipelines”, we gather their inputs from each level in the game [Labs 2019] and multiply them up
to 10GB. For “Bus Route Analysis Pipelines” we use the real bus telemetry data for the year 2020
(~ 3.4GB). The inputs for all pipelines are split in 16 equal sized chunks, corresponding to the
intended parallelism level.

Fig. 10 shows the execution times on all programs with 16× parallelism and for all three configu-
rations mentioned in the beginning of the evaluation. It shows that all programs achieve significant
improvements with the addition of the Concat-Split transformation. The average speedup without
Concat-Split over the bash baseline is 2.26×. The average speedup with the transformation is
6.16×.
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The figure on the right explains the differences in
the effect of the transformation based on the kind
of commands involved in the pipelines. It offers a
correlation between sequential time and speedup,
and shows that different programs that involve com-
mands with similar characteristics (color) see similar
speedups (y-axis). Programs containing only paral-
lelizable commands see the highest speedup (10.4–
14.5×). Programs with limited speedup either (1) contain sort, which does not scale linearly, (2) are
not CPU-intensive, resulting in pronounced IO and constant costs, or (3) are deep pipelines, already
exploiting significant pipeline-based parallelism. Programs with non-parallelizable commands see
no significant change in execution time (0.9–1.3×). Finally, programs containing head have a very
small sequential execution, typically under 1s , and thus their parallel equivalents see a slowdown
due to constant costs—still remaining under 1s .

8 RELATEDWORK

Dataflow Graph Models: Graph models of computation where nodes represent units of compu-
tation and edges represent FIFO communication channels have been studied extensively [Dennis
1974; Kahn 1974; Kahn and MacQueen 1977; Karp and Miller 1966; Lee and Messerschmitt 1987a,b].
ODFM sits somewhere between Kahn Process Networks [Kahn 1974; Kahn and MacQueen 1977]
(KPN), the model of computation adopted by Unix pipes, and Synchronous Dataflow [Lee and
Messerschmitt 1987a,b] (SDF). A key difference between ODFM and SDF is that ODFM does not
assume fixed item rates—a property used by SDF for efficient scheduling determined at compile-
time. Two differences between ODFM from KPNs is that (i) ODFM does not allow cycles, and (ii)
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ODFM exposes information about the input consumption order of each node. This order provides
enough information at compile time to perform parallelizing transformations while also enabling
translation of the dataflow back to a Unix shell script.

Systems for batch [Dean and Ghemawat 2008; Murray et al. 2013; Zaharia et al. 2012], stream [Gor-
don et al. 2006; Mamouras et al. 2017; Thies et al. 2002], and signal processing [Bourke and Pouzet
2013; Lee and Messerschmitt 1987a] provide dataflow-based abstractions. These abstractions are dif-
ferent from ODFM which operates on the Unix shell, an existing language with its own peculiarities
that have guided the design of the model.

One technique for retrofitting order over unordered streaming primitives such as sharding and
shuffling is to extend the types of elements using tagging [Arvind et al. 1984; Arvind and Nikhil 1990;
Watson and Gurd 1979]. This technique would not work in the Unix shell, because (1) commands
are black boxes operating on stream elements in unconstrained ways (but in known order), and
(2) because data streams exchanged between commands contain flat strings, without support for
additional metadata extensions, and thus no obvious way to augment elements with tags. ODFM
instead captures ordering on the edges of the dataflow graph, and leverages the consumption order
of nodes (the choice function) in the graph to orchestrate execution appropriately.

Synchronous languages [Berry and Gonthier 1992; Le Guernic et al. 1986; Maraninchi and
RéMond 2001; Ratel et al. 1991] model stream graphs as circuits where nodes are state machines
and edges are wires that carry a single value. Lustre [Ratel et al. 1991] is based on a dataflow model
that is similar to ours, but its focus is different as it is not intended for exploiting data-parallelism.
Semantics and Transformations: Prior work proposes semantics for streaming extensions to
relational query languages based on dataflow [Arasu et al. 2006; Li et al. 2005]. In contrast to our
work, it focuses on transformations of time-varying relations.

More recently, there has been significant work on the correct parallelization of distributed
streaming applications by proposing sound optimizations and compilation techniques [hir 2014;
Schneider et al. 2015], type systems [Mamouras et al. 2019], and differential testing [Kallas et al. 2020].
These efforts aim at producing a parallel implementation of a dataflow streaming computation
using techniques that do not require knowledge of the order of consumption of each node—a
property that very important in our setting.

Recent work proposes a semantic framework for stream processing that uses monoids to capture
the type of data streams [Mamouras 2020]. That work mostly focuses on generality of expression,
showing that several already proposed programming models can be expressed on top of it. It also
touches upon soundness proofs of optimizations using algebraic reasoning, which is similar to our
approach.
Divide and Conquer Decomposition: Prior work has shown the possibility of decomposing
programs or program fragments using divide-and-conquer techniques [Farzan and Nicolet 2017,
2019; Rugina and Rinard 1999; Smith and Albarghouthi 2016]. The majority of that work focuses
on parallelizing special constructs—e.g., loops, matrices, and arrays—rather than stream-oriented
primitives. Techniques for automated synthesis of MapReduce-style distributed programs [Smith
and Albarghouthi 2016] can be of significant aid for individual commands. In some cases [Farzan
and Nicolet 2017, 2019], the map phase is augmented to maintain additional metadata used by
the reducer phase. These techniques complement our work, since they can be used to derive
aggregators and the parallelizability properties of yet unknown shell commands, making them
possible to capture in our model.
Parallel Shell Scripting: Tools exposing parallelism on modernUnixes such as qsub [W. Gentzsch
(Sun Microsystems) 2001], SLURM [Yoo et al. 2003], AMFS [Zhang et al. 2013] and GNU paral-

lel [Tange 2011] are predicated upon explicit and careful orchestration from their users. Similarly,
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several shells [Duff 1990; McDonald and Dix 1988; Spinellis and Fragkoulis 2017; Walker et al. 2009]
add primitives for non-linear pipe topologies—some of which target parallelism. Here too, however,
users are expected to manually rewrite scripts to exploit these new primitives without jeopardizing
correctness.

Our work is inspired by PaSh [Vasilakis et al. 2021] and POSH [Raghavan et al. 2020], two recent
systems that use command annotations to parallelize and distribute shell programs by operating
on dataflow fragments of the Unix shell. Our work is tied to PaSh [Vasilakis et al. 2021], as it
(i) uses its annotation framework for instantiating the correspondence of commands to dataflow
nodes (§5.1), and (ii) serves as its formal foundation since it reimplements all of its parallelizing
transformations and proves them correct. POSH [Raghavan et al. 2020] too translates shell scripts
to dataflow graphs and optimizes them achieving performance benefits, but its goal is to offload
commands close to their data in a distributed environment. Thus, POSH only performs limited
parallelization transformations, and focusing more on the scheduling problem of determining where
to execute each command. It only parallelizes commands that require a concatenation combiner,
i.e., a subset of the transformations that we prove correct in this work, and thus replacing its
intermediate representation with our ODFM would be possible. POSH also proposes an annotation
framework that captures several command characteristics. Some of these characteristics, such
as parallelizability, are also captured by PaSh. Others are related to the scheduling problem—for
example, whether a command such as grep produces output smaller than its input, making it a
good candidate for offloading close to the input data.
POSIX Shell Semantics: Our work depends on Smoosh, an effort focused on formalizing the
semantics of the POSIX shell [Greenberg and Blatt 2020]. Smoosh focuses on POSIX semantics,
whereas our work introduces a novel dataflow model in order to transform programs and prove the
correctness of parallelization transformations on them. One of the Smoosh authors has also argued
for making concurrency explicit via shell constructs [Greenberg 2018]. This is different from our
work, since it focuses on the capabilities of the shell language as an orchestration language, and
does not deal with the data parallelism of pipelines.
Parallel Userspace Environments: By focusing on simplifying the development of distributed
programs, a plethora of environments inadvertently assist in the construction of parallel software.
Such systems [Barak and La’adan 1998; Mullender et al. 1990; Ousterhout et al. 1988], languages [Kil-
lian et al. 2007; Sewell et al. 2005; Virding et al. 1996], or system-language hybrids [Epstein et al.
2011; Pike et al. 1990; Vasilakis et al. 2015] hide many of the challenges of dealing with concurrency
as long as developers leverage the provided abstractions—which are strongly coupled to the un-
derlying operating or runtime system. Even when these efforts are shell-oriented, such as Plan9’s
rc, they are backward-incompatible with the Unix shell, and often focus primarily on hiding the
existence of a network rather than on modelling data parallelism.

9 DISCUSSION

Command Annotations: The translation of shell scripts to dataflow programs is based on
knowledge about command characteristics, such as the predicate pure that determines whether
a command does not perform any side-effect except for writing to a set of output files (§5.1). In
the current implementation, this information is acquired through the annotation language and
annotations provided by PaSh [Vasilakis et al. 2021]. An interesting avenue for future research would
be to explore analyses for inferring or checking the annotations for commands. Such work could
help extend the set of supported commands (which currently requires manual effort). Furthermore,
it would be interesting to explore extensions to the annotation language in order to enable additional
optimizations; for example, commands that are commutative and associative could be parallelized
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more efficiently, by relaxing the requirement for input order and better utilizing the underlying
resources.
Directly accessing the IR in the implementation: As described earlier (§7), our implementa-
tion currently allows manually developing programs in the ODFM intermediate representation.
However, this interface is not that convenient to use as an end-user since it requires manually
instantiating each node of the graph with the necessary command metadata, e.g., inputs and outputs.
It would be interesting future work to design different frontends that interface with this IR. For
example, a frontend compiler from the language proposed by dgsh [Spinellis and Fragkoulis 2017]; a
shell that supports extended syntax for creating DAG pipelines. The IR could also act as an interface
for different backends, for example one that implements ODFM in a distributed setting.
Parallel Script Debugging: Debugging standard shell pipelines can be hard and it usually
requires several iterations of trial and error until the user gets the script right. Our approach
does not make the debugging experience any worse, as the system produces as output a parallel
shell script, which can be inspected and modified like any standard shell script (as seen in §3).
For example, a user could debug a script by removing a few stages of the parallel pipeline, or
redirecting some intermediate outputs to permanent files for inspection. This is possible because
of the expressiveness of ODFM and the existence of a bidirectional transformation from dataflow
programs to shell scripts, which allows the compiler to simply use a standard shell such as bash as
its backend.

An approach that is particularly helpful, and which we have used ourselves, is to ask the compiler
to add a relay node between every two nodes of the graph and then instantiate this relay node
with an identity command that duplicates its input to its output and also a log file.

tee $LOG < $IN > $OUT

This allows for stream introspection without affecting the behavior of the pipeline, facilitating
debugging since the user can inspect all intermediate outputs at once.
Stream Finiteness and Extensions: In our current model, parallelism is achieved by partitioning
the finite stream, processing the partitions in parallel, and merging the results. Like PaSh and POSH,
our model is designed to support terminating computations over large but finite data streams. All
of the data processing scripts that we have encountered conform to this model and are terminating.
One way to extend our work to support and parallelize infinite streams—such as the ones produced
by yes and tail -f—would involve repeated applications of partitioning, processing, and merging.

10 CONCLUSION
We presented an order-aware dataflow model for exploiting data parallelism latent in Unix shell
scripts. The dataflow model is order-aware, accurately capturing the semantics of complex Unix
pipelines: in our model, the order in which a node in the dataflow graph consumes inputs from
different edges plays a central role in the semantics of the computation and therefore in the resulting
parallelization. The model captures the semantics of transformations that exploit data parallelism
available in Unix shell computations and prove their correctness. We additionally formalized
the translations from the Unix shell to the dataflow model and from the dataflow model back
to a parallel shell script. We implemented our model and transformations as the compiler and
optimization passes of PaSh, a system parallelizing shell pipelines, and used it to evaluate the
speedup achieved on 47 data-processing pipelines.

While the shell has been mostly ignored by the research community for most of its 50-year
lifespan, recent work [Greenberg and Blatt 2020; Greenberg et al. 2021a,b; Raghavan et al. 2020;
Spinellis and Fragkoulis 2017; Vasilakis et al. 2021] indicates renewed community interest in
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shell-related research. We view our work partly as providing the missing correctness piece of the
shell-optimization work done by the systems community [Raghavan et al. 2020; Vasilakis et al.
2021], and partly as a stepping stone for further studies on the dataflow fragment of the shell, e.g.,
the development of more elaborate transformations and optimizations.

ACKNOWLEDGMENTS
We thank Konstantinos Mamouras for preliminary discussions that helped spark an interest for
this work, Dimitris Karnikis for help with the artifact, Diomidis Spinellis for benchmarks and
discussions, Michael Greenberg and Jiasi Shen for comments on the presentation of our work, the
anonymous ICFP reviewers and our shepherd Rishiyur Nikhil for extensive feedback, and the ICFP
artifact reviewers for their comments that significantly improved the paper artifact. This research
was funded in part by DARPA contracts HR00112020013 and HR001120C0191, and NSF award CCF
1763514. Any opinions, findings, conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of DARPA or other agencies.

REFERENCES
2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4, Article 46 (March 2014), 34 pages.

https://doi.org/10.1145/2528412
Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL Continuous Query Language: Semantic Foundations

and Query Execution. The VLDB Journal 15, 2 (June 2006), 121–142. https://doi.org/10.1007/s00778-004-0147-z
K. Arvind, E. David Culler, Robert Iannucci, Vinod Kathail, Keshav Pingali, and Robert Thomas. 1984. The tagged token

dataflow architecture. Technical Report. Technical report, MIT Laboratory for Computer Science.
K. Arvind and Rishiyur S. Nikhil. 1990. Executing a Program on the MIT Tagged-Token Dataflow Architecture. IEEE Trans.

Comput. 39, 3 (March 1990), 300–318. https://doi.org/10.1109/12.48862
Amnon Barak and Oren La’adan. 1998. The MOSIX Multicomputer Operating System for High Performance Cluster

Computing. Future Gener. Comput. Syst. 13, 4–5 (March 1998), 361–372. https://doi.org/10.1016/S0167-739X(97)00037-X
Jon Bentley. 1985. Programming Pearls: A Spelling Checker. Commun. ACM 28, 5 (May 1985), 456–462. https://doi.org/10.

1145/3532.315102
Jon Bentley, Don Knuth, and Doug McIlroy. 1986. Programming Pearls: A Literate Program. Commun. ACM 29, 6 (June

1986), 471–483. https://doi.org/10.1145/5948.315654
Gérard Berry and Georges Gonthier. 1992. The ESTEREL Synchronous Programming Language: Design, Semantics,

Implementation. Sci. Comput. Program. 19, 2 (Nov. 1992), 87–152. https://doi.org/10.1016/0167-6423(92)90005-V
Pawan Bhandari. 2020. Solutions to unixgame.io. https://git.io/Jf2dn Accessed: 2020-04-14.
Timothy Bourke and Marc Pouzet. 2013. ZéLus: A Synchronous Language with ODEs. In Proceedings of the 16th International

Conference on Hybrid Systems: Computation and Control (HSCC ’13). Association for Computing Machinery, New York,
NY, USA, 113–118. https://doi.org/10.1145/2461328.2461348

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51, 1
(Jan. 2008), 107–113. https://doi.org/10.1145/1327452.1327492

Jack B. Dennis. 1974. First Version of a Data Flow Procedure Language. In Programming Symposium, B. Robinet (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 362–376. https://doi.org/10.1007/3-540-06859-7_145

Tom Duff. 1990. Rc—a Shell for Plan 9 and UNIX. (1990), 283–296.
Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. 2011. Towards Haskell in the Cloud. In Proceedings of the 4th ACM

Symposium on Haskell (Haskell ’11). ACM, New York, NY, USA, 118–129. https://doi.org/10.1145/2034675.2034690
Azadeh Farzan and Victor Nicolet. 2017. Synthesis of Divide and Conquer Parallelism for Loops. In Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). Association for Computing
Machinery, New York, NY, USA, 540–555. https://doi.org/10.1145/3062341.3062355

Azadeh Farzan and Victor Nicolet. 2019. Modular Divide-and-Conquer Parallelization of Nested Loops. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). Association for
Computing Machinery, New York, NY, USA, 610–624. https://doi.org/10.1145/3314221.3314612

Michael I Gordon, William Thies, and Saman Amarasinghe. 2006. Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. ACM SIGPLAN Notices 41, 11 (2006), 151–162.

Michael Greenberg. 2018. The POSIX shell is an interactive DSL for concurrency.
Michael Greenberg and Austin J. Blatt. 2020. Executable Formal Semantics for the POSIX Shell: Smoosh: the Symbolic,

Mechanized, Observable, Operational Shell. Proc. ACM Program. Lang. 4, POPL, Article 43 (Jan. 2020), 31 pages. https:

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 65. Publication date: August 2021.

https://doi.org/10.1145/2528412
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1109/12.48862
https://doi.org/10.1016/S0167-739X(97)00037-X
https://doi.org/10.1145/3532.315102
https://doi.org/10.1145/3532.315102
https://doi.org/10.1145/5948.315654
https://doi.org/10.1016/0167-6423(92)90005-V
https://git.io/Jf2dn
https://doi.org/10.1145/2461328.2461348
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/3-540-06859-7_145
https://doi.org/10.1145/2034675.2034690
https://doi.org/10.1145/3062341.3062355
https://doi.org/10.1145/3314221.3314612
https://doi.org/10.1145/3371111
https://doi.org/10.1145/3371111


An Order-Aware Dataflow Model for Parallel Unix Pipelines 65:27

//doi.org/10.1145/3371111
Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis. 2021a. The Future of the Shell: Unix and Beyond. In Proceedings

of the Workshop on Hot Topics in Operating Systems (HotOS ’21). Association for Computing Machinery, New York, NY,
USA, 240–241. https://doi.org/10.1145/3458336.3465296

Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis. 2021b. Unix Shell Programming: The Next 50 Years. In
Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS ’21). Association for Computing Machinery, New
York, NY, USA, 104–111. https://doi.org/10.1145/3458336.3465294

Shivam Handa, Konstantinos Kallas, Nikos Vasilakis, and Martin Rinard. 2021. An Order-aware Dataflow Model for Parallel
Unix Pipelines (Artifact). https://doi.org/10.5281/zenodo.4776838

Michael Hart. 1971. Project Gutenberg. https://www.gutenberg.org/
Dan Jurafsky. 2017. Unix for Poets. https://web.stanford.edu/class/cs124/lec/124-2018-UnixForPoets.pdf
Gilles Kahn. 1974. The Semantics of a Simple Language for Parallel Programming. Information Processing 74 (1974), 471–475.
Gilles Kahn and David B. MacQueen. 1977. Coroutines and Networks of Parallel Processes. Information Processing 77 (1977),

993–998.
Konstantinos Kallas, Filip Niksic, Caleb Stanford, and Rajeev Alur. 2020. DiffStream: Differential Output Testing for Stream

Processing Programs. Proc. ACM Program. Lang. 4, OOPSLA, Article 153 (Nov. 2020), 29 pages. https://doi.org/10.1145/
3428221

Richard M. Karp and Raymond E. Miller. 1966. Properties of a Model for Parallel Computations: Determinacy, Termination,
Queueing. SIAM J. Appl. Math. 14, 6 (1966), 1390–1411. https://doi.org/10.1137/0114108

Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M. Vahdat. 2007. Mace: Language Support
for Building Distributed Systems. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’07). ACM, New York, NY, USA, 179–188. https://doi.org/10.1145/1250734.1250755

Nokia Bell Labs. 2019. The Unix Game—Solve puzzles using Unix pipes. https://unixgame.io/unix50 Accessed: 2020-03-05.
Paul Le Guernic, Albert Benveniste, Patricia Bournai, and Thierry Gautier. 1986. Signal–A data flow-oriented language for

signal processing. IEEE transactions on acoustics, speech, and signal processing 34, 2 (1986), 362–374.
Edward Ashford Lee and David G. Messerschmitt. 1987a. Static Scheduling of Synchronous Data Flow Programs for Digital

Signal Processing. IEEE Trans. Comput. 36, 1 (Jan. 1987), 24–35. https://doi.org/10.1109/TC.1987.5009446
Edward A. Lee and David G. Messerschmitt. 1987b. Synchronous data flow. Proc. IEEE 75, 9 (1987), 1235–1245.
Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. 2005. Semantics and Evaluation Techniques for

Window Aggregates in Data Streams. In Proceedings of the 2005 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’05). Association for Computing Machinery, New York, NY, USA, 311–322. https://doi.org/10.1145/
1066157.1066193

Konstantinos Mamouras. 2020. Semantic Foundations for Deterministic Dataflow and Stream Processing. In European
Symposium on Programming. Springer, Cham, 394–427.

Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G. Ives, and Sanjeev Khanna. 2017. StreamQRE:
Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). Association for Computing
Machinery, New York, NY, USA, 693–708. https://doi.org/10.1145/3062341.3062369

Konstantinos Mamouras, Caleb Stanford, Rajeev Alur, Zachary G. Ives, and Val Tannen. 2019. Data-Trace Types for
Distributed Stream Processing Systems. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2019). ACM, New York, NY, USA, 670–685. https://doi.org/10.1145/3314221.3314580

Florence Maraninchi and Yann RéMond. 2001. Argos: An Automaton-Based Synchronous Language. Comput. Lang. 27, 1–3
(April 2001), 61–92. https://doi.org/10.1016/S0096-0551(01)00016-9

Chris McDonald and Trevor I. Dix. 1988. Support for Graphs of Processes in a Command Interpreter. Softw. Pract. Exper. 18,
10 (Oct. 1988), 1011–1016. https://doi.org/10.1002/spe.4380181007

Malcolm D McIlroy, Elliot N Pinson, and Berkley A Tague. 1978. UNIX Time-Sharing System: Foreword. Bell System
Technical Journal 57, 6 (1978), 1899–1904.

Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert van Renesse, and Hans van Staveren. 1990. Amoeba:
A Distributed Operating System for the 1990s. Computer 23, 5 (May 1990), 44–53. https://doi.org/10.1109/2.53354

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. 2013. Naiad: A Timely
Dataflow System. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13). ACM,
New York, NY, USA, 439–455. https://doi.org/10.1145/2517349.2522738

John K Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N. Nelson, and Brent B. Welch. 1988. The Sprite network
operating system. Computer 21, 2 (1988), 23–36. http://www.research.ibm.com/people/f/fdouglis/papers/sprite.pdf

Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, et al. 1990. Plan 9 from Bell Labs. In Proceedings of the summer
1990 UKUUG Conference. 1–9. http://css.csail.mit.edu/6.824/2014/papers/plan9.pdf

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 65. Publication date: August 2021.

https://doi.org/10.1145/3371111
https://doi.org/10.1145/3371111
https://doi.org/10.1145/3458336.3465296
https://doi.org/10.1145/3458336.3465294
https://doi.org/10.5281/zenodo.4776838
https://www.gutenberg.org/
https://web.stanford.edu/class/cs124/lec/124-2018-UnixForPoets.pdf
https://doi.org/10.1145/3428221
https://doi.org/10.1145/3428221
https://doi.org/10.1137/0114108
https://doi.org/10.1145/1250734.1250755
https://unixgame.io/unix50
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1145/1066157.1066193
https://doi.org/10.1145/1066157.1066193
https://doi.org/10.1145/3062341.3062369
https://doi.org/10.1145/3314221.3314580
https://doi.org/10.1016/S0096-0551(01)00016-9
https://doi.org/10.1002/spe.4380181007
https://doi.org/10.1109/2.53354
https://doi.org/10.1145/2517349.2522738
http://www.research.ibm.com/people/f/fdouglis/papers/sprite.pdf
http://css.csail.mit.edu/6.824/2014/papers/plan9.pdf


65:28 Shivam Handa, Konstantinos Kallas, Nikos Vasilakis, and Martin C. Rinard

Deepti Raghavan, Sadjad Fouladi, Philip Levis, and Matei Zaharia. 2020. POSH: A Data-Aware Shell. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX Association, 617–631. https://www.usenix.org/conference/
atc20/presentation/raghavan

Christophe Ratel, Nicolas Halbwachs, and Pascal Raymond. 1991. Programming and Verifying Critical Systems by Means of
the Synchronous Data-Flow Language LUSTRE. (1991), 112–119. https://doi.org/10.1145/125083.123062

Radu Rugina and Martin Rinard. 1999. Automatic Parallelization of Divide and Conquer Algorithms. In Proceedings of
the Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’99). Association for
Computing Machinery, New York, NY, USA, 72–83. https://doi.org/10.1145/301104.301111

Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu. 2015. Safe Data Parallelism for General Streaming. IEEE
Trans. Comput. 64, 2 (Feb. 2015), 504–517. https://doi.org/10.1109/TC.2013.221

Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair Allen-Williams, Pierre Habouzit, and Viktor
Vafeiadis. 2005. Acute: High-level Programming Language Design for Distributed Computation. In Proceedings of the
Tenth ACM SIGPLAN International Conference on Functional Programming (ICFP ’05). ACM, New York, NY, USA, 15–26.
https://doi.org/10.1145/1086365.1086370

Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program Synthesis. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’16). Association for Computing Machinery, New
York, NY, USA, 326–340. https://doi.org/10.1145/2908080.2908102

Diomidis Spinellis and Marios Fragkoulis. 2017. Extending Unix Pipelines to DAGs. IEEE Trans. Comput. 66, 9 (2017),
1547–1561.

Ole Tange. 2011. GNU Parallel—The Command-Line Power Tool. ;login: The USENIX Magazine 36, 1 (Feb 2011), 42–47.
https://doi.org/10.5281/zenodo.16303

Ole Tange. 2020. Differences Between GNU parallel and Alternatives. https://www.gnu.org/software/parallel/parallel_
alternatives.html

Dave Taylor and Brandon Perry. 2016. Wicked Cool Shell Scripts: 101 Scripts for Linux, OS X, and UNIX Systems (2nd ed.). No
Starch Press, USA.

William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002. StreamIt: A Language for Streaming Applications. In
Proceedings of the 11th International Conference on Compiler Construction (CC ’02). Springer-Verlag, Berlin, Heidelberg,
179–196.

Eleftheria Tsaliki and Diomidis Spinellis. 2021. The real statistics of buses in Athens. https://insidestory.gr/article/noymera-
leoforeia-athinas?token=0MFVISB8N6. Published by the Inside Story news organization.

Nikos Vasilakis, Konstantinos Kallas, Konstantinos Mamouras, Achilles Benetopoulos, and Lazar Cvetković. 2021. PaSh:
Light-Touch Data-Parallel Shell Processing. Association for Computing Machinery, New York, NY, USA, 49–66. https:
//doi.org/10.1145/3447786.3456228

Nikos Vasilakis, Ben Karel, and Jonathan M. Smith. 2015. From Lone Dwarfs to Giant Superclusters: Rethinking Operating
System Abstractions for the Cloud. In Proceedings of the 15th USENIX Conference on Hot Topics in Operating Systems
(HOTOS’15). USENIX Association, Berkeley, CA, USA, 15–15. http://dl.acm.org/citation.cfm?id=2831090.2831105

Robert Virding, Claes Wikström, Mike Williams, and Joe Armstrong. 1996. Concurrent Programming in ERLANG (2nd Ed.).
Prentice Hall International (UK) Ltd., GBR.

W. Gentzsch (Sun Microsystems). 2001. Sun Grid Engine: Towards Creating a Compute Power Grid. In Proceedings of the 1st
International Symposium on Cluster Computing and the Grid (CCGRID ’01). IEEE Computer Society, USA, 35.

Edward Walker, Weijia Xu, and Vinoth Chandar. 2009. Composing and Executing Parallel Data-Flow Graphs with Shell
Pipes. In Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science (WORKS ’09). Association for
Computing Machinery, New York, NY, USA, Article 11, 10 pages. https://doi.org/10.1145/1645164.1645175

Ian Watson and John Gurd. 1979. A prototype data flow computer with token labelling. In 1979 International Workshop on
Managing Requirements Knowledge (MARK). IEEE, 623–628.

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux utility for resource management. In Workshop
on Job Scheduling Strategies for Parallel Processing. Springer, 44–60.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (NSDI’12).
USENIX Association, Berkeley, CA, USA, 2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301

Zhao Zhang, Daniel S. Katz, Timothy G. Armstrong, Justin M. Wozniak, and Ian Foster. 2013. Parallelizing the Execution of
Sequential Scripts. In Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis (SC ’13). Association for Computing Machinery, New York, NY, USA, Article 31, 12 pages. https://doi.org/
10.1145/2503210.2503222

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 65. Publication date: August 2021.

https://www.usenix.org/conference/atc20/presentation/raghavan
https://www.usenix.org/conference/atc20/presentation/raghavan
https://doi.org/10.1145/125083.123062
https://doi.org/10.1145/301104.301111
https://doi.org/10.1109/TC.2013.221
https://doi.org/10.1145/1086365.1086370
https://doi.org/10.1145/2908080.2908102
https://doi.org/10.5281/zenodo.16303
https://www.gnu.org/software/parallel/parallel_alternatives.html
https://www.gnu.org/software/parallel/parallel_alternatives.html
https://insidestory.gr/article/noymera-leoforeia-athinas?token=0MFVISB8N6
https://insidestory.gr/article/noymera-leoforeia-athinas?token=0MFVISB8N6
https://doi.org/10.1145/3447786.3456228
https://doi.org/10.1145/3447786.3456228
http://dl.acm.org/citation.cfm?id=2831090.2831105
https://doi.org/10.1145/1645164.1645175
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1145/2503210.2503222
https://doi.org/10.1145/2503210.2503222

	Abstract
	1 Introduction
	2 Background
	3 Example and Overview
	4 An Order-aware Dataflow Model
	4.1 Preliminaries
	4.2 Dataflow Description Language

	5 From Shell Scripts to DFGs and Back Again
	5.1 Shell to ODFM
	5.2 ODFM to Shell

	6 Parallelization Transformations
	6.1 Helper Nodes and Auxiliary Transformations
	6.2 Data Parallelism and Transformations

	7 Evaluation
	7.1 Case Study: GNU Parallel
	7.2 Performance Results

	8 Related Work
	9 Discussion
	10 Conclusion
	Acknowledgments
	References

