
Foundations and Trends® in Electronic Design Automation

Vol. 11, No. 4 (2017) 362–461

© 2017 P. Stanley-Marbell and M. Rinard

DOI: 10.1561/1000000049

Error-Efficient Computing Systems

Phillip Stanley-Marbell

University of Cambridge

phillip.stanley-marbell@eng.cam.ac.uk

Martin Rinard

Massachusetts Institute of Technology

rinard@csail.mit.edu

Contents

1 Introduction 363

1.1 The Cost of Correctness 364

1.2 Historical Context . 364

1.3 Why Precision Matters in Many Numerical Computations . . 366

1.4 Why Some Applications Can Tolerate Errors 367

1.5 Examples of Improving Efficiency by Permitting Errors . . . 367

1.6 Fundamental Physical Limits, Energy, and Noise 369

1.7 Hardware and Software Systems That Exploit Errors 371

1.8 Outline of the Remainder of This Review 378

2 Types of Errors and Randomization 380

2.1 Precision, Repeatability, Accuracy, and Reliability 381

2.2 Accuracy of Models versus Precision of Computations . . . 382

2.3 Randomized Algorithms . 382

2.4 Stochastic Digital and Analog Computing 384

2.5 Probabilistic Programming 387

3 Computation, Energy, and Noise 389

3.1 Devices Use Energy to Guard against Faults 390

3.2 Types and Sources of Noise and Faults 390

3.3 Traditional Fault-Tolerant Systems 395

ii

iii

4 Tolerating Errors in Outputs 401

4.1 Human Perception of Color 403

4.2 Quantifying Errors in Images 404

4.3 Display Technology . 405

4.4 Exploiting Perception for Display Energy Efficiency 406

4.5 Exploiting Perceptual Flexibility in End-To-End Systems . . 409

5 Tolerating Errors in Inputs 411

5.1 Lax . 412

5.2 VDBS Encoding . 422

5.3 End-to-end Evaluation . 438

6 Conclusion 443

References 445

Abstract

This survey explores the theory and practice of techniques to make computing

systems faster or more energy-efficient by allowing them to make controlled

errors. In the same way that systems which only use as much energy as nec-

essary are referred to as being energy-efficient, you can think of the class of

systems addressed by this survey as being error-efficient: They only prevent

as many errors as they need to. The definition of what constitutes an error

varies across the parts of a system. And the errors which are acceptable de-

pend on the application at hand.

In computing systems, making errors, when behaving correctly would be

too expensive, can conserve resources. The resources conserved may be time:

By making some errors, systems may be faster. The resource may also be

energy: A system may use less power from its batteries or from the electrical

grid by only avoiding certain errors while tolerating benign errors that are

associated with reduced power consumption. The resource in question may be

an even more abstract quantity such as consistency of ordering of the outputs

of a system.

This survey is for anyone interested in an end-to-end view of one set of

techniques that address the theory and practice of making computing systems

more efficient by trading errors for improved efficiency.

P. Stanley-Marbell and M. Rinard. Error-Efficient Computing Systems. Foundations and

Trends® in Electronic Design Automation, vol. 11, no. 4, pp. 362–461, 2017.

DOI: 10.1561/1000000049.

1

Introduction

All software eventually works;

all hardware eventually fails.

— Clod Berrera.

This review explores the theory and practice of techniques to make computing

systems faster or more energy-efficient by allowing them to make controlled

errors. In the same way that systems which only use as much energy as nec-

essary are referred to as being energy-efficient, you can think of the class of

systems addressed by this review as being error-efficient: they only prevent

as many errors as they need to.

There are numerous related fields relevant to understanding, designing,

and evaluating systems which trade controlled errors for improved perfor-

mance or energy efficiency. These related fields range from sub-areas of com-

puter science, electrical engineering, and materials science, to applied math-

ematics and psychophysics (the study of perception). There are numerous

techniques proposed by researchers in these diverse areas, with a vibrant and

growing body of research results. This review focuses on two elements:

• Fundamental concepts that underpin any exploration of errors, time-

efficiency (i.e., performance), and energy efficiency. These concepts

363

364 Introduction

have been developed over many decades in areas ranging from numer-

ical analysis to the physics of semiconductor device behavior.

• Practical hardware and software implementations of error-efficient

techniques to reduce energy usage in either practical engineering ap-

plications or experimental research platforms.

Throughout the review, we will focus specifically on the interplay between

errors and the effects of errors as processed by human perception.

1.1 The Cost of Correctness

In computing systems, making errors when behaving correctly would be too

expensive can conserve resources. The resources conserved in doing so may

be time: by making some errors, they may be faster. The resource may also be

energy: a system may use less power from its batteries or from the electrical

grid by only avoiding certain errors while tolerating benign errors that are

associated with reduced power consumption. The resource in question may be

an even more abstract quantity such as consistency of ordering of the outputs

of the system in question.

Which errors are acceptable depends on the application. The degree to

which resources such as time or energy can be conserved likewise depends

on the design of the computing system. And there are many different kinds of

deviations in behavior which can be classified as “errors”. This Chapter pro-

vides an overview of the landscape of the applications, computing systems,

and techniques that can be used to trade improved efficiency in exchange for

occasional errors.

1.2 Historical Context

All hardware eventually fails. Reducing the likelihood of failure and the ef-

fects of failure comes at the cost of time, energy, or space. Making computing

hardware more reliable was particularly important when the dominant appli-

cations of computing systems were in controlling weaponry and in financial

applications. Today however, a large fraction of computing systems generate

output solely for visual consumption.

Early computing systems based on vacuum tubes provided improvements

in switching speed over their predecessors which were based on mechanical

1.2. Historical Context 365

relays. They however also failed frequently: Failure rates in early vacuum-

tube-based systems were as high as once every eight hours [von Neumann,

1956]. Because the possibility of intermittent and permanent failures has al-

ways been present in computing systems, the design of the basic elements

of computation has evolved over time to inherently attempt to counteract the

effects of failures.

One of the most fundamental techniques for dealing with the most ba-

sic source of failures (environmental noise) is to use digital logic, instead of

performing computation directly in the analog signal domain. There is a rich

body of work studying the tradeoffs between digital and analog computation,

as well as on techniques to reduce both manufacture-time defects and runtime

faults [Bushnell and Agrawal, 2000].

Redundancy, either in energy, space, or time, is a common approach used

in digital logic to overcome the effects of noise. Error-correcting codes [Ham-

ming, 1950] use redundancy in the representation of information to make it

possible to detect and correct errors; the particular kinds and numbers of er-

rors that can be detected and corrected depend on the amount of redundancy

employed.

At a coarser grain, redundancy is also employed across complete com-

puting systems, such as by replicating entire processors, complete servers,

or even by replicating clusters and data centers. The challenges involved in

such fault-tolerant computing systems are also the subject of a rich area of

study [Avižienis et al., 2004].

Unlike traditional applications of computing systems, many modern ap-

plications of computation are in situations where the inputs to the system are

from sources which are themselves noisy, unlike the inputs to a payroll appli-

cation. Examples are the computations on sensor values in the many variants

of health-tracking wearables. Similarly, the outputs of many applications are

primarily for consumption via the human visual channel; an example is the

rendering of images for a display. These applications could of course continue

to be implemented with the level of redundancy used to guard against errors

in traditional applications. Employing redundancy in space, time, and energy,

independent of the needs of individual applications would likely have contin-

ued to be the way all computing systems are built. However, as the amount of

energy used in a single logic operation reduced over time due to semiconduc-

366 Introduction

tor process technology improvements, the overhead of the redundancy has

become significant.

In those applications which do not require the same extremely low levels

of errors, it is therefore now interesting to design systems which can trade

errors for efficiency. And it is possible to go even further, to induce controlled

amounts of errors if doing so would enable simpler, faster, cheaper, or more

energy-efficient computing systems.

1.3 Why Precision Matters in Many Numerical Computations

There are many important computations whose implementations require care-

ful attention to numerical stability, however few implementors of large-scale

scientific computations have deep knowledge of numerical analysis. In the

absence of such expertise, an alternative is to employ greater numerical pre-

cision [Bailey, 2005]. Because there are few automated techniques for trans-

forming applications to improve their numerical stability [Panchekha et al.,

2015], high-precision computations will continue to be important for a large

class of applications. One example of a system where higher precision was

used as an expedient solution to numerical instability is illustrated in the work

of He and Ding [2001], who showed how problems with the reproducibility

of climate-modeling applications could be eliminated by switching to using

128-bit floating-point arithmetic. A central theme throughout this review is

that the types and magnitudes of errors permissible in an application must al-

ways be considered in the context of the tradeoff between errors and resource

usage: a technique should permit only as many errors as an application and

context can tolerate. Techniques should weigh permitted errors against the

improvement in resource usage obtained from permitting errors. One way to

achieve this in numerical simulations is to use multiple levels of precision

across the phases of computations.

One cause of numerical instability in the presence of errors is that most

general-purpose computations have great arithmetic depth [von Neumann

and Kurzweil, 2012]. Small errors may therefore get amplified across the

steps of a computation.

1.4. Why Some Applications Can Tolerate Errors 367

1.4 Why Some Applications Can Tolerate Errors

Despite the fact that many applications cannot tolerate any errors in their

computations, there are also many applications which can. Typically, the ap-

plications that can tolerate errors are those that either:

1. Operate on noisy inputs (e.g., readings from sensors).

2. Have computation outputs requiring limited precision, e.g., because

they are consumed primarily by human vision.

3. Employ iterative or self-policing algorithms. Examples of such algo-

rithms are iterative methods where the computation will still produce

the correct output in the presence of errors, provided that the compu-

tation makes progress in the right direction (on average) during each

iteration.

4. Do not have data-dependent control-flow.

1.5 Examples of Improving Efficiency by Permitting Errors

Because displays account for a large fraction of the power dissipation in pop-

ular computing platforms such as mobile phones and wearable devices, trad-

ing errors for reduced resource usage in displays is an interesting prospect.

Organic light-emitting diode (OLED) displays present an interesting oppor-

tunity for trading errors for efficiency: Unlike traditional LCD displays, their

power dissipation varies significantly as a function of the content displayed.

It is therefore possible to purposefully introduce errors into displayed images

to reduce the display’s power consumption. The earliest examples of such

approaches were originated by Dong et al. [2009a] and Dong et al. [2009b],

who developed several of the first techniques for trading display power for

visual fidelity in OLED displays. Recent research has developed more effi-

cient techniques as well as new approaches that analyze and transform both

the color and shape content of the rendered images to save power.

Figure 1.1 shows two variants of the same image, which differ in power

dissipation by over 40% when displayed on a representative commercial

OLED display panel. The image and corresponding shape and color trans-

formations to reduce power dissipation on displays that behave similar to

OLEDs were generated using the Crayon system [Stanley-Marbell et al.,

368 Introduction

Figure 1.1: The image on the right dissipates more than 40% lower power than the one on the

left when shown on OLED displays.

0%

20%

00%↓00%↓

Tolerable

Deviation

Image

A
Transition

Reduction

Image

B
OCR

Text

“EXIT”

“”

Transition

Reduction

OCR

Text

“centre”

“centre”

73%↓ 73%↓

10% “LTXIT”“centre” 66%↓ 61%↓

Figure 1.2: Encoding values so that they dissipate less power when transmitted can lead to sig-

nificant power reductions before they begin to affect optical character recognition algorithms.

This is despite the fact that the encoded images look very different to the human eye.

2016]. The difference between the original image and the modified one is

that areas of the gray regions in the latter are reduced by 25% and the col-

ors have been modified slightly. Chapter 4 explores techniques for exploiting

tolerance in outputs in more depth.

Not all systems have displays however. In the increasingly important do-

main of embedded sensor-driven systems, because the power dissipated in the

digital logic components has continued to drop over the years, a significant

fraction of the system’s energy usage can result from the activation of sen-

sors and the retrieval of data from them over their electrical communication

interfaces.

Figure 1.2 shows how techniques that reduce the energy cost of trans-

missions by lossy encoding of the data can enable significant reductions in

the energy required for transmitting the data. However, when the algorithms

consuming the encoded data can tolerate the types of errors introduced by

the encoding, they lead to minimal application-level errors, even though the

perceived visual distortion may seem significant to the human eye.

1.6. Fundamental Physical Limits, Energy, and Noise 369

Even though tolerating errors in the inputs and output communication of

algorithms can be exposed in the syntax of programming languages [Stanley-

Marbell and Marculescu, 2006], tolerating errors in the steps of algorithms

is much more involved when compared to tolerating errors in the data algo-

rithms process or errors in their outputs. Approaches to tackling this chal-

lenge range from annotating individual variables in algorithms as being ones

that can tolerate errors (or not) [Sampson et al., 2011], annotating variables

corresponding to the outputs of functions to specify which ones are permitted

to incur errors [Misailovic et al., 2014], and using program analysis tech-

niques to provide guarantees about the effects of errors as they propagate

through the algorithm [Carbin et al., 2013].

An alternative to providing specifications of the tolerable input or output

error is to specify how much error is acceptable in the relation between inputs

and outputs. Figure 1.3 illustrates the formal specification of the computation

task of partial sorting, along with an example of an input-output pair that con-

forms to this computation behavior. This problem of obtaining a partial sort

occurs in real applications: Partial sorting accounts for over 24% of the exe-

cution time of one popular discrete-event simulator [Jongerius et al., 2014].

One exciting open area of research is to synthesize algorithms (or hardware)

that conform to such computation specifications and that permit some degree

of error in the relation between their inputs and outputs.

1.6 Fundamental Physical Limits, Energy, and Noise

Computing systems are designed to avoid errors at all levels1, from copying

data from registers to their transmission to other systems or different proces-

sors. They prevent errors for all applications and, as a result, require error-

correcting coding techniques at all levels; this introduces overheads that are

unnecessary in some cases.

Because the traditional mechanisms for improving the density and power

consumption of computing systems are reaching fundamental physical lim-

its [Bennett and Landauer, 1985], there has been an increased interest in re-

cent years to develop techniques to explore trading correctness for some tan-

gible improvement in a system, such as improved speed or improved energy

efficiency. Figure 1.4(a) shows the reduction in the energy required per bit of

1Within the limit of economic and performance constraints

370 Introduction

(a)

(b)

Figure 1.3: Computation specification (a) for the computation that sorts a sequence of in-

tegers, expressed in the Sal low-level computation specification language Stanley-Marbell

[2010] and its output (b).

information processing, over several decades. Because the diminishing op-

portunities to reduce power consumption of computing systems is largely due

to power delivery and cooling limitations, these challenges are unlikely to be

easily resolved in the near future2, making the exploration of error-efficient

systems ever more important in the future.

The underlying physical phenomenon permitting such energy versus cor-

rectness tradeoffs is well understood: For a device technology to be useful

in constructing computational systems in which logic devices are linked to-

gether by non-ideal conductors, it must exhibit the property of gain (amplifi-

cation) [Keyes, 1985]. This amplification requires an input energy source and

the extent to which amplification occurs affects the likelihood of errors due

to noise. If some amount of noise is tolerable, its presence can be traded for

energy efficiency or performance.

2Supply voltage scaling across technology nodes has ceased, as Figure 1.4(b) shows

1.7. Hardware and Software Systems That Exploit Errors 371

���� ���� ���� ���� ����

����

���
���
���

����

�
���

��
��

��
� �

·�
·�
�
�

(a)

�� ��� ��� ����
��

��

��

��

���

������� �������� (��)

��
��

��
��

���
��

��
��

(�
)

(b)

Figure 1.4: (a) The energy per logic transition in traditional circuit techniques is approaching

the fundamental thermodynamic limit of kT ln 2 Joules per bit of information (i.e., an ordinate

value of 1 in (a) by ~2030). (b) One reason why energy usage in traditional CMOS logic is

no longer scaling down, is that it is no longer feasible to decrease supply voltages. In both

plots, the red points are published design data and the black points are the averages at a given

abscissa [Stanley-Marbell et al., 2011].

1.7 Hardware and Software Systems That Exploit Errors

Techniques to improve system dependability have traditionally taken the ap-

proach of hiding (masking) faults in the hardware data-path and control-flow

with spatial and temporal redundancy. Such an approach is desirable when

there must be no change of system behavior in the presence of faults, except,

perhaps, for a change in performance.

Applications of computing systems such as signal processing (in desktops

and workstations), and sensor-driven applications (in embedded systems) of-

ten drive outputs that are only directly perceived by humans (e.g., the out-

puts of audio and video processing), or have inputs that are taken from noisy

analog sources (e.g., in sensor network applications). In such applications,

programs can often tolerate some amount of “going-wrong”. In particular,

small deviations in values may be tolerable, and this is already exploited by

some lossy compression algorithms for images (e.g., JPEG [Wallace, 1991]),

audio, and video.

In many emerging applications of the recent decade, however, computing

is moving from the sole purview of commercial business transaction manage-

ment to more personal and pervasive applications such as embedded sensing

and entertainment. In some of these new applications, such as embedded au-

372 Introduction

tomotive control, there are still stringent requirements on correctness of ma-

chine state and computation. However, in many new applications, the need to

maintain perfect error-free computation no longer exists.

As a result of these changes in applications of computing, a number of

parallel research efforts have begun in recent years to explore ways to reduce

the restrictions of perfect machine state. These efforts have ranged across:

• Reducing the number of bits used to represent data values and

datapaths, either in storing those values or in synthesizing reduced-

precision or reduced-accuracy logic in order to save energy (§ 1.7.1).

• Explicitly exploiting human perception to reduce resource usage

(§ 1.7.2).

• Circuits that perform logic operations on probability distributions

of values, rather than on unitary instance values (§ 1.7.3).

• Hardware and software architectures for counteracting the effects

of soft errors (§ 1.7.4).

• Architectures that assume applications can tolerate errors in com-

putation or timing, but have no contract with software on the permissi-

ble laxity (§ 1.7.5).

• Programming languages and runtime systems that incorporate an-

notation of imprecision in program state or operations, or exploit tol-

eration of errors by applications (§ 1.7.6).

• Investigation of application domains that can tolerate various

forms of computation errors or imprecision, in computation or state

(§ 1.7.7).

These existing efforts have, however, mostly focused either only on adapting

hardware independent of applications’ requirements, or vice versa.

1.7.1 Reducing representation precision in values and datapaths

The earliest efforts at harnessing potential tolerance of imprecision, at the

hardware level, involved reducing the number of bits used in both inte-

1.7. Hardware and Software Systems That Exploit Errors 373

ger [Stephenson et al., 2000] and floating-point [Tong et al., 2000] represen-

tations. These efforts were not based on explicit information exposed by, or

extracted from programs, but rather, on the assumption that signal-processing

applications inherently deal with values obtained from noisy real-world mea-

surements, and that real-number representations in computers are inherently

approximations. Techniques that reduce the bit-level precision of arithmetic,

and those that expose notions of incorrectness at the language level must con-

tend with issues of numerical analysis. Kulisch [2008] provides a thorough

background on the interaction between numerics of computation and the ar-

chitectures that facilitate computing. In reducing the number of bits however,

while the precision or dynamic range (or both) are reduced, computation pro-

ceeds deterministically and independent of the properties (value distributions)

due to the applications it executes.

An alternative approach to simply providing reduced precision indepen-

dent of application properties, is to synthesize logic circuits based on the

distributions of values and the tolerance to reduced accuracy of specific ap-

plications, as investigated by Lingamneni et al. [2013]

1.7.2 Explicitly exploiting human perception

When the results of computation are consumed by the human aural or visual

system, variations in accuracy, precision, or reliability may not always be per-

ceptible. Such variations can be exploited directly in the generation of audio

or display of results, for lower-energy, faster, or cheaper output devices (e.g.,

displays). For example, for displays, a few research efforts have investigated

exploiting the variability in human sensitivity across the color spectrum. This

phenomenon has been exploited to reduce power dissipation in OLED dis-

plays [Dong et al., 2009a, Zhao et al., 2013, Shin et al., 2011, Dong and

Zhong, 2011, Harter et al., 2004, Li et al., 2014, Tan et al., 2013] as well

as in those traditional LCDs that have coarse-grained controllable backlight-

ing [Chuang et al., 2009]. Even when the results are consumed by non-human

entities such as control systems, some amount of tolerance to imprecision, in-

accuracy, and unreliability may still exist.

The interfaces for surfacing perceptual signals, such as displays and au-

dio, contribute an increasing fraction of system energy usage in wearable

and mobile systems. Because the phenomena underlying their operation (e.g.,

374 Introduction

photon generation, mechanical displacement) are less amenable to improve-

ments in transistor properties than computation is, their relative importance

will likely grow in the future. Chapter 4 explores these concepts and imple-

mentations in more detail.

1.7.3 Probabilistic computation, probabilistic programming, and

computing on probability distributions

In the traditional uses of probability in programming languages, the compo-

nent which is probabilistic is the behavior of a computation, or a composition

of concurrent processes [Stark and Smolka, 2000]. These approaches range

from the introduction of randomness into algorithms [M. O. Rabin, 1976],

the analysis of the behavior of randomized algorithms [Pnueli, 1983], and

logics for probabilistic programs [Reif, 1980], to probabilistic parallel pro-

grams [Rao, 1994].

An alternative to the deterministic behavior of logic in hardware, whether

of standard or of reduced precision, is to either employ randomness in the

execution of hardware (to perform logic operations probabilistically [Palem,

2005, George et al., 2006]), or to consider the values of machine state due to

executing applications, not as fixed instance values, but rather as probability

distributions [Shanbhag et al., 2010, Vigoda et al., 2010, Vigoda, 2003]. The

latter approach yields architectures that can be considered as forms of analog

(as opposed to digital) computers.

1.7.4 Hardware and software architectures for counteracting the ef-

fects of soft errors

In the last decade, the observation that different applications (or classes

thereof) may have differing tolerance to faults has been investigated [Wong

and Horowitz, 2006], as have the possibility of applying different amounts of

traditional software-based fault-tolerance techniques to different portions of

an application [Reis et al., 2005a], as well as the influence of different hard-

ware structures on the masking versus manifestation of faults as errors. These

prior efforts, while recognizing the varying requirements for fault tolerance

in applications and in hardware, have not attempted to tradeoff correctness

for overheads.

There have been attempts to formalize the effects of soft-errors on the be-

havior of programs [Walker et al., 2006]. The model addressed in this recent

work is one in which the goal is to attempt to nullify the effect of soft-errors

1.7. Hardware and Software Systems That Exploit Errors 375

(faults), by redundant computation.

The observation that different portions of programs or of hardware may

require differing amounts of fault-protection has previously been applied to

reduce the implementation overheads of hardware systems. This observation

has been extended to phases of programs [Reis et al., 2005c] as well as to

the design of error-resilient processor architectures and silicon implementa-

tions [Leem et al., 2010, Bau et al., 2007, Borodin et al., 2009, Rhod et al.,

2007, Mehrara et al., 2007].

Several research efforts have explored adding architectural support for

low-overhead detection and correction of the effects of soft errors, such as

the software anomaly treatment (SWAT) system and its derivatives [Srini-

vasan et al., 2004], by determining the effect of soft errors in components of

processor microarchitectures on application behavior [Li et al., 2005, 2008].

Purely-software-based approaches can also be used to trade correctness for

speed or reduced resource usage. Two examples of such approaches include

loop perforation [Sidiroglou-Douskos et al., 2011], and relaxing locking re-

quirements in GPU kernels [Samadi et al., 2013].

1.7.5 “Better-than-worst-case” design and approximate hardware

architectures

In probabilistic computing architectures (§ 1.7.3), non-determinism is used

in a well-defined manner. This is in contrast to so-called better-than-worst-

case hardware architectures [Austin et al., 2005, Wagner and Bertacco, 2007,

Kahng et al., 2010], which aggressively bias system properties (e.g., power

supply voltage) into regimes which may furnish significant energy savings,

but increase the chance of failure. These architectures then use a variety of

methods (e.g., shadow latches in the Razor system [Austin et al., 2004]) for

ensuring infrequently-occurring erroneous state is not committed to final ar-

chitectural state, or that critical data is not adversely affected (e.g., by reduc-

ing DRAM refresh rates, but only for non-critical data, in the Flicker sys-

tem [Liu et al., 2009]).

Taking the idea of better-than-worst-case design further, are a class of

architectures that argue that permitting occasional errors can reduce power

consumption. When these platforms rely on applications and system soft-

ware to deal appropriately with the errors that may result, we will refer to the

376 Introduction

platforms as approximate hardware. Examples of such approximate hardware

range from processor architectures (or parts of processors such as ALUs) [Es-

maeilzadeh et al., 2012b, Lingamneni et al., 2012], to complete accelera-

tors [Esmaeilzadeh et al., 2012a, George et al., 2006, Sartori and Kumar,

2013], and to portions of the memory hierarchy [Sampson et al., 2013, Liu

et al., 2009, Xu et al., 2004]. Techniques for approximation can be applied in-

dividually, or can be employed as part of a control system [Hoffmann, 2015]

to ensure that a target energy reduction or accuracy constraint is satisfied.

As one example of these architectures, Truffle [Esmaeilzadeh et al.,

2012a] defines an architecture in which individual operations (arithmetic in-

struction, memory accesses, etc.) may individually fail catastrophically with

some probability, the rate at which they do so exhibiting a tradeoff with the

amount of energy used. The manner in which this tradeoff is obtained is via

the ability to set processor state and logic into a voltage-over-scaled (unre-

liable but energy-saving) state, with cycle-level granularity. Truffle relies on

the programming language, compiler, and operating system to ensure that

only individual instructions that can tolerate being in error are executed in the

unreliable mode, and that unreliable state is appropriately quarantined from

reliable state, with flow of data between reliable and unreliable computation

obeying a well-defined set of constraints.

1.7.6 Programming languages and runtime systems

Program-level annotation provides an alternative to relegating to hardware

all decisions about what machine state’s accuracy can be traded for energy

efficiency or performance. Language-level specification of tolerable impreci-

sion has ranged from the specification of coarse regions of application code

that can, in some broad sense, tolerate errors [Reis et al., 2005c, Walker

et al., 2006, Baek and Chilimbi, 2010], memory locations that contain criti-

cal data [Pattabiraman et al., 2008], to the elision of loop iterations to trade-

off fidelity of computation results for energy efficiency or performance [Ri-

nard et al., 2010, Rinard, 2006]. Program-level annotations of required pre-

cision such as the annotations provided by the EnerJ Java extension [Samp-

son et al., 2011] as well as tools to infer guarantees on correctness based on

static program analysis [Carbin et al., 2013]. Detailed language-level facili-

ties for specifying imprecision at the level of data types [Stanley-Marbell and

1.7. Hardware and Software Systems That Exploit Errors 377

Marculescu, 2006] have also been developed, and extended to the declarative

specification of the computation performed by a given subroutine, incorpo-

rating properties of imprecision [Stanley-Marbell, 2010].

1.7.7 Applications of “good-enough” computation in algorithms

and software that are naturally resilient to errors

Given the aforementioned techniques for reduced precision arithmetic

(§ 1.7.1), probabilistic computation (§ 1.7.3), hardware architectures and soft-

ware techniques that take license with correctness (§ 1.7.4 and § 1.7.5), and

language-level facilities for specifying how much incorrectness applications

can tolerate (§ 1.7.6), a natural question is, which applications can best har-

ness the possibilities afforded by these hardware and software innovations?

Several proposals for potential application of such “good-enough” computa-

tion have been made in the research literature [Chakradhar and Raghunathan,

2010, Chippa et al., 2010, Breuer, 2010, 2005a, Meng et al., 2009, Chong and

Ortega, 2007, Li and Yeung, 2007, Mohapatra et al., 2009, Breuer, 2005b,

Salesin et al., 1989], however no consensus yet exists on a standard set of

applications for evaluating proposed hardware and software techniques. Sim-

ilarly, no commonly agreed-upon metrics exist for evaluating the degree to

which behavior of benchmarks may deviate from correctness. Recent work

has however taken an important step in this direction [Akturk et al., 2015].

One class of applications in which errors in computation are often tolera-

ble is signal processing applications. This observation motivated some of the

earliest work in trading correctness for performance and power from the work

of Shanbhag on ANT [Hegde and Shanbhag, 1999, Shanbhag, 2002, Varatkar

et al., 2009, Shanbhag et al., 2010], to silicon implementations of approxi-

mate signal processing from Amirtharajah and Chandrakasan [Amirtharajah

and Chandrakasan, 2004] and Guo [Guo et al., 2006].

In addition to errors in values and control flow of computations, errors

may occur in the timing of actions driven by computation, or in the latencies

expected from computation. The term imprecise computation was coined in

the nineties to denote real-time computing systems in which some deviation

from temporal correctness was tolerable [Budin et al., 2004, Hull and Liu,

1993, Liu et al., 1991, Shih and Liu, 1995, Aydın et al., Liu et al., 1994,

Kenny and Lin, 1991].

378 Introduction

These efforts in computing systems and signal processing are of course

predated by a large body of work in numerical analysis, uncertainty quan-

tification (UQ) methods [Klir, 1994], tolerance graphs [Golumbic and Trenk,

2004], interval arithmetic [Hayes, 2003]), fuzzy logic and fuzzy set theory,

approximation and randomized algorithms and, of course, existing work on

in the broader field of fault-tolerant systems.

1.8 Outline of the Remainder of This Review

The present chapter provides a broad survey of the basic concepts explored in

further detail throughout the review. It addresses the question of why error-

efficient computing systems matter, and describes the context in which the

material of the review is situated. It surveys the general state of the art in this

area and positions the material of the review within it. Figure 1.5 summarizes

the research referenced in this chapter. Chapter 2 (Types of Errors and Ran-

domization) defines terminology, such as precision, accuracy, and reliability,

which recur throughout the review and in any discussion of errors and of error

efficiency. The definitions in Chapter 2 set the stage for the discussion of how

errors affect efficiency in computing systems, in Chapter 3 (Computation,

Energy, and Noise). Chapter 4 (Tolerating Errors in Outputs) addresses how

many systems tolerate errors in their outputs. For example, any visual output

that must be interpreted by a human may incur some amount of error before

being perceptible. Chapter 5 (Tolerating Errors in Inputs) discusses the com-

plementary problem of how many systems tolerate errors in their inputs. The

review concludes in Chapter 6.

1.8. Outline of the Remainder of This Review 379

Varatkar '09

Golumbic et al. '04

Budin et al. '04

Stanley-Marbell '09

Chong et al. '07

Mehrara et al. '07

Rhod et al. '07

Guo et al. '06

Amirtharajah et al. '04

Choudhury et al. '07

Wagner et al. '07

Borodin et al. '09

Bau et al. '07

Leem et al. '10

Shanbhag et al. '10

Kahng et al. '10

Xu et al. '04 Breuer '10

Breuer '05

Chippa et al. '10

Hayes '03Chakradhar et al. '10

Shanbhag '02 Sampson et al. '11

Stanley-Marbell et al. '06

Pattabiraman et al. '08

Walker et al. '06

Reis et al. '05

George et al. '06

Austin et al. '04

Austin et al. '05

Esmaeilzadeh '12Palem '05

Rinard et al. '10Stephenson et al. '00

Baek et al. '10Bossen et al. '02

Esmaeilzadeh et al. '12Chardonnereau et al. '02

Sampson et al. '13Saggese et al. '05

Liu et al. '09Sundaramoorthy et al. '00

Vigoda et al. '10Weaver et al. '01

Sidiroglou-Douskos et al. '11Ray et al. '01

Miskov-Zivanov et al. '06

Samadi et al. '13Reis et al. '05

Liu et al. '94 Kulisch '08Oh et al. '02

Klir '94 Stark et al. '00 Hoffmann '15Koren et al. '07

Shih et al. '95 Cover et al. '06 Fairchild '13

Kenny et al. '91 Tong et al. '00 Hou '06 Weisheimer et al. '14.

Liu et al. '91 Bushnell et al. '00 Shin et al. '11

Salesin et al. '89 Avižienis et al. '04 Zhao et al. '13

Reif '80 Cover et al. '91 Austin et al. '04 Lingamneni et al. '13

Hull et al. '93Shannon '59 Chandy et al. '85 Wong et al. '06.Panchekha et al. '15.

Pnueli '83von Neumann '56 Siewiorek et al. '92 Austin et al. '05Carbin et al. '13a

Rabin '76 Avizeinis '85 Verghese '92Eriksen et al. '55 Bailey '05 Misailovic et al. '14

Shannon et al. '63 Borgerson et al. '75Miller '56 Cleveland '84 Wallace '91 He et al. '01. Dong et al. '09bHamming '50

���� ���� ���� ���� ���� ���� ���� ����

Figure 1.5: Timeline of referenced work in this chapter, listed by author.

2

Types of Errors and Randomization

. . . even precision levels like 1 : 105 are inadequate for a large part of

important problems . . . The reasons for this surprising phenomenon

are . . . that when they are broken down into their constituent elements,

[the procedures] turn out to be very long . . . Now if there are large

numbers of arithmetical operations, the errors occurring in each

operation are superposed.

— John von Neuman, The Computer and the Brain.

In common science and engineering usage, the term accuracy refers, broadly

speaking, to distance from ground truth. Precision, on the other hand, refers

to repeatability or spread around a mean. Accuracy and precision both imply

that when things go wrong, the system still obtains an output and that this

output differs from the correct output to a quantifiable degree. In contrast,

reliability typically refers to the likelihood that a system component will fail.

Tolerance of unreliability, or tolerance of faults which lead to failures, is the

focus of the well-established discipline of fault-tolerant and dependable com-

puting systems. Reliability and fault-tolerance were discussed in Chapter 1.

Tolerance of inaccuracy in numerical computations has been studied for

well over a half century in the domain of numerical analysis. Tolerance of

380

2.1. Precision, Repeatability, Accuracy, and Reliability 381

imprecision is well-studied, particularly in the context of imprecision in tim-

ing. There is a large body of work on imprecise real-time systems, dating back

many decades.

In parallel with accuracy, precision, and reliability, the exploitation of

randomness to improve algorithm performance has been explored in the area

of randomized algorithms [Mitzenmacher and Upfal, 2005, Motwani and

Raghavan, 2010]. Randomized algorithms employ randomness in the reso-

lution of flow control in algorithms, such as by flipping a coin to determine

which path on a branch to take. § 2.3 provides a concise introduction to ran-

domized algorithms.

In contrast to this use of randomness in control flow, stochastic comput-

ing [Alaghi and Hayes, 2013] employs randomness in a different way. Rather

than using randomness to choose which flow of control to follow as in the

case of randomized algorithms, stochastic computing instead uses sources of

entropy to generate distributions to represent different values to be used in

arithmetic. § 2.4 introduces the concepts behind stochastic computing and

explores how stochastic digital computing relates to analog-electrical com-

puting.

Probabilistic programs [Goodman, 2013], like stochastic computers and

randomized algorithms, also employ entropy in computation. However, in

addition to employing values picked from some distribution in the steps of

computation, they typically also infer or condition the distributions of values

taken on by variables, based on values observed during computation. § 2.5

provides a brief overview of probabilistic programming.

2.1 Precision, Repeatability, Accuracy, and Reliability

The term precision usually refers to the resolution or spacing between values

represented in a system. For example, a ruler with markings at every mil-

limeter is more precise than a ruler with markings at each centimeter. Sim-

ilarly, real-valued numbers can be represented in C programming language

type double with finer spacing (precision) than they can be represented with

type float. Precision is typically a property of a measurement instrument

or computing system. In the context of a measuring device, precision can

also be thought of as the repeatability or spread between values obtained in

measuring an unchanging quantity.

382 Types of Errors and Randomization

The term accuracy, in contrast to precision, refers to the difference be-

tween a measured or computed value and its true or nominal value. For ex-

ample, a measurement that reports the speed of light as 299792458 m · s−1 is

accurate, while one that reports the speed of light as 299792459 m·s−1 is less

accurate (but expressed in a representation that is as precise as the previously-

stated value). All measurements of values in the real world have some degree

of uncertainty due to systematic or random errors in measurement. Measure-

ment values with high accuracy are those with low uncertainty. Measurement

values with low accuracy are referred to as approximate.

The term reliability, in contrast to precision, repeatability, and accuracy,

is typically used to refer to the behavior of a system. Reliability refers to the

relative frequency with which a device fails or is otherwise unavailable for

use, regardless of whether it is precise or accurate.

2.2 Accuracy of Models versus Precision of Computations

Accuracy is important when obtaining measurements of signals from the

physical world. Once a measurement system has provided accurate measure-

ments, higher precision in the data representation when storing or computing

on the measured values may allow accurately-measured data to be used to

obtain accurate results in data analyses. For example, a bar code scanner at

a retail store must accurately determine the item being purchased. Once the

scanning subsystem has accurately identified an item, subsequent computa-

tions such as charging a customers credit card must also occur accurately.

Not all measurement and computing systems require perfect accuracy

however. There are many applications of data processing where the comput-

ing process into which measured data is fed is a model or algorithm that is

itself an approximation of a poorly-understood physical process. Chapter 4

(tolerating errors in computing system inputs) and Chapter 5 (tolerating er-

rors in computing system outputs) study two classes of systems where the

users of computing systems and the algorithms consuming measurement data

may tolerate varying degrees of inaccuracies in their inputs.

2.3 Randomized Algorithms: Making Randomized Decisions

to Improve Algorithm Performance

Randomized algorithms are algorithms that make random decisions dur-

ing their execution. These randomized decisions are based on random

2.3. Randomized Algorithms 383

sampling—repeatedly choosing random values according to a specific prob-

ability distribution. An example of a randomized algorithm is a variant of

Quicksort [Hoare, 1961] with a random pivot. Such randomization of con-

trol decisions (or of the algorithms inputs) may enable algorithms to deal

with pathological inputs, by making all inputs lead to algorithm behavior that

is characteristic of typical inputs. Because some NP-hard problems may be

easy to solve for typical inputs, using randomization to make all inputs look

like average-case inputs is one important tool for tackling intractable com-

putational problems. Randomized algorithms can be classified into two main

groups. Monte Carlo algorithms may fail or may provide an incorrect answer.

Las Vegas algorithms on the other hand always return the right answer, but

may take a variable amount of time to do so.

When an algorithm makes random decisions, its performance can no

longer be deterministic. Moreover, even deterministic algorithm behavior

may vary with inputs. Probabilistic analysis of algorithms is a closely related

topic that deals with estimating bounds on behavior of algorithms.

Even though they employ randomness, the use of randomness in random-

ized algorithms is at well-defined control-flow decision points. Randomness

in randomized algorithms is not simply the introduction of random errors

through an algorithm’s control or data path. It is therefore incorrect to as-

sume that randomized algorithms are inherently a good match for systems

that make errors. The techniques from probabilistic analysis of algorithms

may however still prove useful in analyzing properties of the behavior of al-

gorithms executing on platforms which may incur random errors.

2.3.1 Analyzing randomized algorithms: Random variables charac-

terize the actions of algorithms

Each instance where a randomized algorithm employs a random sample to

influence a decision corresponds to an event. For example, in the case of

randomized Quicksort, each event corresponds to a specific member of the

input being chosen as the pivot. For example, we might say “the algorithm

randomly chose the fourth element as the pivot in this iteration”.

There are several pieces of terminology that are essential in discussing

randomized algorithms and the probabilistic analysis of algorithms in the re-

mainder of this chapter and in the research literature. The randomized actions

384 Types of Errors and Randomization

of an algorithm can be represented formally with random variables. A ran-

dom variable, X , is a function on the elements of the sample space of possible

values, Ω. A random variable, X on a sample space Ω is a real-valued func-

tion on Ω; i.e., X : Ω→ R. Events correspond to a random variable, say, X ,

(uppercase) taking on a specific value, say, x (lowercase). The probability of a

random variable X taking on the specific value x is written as Pr{X = x} or

fX(x). An event consists of the random variable taking on a specific instance

value.

2.3.2 Probabilistic analysis of algorithms

Probabilistic analyses of deterministic and randomized algorithms use ran-

dom variables to characterize properties of algorithm behavior and allow us

to answer questions about the behavior of algorithms that make randomized

decisions. For example, let X be a random variable denoting the number

of comparisons made by a randomized version of Quicksort that randomly

chooses its pivot. Then, we can use probabilistic analyses to answer questions

such as the expected number of comparisons, E[X], and hence the expected

running time.

2.4 Stochastic Digital and Analog Computing: Computing by

Exploiting Explicitly-Random Inputs

Stochastic computing systems represent values with distributions whose pa-

rameters are a function of the values intended to be represented. For example,

the number 4 might might be represented with a collection of 32 randomly-

generated binary digits in which on average four of the 32 digits are 1s.

Stochastic computers then use these distributions in computations, exploit-

ing the property that certain operations which are complex when applied to

values (e.g., multiplication) are simple when applied to distributions (e.g., a

logical AND). Some approaches to stochastic computing eschew the use of

random or pseudorandom bit sequences for deterministic sequences with a

given ratio of zeros to ones [Alaghi and Hayes, 2013]. These approaches are

in principle deterministic unary arithmetic systems, not stochastic.

The term analog computing, technically and historically, has two mean-

ings: (1) computing with continuous values and (2) operation by analogy

(simulation of one physical system or process using a second physical sys-

2.4. Stochastic Digital and Analog Computing 385

tem or process). We will use the term analog to mean continuously-varying

electrical, unless noted otherwise.

If the systems being modeled, either computationally or by direct anal-

ogy, have similar stochastic behavior, then the limited accuracy and inherent

stochasticity of analog computing (e.g., variations with temperature and time)

are not a problem. Limited accuracy is also not an issue if the systems being

modeled have similar resolution, or if the system being emulated has lower

resolution. But, it is sometimes desired in modern science to simulate systems

which have inherently different stochastics from those of analog computing

systems, or require very high precision.

2.4.1 Bridging the analog/digital gap

There are many signal processing steps that are efficiently implemented in

the analog domain. These signal processing steps include filtering, mixing,

and heterodyning. If we are to perform information processing in the analog

domain, we must of course have the data we are to process in an analog

representation, or digital data must explicitly be converted to an analog signal.

Analog to digital conversion is however expensive. Sundström, Murmann,

and Svensson [Sundström et al., 2009] present a first-principles derivation of

the energy efficiency of several analog-to-digital converter (ADC) topologies

and show the energy usage per conversion to be exponential in the number of

bits of precision.

2.4.2 Information processing in analog electronics

Techniques for performing non-signal-processing computations on analog

computing systems have historically focused on using current-mode ana-

log electrical circuits to solve differential equations. These techniques have

largely exploited the integrative nature of charge accumulation on capacitors,

summing operational amplifiers, and current multipliers. In some applica-

tions, the stochastic behaviors of the electrical circuit have been exploited

in addition to the macro-scale numeric operations, to model systems such as

gene transcription, with which they may have similar energy dynamics [Man-

dal and Sarpeshkar, 2009].

When exploiting the similarity of the energy dynamics of subthreshold

analog electrical circuits to model biochemical processes, the primary ben-

386 Types of Errors and Randomization

efit over traditional Gillespie simulation [Gillespie, 1977, 1976] is that the

computationally-expensive generation of exponentially-distributed random

samples, which is needed in the Gillespie method, is handled naturally by

the exponentially-distributed noise in analog electronics. Instead of building

analog circuits specifically to model biochemical circuits, it should be possi-

ble to attain most of the benefits simply by accelerating the random variate

generation with analog circuits. Indeed, this idea has been explored by Marr

and Hasler [Marr and Hasler, 2014].

There are however challenges to using analog circuits to generate random

variates. If the random variate generation is based on thermal noise, then the

process will be temperature dependent. Marr and Hasler [Marr and Hasler,

2014] and Bai and Lin [Bai and Lin, 2015] both acknowledge this challenge,

and Marr and Hasler propose abandoning the thermal-noise-based approach

altogether, in favor of chaos circuits.

2.4.3 Precision and analog information processing

Analog electric computations have traditionally suffered from limited pre-

cision, since their precision was limited by the ability to build components

(e.g., capacitors) with precise values. For components with a given value and

precision, those values must not drift with temperature or other environmen-

tal conditions. Preventing such drift is not always easy or even possible to

achieve. In contrast to analog electric computing systems, because Boolean-

valued digital systems treat all values as being of one of only two possible

levels, they only require as much control as needed to generate values of two

distinguishable levels. Analog computing systems also traditionally suffered

from an inability to limit the propagation of noise injected at individual steps

in a chain. This inability to limit noise propagation is because, since ana-

log electrical circuits are typically continuous-value systems, there is never a

reference level to which noisy signals can be restored or thresholded.

The operation of analog circuits bears many similarities with stochas-

tic digital computation [Alaghi and Hayes, 2013] and with unary arithmetic.

This analogy has been alluded to in the work of Vigoda [Vigoda, 2003], but a

much more forceful comparison can be made. Both stochastic digital compu-

tation and analog electrical computation achieve their computation through

the combination of probability distributions. The number of samples needed

2.5. Probabilistic Programming 387

to assure a stochastic operation of a given resolution is analogous to the rep-

resentation length needed to represent unary values with a given precision.

Similarly, the tradeoff between analog and digital value representations as a

function of the required precision, is analogous to both the stochastic sample

count and unary representation length.

2.5 Probabilistic Programming

The term probabilistic programming [Goodman et al., 2012, Gordon et al.,

2014a,b] refers to a style of programs in which programs can generate ran-

dom variates from one or more distributions and in which the programs can

make control flow decisions based on the values taken by these random vari-

ates at runtime. Probabilistic programming languages thereby provide sup-

port for probabilistic inference using language-level constructs. Using prop-

erties of random variables and the laws of probability, probabilistic programs

may perform inference to determine properties of unobserved random vari-

ables based on properties of observed random variables and the structure of

the probabilistic program. Although the idiom of probabilistic programming

can in principle be implemented in many existing programming languages,

several special purpose probabilistic programming languages have been de-

veloped in recent years to make programming in this idiom more succinct.

Figure 2.1 summarizes the research referenced in this chapter.

388 Types of Errors and Randomization

Gordon et al. '14b

Gordon et al. '14a

Goodman et al. '12

Gao et al. '12

Christianson et al. '06 Marr et al. '14

Bai et al. '15.Mandal et al. '09

Hayes '03Sundström et al. '09

Candes et al. '05 Goodman '13

Klir '94Putnam '65 Vigoda '03Gillespie '77 Motwani et al. '10

Blum et al. '97Blum et al. '89Gillespie '76Hoare '61 Alaghi et al. '13Mitzenmacher et al. '05

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Figure 2.1: Timeline of referenced work in this chapter, listed by author.

3

Computation, Energy, and Noise

These changes are indicated in terms of the dimensionless scaling

factor κ . . . The power dissipation of each circuit is reduced by κ2 due

to the reduced voltage and current levels, so the power-delay product

is improved by κ3.

— Dennard et al. [1974].

Give a digital computer a problem in arithmetic, and it will grind

away methodically, tirelessly, at gigahertz speed, until ultimately it

produces the wrong answer.

— Hayes [2003].

The real world is noisy. To achieve reliable information processing in the

presence of this noise, the basic elements of computing systems use redun-

dancy in signals. In binary-valued digital systems, this redundancy involves

amplifying a signal to one of two logic levels after each logic stage. In ana-

log systems on the other hand, redundancy is usually achieved by averaging

signals over time. In both the digital and analog systems, the techniques for

obtaining useful signals in the presence of noise effectively trade the deple-

tion of one resource (energy, time) for the improvement of another (signal

quality). This chapter explores the relationship between computation, energy,

389

390 Computation, Energy, and Noise

and noise. We begin in § 3.1 with an overview of how digital computing

systems employ signal gain to guard against the accumulation of noise. We

then explore the sources of noise in § 3.2 and review traditional fault-tolerant

systems in § 3.3.

3.1 Devices Use Energy to Guard against Faults

Theis and Solomon [2010] give a cogent explanation of the lower limits on

supply voltage necessary to counteract the effects of thermal noise. They start

from the Johnson-Nyquist voltage noise, which follows a Gaussian distribu-

tion with standard deviation of voltage noise

Vn =

√

k · T
C

, (3.1)

where k is Boltzmann’s constant, T is temperature in Kelvin, and C is the

load capacitance of a typical gate. They then take Vn as the minimum voltage

needed to distinguish between two logic states. Thus, a logic voltage of m

standard deviations will give a probability of reliable operation (logic value

being greater than noise), given by the complementary error function, of

1

2
· Erfc

(

m√
2

)

. (3.2)

It is thus possible to tradeoff probability of logic error for supply voltage,

and hence active power dissipation. Lower supply voltages, in the traditional

CMOS bulk FET, comes with exponential increases in leakage current. There

are however a number of promising new device technologies which are not

subject to this exponential dependence of leakage current on supply voltage,

which in bulk CMOS is constrained by the subthreshold slope of 60 mV per

decade, such as tunnel field-effect transistors (TFETs) [Theis and Solomon,

2010].

3.2 Types and Sources of Noise and Faults

Design faults1 are mistakes made in the specification or implementation of a

system design. Manufacture-time defects (henceforth, defects) are the result

1These are usually referred to as design errors. For consistency, we will however reserve

the term error for special use, as explained in this section. We refer to design-time “mistakes”

as design faults.

3.2. Types and Sources of Noise and Faults 391

of aberrations in the manufacturing process which contrary to the desire of a

system’s designers cause intermittent or permanent failures. Faults, or more

elaborately, lifetime-faults, are those deviations from correct functionality,

that occur during the lifetime of a system. They may be the result of aging-

related processes, in which case their effects will be time-dependent and often

irreversible. Faults may also be the result of intermittent external phenomena,

such as electrical noise, high energy neutrons or α-particles. The term “soft-

error” is usually used to refer to such intermittent or transient faults. In this

review however, the term “error” is used in a more restricted sense.

Faults and defects may be masked by appropriate design or runtime ac-

tions, in which case the system will continue to function correctly in their

presence. In a detailed gate-level simulation of an entire embedded micro-

processor, Saggese et al. [Saggese and Vetteth, 2005] show that faults in data

values in the register file, load-store unit and bus interface account for more

than 50% of the faults that are not masked. We will refer to defects and faults

which are not masked as errors, and to temporary errors as soft errors. Errors

lead to perceptibly erroneous behavior in a system. A system may be able to

tolerate errors, detecting them and continuing functioning. There are many

ways to detect errors in hardware and in software. Some fault-tolerant em-

bedded systems [Chardonnereau, Damien and Keulen, Raijmond and Nico-

laidis, Michael and Dupont, Eric and Torki, Kholdoun and Faure, Fabien and

Velazco, Raoul, 2002] and workstation-class systems [Bossen et al., 2002]

implement detection circuits for errors in on-chip memory and logic.

The abstraction of the effects of soft errors employed in this chapter will

be that of soft errors leading to bit flips or inversion upsets, where a high logic

level (logic 1) is incorrectly forced to a low logic level (logic 0) or vice versa.

Rather than causing a logic 0→ 1 transition or vice versa, a fault might cause

a logic value to assume a state that is ostensibly invalid (i.e., neither 1 nor 0).

Such upsets will be referred to as erasures or erasure upsets.

Facilities such as watchdog timers may be employed to detect errors that

manifest as system deadlocks or latency constraint violations, and communi-

cation erasures may be detected with techniques such as the use of message

sequence numbers. The term failure will be used to refer to errors which lead

to irrecoverable system demise.

392 Computation, Energy, and Noise

3.2.1 Failure mechanisms and their sources

Soft errors have been observed in computing systems as far back as the late

fifties, when they were first observed as intermittent failures of electronic

equipment during nuclear bomb testing [Ziegler et al., 1996]. The mecha-

nisms underlying their occurrence begun to be understood in the late seven-

ties, and they have since been systematically studied from a variety of view-

points. The sources of high-energy particles from device packaging mate-

rial [May and Woods, 1979] and from cosmic rays, leading to a spectrum of

energetic particles both on land and in avionics [Ziegler and Lanford, 1979,

Taber and Normand, 1993], have been studied, as have the influence of such

particles on integrated circuits [Ziegler and Lanford, 1981].

3.2.2 Semiconductor-process-related faults

Semiconductor process scaling occurs along multiple axes, all of which have

some bearing on defects and faults. On one axis is the scaling of minimum

feature sizes, e.g., minimum gate length and minimum half-pitch; this is usu-

ally the most publicized result of process scaling. Scaling the dimensions of

device structures means that there are ever fewer atoms making up device

features. For example, the critical charge, the number of electrons represent-

ing a logic value, is reduced across generations. As a result, lower-energy

disturbances can cause a logic value at any point in a circuit, whether in com-

binational logic or in memory, to be changed from a 0 to a 1 and vice versa,

or placed in an altogether invalid state.

Another source of defects and faults is variation in device properties, be-

tween devices (say, in the same cell library), between cell libraries, across

an integrated circuit, within a wafer, across wafers that are part of the same

batch (Si ingot), and across batches. For example, at the 65 nm technology

node, approximately 100 atoms control the threshold voltage of a transistor,

thus a variation in as little as one atom is significant — variations in dopant

concentration have been a problem in semiconductor processes for more than

two decades [Borkar et al., 2004].

At some technology nodes, feature scaling requires drastic changes to the

implementation of devices in an integrated circuit. These changes are man-

ifested in new technologies such as copper interconnects, low-κ dielectrics,

3.2. Types and Sources of Noise and Faults 393

and new device structures such as multi-gate or fin-fet structures. These new

technologies introduce new defect and failure modes. For example, intercon-

nect thickness variability is primarily a problem for copper interconnects and

not for traditional aluminum interconnects. This particular problem is mit-

igated by planarization techniques such as chemical-mechanical polishing.

These planarization techniques however impose new requirements on cir-

cuit topologies, such as requirements on continuity of material densities (e.g.,

polysilicon or metal) across a wafer.

Although we are primarily interested in intermittent faults, it is worth

briefly mentioning some of the sources of permanent faults (in addi-

tion to manufacture-time defects). Sources of permanent logic upsets in

integrated circuits include irreversible aging-related phenomena, such as

electromigration-induced failures in interconnect, negative bias temperature

instability (NBTI) and hot-carrier injection (HCI) related failures. Electromi-

gration is a process that leads to the narrowing and eventual severing of metal

traces in integrated circuits. NBTI and hot-carrier injection lead to degrada-

tion of transistor characteristics with age, and may thus also be the cause of

failures.

3.2.3 Externally-induced intermittent faults

Temporary logic upsets might be the result of runtime disturbances in an inte-

grated circuit, e.g., due to power supply noise, variation of device parameters

with temperature, power supply droop, or ground bounce. These disturbances

might in turn be due, for example, to dynamic system adaptation techniques,

or to phenomena unrelated to the behavior of a system. Temporary faults

have long been of concern in high-availability systems such as servers [Slegel

et al., 1999, Horst et al., 1990].

The dominant source of intermittent faults in integrated circuits in re-

cent decades has been cited as high-energy particles such as neutrons and α-

particles [Baumann, 2005]. The α-particle flux, the number of particle strikes

per m2/s, varies with altitude (with a peak at approximately 60,000 feet),

with time (varies with the 11 year solar cycle), with application domain (e.g.,

terrestrial, versus space applications), and also varies with latitude [Heider-

gott, 2005]. Some of the sources of temporary logic upsets are illustrated in

Figure 3.1. The reactions (e.g., neutron capture, radiation emission) resulting

394 Computation, Energy, and Noise

Radioactive Decay of 238U and 232Th from

device packaging mold resin, 210Po from
PbSn solder (and Al wire)

12C

α-particlesγ- raysLithium

Cosmic rays Thermal neutrons

High energy neutron
(can penetrate up to 5

ft of concrete)

Neutron capture within Si

and B in integrated circuits

Unstable isotope

Magnesium

or

Possible interaction paths

Circuit state disturbance inducement

Microprocessor

–

+
–

+

Temperature
Fluctuations

}
LD @

(R4)
, R2

ADD
R5,

R6

SHRL
, R4

, #8

Program:

λx.+2x ?

Electrical Noise

High-Energy Particles

Figure 3.1: Some sources of temporary logic upsets in hardware.

from interaction of high energy neutrons with integrated circuits are referred

to as spallation reactions.

3.2.4 Characterizing fault rates

In characterizing the resilience of computing systems to soft errors, two ap-

proaches are generally employed — accelerated testing and real-time testing.

Accelerated testing uses an artificial source of high-energy particles, such

as radioactive material (e.g., 210Po), or a neutron beam. In such accelerated

tests, it is desirable for the spectrum of particle energies to match those in the

foreseen deployment environment, e.g., at ground level for terrestrial applica-

tions. Real-time testing on the other hand deploys the units under test in natu-

rally high-particle-flux environments, such as at high elevations. Such exper-

iments have been carried out in places such as a laboratory in Jungfraujoch,

Switzerland, (elevation 11,400 ft) [Nicolaidis and Chardonnereau, 2005] and

an IBM testing facility in Leadville, Colorado, in the United States (elevation

10,152 ft) [Ziegler et al., 1996].

The changes in state caused by energetic particles are generally referred

to as single-event effects (SEEs). A temporary SEE that is not masked is

termed a soft-error, and a permanent one a hard fail. One example of a hard

3.3. Traditional Fault-Tolerant Systems 395

fail is a single-event latchup (SEL). It is possible that an SEE may lead to

no erroneous change in state: For example, the transient pulse resulting from

an SEE may be attenuated as it propagates through a combinational circuit,

or it may occur outside the latching window in a sequential circuit. An SEE

that does lead to a non-masked change in circuit state is usually referred to

as a single-event upset (SEU). The rate of occurrence of logic upsets (SEUs)

is generally referred to as the soft-error rate (SER). It is measured in units

of failures in time (FIT), where a soft-error rate of 1 FIT corresponds to one

failure in a billion operation hours.

For memory technologies, the SER per bit usually decreases with de-

creasing feature size at a given operating voltage because the capture vol-

ume for interaction with high energy particles is smaller with smaller de-

vice area [Constantinescu, 2005]. Based on over 1000 tests performed on de-

vices at different process technology nodes, Nicolaidis et al. [Nicolaidis and

Chardonnereau, 2005] have shown that the FIT rate per megabyte decreases

slightly across process nodes up to the 130 nm node, leveling off subsequently

as manufacturing processes approached the 90 nm node.

To achieve constant-field scaling2, semiconductor processes also scale

supply voltages as they scale transistor dimensions [Dennard et al., 1974].

This lowering of supply voltages and the lower gate capacitances that re-

sult from scaling gate dimensions mean that there is less charge representing

a logic value at smaller process geometries, possibly offsetting the smaller

capture volume.

Overall, the SER per integrated circuit die for common applications like

microprocessors increases due to increasing circuit complexity, with increas-

ing number of transistors per die. The current FIT rate in memories is approxi-

mately 1000 FIT [Nicolaidis and Chardonnereau, 2005] to 2000 FIT [Jacquet,

2006] per megabit. In comparison, the failure rate due to NBTI and HCI is

about 100 FIT [Jacquet, 2006].

3.3 Traditional Fault-Tolerant Systems

The construction of computing systems which continue to provide utility

in the presence of faults [von Neumann, 1956] has been an active area of

2Keeping the electric field across the gate constant as the gate length is reduced between

process technology generations.

396 Computation, Energy, and Noise

research for many decades. With the advent of multi-processor systems in

the 1960’s, the idea of gracefully-degrading systems [Borgerson and Freitas,

1975] which tradeoff performance for utility in the presence of faults became

of interest; the graceful degradation in these systems was graceful degra-

dation with respect to their performance and not graceful degradation with

respect to correctness (i.e., not what we might call adaptive error-efficient

systems).

From the viewpoint of computing systems as information processors, the

construction of fault-tolerant systems can be likened to the reliable trans-

mission of information as considered in information theory [Shannon and

Weaver, 1963]. The techniques employed in utilizing redundancy in provid-

ing reliable computation are analogous to the use of redundancy in informa-

tion streams to enable forward error correction. The idea of trading off encod-

ing overhead for the quality of the transmitted signal has been investigated

in information theory, with the theoretical underpinnings of rate distortion

theory [Berger, 1971], and with practical applications such as unequal error

protection and priority encoding transmission [Albanese et al., 1996] taking

advantage of semantic constraints on correctness of data streams. There have

however been no equivalent efforts to trade off the correctness of computation

for lower overheads in fault-tolerance. This could in part be seen as a result

of the primary use of computers, prior to the present decade, in applications

in which any form of (undetected) error was undesirable.

In contemporary digital computing systems, underlying physical pro-

cesses (e.g., voltages) are usually treated as having only two states (logic

0 and logic 1) at the level of individual binary digits (bits). Across multiple

bits in the internal representation of a system, collections of bits are typi-

cally required to retain their assigned value and to do so without incurring

any anomalous deviations. To achieve this illusion, computing systems have,

over the years, devised and employed a variety of techniques for identify-

ing errors in collections of bits (e.g., cyclic redundancy check (CRC) codes),

and for employing redundancy to enable the correction of errors (e.g., error-

correcting codes (ECC), and simpler arrangements of coarse-grained redun-

dancy paired with majority voting). These techniques have been applied at all

levels of computing system implementations, from registers and buses, to on-

chip memories, data transmitted on interconnection networks, to data stored

3.3. Traditional Fault-Tolerant Systems 397

on a variety of media. All these techniques are important when absolutely no

errant logic state should go uncorrected, or, at least, undetected, and is the

subject of the important research areas of fault-tolerant systems [Koren and

Krishna, 2007], coding theory [Cover and Thomas, 1991], and digital systems

testing [Bushnell and Agrawal, 2000].

3.3.1 Dealing with faults in computation and communication

Because computing systems traditionally attempt to prevent the occurrence

of errors, there have been several techniques developed to counteract faults in

computation and communication systems. Approaches to counteract soft er-

rors include circuit-level techniques such as the use of high-value polysilicon

transistors in the feedback paths of static random-access memory (SRAM)

cells, alternative SRAM cell topologies and inter-digitating the chip-level lay-

out of the bits of different memory words to reduce the chances of multi-bit

errors within a single machine word. Architectural and system-level tech-

niques include the use of error correcting codes (ECC) for memory and ar-

ray structures, and the use of redundancy (e.g., triple modular redundancy

(TMR)) for entire functional blocks. There also exist software techniques

aimed primarily at providing algorithmic and high-level program-module-

based fault tolerance [Avizeinis, 1985].

Approaches for improving reliability of computation have traditionally

been placed under four main classifications: fault avoidance; fault detection;

masking redundancy; and dynamic redundancy [Siewiorek and Swarz, 1992].

Fault avoidance involves proactively designing systems, at the hardware or

software level, that prevent the occurrence of faults. Fault detection tech-

niques provide mechanisms for the incorrect status of hardware or software

to be detected, a simple example being parity bits in memories. Masking re-

dundancy approaches employ redundant hardware or software resources to

mask the presence of faults, e.g., by taking a majority vote over redundantly

performed computations, as in N -modular redundancy (NMR). Masking re-

dundancy approaches implicitly employ a static organization of resources to

mask the presence of faults. Dynamic redundancy techniques on the other

hand take advantage of redundantly available hardware resources as they are

needed and may tradeoff performance for reliability, e.g., by also using re-

dundantly available devices for useful computation.

398 Computation, Energy, and Noise

Techniques such as NMR can be seen as a form of channel coding in

which N bits are employed to encode the value of each bit of an informa-

tion source. As in the case of coding in communication systems, a particular

encoding appropriate for a given system (in this case, a particular value of

N) will provide the best tradeoff of redundancy overheads versus increased

resilience to faults. Furthermore, the appropriate encoding will depend on the

distribution of faults expected to be incurred.

3.3.2 Fault-tolerance beyond N -modular redundancy

All hardware and software systems are susceptible to failures. When the fail-

ure rates are acceptably small, the tradeoffs might be in favor of doing noth-

ing to counteract their effects — this is the state of most consumer computing

systems today. The tradeoffs change, when, either the sources of failures in-

crease in intensity, or the susceptibility of hardware to already extant failure-

inducing mechanisms is increased. Recent renewal of attention to the effects

of failures in computing systems has been a result of the latter.

A large fraction of research into mechanisms for coping with failures

attempts to nullify the effects of failures. From the perspective of failures

in computing systems, one of the earliest directions was the study of the

use of replication of computation to achieve fault-tolerance [von Neumann,

1956]. Hardware techniques in this area can be broadly classified as em-

ploying static organizations of redundancy (e.g., N -modular redundancy),

standby-sparing systems (redundant hardware is swapped-in, on the occur-

rence of a failure), architectures which tradeoff performance for reliability

(e.g., gracefully degrading systems [Borgerson and Freitas, 1975]), and ar-

chitectures which employ dynamic organizations of redundancy through re-

configuration [Siewiorek and Swarz, 1992].

There exists a substantial body of work on software fault-tolerance, with

methods such as checkpointing [Chandy and Lamport, 1985], N -version

programming [Avizeinis, 1985], software-based fault-tolerance via redun-

dant computations [Oh et al., 2002a], and redundant computations at the

machine-instruction level [Reis et al., 2005a,c, Oh et al., 2002b]. For exam-

ple, SWIFT [Reis et al., 2005a] uses the insertion of instructions at compile

time to enable redundant computations within a single thread of execution.

These redundant computations permit checking of addresses and data val-

3.3. Traditional Fault-Tolerant Systems 399

ues before stores to memory, as well as the checking of control-flow. The

overheads of software-only techniques can be reduced by employing hybrid

hardware-software techniques [Reis et al., 2005b].

Similar to the evolution of software fault-tolerance from the level of soft-

ware modules to the level of instructions, there have been efforts to enable

fault-tolerance at the level of logic gates, within both combinational and se-

quential circuits. Recent efforts to improve the efficiency of hardware fault-

tolerance include efforts to quantify the effect of faults at individual gates

in a circuit on its primary outputs [Miskov-Zivanov and Marculescu, 2006].

Faults occurring within a processor microarchitecture may also be targeted by

one of the many microarchitectural techniques for fault-tolerance [Ray et al.,

2001, Weaver and Austin, 2001, Sundaramoorthy et al., 2000].

Several existing techniques for dealing with faults attempt to nullify their

effects, by the repetition of computation or the duplication of data. These

techniques attempt to achieve correct program behavior in the presence of

failures as opposed to enabling the definition of a reliability-tradeoff contract

between applications and the hardware that executes them. Rate distortion

theory [Shannon, 1959, Shannon and Weaver, 1963] is a research area within

information theory concerned with the tradeoff of encoding efficiency (rate)

for deviation of encoded values (distortion). A distortion function or distor-

tion measure specifies this distortion as a function of the original data and its

encoded form. Examples of distortion functions include the Hamming distor-

tion function, where the distortion is defined as the probability of error in the

encoded data, and the squared error distortion [Cover and Thomas, 1991].

Distortion functions are specific to the domain to which they are applied. The

deviations in sensor input and display output values that will be introduced

in Chapter 4 and Chapter 5 are examples of integer distortion distances. Fig-

ure 3.2 summarizes the research referenced in this chapter.

400 Computation, Energy, and Noise

Constantinescu '05

Nicolaidis et al. '05

Heidergott '05

Baumann '05

Borkar et al. '04

Bossen et al. '02

Chardonnereau et al. '02

Saggese et al. '05

Sundaramoorthy et al. '00

Sarpeshkar '10Weaver et al. '01

Miskov-Zivanov et al. '06

Evans et al. '98Horst et al. '90 Reis et al. '05

Landauer '61 Slegel et al. '99Taber et al. '93Ziegler et al. '79 Cover et al. '06

Bennett et al. '85Cover et al. '91Shannon '59 Ray et al. '01Borgerson et al. '75 Koren et al. '07

May et al. '79Chandy et al. '85Neumann '56 Siewiorek et al. '92 Bushnell et al. '00Berger '71 Jacquet '06

Oh et al. '02Avizeinis '85 Albanese et al. '96Shannon et al. '63 Borgerson et al. '75Neumann '56 Theis et al. '10

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Figure 3.2: Timeline of referenced work in this chapter, listed by author.

4

Tolerating Errors in Outputs

In this discussion the names of colors — “red”, “green”, “blue” and so

on — will be reserved for the color sensation we have when we look at

the world around us. In short, only our eyes can categorize the color

of objects; spectrophotometers cannot. This point is not a trivial one

because many people viewing some of our experiments for the first

time will identify something as being red or green but will then ask, as

if their eyes were being fooled. “What color is it really?” The answer

is that the eye is not being fooled. It is functioning exactly as it must

with involuntary reliability to see constant colors in a world

illuminated by shifting and unpredictable fluxes of radiant energy.

— Land [1977].

Consider a computing system that performs a task whose end result is only

intended for display to a human observer. If the task can be altered such that it

uses fewer resources, and if most human observers (or a specific one) cannot

perceive any change in the end result, then the system can be made more

efficient by either avoiding work or making errors as long as these errors are

not perceptible, making the system error-efficient.

For computing tasks such as numeric solution of differential equations,

computations which are part of a program for completing a tax return, or

computing the cost of a sales order, obtaining the correct numeric result is

almost always critical. Similarly, an alphanumeric display such as that dis-

401

402 Tolerating Errors in Outputs

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

��
��

��
���

��
��
��
�
(�

�
)

(a)

������

���

������

(b)

Figure 4.1: The power dissipation for a representative OLED panel as a function of a range

of fully-saturated hues (the hue space wraps around), shown in linear coordinates (a) and in

polar coordinates (b).

playing departures and arrivals at an airport or train station must display the

exact information sent to it in order to be useful.

However not all computations and not all displayed information is of data

that has a precise or quantitative nature. Computations whose results only

feed into determining the color of a pixel in a temporary on-screen image

have their requirements on accuracy bounded by the limits of human color

perception (and attention spans). Similarly, because the display panel on a

phone or smart watch can consume different amounts of power based only

on the color content of images (Figure 4.1), changes to the color and shape

content of images can affect the power dissipation of the display.

Because displays constitute a large fraction of the power dissipation of

many modern mobile platforms it is possible to improve the battery life of

many platforms if images could be adapted in ways that exploit display prop-

erties without being visually perceptible. In order to perform such changes

however, we would need to have quantitative answers to several questions,

such as:

• How sensitive are users to changes in color?

• Are there colors that are indistinguishable to humans but lead to

significant changes in display power dissipation of some display types?

• How sensitive are users to changes in shape?

4.1. Human Perception of Color 403

4.1 Human Perception of Color

Humans with normal color vision have three types of color sensitive cells

(cones) in their retinas. Each of the three types of cone cells is sensitive to a

broad range of wavelengths of light, but the different types each have peak

sensitivities in the short-, medium- and long-wavelength portions of the visi-

ble spectrum. Because of the locations of these peak sensitivities, most people

have most of their color sensitivity in the green portion of the visible spec-

trum. However, even though most of the sensitivity is to the portion of the

visible spectrum close to green, most people are not necessarily able to easily

distinguish between different wavelengths of light in the green portion of the

visible spectrum as well as they do for other wavelengths.

For beams of light made up of a single wavelength (spectral colors), con-

trolled colorimetric studies have been used to quantify how much a spec-

tral color of a given wavelength must be changed to longer or shorter wave-

lengths for the change to be perceptible by humans. Several of these studies,

such as studies by Wright and Pitt in 1934, and by Bedford and Wyszecki in

1958 [Wyszecki and Stiles, 2000] showed that the ability of human observers

to differentiate spectral colors varies with wavelength. Changes in wavelength

of spectral colors at wavelengths close to 450 nm (approximately, indigo) and

525 nm (approximately, green) were markedly more difficult for observers to

differentiate than changes in other parts of the visible spectrum outside of the

extremes. At 450 nm and 525 nm, wavelength changes of up to 4 nm were

necessary for an observer to perceive a change in color, compared to wave-

length changes of just 1 nm which were perceptible in the rest of the central

portion of the visible spectrum.

The perception of spectral colors in color-matching experiments is differ-

ent from the perceived color in images. The colors humans perceive in natural

images, in contrast to the color sensations perceived in color-matching exper-

iments, are not a direct result of the wavelengths of spectral light or combina-

tions of the spectra that objects reflect or project. In a series of experiments in

1959 [Land, 1983, 1986, 1977, 1959b,a,c] and developed over twenty years,

Edwin Land (the founder of the Polaroid Corporation) and his colleagues first

showed how pairs of bands of wavelengths (e.g., red and white) when used

to illuminate a pair of black-and-white negatives taken with red and green

filters yield full color perceived images, even though the same illumination

404 Tolerating Errors in Outputs

without the black-and-white negatives simply yielded a pink screen. Land

and his colleagues also later demonstrated that when they illuminated differ-

ently color patches with controlled intensities of red, green, and blue light, so

that the amount of red, green, and blue reflected off the patches and reaching

the eye were identical, observers would still observe different colors. These

and other investigations led them to the conclusion that perceived color was

not just the result of the magnitudes of the constituent wavelengths of light

reaching the observer, but rather the result of the relative spatial distribu-

tions: The visual system captures images corresponding to short- medium-

and long-wavelength photoreceptors in the retina (the s-, m-, and l- cones)

and does not simply average these images. Instead, it compares the relative

intensities of nearby points in the scene captured by the normal human eye’s

three photoreceptors, to deduce what we perceive as color.

4.2 Quantifying Errors in Images

A way to quantify errors and efficiency is a prerequisite to meaningfully trad-

ing errors for efficiency. For images, there are several commonly-used ways

to quantify errors. Let r be a reference image and let t be an image to be

compared to r, with both r and t being w by h pixels in size. The most basic

measure of difference between the original and modified images is the sum

of squared errors (SSE) between the reference image r and the transformed

image t, defined as

SSE =
w−1
∑

x=0

h−1
∑

y=0

(rx,y − tx,y)2 . (4.1)

The mean squared error (MSE) is defined as

MSE =
1

w · hSSE. (4.2)

The signal to noise ratio (SNR) is the ratio of the sum of squared signal to the

SSE

SNR = 10 log10

[
∑w−1

x=0

∑h−1
y=0 r2

x,y

SSE

]

. (4.3)

4.3. Display Technology 405

The peak signal to noise ratio (PSNR) takes the ratio of the maximum of all

the squared signal (instead of the sum) to the mean squared error:

PSNR = 10 log10

[

max(r2
x,y)

1
w·hSSE

]

. (4.4)

Let µr and µt be the mean pixel values for two grayscale images r and t.

Let σrt be the covariance between the images r and t and let σr and σt be

the standard deviations of pixel values in r and t. Let C1 and C2 be constants

derived from the dynamic range of the image representation format with b bits

per pixel and equal to (0.01 · 2b− 1)2 and (0.03 · 2b− 1)2 respectively. Then,

the structural similarity (SSIM) between the two images r and t is defined as:

SSIM(r, t) =
(2µrµt + C1)(2σrt + C2)

(µ2
r + µ2

t + C1)(σ2
r + σ2

t + C2)
. (4.5)

4.3 Display Technology

Displays account for up to 40% of the power usage in mobile devices such as

phones, smart watches, and tablets. This makes it of great interest to manu-

facturers to develop ways to reduce display energy usage, as doing so would

enable improvements in battery lifetime.

The most common type of display is the liquid crystal display or LCD.

LCDs consist of a light source, called a backlight, which illuminates a collec-

tion of color filters at the individual pixels; whether each of these color filters

receives light is controlled by a layer beneath the color filters, made up of

(liquid) crystals, which can be made opaque or transparent, acting like minia-

ture shutters, based on an electrical signal. Because the backlight is on all

the time even though individual pixels might be blocking its light, the power

dissipation of LCD displays is dominated by the backlight.

In contrast to LCDs, which have a single light source, organic light-

emitting diode (OLED) displays typically have dedicated red, green, and blue

light sources made from organic compounds, for each individual pixel. Be-

cause they are made up of a smaller number of layers (no need for the LCD

layer or for a color filter), OLED displays can often be made thinner than

LCDs.

406 Tolerating Errors in Outputs

The efficiencies of converting electrical current into light in red, green,

and blue OLED pixels varies across the different organic compounds em-

ployed in making them. For example, on some OLED displays, a fully-bright

blue pixel can dissipate almost twice as much power as a fully-bright green

one. And over the lifetime of display, the efficiencies also degrade, with blue

sub-pixels degrading in efficiency more quickly than red and green pixels.

As a result, to achieve the same brightness as an OLED panel ages, blue pix-

els need to be driven with higher currents (and hence dissipate more power)

to achieve the same level of brightness as blue pixels on a new OLED dis-

play. This challenge is referred to by researchers in the area of organic LEDs

as “the blue problem”. Because of these varied phenomena, the amount of

power dissipated by an OLED display depends on the image being displayed.

Almost a decade ago, a number of researchers, starting with Lin Zhong

at Rice University in Houston Texas, begun exploiting the color-dependence

of OLED power dissipation to improve the efficiency of OLED displays by

changing colors in ways in which an observer might find acceptable (such as

by changing an operating system’s or individual application’s color theme),

but for which the change leads to a reduction in display power usage.

4.4 Exploiting Perception for Display Energy Efficiency

The interfaces for surfacing perceptual signals, such as displays and audio,

contribute an increasing fraction of system energy usage in wearable and mo-

bile systems. Because the phenomena underlying their operation (e.g., photon

generation, mechanical displacement) are less amenable to improvements in

transistor properties than computation is, their relative importance will likely

grow in the future.

A number of techniques for error efficiency, targeted primarily at

legacy backlit LCDs, have been developed to reduce display power dissi-

pation [Cheng et al., 2004, Ranganathan et al., 2006]. Prior work on trading

image fidelity for power or performance can be classified broadly into six

directions: Color transformation by convex optimization; color transforma-

tion in restricted applications such as web browsers and by color remapping;

color transformation by electrical control of the display panel; selective dim-

ming based on a user’s visual focus; and image fidelity tradeoff analyses that

employ perceptual user studies.

4.4. Exploiting Perception for Display Energy Efficiency 407

4.4.1 Color transformation by convex optimization

Reducing display power dissipation under an image-distortion constraint can

be framed as an optimization problem. How efficiently one can solve this op-

timization problem, and the quality of the solution (global versus local min-

ima) however depends on the power model and perceptual model that are used

in the optimization problem formulation. Dong et al. employ a power model

that has a count of parameters that is exponential in the display’s color depth

(e.g., 3 · 23·8 or 48 million parameters for a 24-bit color display) [Dong and

Zhong, 2011]. Their color optimization is thus expensive to do even offline,

and not practical to do online (i.e., in real-time). Because the optimal solution

of their optimization problem requires an operation count that is exponential

in the number of pixels, the authors propose a greedy heuristic that is O(n3)

for n-pixel images. As a result of their formulation, their color optimizations

take many hours to complete [Dong and Zhong, 2011].

4.4.2 Application-specific transformations and color remapping

When color transformations are applied in restricted contexts such as in color

schemes for infographics [Chuang et al., 2009, Wang et al., 2012] or in graph-

ical user interface (GUI) color schemes [Dong et al., 2009b,a, Dong and

Zhong, 2011], colors that are more power-expensive on OLED displays may

be substituted for ones that lead to lower display power dissipation.

Another approach to exploiting the color dependence of OLED power

dissipation, for improved energy efficiency is to directly modify individual

applications such as games [Anand et al., 2011], web browsers [Dong and

Zhong, 2011, Li et al., 2015], and web servers [Li et al., 2014] which pro-

vide content to devices with OLED displays. Application-specific tradeoff

techniques have the disadvantage that modifications must be repeated for

each new application. Application-specific techniques can also be complex:

For example, the color-adaptive Chameleon web browser [Dong and Zhong,

2011] employs several techniques including designing color schemes for spe-

cific popular websites, inverting colors in web pages, and requiring users to

explicitly select schemes. Chameleon requires color maps to be calculated of-

fline, using an optimization method which the authors themselves describe as

“compute-intensive”, partly because it requires a large number of parameters:

3 · 2b for a display with b bits of color depth.

408 Tolerating Errors in Outputs

4.4.3 Power analysis and color transformation by electrical control

One way to control the power dissipation of displays is to manipulate their

electrical interfaces, such as their backlights, display drivers, and so on, so

that these components use less power. To understand the effect that such

electrical control has on image quality however requires detailed electrical

and perceptual characterization. As a result of this need for characterization,

there have been several studies of LCD power dissipation as a function of

backlight level and perceptual metrics [Chang et al., 2004, Choi et al., 2002,

Cheng et al., 2004, 2006, Schuchhardt et al., 2015], as well as studies of

OLED power dissipation as a function of color and luminance [Dong et al.,

2009b, Shin et al., 2011, Mittal et al., 2012, Chen et al., 2013], and models to

estimate OLED display power [Harter et al., 2004].

Once displays have been characterized, they can also be controlled to ex-

ploit properties observed in the characterization. The power versus perceptual

quality tradeoff techniques that have been explored for LCDs include contrast

scaling [Cheng et al., 2004, Pasricha et al., 2004], luminance scaling [Chang

et al., 2004], and tone mapping [Iranli and Pedram, 2005, Anand et al., 2011].

A number of recent research efforts have attempted to apply similar hardware

techniques to OLED displays. These techniques have included dynamic volt-

age scaling of OLED display driver amplifiers [Shin et al., 2011].

4.4.4 Selective area dimming

A number of research efforts selectively dim portions of an OLED display

panel, based on heuristics of a user’s focus of attention [Tan et al., 2013]. The

techniques are obtrusive, and when they guess the user’s focus of attention

incorrectly, can render a device unusable. Other research efforts have used

heuristics to guess which part of a display is occluded by a user’s hand [Chen

et al., 2014]; these latter techniques must, among other things, guess whether

a user is left- or right-handed, how large their hands are, whether they are

using a stylus, and so on.

4.4.5 User studies of image fidelity versus power tradeoffs

The value of techniques that trade perceptual quality for power or perfor-

mance depend on how accurately the techniques quantify their effect on hu-

man perception. The two primary approaches to quantifying perceptual qual-

ity are quantitative metrics such as the structural similarity (SSIM) and peak

4.5. Exploiting Perceptual Flexibility in End-To-End Systems 409

signal to noise ration (PSNR), introduced in § 4.2, and human user studies.

Several studies of the tradeoffs between image quality and power dissipa-

tion of displays have employed perceptual studies. These studies have how-

ever all involved only a small number of participants. For example, Harter et

al. [Harter et al., 2004] employed a study size of 12 users in their analysis

of the effects of selective display area dimming for OLED displays, while

Tan et al. [Tan et al., 2013] employed 30 users in evaluating a similar tech-

nique. Li et al. [Li et al., 2014] conducted a perceptual study with 17 users to

evaluate their color-adaptive server-side color transformations, while Dong et

al. [Dong and Zhong, 2011] employ 20 participants to evaluate their color-

adaptive web browser. Anand et al. [Anand et al., 2011] conducted a user

study with 60 users to evaluate a display brightness and image tone map-

ping technique. All of these prior efforts provided valuable insight into the

challenges and benefits of performing perceptual user studies.

4.5 Exploiting Perceptual Flexibility in End-To-End Systems

Crayon [Stanley-Marbell et al., 2016] is a system for exploiting perceptual

flexibility to reduce display power dissipation. At the core of the Crayon sys-

tem is an intermediate representation for representing bitmapped graphics

(e.g., photographic images) and vector graphics (e.g., the drawing operations

in a user interface). Across these representations, Crayon applies several tech-

niques to reduce power dissipation in exchange for visual accuracy.

In bitmap images, a color transform is applied to each individual pixel in-

dependently in order to reduce power dissipation. The transform optimizes a

simple convex function that trades visual fidelity (with a least-squares penalty

on deviation from the target color) for reduced power dissipation; the penalty

is based on an experimentally-measured model of the power dissipation for

each color. The result of the optimization is a simple color transform that

picks the closest color within a given tolerable deviation that minimizes en-

ergy dissipation.

For vector graphics, Crayon applies shape transformations that slightly

enlarge or reduce the width of rectangles, lines, and polygons (or any closed

path) to reduce power dissipation in exchange of imperceptible modifications

to the geometry of the displayed shapes. Figure 4.2 summarizes the research

referenced in this chapter.

410 Tolerating Errors in Outputs

Chen et al. '14.

Tan et al. '13

Chen et al. '13

Mittal et al. '12

Shin et al. '11

Iranli et al. '05 Schuchhardt et al. '15

Pasricha et al. '04 Li et al. '14

Harter et al. '04 Anand et al. '11

Chang et al. '04 Dong et al. '11

Dong et al. '09c

Dong et al. '09a

Choi et al. '02 Chuang et al. '09b

Li et al. '15Ranganathan et al. '06Land '59a

Wang et al. '12Cheng et al. '04Land '59b Land '86

Hosseini et al. '14Land '59c Land '77 Land '83 Wyszecki et al. '00

���� ���� ���� ���� ���� ����

Figure 4.2: Timeline of referenced work in this chapter, listed by author.

5

Tolerating Errors in Inputs

In most problems of applied mathematics and engineering the data are

no better than 1 : 103 or 1 : 104 . . . and the answers are not

required or meaningful with higher precisions either.

— John von Neuman, The computer and the brain.

The data that serve as input for many important computational problems in

the real world increasingly come from sensors of physical phenomena of var-

ious kinds. These sensors may range from accelerometers and gyroscopes in

wearable and health-tracking systems, to continent-spanning radioastronomy

telescopes.

Because there may be transient or persistent noise in sensor data, the com-

putational problems which consume them, and hence the algorithms which

embody these compute problems, can often operate on data of varying ac-

curacy, precision, or reliability. Sensors, however, typically require different

amounts of time and energy resources to generate data of different degrees of

fidelity (see § 2.4.1 and Chapter 3). When hardware and system software per-

mit, tolerance of imprecision, inaccuracy, and unreliability can be exploited:

The tolerance can be harnessed to achieve sensor activation and sensor data

acquisition which uses less energy, which is faster, or which is cheaper to

build.

411

412 Tolerating Errors in Inputs

Lax [Stanley-Marbell and Rinard, 2015a] is one example of a system that

builds on these insights. Lax improves the energy efficiency of sensor-driven

systems by controlling the power supplies of sensors such as gyroscopes,

so that they provide inaccurate, imprecise, or unreliable data, but consume

significantly less power. Because of the empirically-observed variation in the

type, frequency, and severity of sensor data errors with supply voltage, Lax

uses descriptions of the amount of error that can be tolerated by applications

to determine how much energy to save. These descriptions of tolerable error

are provided in Lax’s domain-specific language, but could in principle also

be inferred by a compiler.

In addition to circuit techniques to reduce the power dissipation of sensor

integrated circuit operation [Stanley-Marbell and Rinard, 2015a], it is possi-

ble to develop value encodings which reduce the power dissipated in moving

data [?] between sensing and computing devices, at the cost of controlled

data infidelity [Stanley-Marbell and Rinard, 2015b].

5.1 Lax

Lax uses two techniques, a combination of software and minimal hardware

support, to trade efficiency for accuracy:

➊ Device abstractions for approximation. Lax provides a device driver

abstraction, detailed in § 5.1.3, through which it enables sensor device

accessors to specify the tolerable degree of imprecision and unrelia-

bility. Some sensors [Freescale Semiconductor, 2014b] already have

limited support for modes which trade resolution for access power; for

these, Lax can exploit the extant hardware facilities.

➋ Sensor supply scaling. Regardless of already existent hardware sup-

port for trading precision, accuracy, or reliability for power consump-

tion, many sensors can be operated outside their specified supply volt-

ages. This enables usable tradeoffs between the reliability of data ac-

quisition, fidelity of data provided, and power dissipation. § 5.1.6 de-

tails the implementation of this hardware support.

5.1. Lax 413

� � � � � ����

���

���

���

���

���

���

������ ������� (�)

��
��

��
���

��
��
��
�
(�

�
)

HDC1000 Humidity Sensor at 25 °C

��� ��� ��� ��� ��� ��� ����

�

��

��

������ ������� (�)

��
��

��
���

��
��
��
�
(μ�)

ADXL362 Accelerometer

� � � �

���
���
���

������ �������� �

��
���

�
μ� ��

Figure 5.1: Manufacturer-reported power dissipation [Texas Instruments, 2014b, Analog De-

vices, 2014] for reliable operation at recommended supply voltages (points), extrapolated to

lower voltages using a physics-based model (line). It falls by 60.6(1 − k2) and 62.6(1 − k2)
percent respectively (shaded region), for each factor-k reduction from the lowest voltage for

reliable operation.

5.1.1 The prospects for Lax

To illustrate the potential power dissipation versus error tradeoffs of Lax un-

der sensor supply scaling, Figure 5.1 plots power dissipation and retrieved

sample noise properties as a function of supply voltage for two state-of-the-

art sensors. For both the humidity sensor and accelerometer, power dissipa-

tion decreases by a factor of ~4× with a halving of supply voltage. For the

accelerometer, the noise in the retrieved signal (measured, by convention,

in micro-gravities per square-root-Hertz, µg/
√

Hz) increases by a factor of

~1.5× with a halving of the supply voltage [Analog Devices, 2014] (inset).

5.1.2 Example: Lax in systems

Using contemporary operating systems, applications cannot specify how

much precision, accuracy, or reliability they require from a sensor. Figure 5.2

shows the block diagram for a pedometer application, as might be incorpo-

rated into popular wearable health-tracking platforms. The figure shows the

data flow from an accelerometer sensor through blocks of the signal process-

ing needed to perform step counting [Zhao, 2010]. All the facilities for Lax

can be logically interposed in the interface to data acquisition, as shown in

the figure.

414 Tolerating Errors in Inputs

Accelerometer

x-component analysis

y-component analysis

z-component analysis

Feature Extraction

Multi-Axis

Aggregation

Step Model

Activity

Detection

Other Models

(e.g., sleep quality detector)

Lax

Figure 5.2: Data flow in a pedometer application. Samples from the x-, y-, and z-components

of acceleration are typically first low-pass filtered, then fed into an activity detection algorithm.

If the signature matches walking, these acceleration components are fed into a model for

predicting steps from acceleration signatures.

Lax Specification
of sensor power

versus error

Lax Specification
of tolerable error

likelihood

Lax Specification

Compiler

Lax Header File
with sensor configuration parameters

for each requested error likelihood

C/C++ Source Code

#include <asm/irq.h>
#include <asm/io.h>
#include “lax.h”

...
sampleA = lax_sensor_read(LX_SENSOR_A, LX_TOLERANCE_NONE);
sampleB = lax_sensor_read(LX_SENSOR_B, LX_TOLERANCE_APPROXIMATE);
sampleC = lax_sensor_read(LX_SENSOR_C, PEDOMETER_TOLERANCE_ACCEL);
...

Approximation-Oblivious

Compiler / Linker

(e.g., LLVM/Clang, gcc)

Binary
with approximate

sensor accesses

01010010010101

00010101010001

01010101001000

➊ ➋

➌

➍

➎a

➏ ➐

Lax Runtime System Library

➎b

Figure 5.3: In this example, software uses Lax primitives to request sensor values (block ➍).

The amount of inaccuracy, imprecision, or unreliability that is tolerable in responses to those

requests is either specified using defaults such as LX_TOLERANCE_NONE, or application-

specific tolerances such as PEDOMETER_TOLERANCE_ACCEL. Although not manda-

tory, if used, the meaning of these optional constants are specified explicitly in the tolerable

error specification (block ➋). The Lax specification compiler must combine these with the

hardware error characteristics (block ➊) to emit source and headers that implement the ap-

proximate sensor access (block ➎).

5.1. Lax 415

5.1.3 The Lax device interface

System software interfaces for approximate device access should enable the

specification of three types of tolerance to deviations from correct behavior:

• Latency tolerances. Different applications may be able to tolerate dif-

fering latencies in retrieving values from a sensor. This can be exploited

by the hardware facilities described in § 5.1.6 to reduce the energy re-

quired per sensor sample acquisition.

• Loss or throughput tolerances. When the algorithms consuming sen-

sor data can tolerate occasional wholly-incorrect or missing samples,

knowledge of this tolerance of unreliability can be used to reduce sam-

ple acquisition energy.

• Value deviation tolerances. When the algorithms consuming sensor

values can tolerate small deviations from accuracy or precision in sen-

sor readings, this can yet again be exploited to reduce sample acquisi-

tion energy.

Lax enables driver writers to specify tolerances to these types of behavioral

aberrations. These specifications can then be exploited in existing system ar-

chitectures, as illustrated in Figure 5.3.

5.1.4 Slax: Specifying Lax sensor access

Tolerances should be specified in the context of a given sensor type and

should be statically checked because it is possible to specify meaningless,

unattainable, or mutually-contradictory tolerance specifications. Lax pro-

vides a small domain-specific language, Slax, for defining tolerances. Slax

captures the latency, loss, and value-deviation tolerances of sensor data ac-

quisition and is thus complementary to interface definition languages such as

Devil [Mérillon et al., 2000], which are intended to ease the construction of

complete device drivers.

The grammar for Slax is shown in Figure 5.4, and an example specifica-

tion for an accelerometer is given in Figure 5.5. A Slax specification com-

prises one or more sensor or tolerance blocks. The sensor blocks de-

scribe the error properties of sensors at various operating points, while the

416 Tolerating Errors in Inputs

1 unsignedImm ::= "0" | "1..9" {"0..9"} .

2 stringConst ::= "\"" {Unicode Character} "\"" .

3 integerConst ::= ["+" | "-"] unsignedImm .

4 dRealConst ::= unsignedImm "." "0..9" {"0..9"} .

5 eRealConst ::= (dRealConst | integerConst) ("e" | "E") integerConst .

6 realConst ::= dRealConst | eRealConst .

7 rationalConst ::= integerConst "/" integerConst .

8 numConst ::= integerConst | rationalConst | realConst .

9

10 slaxSpec ::= specHead {defn} .

11 specHead ::= "specification" ident ";" .

12 ident ::= {Unicode Character} .

13 defn ::= sensorDefn | toleranceDefn .

14 sensorDefn ::= "sensor" ident ["@"numConst units] "=" "{" {sensorStmt} "}".

15 toleranceDefn ::= "tolerance" ident "=" "{" {toleranceStmt} "}" .

16 sensorStmt ::= "provide" "(" eClass ")" "=" "{" cStmt {";" cStmt} "}" .

17 toleranceStmt ::= "require" "(" eClass ")" "=" "{" cStmt {";" cStmt} "}" .

18 eClass ::= "deviation" | "latency" | "loss" | "throughput" .

19 cStmt ::= cmpOp numConst units ":" likelihoodExpr | alwaysExpr .

20 likelihoodExpr ::= "likelihood" cmpOp numConst "in" numConst "readings" .

21 alwaysExpr ::= "always" cmpOperator numConst .

22 cmpOp ::= ">" | ">=" | "<" | "<=" | "==" .

23 units ::= "s" | "ms" | "us" | "ns" | "W" | "mW" | "uW" | "nW" | "%" .

24

25 reservedTokens ::= "%" | "(" | ")" | ":" | ";" | "<" | "=" | ">" | "always"

26 | "deviation" | "in" | "latency" | "likelihood" | "loss"

27 | "ms" | "ns" | "occurs" | "provide" | "readings"

28 | "require" | "s" | "sensor" | "specification"

29 | "throughput" | "tolerance" | "us" | "{" | "}" .

Figure 5.4: EBNF [Wirth, 1977] grammar for Slax, a domain-specific language for specifying

latency, throughput, and value deviation tolerances for sensor access.

1 specification AccelerometerSensor;

2

3 sensor PLATFORM_ACCELEROMETER_A @ 1.6V = {

4 provide (latency) {

5 > 1 ms : likelihood < 1 in 1E6 readings;

6 }

7 provide (deviation) {

8 > 1% : likelihood < 1 in 1E6 readings;

9 > 10% : likelihood < 1 in 1E9 readings;

10 }

11 provide (loss) {

12 occurs: likelihood < 1 in 1E6 readings;

13 }

14 }

1 specification PedometerApp;

2

3 tolerance PEDOMETER_TOLERANCE_ACCEL = {

4 require (deviation) {

5 > 1% : likelihood < 1 in 1000 readings;

6 }

7 require (latency) {

8 > 1ms : likelihood < 1 in 1000 readings;

9 }

10 require (loss) {

11 occurs : likelihood < 1 in 1000 readings;

12 }

13 }

Figure 5.5: Example Slax specifications. The sensor and tolerance blocks capture

sensor provisions and application requirements.

5.1. Lax 417

tolerance blocks denote groups of error tolerance settings that are required

together at various points in an application.

In practice, a driver may use a Lax-default or driver-specified tolerance

specification in accessing a given sensor, as illustrated in block ➍ of Fig-

ure 5.3. For example, given the Slax specifications in Figure 5.5, the fol-

lowing C fragment would employ the configuration implied by the constants

PLATFORM_ACCEL_A and PEDOMETER_TOLERANCE_ACCEL:

/* Use Lax to achieve lowest power for required accuracy. */

sampleC = lax_sensor_read(PLATFORM_ACCEL_A,

PEDOMETER_TOLERANCE_ACCEL);

The Lax runtime must use the provided tolerance indicator to determine

the best device operating point. When integrated into contemporary operating

systems, it would then set the properties of the device using, e.g., ioctl()

or equivalent system calls (our proof-of-concept implementation presented in

§ 5.1.6 runs over bare metal). The sensor blocks on the other hand must

be based on hardware characterizations. They would ideally be provided by

a hardware platform designer or vendor, but could be overridden by a driver

writer’s own sensor block. § 5.1.6 provides examples of the necessary char-

acterizations that yield sensor blocks.

5.1.5 Challenges

Even though the potential benefits of exploiting tolerance to imprecision, in-

accuracy, and unreliability are significant, there are several challenges to im-

plementing a system that can effectively trade those tolerances for perfor-

mance or energy efficiency. For example, a simplistic solution to determin-

ing a valid operating point from the sensor block for a given sensor might

be straightforward, using, e.g., a lookup table. On the other hand, efficiently

picking the operating point that satisfies the multiple constraints of deviation,

latency, loss, and throughput tolerances, along with timing performance, av-

erage power, and overall energy usage, will be challenging. Other challenges

include:

• Obtaining Slax tolerance specifications. These could be written

by hand, as in Figure 5.5, when there are known sensor data fidelity re-

quirements, or could be synthesized based on dataflow analyses of ap-

plications to determine their error-propagation properties [Linderman

418 Tolerating Errors in Inputs

Table 5.1: Sensor devices evaluated, their power dissipation, and supply voltage ranges for

reliable operation.

Sensor Power Dissipation (µW) Supply Range (V)

Gyroscope

L3G4200D [ST Microelectronics, 2010] 18300 2.4–3.6

IR Temperature

TMP006B [Texas Instruments, 2014c] 528 2.5–5.5

et al., 2010, Benz et al., 2012].

• Obtaining Slax sensor specifications. As a first step, these could be

constructed from manufacturer-provided data (such as in Figure 5.1),

or from offline hardware measurements (§ 5.1.6). It would however be

more versatile to be able to construct sensor specifications in situ, but

such a facility would require appropriate hardware support.

• Validity checking of Slax specifications.

• Dynamic adaptation of the chosen operating point based on instan-

taneous environment conditions (e.g., temperature), based on OS or

application feedback, or based on temporal histories of these.

Although we are implementing Slax using traditional compiler techniques,

we are also investigating the potential benefits of integration with exist-

ing tools that ease DSL construction in systems software contexts, such as

FoF [Dagand et al., 2009], HAIL [Sun et al., 2005], and Termite-2 [Ryzhyk

et al., 2014].

5.1.6 Hardware prototype and evaluation

To verify that the energy savings for Lax are achievable, the following

presents data integrity measurements at different degrees of power savings

for two sensors. The sensors, listed in Table 5.1, are both targeted at mobile

and wearable computing systems and each dissipate more power when active

than the processor shown in Figure 5.6. In a typical system, they will also be

sampled whenever the processor wakes from sleep, making their portion of

the system’s overall energy usage also significant.

5.1. Lax 419

Figure 5.6: Logarithmically-scaled sector plot of relative power dissipation while active, for

several state-of-the-art sensors [ST Microelectronics, 2010, 2014, Bosch Sensortec, 2014,

Texas Instruments, 2014c,b], a Bluetooth Low Energy radio [Texas Instruments, 2014a] in ad-

vertising/discoverable mode, and an implementation of the lowest-power ARM architecture

variant currently available (ARM Cortex M0+ [Freescale Semiconductor, 2014a]) running a

while(1) loop from its on-chip SRAM at 2 MHz and 3.0 V. All but one of the sensors use

more power than the processor.

The evaluation operates each sensor at a range of voltages below their

nominal operating points and characterized the types of errors encountered.

The possible errors under these conditions are of two types: ➊ sample loss,

or erasures (in the information-theoretic [Cover and Thomas, 1991] sense),

where communication with a sensor fails; ➋ value deviations, where values

are retrieved from a sensor, but they are different from those that would have

been retrieved when operating the sensor at its nominal operating voltage.

Where appropriate, we modified the low-level interface code for accessing the

sensors to recover gracefully from access failures (e.g., replacing assertions

with more graceful return status codes); this worked well for our bare-metal

embedded implementation. When Lax is integrated into a sophisticated op-

erating system, such changes might still suffice, or may be augmented with,

e.g., techniques such as microreboots [Candea et al., 2004] or tools such as

Carburizer [Kadav et al., 2009].

420 Tolerating Errors in Inputs

GPIO

Processor

Sensor

Sensor’s power supply

Sensor data
acquisition interface

Programmable

Voltage

Regulator

GPIO,

SPI, I2C,

or ADC

Sensor’s supply
decoupling capacitor

System

Power

Supply

Figure 5.7: Measurement setup for empirical validation of the feasibility of Lax.

GPIO /

PWM

Sensor

Processor
Sensor’s power supply

Sensor data
acquisition interface

GPIO,

SPI, I2C,

or ADC

Supply filter and decoupling

System

Power

Supply

Figure 5.8: Programmable voltage regulators typically only output a discrete set of voltages.

In some cases, they can be mimicked using a software-controlled pulse train and a filter.

Measurement setup

Figure 5.7 illustrates the measurement setup. The evaluation uses an ARM

Cortex-M0+ processor [Freescale Semiconductor, 2014a] evaluation board to

interface with the sensors, which are mounted on separate breakout boards.

The processor also controls a pair of programmable voltage regulators [Texas

Instruments, 2014d,e] which enable the sensors to be operated at nine discrete

voltages between 1.2 V and 2.5 V, with the operating voltage dynamically

switchable under software control. These regulators have small circuit board

footprint and low overheads, with quiescent currents in the nano-Amperes.

Alternatively, the configuration shown in Figure 5.8 could be used to achieve

even finer-grained control of sensor power supplies, with lower circuit over-

head and possibly better efficiency in powering the sensor device than the

programmable voltage regulator, but at the cost of additional software on the

control processor.

Preliminary results and relation to Slax

Figure 5.9 shows the reduction in dynamic power dissipation from operating

sensors below their nominal voltages, along with the measured sensor data

5.1. Lax 421

� �� �� �� �� ��
�

��

��

��

��

��

������ (��� ��� ��������)

��
��

�
��

��
��

��
��

���
�
(%

)
TMP006 IR Sensor

Register
0x00
0x01
0x02
0xFE
0xFF

� ��� ��� ��� ���

�

��

��

��

��

������ (��� ��� ��������)

��
��

�
��

��
��

��
��

���
�
(%

)

L3G4200D Gyro Sensor

Internal Register Address
0x0F
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28

0x29
0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32

0x33
0x34
0x35
0x36
0x37
0x38

Figure 5.9: Power savings per access versus acquisition error rate for a state-of-the-art infrared

sensor [Texas Instruments, 2014c] (left) and gyroscope [ST Microelectronics, 2010] (right).

acquisition error rates (i.e., erasures). The measurements were performed at

sensor I2C [NXP Semiconductors, 2014] interface data rates of 1 kb/s. The

savings in dynamic power dissipation for both sensors are significant: up to

48% for the IR temperature sensor, and up to 42% for the gyroscope. In both

cases, savings of up to 16% are possible with no data acquisition errors, and

error rates increase with increasing savings. The error rate at the configuration

of maximum power reduction is less than 5 errors per 100 accesses for the IR

temperature sensor, but as high as 1 out of every 2 accesses for the gyroscope

at maximum savings.

The data in the figure are precisely the information required to con-

struct a provide(loss){...} block of a sensor statement in Slax, as

occurs, e.g., in the example Slax specification in Figure 5.5. Similarly, anal-

ysis of sensor values relative to a ground truth would enable synthesis of a

provide(deviation){...} block, while data acquisition at different data

rates will yield the necessary information for provide(latency){...}

and provide(throughput){...} specifications.

Most sensors with digital interfaces can be queried for multiple distinct

pieces of information, such as the sensor’s configuration, silicon junction

temperature (for software compensation algorithms), and so on. Each type of

information is typically accessed via a different register internal to the sensor,

and the various types of information are not equally important. The error rates

observed in Figure 5.9 vary with which of the sensor’s registers are accessed.

422 Tolerating Errors in Inputs

l = 8

s = 64
10

 = 01000000
2

0 1 0 0 0 0 0 0

S
o
u
rc
e

D
e
s
ti
n
a
ti
o
n

s s

(a) Without VDBS encoding.

l = 8

t = 63
10

 = 00111111
2

0 0 1 1 1 1 1 1

E
n
c
o
d
e
r

D
e
s
ti
n
a
ti
o
n

s t

(b) With VDBS: fewer transitions.

Figure 5.10: VDBS encoding reduces transitions while incurring a value deviation, |s − t|, of

1. In this example, assume the tolerable deviation, m, is 13 (i.e., 5 % of 255). VDBS encoding

halves the number of transitions while incurring a value deviation, |s− t|, of just 0.39 % of the

full-scale range. All bits except the most-significant bit are modified (shown shaded in (b)),

not just the lower ⌈log
2
(|s − t|)⌉ bits.

Slax sensor specifications built from such characterization data can capture

this variation through the use of separate sensor blocks for each register, or

by incorporating the observed variation in the likelihood expressions.

5.2 VDBS Encoding

Dynamic power dissipation in serial interfaces occurs when consecutive seri-

alized bits of the same word differ. The number of such transitions between

consecutive bits of the same word are referred to as the serial transition count

(STC). The maximum STCs occur when words have alternating 0s and 1s in

their binary representations. Figure 5.10 shows how modifying transmitted

words can reduce the STC at the cost of small deviations from accuracy.

5.2.1 Formal definition of VDBS encoders

VDBS encoding generalizes the idea illustrated in Figure 5.10. Considering

both STC reduction and induced deviation, the Pareto-optimal VDBS en-

coders either minimize the induced deviation, maximize the STC reduction,

or both.

Definition 1 (Family of optimal VDBS encoders).

Let s and t be two unsigned l-bit integers representing unencoded and en-

coded words, respectively. Let m be the difference in numeric value between

s and t, and let #δ(k) be the STC for an integer k. The Boolean predicate

Ps,t,m denotes the constraint satisfied by all VDBS encoders that maintain or

5.2. VDBS Encoding 423

reduce STCs while inducing a deviation less than or equal to m:

Ps,t,m = (|s− t| ≤ m) ∧ ((#δ(s)−#δ(t)) ≥ 0) .

Let ∆s,t = |#δ(s) − #δ(t)| be the difference in serial transition counts

between two words s and t. Given an input word s and integer m indicat-

ing how much deviation in s is acceptable, there are four possible encoding

functions that satisfy the Boolean predicate Ps,t,m. These functions define the

bounds on transition reduction and value deviation:

e1(s, m) =

(

τ s.t. Ps,τ,m ∧
(

|s− τ | = min
0<i<2l−1

|s− i|
))

,

e2(s, m) =

(

τ s.t. Ps,τ,m ∧
(

|s− τ | = max
0<i<2l−1

|s− i|
))

,

e3(s, m) =

(

τ s.t. Ps,τ,m ∧
(

∆s,τ = min
0<i<2l−1

∆s,i

))

,

e4(s, m) =

(

τ s.t. Ps,τ,m ∧
(

∆s,τ = max
0<i<2l−1

∆s,i

))

. �

In what follows, we restrict our treatment to unsigned integers. The analy-

sis easily extends to two’s-complement, fixed-, and floating-point representa-

tions.

5.2.2 Properties of the optimal VDBS encoders

The four functions e1 through e4 bound the amount by which VDBS encoders

reduce STCs and bound the deviation they induce:

• e1(s, m) causes the smallest deviations.

• e2(s, m) causes the largest deviations.

• e3(s, m) reduces STCs the least.

• e4(s, m) reduces STCs the most.

Our objective is to obtain a method for VDBS encoding whose behavior en-

compasses the best of the properties of all the above encoders: induced devi-

ation close to that of e1 and STC reduction close to that of e4.

The subset of three encoder types e1, e3, and e4 are Pareto-optimal

when considering both serial transition reduction and deviation. Because it

424 Tolerating Errors in Inputs

is strictly dominated by e4, the encoder e2 is not in the Pareto set. The be-

havior of the simplistic encoder that for a given tolerable deviation m only

removes transitions from the lower ⌈log2(m)⌉ bits is similar to e2 (§ 5.2.6).

Two essential components in the formulation of VDBS encoders are:

➊ The number of serial transitions that occur when a single value s is

transmitted over a serial link (two transitions in Figure 5.10(a)). This is

the serial transition count (STC) of the word or value s.

➋ The difference in serial transition counts between two words (a dif-

ference of one between s and t in Figure 5.10).

Throughout this work, the values considered will be unsigned.

Definition 2 (Serial transition count function, #δ(s)).

Let s be an l-bit unsigned integer with bits s0, s1, . . . , sl−1, from least- to

most-significant bit. Then, we define #δ(s), the number of signal transitions

in the serialization of s, as

#δ(s) =
l−2
∑

i=0

si ⊕ si+1. �

Definition 3 (Serial transition count difference, ∆s,t).

Let s and t be two l-bit words. Then, we define ∆s,t, as the absolute value of

their difference in serial transition counts:

∆s,t = |#δ(s)−#δ(t)|. �

5.2.3 Properties of function #δ(n)

For an l-bit value n, the properties of the serial transition count (STC) func-

tion #δ(n), which we explore next, give insights into the efficiency limits of

VDBS encoders.

Proposition 1 (Maximum serial transition count pattern).

When l is even, the maximum serial transition count occurs when the l-bit

word has l
2

0s and the same number of 1s. �

Proof (Maximum serial transition count pattern).

To maximize the serial transition count, there should be a transition in moving

5.2. VDBS Encoding 425

17010 =

101010102

000000002 111111112

m = 170
10

m = 85
10

8510 =

010101012

111111112 000000002

m = 170
10

m = 85
10

Induced error, m:

All transitions removed:

Figure 5.11: The maximum serial transition counts for l-bit values occur when they have

alternating 0s and 1s in their binary representations.

between every neighboring pair of bit positions. Thus, when l is even, words

with maximum serial transition count have l
2

0s and the same number of 1s.

�

Corollary 1 (Maximum serial transition count basis values).

There are two values with maximum serial transition count. When l is even,

these values are

b̂1 =

l
2

−1
∑

i=0

22i = 1
3
(2l − 1) (5.1)

and

b̂2 = 2l − 1−
l
2

−1
∑

i=0

22i = 2
3
(2l − 1).

�

This follows directly from Proposition 1. For example, Figure 5.11 illus-

trates how, for l = 8, the maximal-serial-transition-count words are 85 and

170.

Lemma 1 (Maximum serial transition count).

For every l-bit word n, #δ(n) ≤ l − 1. �

Proof (Maximum serial transition count).

The number of bits (l) in a word is a natural number. When l is 1, there are

no transitions in the word, by definition of the serial transition count. For all

other l, the maximum serial transition count occurs when all adjacent bits of

the word differ. There are four cases in which this could happen, correspond-

ing to whether l is even or odd, and whether the least-significant bit (LSB) is

a 1 or a 0.

426 Tolerating Errors in Inputs

First, consider the cases when l is even. When l is even, there are l
2

ones

and l
2

zeros. If the LSB is 0, there will be one transition in moving from the

LSB towards the most-significant bit (MSB), and each of the remaining l
2
−1

bits which are 0 will have two associated transitions. There will therefore be

a total of l − 1 transitions. A similar argument applies if the LSB is 1.

Next, consider the cases when l is odd. When l is odd, there are either

⌊ l
2
⌋ bits which are 1 and ⌈ l

2
⌉ bits which are 0, or vice versa. The bit polarity

appearing in the LSB will occur l−1
2

+ 1 times, and the opposite polarity to

the LSB will occur l−1
2

times.

There will be one transition moving out of the LSB towards the MSB,

followed by transitions in the remaining l − 1 bits. Since l is odd, it follows

that l−1 is even. But we showed above that such an even number of bits could

contain at most (l − 1) − 1 transitions. Thus, when l is odd, the maximum

number of transitions is also 1 + (l − 1) − 1. That is, the maximum number

of transitions is l − 1. �

Theorem 1 (Serial transitions and Gray code).

Let s be an l-bit integer, let GrayCode(s) denote the sth value in Gray code

order for l-bit values, and let #1(n) denote the count of 1s in an l-bit integer

n. Then, #δ(s) = #1(GrayCode(s)). �

For example, for l = 8 and s = 30 (000111102), GrayCode(s) = 17

(000100012) and #1(GrayCode(s)) = 2.

We will use the following, the Gray code theorem of Wilf [Wilf and Ni-

jenhuis, 1989], in the proof of Theorem 1. We include a self-contained adap-

tation of Wilf’s original proof here so that our discussion stands on its own.

Theorem 2 (Wilf’s Gray Code Theorem).

Let s be an l-bit integer with bits s0, s1, . . . , sl−1, from least- to most-

significant bit. Let g be the sth l-bit integer in Gray code order, with bits

g0, g1, . . . , gl−1, from least- to most-significant bit. For l = 1 we have

g0 = s0. In general, for l ≥ 2,

gi ≡ si + si+1 (mod 2) (i = 0, . . . , l − 2)

and

gl−1 = sl−1. �

5.2. VDBS Encoding 427

L0 = {}

L0

0
= {0}

L0

1

= {1}

L1 = {0, 1}

L0

1
= {00, 01}

L1

1

= {11, 10}

L2 = {00, 01, 11, 10}

L0

2
= {000, 001, 011, 010}

L2

1

= {110, 111, 101, 100}

L3 = {000, 001, 011, 010, 110, 111, 101, 100}

l = 0

l = 1

l = 2

l = 3

= 4

Figure 5.12: Illustration of the construction of the list Ll of l-bit strings in Gray code order,

for l = 1, l = 2, and l = 3.

For example, consider the 8-bit value 63. The string of rank 63 in the 8-bit

Gray code, that is, the 63rd Gray code value, can be constructed as follows:

For the ith bit, simply take the ith and i+1th bits of 63, and add them modulo

2.

Proof (Wilf’s Gray Code Theorem).

Let Ll be the list of l-bit strings in Gray code order. L0 is the empty list. The

list Ll can be constructed recursively as follows:

• Let L0
l−1 be the list obtained by prefixing every element of Ll−1 with

an additional 0.

• Let Ll−1
1

be the list obtained by prefixing every element of the list

Ll−1, in reverse order, with an additional 1.

• Ll is the concatenation of L0
l−1 and Ll−1

1
.

The construction of the list Ll is illustrated in Figure 5.12 for l = 1,

l = 2, and l = 3. By construction therefore, the 2l entries for an l-bit Gray

code will be identical to the first 2l entries for an (l + 1)-bit Gray code; we

use this property below.

We prove by induction on l that the property of Theorem 2 holds for all

l-bit integers s. When l = 0, Ll is the empty list, and the property we seek

428 Tolerating Errors in Inputs

to prove is vacuously true. Suppose the property of Theorem 2 holds for all

strings on the list Ll−1. By construction of Ll, we know the property must

also hold for the first 2l−1 items on Ll. Suppose then, that s ≥ 2l−1. Let

s′ = 2l − 1− s. Then the property of Theorem 2 holds for the string that has

Gray code rank s′, since it is by its definition less than 2l−1.

Again by construction of the Gray code lists Ll from Ll−1, it is the case

that for any given value 0 ≤ k < 2l−1, the first l − 1 bits of the Gray code

strings g and g′ with ranks s = k and s′ = k are identical. Furthermore, the

most-significant bits, gl−1 and g′
l−1, of these corresponding strings, have the

relation

gl−1 ≡ 1 + g′
l−1 (mod 2).

At the same time, the binary representations of the integers s and s′ have the

relation

si ≡ 1 + s′
i (mod 2) (i = 0, . . . , l − 1),

and the property of Theorem 2 continues to hold for all strings on the list Ll.

�

We now use Wilf’s Gray code theorem to prove the property of Theo-

rem 1, which relates properties of transitions within a single word, s, when

serialized, to properties of the rank-s Gray code.

Proof (Serial transitions and Gray code).

The proof is a direct result of Theorem 2. Let g be the Gray code representa-

tion for l-bit integer s. That is, g is the rank-s l-bit Gray code. The number of

1s in g, #1(g), is

#1(g) =
l−1
∑

i=0

gi

=
l−2
∑

i=0

(si + si+1 (mod 2)) , from Theorem 2

=
l−2
∑

i=0

(si ⊕ si+1) .

But this is exactly the #δ(s) from Definition 2. �

5.2. VDBS Encoding 429

5.2.4 Bounds on serial transition count reduction

We can reduce the number of serial transitions in words without changing the

word size, by introducing errors into the values represented by words. The

maximum number of serial transitions we can remove by doing so, is limited:

Property 1 (Bound on serial transition count difference).

For any two l-bit words s and t, the serial transition count difference, ∆s,t is

less than or equal to l − 1. �

Proof (Bound on serial transition count difference).

By construction, the serial transition count, #δ(s) for a non-negative integer

s, is a natural number. Therefore, the largest serial transition count difference,

will occur when either #δ(s) is zero and #δ(t) takes on the maximum value

in the codomain of #δ(t), or vice versa. From Lemma 1, this maximum value

is l− 1. Thus the maximum serial transition count difference, ∆s,t is l− 1. �

Across all possible l-bit words, the deviation induced when transitions

are reduced by the maximum of l − 1, is bounded:

Property 2 (Minimum and maximum deviation at maximum serial transition

count difference).

Let s and t be two l-bit words with l even. If s and t differ in serial transi-

tion count by the maximum possible amount (l − 1), then their difference in

numeric value is bounded by:

min
∆s,t=l−1

{|s− t|} = 1
3

(

2∆s,t+1 − 1
)

, (5.2)

and

max
∆s,t=l−1

{|s− t|} = 2
3

(

2∆s,t+1 − 1
)

. (5.3)

�

Proof (Minimum and maximum deviation at maximum serial transition count

difference).

Follows directly from Corollary 1. �

430 Tolerating Errors in Inputs

For example, for l = 8, we have from Lemma 1 that the maximal serial

transition count difference is l − 1 = 7. The minimum deviation between

two words which have this maximum serial transition count difference, from

Property 2, is 85. Therefore, to reduce the serial transition count of an 8-bit

word by 7 transitions, one cannot do so with a replacement word that deviates

from it by less than 85.

The bounds of Property 2 are only specified for the case of maximal

changes in serial transition count, not for any arbitrary reduction in serial

transition count. General bounds across all possible values of serial transi-

tion count reduction are desirable, because they would enable us to answer

questions such as:

• By how much can serial transition counts differ for a given value

deviation? This will be captured by Definition 4 and Theorem 3 below.

• By how much can values differ for a given difference in serial transi-

tion count? Property 2 answers this question for the restricted case of

a serial transition count difference of l− 1. The answer for the general

case will be captured by Definition 5 below.

Definition 4 (Serial transition difference bound function).

Given an l-bit integer m, let f(m) be a function yielding the amount by which

the serial transition counts of two unsigned l-bit words s and t can differ if

|s− t| = m. That is,

f(m) = max
|s−t|=m

{∆s,t} . �

Why f(m) is important: The function f(m) is interesting because, if

one had an exact expression or tight bounds for f(m), then an algorithm that

searched for the serial-transition-reducing encoding for a value s could ter-

minate as soon as it found a value t such that ∆s,t = f(m), since no better

value than t is possible.

Theorem 3 (Bound on f(m)).

The function f(m) of Definition 4, for any l-bit value, m (with l even), is not

monotone. The best linear monotone bound on f(m) is f(m) ≤ l − 1 . �

Proof (Bound on f(m)).

Let s and t be two unsigned l-bit words, and let m be |s − t|, a value in the

5.2. VDBS Encoding 431

domain of f . If m is 0, then s is identical to t, and must have identical serial

transition count, thus #δ(s) = #δ(t) and therefore f(0) = 0. If m is 2l − 1,

then either s is 2l − 1 and t is zero, or vice versa. In both cases, their serial

transition counts are 0 by definition, that is #δ(s) = #δ(t) = 0. Thus, when

m is 2l − 1, f(m) = 0.

From Corollary 1 and Lemma 1, the maximum value of f(m) is l − 1,

and it occurs at two values, b̂1 and b̂2 from Equation 5.1. Both b̂1 and b̂2 are

greater than 0 and less than 2l−1. Since f(0) is 0, f(b̂1) is l−1, f(b̂2) is l−1,

and f(2l − 1) is 0, it follows that f(m) is not monotone.

From Corollary 1 and Lemma 1, since there are two values of m for which

f(m) takes on its maximum value of l − 1, it follows that the tightest linear

bound on f(m) must pass through these points. Thus the tightest linear bound

on f(m) is l − 1. �

Figure 5.13(a) illustrates several properties of f(m), and Figure 5.13(b)

shows an empirical exact enumeration of f(m) across all possible unsigned

8-bit values. The maximum value of m is 2l − 1 and the maximum value of

f(m) is l − 1, as indicated by the shaded region in Figure 5.13(a). There can

be no reduction in serial transition count when the accompanying deviation

in value is 0, and thus f(0) = 0. Similarly, when the deviation induced by

encoding is 2l − 1 (i.e., the original and encoded values are 0 and 2l − 1

or vice versa), there can be no reduction in serial transition count, and thus

f(2l−1) = 0. The maxima of f(m) occur at m = 1
3
(2l−1) and m = 2

3
(2l−1).

Definition 5 (Value deviation bound functions).

Let g(d) be the minimum amount by which two integers s and t can differ if

their difference in serial transition count, ∆s,t, is d. Similarly, let ĝ(d) be the

maximum amount by which two integers s and t can differ if their difference

in serial transition count, ∆s,t, is d. That is,

g(d) = min
∆s,t=d

{|s− t|} , and ĝ(d) = max
∆s,t=d

{|s− t|} . �

Figure 5.14(a) illustrates several properties of g(d) and ĝ(d), and Fig-

ure 5.14(b) shows an empirical exact enumeration of g(d) and ĝ(d) for un-

signed 8-bit values. When there is no difference in serial transition count

(d = 0 in the figures) the original and encoded values may be identical

(g(0) = 0) or may be 0 and 2l − 1 or vice versa (ĝ(0) = 2l − 1). At the

432 Tolerating Errors in Inputs

f(m)

f(0) = 0

2l - 1

l - 1

f(m) is undefined
in these regions

since m = 0 when s = t

m
f(2l - 1) = 0

1

3
(2l − 1) 2

3
(2l − 1)

(a) Illustration of f(m).

� �� ��� ��� ��� ���
�
�
�
�
�
�
�
�

�

�(�
)

(b) Numerical evaluation of f(m).

Figure 5.13: The function f(m) yielding the amount by which the serial transition counts of

two words s and t can differ if |s − t| = m, is not monotone.

l - 1

undefined
in these regions

2l - 1

d

ĝ(d), g(d) ĝ(d), g(d)

0

1

3
(2l − 1)

2

3
(2l − 1)

(a) Illustration of g(d) and ĝ(d).

△ △ △ △ △ △ △
△

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

� � � � �
�

��
���
���
���
���

�

�(
�)
��
△���

�
�(
�)
��
▽�

(b) Numerical evaluation: g(d), ĝ(d).

Figure 5.14: At minimum serial transition count (STC) difference, d = 0, either s and t are

identical, or they are different but take on values s = 0 and t = 2l − 1 or vice versa.

5.2. VDBS Encoding 433

maximum possible serial transition count reduction (d = l − 1), the incurred

deviation cannot be reduced below 1
3
(2l− 1); the worst-case deviation at this

maximal-transition-reduction point is however also limited, at 2
3
(2l − 1).

5.2.5 Rake: Efficient VDBS encoding

Given an unencoded value s in which an application can tolerate a value devi-

ation m, the family of encoders of Definition 1 specify the possible optimum

ways in which encoding can reduce serial transitions in s. The encoders of

Definition 1 also determine the amount of deviation that an encoding will

induce, for a given selected deviation that applications can tolerate. Exact al-

gorithms for the optimal encoders must however select an encoded value for

s out of a set whose size is exponential in the word size of s. A brute-force

application of the predicate in Definition 1 is therefore inefficient even if ap-

plied offline to generate a lookup table (LUT) and is impractical for large

word sizes.

To address the cost of the Pareto-optimal encoders of Definition 1, partic-

ularly for large word sizes, we present Rake, an efficient algorithm for VDBS

encoding. Rake’s execution time is linear in the word size of the values it en-

codes. For a specified deviation m in its encoded values, Rake reduces transi-

tions more than the basic technique that simply removes all transitions from

the lower-order ⌈log2(m)⌉ bits. At the same time, Rake reduces transitions

almost as much as the Pareto-optimal VDBS encoder e4 that minimizes the

serial transition count for a given tolerable deviation. On average, Rake incurs

value deviations smaller than all the Pareto-optimum VDBS encoders except

e1 (which minimizes value deviation). We call the algorithm Rake because it

operates in two sweeps of a word, accumulating metadata in the first sweep

and leveling out transitions in the second. The Rake algorithm (Algorithm 1)

operates as follows.

In the first phase (lines 1 to 6), moving across the l-bit input word s

from least-significant bit (LSB) to most-significant bit (MSB), Rake stores

the number of transitions seen to-date in the transition count register, nt.

Rake stores the indices of these transitions in the transition indices array,

tr (line 2). For each transition, Rake stores the length of the run of 0s or 1s

leading to the transition, in the run length temporary register, rl (line 3). Each

such run of 0s or 1s could be bit-wise negated to either increase or decrease

434 Tolerating Errors in Inputs

Algorithm 1: Outline of Rake algorithm for VDBS encoding.

/* First phase, from LSB to MSB; the transition count

register, nt, stores count of transitions seen. */

1 for nt← 0; i← 0, i < l, i← i + 1 do

/* If adjacent bits differ, store transition location

in tr[]. */

if (i < l − 1) and (si 6= si+1) then

2 tr[nt]← i
if (nt > 0) then

/* rl gets length of 0- or 1-run that transition

abuts; rc gets contrib. */

3 rl← tr[nt]− tr[nt− 1]

rc← (2rl − 1) << tr[nt− 1]

if (nt > 0) and (si = 0) then

/* Store contrib. of run of 0s in cr0c. */

4 cr0c[i]← rc

if (nt > 0) and (si = 1) then

/* Store contrib. of run of 1s in cr1c. */

5 cr1c[i]← rc

nt← nt + 1

else if i > 0 then

/* Pad cumulative count arrays. */

cr0c[i]← cr0c[i− 1]
6 cr1c[i]← cr1c[i− 1]

/* Second phase, from MSB to LSB; inspect only the nt bit

positions that have transitions. */

7 while nt > 0 do

/* rl: run length; rc run’s contrib. if its bits were

flipped to remove transition: */

rl← tr[nt]− tr[nt− 1]

rc← (2rl − 1) << tr[nt− 1]
/* Can deviation caused by negating bits be offset by

negating runs of lower-order bits?: */

8 if (str[nt−1] = 0) and ((rc− cr1c[nt− 1]) ≤ m) then
return (s + rc− cr1c[nt− 1])

9 if (str[nt−1] = 1) and ((rc− cr0c[nt− 1]) ≤ m) then
return (s− rc + cr0c[nt− 1])

nt← nt− 1

10 return s

5.2. VDBS Encoding 435

the value of s. Rake stores the change in value that such a negation would

contribute, in the cumulative run contribution arrays, cr0c for runs of 0s and

cr1c for runs of 1s (lines 4 and 5).

In the second phase (lines 7 to 10), Rake moves across the input in the

opposite direction, from MSB to LSB, inspecting only the nt bit positions

that have transitions. Rake previously stored these locations in tr. For each

of the nt transition locations in tr, Rake checks whether the value deviation

incurred by negating the bits that constitute a transition could be offset by the

runs of lower-order bits of opposite polarity, as represented by the contents

of cr0c and cr1c (lines 8 and 9). Rake removes the first transition that passes

this check and completes. Rake takes l steps as it traverses from the LSB

to the MSB, followed by at most nt − 2 steps in the opposite direction. The

maximum value of nt is l−1, thus Rake takes a maximum of 2l−3 steps. For

example, for 24-bit values, Rake requires only 45 steps, compared to having

to explore a space of 16 million values for the exact optimal solution.

Rake is not only efficient, but also effective: Rake reduces transitions al-

most as much as the optimal VDBS encoder e4 as we show in § 5.2.6. By con-

trast, the naive approach of simply removing transitions from the lower-order

log2(m) bits for a tolerable value deviation of m does not reduce transitions

as much as Rake does.

5.2.6 Numerical evaluation

Two objective metrics are important for VDBS encoders:

➊ The average serial transition count reduction for a given word size

and tolerable deviation.

➋ The average actual deviation that is induced by encoders for a given

tolerable deviation.

We evaluate both the ideal encoders of § 5.2 as well as the Rake encoder

of § 5.2.5 under these two measures, by applying the encoders to all possible

unsigned words with sizes of 8 and 16 bits. These sizes are representative

of the range of word sizes for sensor and ADC values used in real-world

systems. (We provide detailed end-to-end application evaluations in § 5.3.)

436 Tolerating Errors in Inputs

���� ���� ����� ������
��
��
��
��

���

��������� ��������� (% ���)

��
�
��

��
��
��
�
(%

)

Alg+Simple

Alg+Runs+Aggressive

Search-A

Search-B

Search-C

Search-D

���� ���� ����� ������

��

��

��

��

��

��������� ��������� (% ���)

�
��

�
��

��
��

��
���

���
�

Alg+Simple

Alg+Runs+Aggressive

Search-A

Search-B

Search-C

Search-D

���� ���� ���� �����
��
��
��
��

���

��������� ��������� (% ���)

��
�
��

��
��
��
�
(%

)

Alg+Simple

Alg+Runs+Aggressive

Search-A

Search-B

Search-C

Search-D

���� ���� ���� �����

��

��

��

��

��

��������� ��������� (% ���)

�
��

�
��

��
��

��
���

���
�

Alg+Simple

Alg+Runs+Aggressive

Search-A

Search-B

Search-C

Search-D

 Legend: ◇ : e
4
 ▿ : e

3
 : e

2
 □ : e

1
 △ : Rake : Basic VDBS

Figure 5.15: Mean serial transition count (STC) reduction and actual deviation versus tol-

erable deviation expressed as a fraction of the full-scale range (FSR). 8-bit values (top row)

and 16-bit values (bottom row). The dashed gray line in the right column shows where actual

deviation equals tolerable deviation.

Transition reduction and induced deviation

We evaluate Rake and the Pareto-optimal encoders by applying them to all

possible unsigned values for a given word size, l. The word sizes we evaluate

are l = 8 and l = 16. For each word size, we select 10 values of tolerable

deviation, m, uniformly spaced between 0 and 50. For each value of tolera-

ble deviation, we apply each of the Rake and Pareto-optimal encoders to all

l-bit values. From the resulting 2l encoded values for each encoder, we com-

pute the mean serial transition reduction at each value of tolerable deviation

m. From the encoded values paired with their original unencoded values, for

each encoder, we compute the mean induced deviation at each tolerable de-

viation m. Figure 5.15 presents the results. The figure plots the percentage

reduction in serial transition count and the average value deviation resulting

from encoding, as functions of the tolerable deviation specified during encod-

ing (expressed as a percentage of the full-scale range of l-bit values).

5.2. VDBS Encoding 437

The top row of Figure 5.15 shows the results for 8-bit values. For a tol-

erable deviation of 10 % of the full-scale range of 8-bit values, Rake reduces

signal transitions by 67 %. For this tolerable deviation, the mean actual de-

viation is 4 % of the full-scale range (i.e., 10). The results in Figure 5.15

show that Rake reduces serial transitions more than all but one of the Pareto-

optimal encoders: Rake reduces transitions by only 5 percentage points less

than the optimal encoder that minimizes serial transitions (e4). The average

deviation induced by Rake is also better than all but one of the Pareto-optimal

encoders: At a tolerable deviation of 10 % of the full-scale range, Rake’s in-

duced deviation is less than 4 percentage points worse than the optimal en-

coder that minimizes deviation (e1). Even at moderate tolerable deviations of

5 % of the full-scale range, Rake reduces transitions almost twice as much

as existing encoding techniques for deviation-free serial buses [Chiu et al.,

2013].

The results for 16-bit words follow a similar trend (bottom row of Fig-

ure 5.15). For a tolerable deviation of 0.12 % of the full-scale range, Rake

reduces signal transitions by 41 % on average, while inducing deviations of

0.05 % of the full-scale range, on average.

Effective number of bits of encoded values

The effective number of bits (ENOB) denotes the number of

unique levels representable by encoded values and is computed as

log2 (|{unique encoder output values}|). Representing values with fewer bits

reduces the number of signal transitions within transmitted words and in

the clock signal. Figure 5.16 presents the serial transition count reduction

as a function of the ENOB, for Rake-encoded 8-bit words as well as for

progressively shorter unencoded words. For a given ENOB, Rake encoding

of 8-bit words reduces transitions up to 60 % more than simply employing

shorter unencoded words that have the same ENOB.

VDBS encoders such as Rake have several additional advantages over

simply employing smaller word sizes. VDBS encoding reduces transitions

without requiring changes to the datapath of applications (e.g., without re-

quiring changes to algorithms to use 5-bit data instead of 8-bit data). And

VDBS encoding provides 7.4-times finer-grained control of the amount of

transition reduction, because it enables fractional steps in the ENOB.

438 Tolerating Errors in Inputs

� � � � � � � �
�

��
��
��
��

����

��
�
��

��
��
��
�
(%

)

VDBS Encoding

Bitwidth Clock-Only Transition Reduction

� � � � � � � �
�

��
��
��
��

����

��
�
��

��
��
��
�
(%

)

VDBS Encoding

Bitwidth Word and Clock Transition Reduction

Figure 5.16: Rake encoding (◦) reduces the serial transition count (STC) by up to 24 percent-

age points (i.e., a 60% improvement in the fraction of transitions removed) more than shorter

words of equal ENOB (△), considering only intra-word transitions (left), and total intra-word

and clock transitions (right).

Imaging Sensor

data

Imaging Sensor Controller

Processor

Serial Communication Interface

VDBS Encoder

clock

OCR

Algorithm

Optics

Figure 5.17: Illustration of a VDBS encoder in an optical character recognition application.

5.3 End-to-end Evaluation

We evaluate Rake in two end-to-end application settings. The evaluation re-

sults indicate that Rake can significantly reduce signal transitions in exchange

for small deviations in encoded values. Because these deviations are often

masked by the data-flow of common sensor signal processing algorithms, the

deviations lead to only small errors at the application level.

5.3.1 Encoding data in a text-recognition system

We apply Rake to images in transfer between a camera and processor in a text-

recognition system such as that illustrated in Figure 5.17. Text recognition

is an important component of many applications, such as augmented reality

systems. We evaluate the amount by which Rake reduces data transfer signal

transitions as well as its end-to-end effect on optical character recognition

(OCR) errors.

We use version 3.02 of the Tesseract OCR system [Smith, 2007], widely

5.3. End-to-end Evaluation 439

Figure 5.18: 392 image subset from the ICDAR text recognition dataset [Wong et al., 2003]

used in evaluation. This is the subset for which Tesseract [Smith, 2007] correctly reports OCR

text identical to the benchmark-supplied ground truth.

regarded to be the most accurate open-source OCR package. For input, we use

the test set from the ICDAR text image dataset [Wong et al., 2003] and select

as our baseline the 392 images (Figure 5.18) for which Tesseract returns the

same recognition text as the benchmark’s ground truth. We then apply Rake

to each of these 392 text images, with degrees of tolerable deviation rang-

ing from 0 % to 20 % of the full-scale range of the 8-bit per-color-channel

pixel values. We quantify the errors in text recognition using the standard

edit-distance-based metric used in the text-recognition literature [Rice et al.,

1997]. Figure 5.19 presents an example of the effect of Rake on two input

text images, as well as the effect on OCR accuracy and on transitions in the

serialized image data. The examples in Figure 5.19 illustrate how Rake ap-

plied to image data can significantly reduce transitions without affecting the

output of OCR algorithms applied to the images.

Figure 5.20 presents Rake’s serial transition count reduction and its in-

duced reduction in OCR accuracy as functions of the tolerable deviation in

encoded values. The results in Figure 5.20 show that Rake reduces transitions

significantly with minimal effect on OCR error. With a target tolerable devi-

ation of 5 %, Rake reduces serial transitions by over 55 %, while maintaining

an OCR accuracy of over 90 % for previously-correctly-recognized text.

440 Tolerating Errors in Inputs

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

00%↓00%↓

Tolerable

Deviation

Image

A
Transition

Reduction

Image

B
OCR

Text

“EXIT”

“EXIT”

“EXIT”

“EXIT”

“EXIT”

“LTXIT”

“”

“”

“”

“”

“”

Transition

Reduction

OCR

Text

“centre”

“centre”

“centre”

“centrg”

“centre”

“centre”

“centre”

“centre”

“centre”

“centre”

“centre”

43%↓

51%↓

59%↓

63%↓

66%↓

70%↓

71%↓

72%↓

72%↓

73%↓

39%↓

49%↓

55%↓

58%↓

61%↓

70%↓

72%↓

72%↓

73%↓

73%↓

Figure 5.19: For two example images (first row, second and fifth columns), higher tolerable

deviation enables more transition reduction, at the cost of OCR errors.

� � �� �� ��

��

��

��

��

��������� ��������� (% ���)

��
�
��

��
��
��
�
(%

)

� � �� �� ��
�

��
��
��
��

���

��������� ��������� (% ���)

��
�
��

��
��
��

(%
)

Figure 5.20: Averaged across the 392 images, for a target tolerable deviation of 5 %, Rake

reduces the serial transition count (STC) by 55 % while keeping OCR accuracy above 90 %.

5.3. End-to-end Evaluation 441

x-component analysis

y-component analysis

z-component analysis

Pedometer / Step Counting System

Low-

Pass

Filter

Maximum-

Activity

Axis

Selection

S
te

p

C
o

u
n

t

Extremal

Value

Marking

Processor
V

D
B

S
 E

n
c

o
d

e
r

A
c

c
e

le
ro

m
e

te
r

Figure 5.21: A VDBS encoder within a pedometer system.

●

● ● ● ● ● ● ● ● ● ●

◒

◒
◒

◒ ◒ ◒ ◒ ◒ ◒ ◒ ◒

◓

◓
◓

◓ ◓ ◓ ◓ ◓ ◓ ◓ ◓

�� ��� �� ����
��
��
��
��
��
��
��

��������� ��������� (% ���)

��
�
��

��
��
��
�
(%

)

● ● ● ● ● ● ● ● ● ● ●
◒

◒ ◒
◒ ◒

◒
◒

◒
◒ ◒ ◒

◓

◓ ◓ ◓
◓ ◓ ◓

◓ ◓
◓

◓

�� ��� �� ���
-�
�
�

��
��
��

��������� ��������� (% ���)

��
��

��
��

��
���

�(
%
)

 Legend: ◒ : Minimum ◓ : Maximum ● : Mean (Error bars: Standard Deviation)

Figure 5.22: For a target tolerable deviation of 4 %, Rake reduces the serial transition count

(STC) by 54 % on average, while inducing step count errors of less than 5 % on average.

5.3.2 Encoding data in a pedometer system

We apply Rake to accelerometer data in a pedometer system (Figure 5.21).

Pedometer facilities are central to many health and wellness applications and

these applications constitute a growing market with important positive soci-

etal impact.

We use 3-axis accelerometer data sampled at 20 Hz, a total of 334377

samples or over 4.6 hours worth of walking. The samples are taken from

12 different users in the publicly-available WISDM activity recognition

dataset [Kwapisz et al., 2011]. The WISDM dataset provides real-valued

samples. In practice, however, actual accelerometer sensors provide a fixed

number of bits of resolution, either directly or through the use of an ADC.

We therefore convert the samples to 13-bit values to match the resolution of

a state-of-the-art accelerometer [Zhao, 2010]. We then apply Rake to the 13-

bit data, with degrees of tolerable deviation ranging from 0 % to 5 % of the

full-scale range of values, before passing the encoded data to a step counting

algorithm [Zhao, 2010]. Figure 5.22 presents the resulting reduction in serial

442 Tolerating Errors in Inputs

transition count and the induced step count errors as functions of the tolerable

deviation. The results show that at target tolerable deviations of 4 %, Rake re-

duces transitions by up to 63 % with a mean of 54 %, inducing step counting

errors of less than 5 % on average.

6

Conclusion

The traditional mechanisms for improving computing systems performance

and energy efficiency, by shrinking transistor dimensions based on Dennard

scaling rules are approaching fundamental physical limits. As a result, com-

puting systems have ceased to provide the efficiency and performance ben-

efits on which modern society has come to depend. Without these contin-

ued improvements, new applications ranging from personalized health and

computer vision applications for the visually impaired, to big data analysis

for climate modeling, may be at risk. Error-efficient hardware, software, and

algorithm design are a new class of techniques to achieve improved perfor-

mance and energy efficiency by only providing as much accuracy, precision,

or reliability as applications require. They provide a new and compelling al-

ternative to the traditional approaches to computing system design and an

alternative path to continued improvements of computing performance and

efficiency from which modern society will continue to benefit. Research in

this research area has however to-date been conducted by separate research

communities, each focusing either on computer-aided design , circuits, com-

puter architecture, systems software, or programming languages.

This review provided an introduction and review of error-efficient com-

puting systems, from their historical context, to the fundamental concepts that

443

444 Conclusion

underpin them (faults, errors, randomization), to the the reasons why they are

interesting (tradeoffs between correctness and resource usage). The goal of

the review is to provide a holistic picture of the challenges in error-efficient

systems, from device technology to human perception and psychophysics.

References

Ismail Akturk, Karen Khatamifard, and Ulya R Karpuzcu. On quantification of accu-

racy loss in approximate computing. In Workshop on Duplicating, Deconstructing

and Debunking (WDDD), pages 15–, 2015.

Armin Alaghi and John P. Hayes. Survey of stochastic computing. ACM Trans.

Embed. Comput. Syst., 12(2s):92:1–92:19, May 2013.

Andres Albanese, Johannes Blömer, Jeff Edmonds, Michael Luby, and Madhu Su-

dan. Priority encoding transmission. Information Theory, IEEE Transactions on,

42(6):1737–1744, 1996.

R. Amirtharajah and A. P. Chandrakasan. A micropower programmable DSP using

approximate signal processing based on distributed arithmetic. IEEE Journal of

Solid-State Circuits, 39(2):337–347, 2004.

Analog Devices. ADXL362 Micropower, 3-Axis, ±2 g / ±4 g / ±8 g Digital Output

MEMS Accelerometer, Data Sheet, 2014.

Bhojan Anand, Karthik Thirugnanam, Jeena Sebastian, Pravein G. Kannan, Akhi-

hebbal L. Ananda, Mun Choon Chan, and Rajesh Krishna Balan. Adaptive display

power management for mobile games. In Proceedings of the 9th International

Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages

57–70, New York, NY, USA, 2011. ACM.

Todd Austin, David Blaauw, Trevor Mudge, and Krisztián Flautner. Making typical

silicon matter with razor. Computer, 37:57–65, March 2004.

445

446 References

Todd Austin, Valeria Bertacco, David Blaauw, and Trevor Mudge. Opportunities

and challenges for better than worst-case design. In Proceedings of the 2005 Asia

and South Pacific Design Automation Conference, ASP-DAC ’05, pages 2–7, New

York, NY, USA, 2005. ACM.

A. Avizeinis. The N-Version Approach to Fault-Tolerant Software. IEEE Transac-

tions of Software Engineering, SE-11(12):1491–1501, December 1985.

A. Avižienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-

omy of dependable and secure computing. IEEE transactions on dependable and

secure computing, pages 11–33, 2004.

H. Aydın, R. Melhem, and D. Mossé. Incorporating Error Recovery into the Im-

precise Computation Model. In The Sixth International Conference on Real-Time

Computing Systems and Applications (RTCSA ’99).

Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting energy-

conscious programming using controlled approximation. In Proceedings of the

2010 ACM SIGPLAN conference on Programming language design and imple-

mentation, PLDI ’10, pages 198–209, New York, NY, USA, 2010. ACM.

Yu Bai and Mingjie Lin. Energy-efficient discrete signal processing with field pro-

grammable analog arrays (fpaas). In Proceedings of the 2015 ACM/SIGDA In-

ternational Symposium on Field-Programmable Gate Arrays, FPGA ’15, pages

84–93, New York, NY, USA, 2015. ACM.

David H Bailey. High-precision floating-point arithmetic in scientific computation.

Computing in science & engineering, 7(3):54–61, 2005.

J. Bau, R. Hankins, Q. Jacobson, S. Mitra, B. Saha, and A.R. Adl-Tabatabai. Er-

ror resilient system architecture (ERSA) for probabilistic applications. In IEEE

Workshop on Silicon Errors in Logic-System Effects, SELSE, 2007.

Robert C. Baumann. Radiation-Induced Soft Errors in Advanced Semiconductor

Technologies. 5(3):305–316, September 2005.

Charles H Bennett and Rolf Landauer. The fundamental physical limits of computa-

tion. Scientific American, 253(1):48–56, 1985.

Florian Benz, Andreas Hildebrandt, and Sebastian Hack. A dynamic program anal-

ysis to find floating-point accuracy problems. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’12, pages 453–462. ACM, 2012.

Toby Berger. Rate-distortion theory. Encyclopedia of Telecommunications, 1971.

B. R. Borgerson and R. F. Freitas. A reliability model for gracefully degrading and

standby-sparing systems. IEEE Transactions on Computers, c-24:517–525, May

1975.

References 447

Shekhar Borkar, Tanay Karnik, and Vivek De. Design and reliability challenges in

nanometer technologies. In Proceedings of the 41st annual conference on Design

automation, pages 75–75. ACM Press, 2004.

D. Borodin, B. H. H. B. Juurlink, S. Hamdioui, and S. Vassiliadis. Instruction-Level

Fault Tolerance Configurability. Journal of Signal Processing Systems, 57(1):

89–105, 2009.

Bosch Sensortec. BMX055 Small, Versatile 9-axis Sensor Module, Data Sheet,

November 2014.

Douglas C. Bossen, Joel M. Tendler, and Kevin Reick. Power4 system design for

high reliability. IEEE Micro, 22(2):16–24, 2002.

Melvin Breuer. Multi-media applications and imprecise computation. In Proceed-

ings of the 8th Euromicro Conference on Digital System Design, pages 2–7, Wash-

ington, DC, USA, 2005a. IEEE Computer Society.

Melvin Breuer. Hardware that produces bounded rather than exact results. In Pro-

ceedings of the 47th Design Automation Conference, DAC ’10, pages 871–876,

New York, NY, USA, 2010. ACM.

Melvin A. Breuer. Multi-media applications and imprecise computation. In Digital

Systems Design, Euromicro Symposium on, pages 2–7, Los Alamitos, CA, USA,

2005b. IEEE Computer Society.

L. Budin, D. Jakobović, and M. Golub. Genetic algorithms in real-time imprecise

computing. Journal of Computing and Information Technology, 8(3):249, 2004.

M. L. Bushnell and V. D. Agrawal. Essentials of electronic testing for digital, mem-

ory, and mixed-signal VLSI circuits. Springer Netherlands, 2000.

George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando

Fox. Microreboot — a technique for cheap recovery. In Proceedings of the 6th

Conference on Symposium on Operating Systems Design & Implementation - Vol-

ume 6, OSDI’04, pages 31–44. USENIX Association, 2004.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative re-

liability for programs that execute on unreliable hardware. In Proceedings of the

2013 ACM SIGPLAN International Conference on Object Oriented Programming

Systems Languages & Applications, OOPSLA ’13, pages 33–52, New York, NY,

USA, 2013. ACM.

Srimat T. Chakradhar and Anand Raghunathan. Best-effort computing: re-thinking

parallel software and hardware. In Proceedings of the 47th Design Automation

Conference, DAC ’10, pages 865–870, New York, NY, USA, 2010. ACM.

K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global

states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

448 References

Naehyuck Chang, Inseok Choi, and Hojun Shim. Dls: dynamic backlight luminance

scaling of liquid crystal display. Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, 12(8):837–846, Aug 2004.

Chardonnereau, Damien and Keulen, Raijmond and Nicolaidis, Michael and Dupont,

Eric and Torki, Kholdoun and Faure, Fabien and Velazco, Raoul. 32-Bit RISC

Processor Implementing Transient Fault-Tolerant Mechanisms and its Radiation

Test Campaign Results. In Single-Event Effects Symp., NASA, April 2002.

Xiang Chen, Yiran Chen, Zhan Ma, and Felix C. A. Fernandes. How is energy con-

sumed in smartphone display applications? In Proceedings of the 14th Workshop

on Mobile Computing Systems and Applications, HotMobile ’13, pages 3:1–3:6,

New York, NY, USA, 2013. ACM.

Xiang Chen, Kent W. Nixon, Hucheng Zhou, Yunxin Liu, and Yiran Chen. Finger-

shadow: An oled power optimization based on smartphone touch interactions. In

6th Workshop on Power-Aware Computing and Systems (HotPower 14), Broom-

field, CO, 2014. USENIX Association.

Wei-Chung Cheng, Yu Hou, and Massoud Pedram. Power minimization in a backlit

tft-lcd display by concurrent brightness and contrast scaling. In Proceedings of

the Conference on Design, Automation and Test in Europe - Volume 1, DATE ’04,

pages 10252–, Washington, DC, USA, 2004. IEEE Computer Society.

Wei-Chung Cheng, Chih-Fu Hsu, and Chain-Fu Chao. Temporal vision-guided en-

ergy minimization for portable displays. In Low Power Electronics and Design,

2006. ISLPED’06. Proceedings of the 2006 International Symposium on, pages

89–94, Oct 2006.

Vinay K. Chippa, Debabrata Mohapatra, Anand Raghunathan, Kaushik Roy, and

Srimat T. Chakradhar. Scalable effort hardware design: exploiting algorithmic

resilience for energy efficiency. In Proceedings of the 47th Design Automation

Conference, DAC ’10, pages 555–560, New York, NY, USA, 2010. ACM.

Ching-Te Chiu, Wen-Chih Huang, Chih-Hsing Lin, Wei-Chih Lai, and Ying-Fang

Tsao. Embedded transition inversion coding with low switching activity for serial

links. IEEE TVLSI, 21(10):1797–1810, October 2013.

Inseok Choi, Hojun Shim, and Naehyuck Chang. Low-power color tft lcd display for

hand-held embedded systems. In Proceedings of the 2002 International Sympo-

sium on Low Power Electronics and Design, ISLPED ’02, pages 112–117, New

York, NY, USA, 2002. ACM.

I. S. Chong and A. Ortega. Power Efficient Motion Estimation using Multiple Impre-

cise Metric Computations. In 2007 IEEE International Conference on Multimedia

and Expo, pages 2046–2049, 2007.

References 449

Johnson Chuang, Daniel Weiskopf, and Torsten Möller. Energy aware color sets.

Computer Graphics Forum, 28(2):203–211, 2009.

Cristian Constantinescu. Neutron ser characterization of microprocessors. In DSN

’05: Proceedings of the 2005 International Conference on Dependable Systems

and Networks (DSN’05), pages 754–759, Washington, DC, USA, 2005. IEEE

Computer Society.

Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley se-

ries in telecommunications. John Wiley & Sons, New York-Chichester-Brisbane-

Toronto-Singapore, 1991.

Pierre-Evariste Dagand, Andrew Baumann, and Timothy Roscoe. Filet-o-fish: Prac-

tical and dependable domain-specific languages for os development. In Proceed-

ings of the Fifth Workshop on Programming Languages and Operating Systems,

PLOS ’09, pages 5:1–5:5. ACM, 2009.

Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R

LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions.

IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

Mian Dong and Lin Zhong. Chameleon: A color-adaptive web browser for mo-

bile oled displays. In Proceedings of the 9th International Conference on Mobile

Systems, Applications, and Services, MobiSys ’11, pages 85–98, New York, NY,

USA, 2011. ACM.

Mian Dong, Yung-Seok Kevin Choi, and Lin Zhong. Power-saving color transfor-

mation of mobile graphical user interfaces on oled-based displays. In Proceedings

of the 2009 ACM/IEEE International Symposium on Low Power Electronics and

Design, ISLPED ’09, pages 339–342, New York, NY, USA, 2009a. ACM.

Mian Dong, Yung-Seok Kevin Choi, and Lin Zhong. Power modeling of graphi-

cal user interfaces on oled displays. In Proceedings of the 46th Annual Design

Automation Conference, DAC ’09, pages 652–657, New York, NY, USA, 2009b.

ACM.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture

support for disciplined approximate programming. In Proceedings of the Seven-

teenth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XVII, pages 301–312, New York, NY,

USA, 2012a. ACM.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural acceler-

ation for general-purpose approximate programs. In Proceedings of the 2012 45th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-45,

pages 449–460, Washington, DC, USA, 2012b. IEEE Computer Society. .

450 References

Freescale Semiconductor. Kinetis KL03 32 KB Flash 48 MHz Cortex-M0+ Based

Microcontroller, Data Sheet, August 2014a.

Freescale Semiconductor. MMA8451Q 3-Axis, 14-bit/8-bit Digital Accelerometer,

Data Sheet, November 2014b.

J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Probabilistic arithmetic and

energy efficient embedded signal processing. In Proceedings of the 2006 Interna-

tional Conference on Compilers, Architecture and Synthesis for Embedded Sys-

tems, CASES ’06, pages 158–168, New York, NY, USA, 2006. ACM.

Daniel T Gillespie. A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. Journal of computational physics, 22(4):

403–434, 1976.

Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The

journal of physical chemistry, 81(25):2340–2361, 1977.

M. C. Golumbic and A. N. Trenk. Tolerance graphs. Cambridge Univ Pr, 2004.

Noah D. Goodman. The principles and practice of probabilistic programming. In

Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL ’13, pages 399–402, New York, NY,

USA, 2013. ACM.

Noah D. Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and

Joshua B Tenenbaum. Church: a language for generative models. arXiv preprint

arXiv:1206.3255, 2012.

Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio Russo, Johannes

Borgstrom, and John Guiver. Tabular: A schema-driven probabilistic program-

ming language. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’14, pages 321–334, New York,

NY, USA, 2014a. ACM. .

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Raja-

mani. Probabilistic programming. In Proceedings of the on Future of Software

Engineering, FOSE 2014, pages 167–181, New York, NY, USA, 2014b. ACM. .

L. Guo, M. Scott, and R. Amirtharajah. An energy scalable computational array for

sensor signal processing. In IEEE Custom Integrated Circuits Conference, 2006.

CICC’06, pages 317–320, 2006.

Richard W Hamming. Error detecting and error correcting codes. Bell System tech-

nical journal, 29(2):147–160, 1950.

Tim Harter, Sander Vroegindeweij, Erik Geelhoed, Meera Manahan, and

Parthasarathy Ranganathan. Energy-aware user interfaces: An evaluation of user

acceptance. In Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, CHI ’04, pages 199–206, New York, NY, USA, 2004. ACM.

References 451

B. Hayes. A lucid interval. American Scientist, 91(6):484–488, 2003.

Yun He and Chris H. Q. Ding. Using accurate arithmetics to improve numerical

reproducibility and stability in parallel applications. J. Supercomput., 18(3):259–

277, March 2001.

Rajamohana Hegde and Naresh R. Shanbhag. Energy-efficient signal processing via

algorithmic noise-tolerance. In Proceedings of the 1999 International Symposium

on Low Power Electronics and Design, ISLPED ’99, pages 30–35, New York, NY,

USA, 1999. ACM. .

William Heidergott. SEU Tolerant Device, Circuit and Processor Design. In DAC

’05: Proceedings of the 42nd annual conference on Design automation, pages

5–10, New York, NY, USA, 2005. ACM Press.

C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321–, July 1961.

Henry Hoffmann. Jouleguard: Energy guarantees for approximate applications. In

Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,

pages 198–214, New York, NY, USA, 2015. ACM.

Robert W. Horst, Richard L. Harris, and Robert L. Jardine. Multiple instruction issue

in the NonStop cyclone processor. In ISCA ’90: Proceedings of the 17th annual

international symposium on Computer Architecture, pages 216–226, New York,

NY, USA, 1990. ACM Press.

D. Hull and J. Liu. ICS: A system for imprecise computations. In Proc. AIAA

Computing in Aerospace, volume 9, 1993.

Ali Iranli and Massoud Pedram. Dtm: Dynamic tone mapping for backlight scaling.

In Proceedings of the 42nd Annual Design Automation Conference, DAC ’05,

pages 612–617, New York, NY, USA, 2005. ACM.

Francois Jacquet. Design of SRAMs in Scaled CMOS Technologies. Seminar, Cen-

ter for Silicon System Implementation (CSSI), Carnegie Mellon University, 2006.

R. Jongerius, P. Stanley-Marbell, and H. Corporaal. Quantifying the Common Com-

putational Problems in Contemporary Applications (Extended version), 2014.

IBM Research Report RZ3885.

Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. Tolerating hardware

device failures in software. In Proceedings of the ACM SIGOPS 22Nd Symposium

on Operating Systems Principles, SOSP ’09, pages 59–72. ACM, 2009.

Andrew B. Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori. Recovery-

driven design: a power minimization methodology for error-tolerant processor

modules. In DAC ’10: Proceedings of the 47th Design Automation Conference,

pages 825–830, New York, NY, USA, 2010. ACM.

452 References

Kevin B. Kenny and Kwei-Jay Lin. Building flexible real-time systems using the

flex language. Computer, 24(5):70–78, 1991.

Robert W Keyes. What makes a good computer device? Science, 230(4722):138–

144, 1985.

G.J. Klir. The many faces of uncertainty. Machine Intelligence and Pattern Recog-

nition, 17:3–3, 1994.

I. Koren and C. M. Krishna. Fault Tolerant Systems. Morgan Kaufmann Publishers

Inc. San Francisco, CA, USA, 2007.

U. Kulisch. Computer arithmetic and validity: theory, implementation, and applica-

tions. de Gruyter, 2008.

Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. Activity recognition

using cell phone accelerometers. SIGKDD Explor. Newsl., 12(2):74–82, March

2011.

Edwin H Land. Color vision and the natural image. part i. Proceedings of the

National Academy of Sciences, 45(1):115–129, 1959a.

Edwin H Land. Color vision and the natural image part ii. Proceedings of the

National Academy of Sciences, 45(4):636–644, 1959b.

Edwin H Land. Experiments in color vision. Scientific American, 200(5):84, 1959c.

Edwin H Land. The retinex theory of color vision. Scientific American, 237(6):108,

1977.

Edwin H Land. Recent advances in retinex theory and some implications for cortical

computations: color vision and the natural image. Proceedings of the National

Academy of Sciences, 80(16):5163–5169, 1983.

Edwin H Land. An alternative technique for the computation of the designator in the

retinex theory of color vision. Proceedings of the national academy of sciences,

83(10):3078–3080, 1986.

L. Leem, H. Cho, J. Bau, Q.A. Jacobson, and S. Mitra. ERSA: Error Resilient System

Architecture for Probabilistic Applications. In Proc. Design Automation and Test

in Europe, 2010.

Ding Li, Angelica Huyen Tran, and William G. J. Halfond. Making web appli-

cations more energy efficient for oled smartphones. In Proceedings of the 36th

International Conference on Software Engineering, ICSE 2014, pages 527–538,

New York, NY, USA, 2014. ACM.

Ding Li, Angelica Huyen Tran, and William G. J. Halfond. Nyx: A display energy

optimizer for mobile web apps. In Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, ESEC/FSE 2015, pages 958–961, New

York, NY, USA, 2015. ACM.

References 453

Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V Adve,

Vikram S Adve, and Yuanyuan Zhou. Understanding the propagation of hard er-

rors to software and implications for resilient system design. In ACM SIGARCH

Computer Architecture News, volume 36, pages 265–276. ACM, 2008.

Xiaodong Li, Sarita V Adve, Pradip Bose, Jude Rivers, et al. Softarch: an

architecture-level tool for modeling and analyzing soft errors. In International

Conference on Dependable Systems and Networks (DSN 2005), pages 496–505.

IEEE, 2005.

Xuanhua Li and Donald Yeung. Application-level correctness and its impact on

fault tolerance. In Proceedings of the 13th International Symposium on High

Performance Computer Architecture, pages 181–192, 2007.

Michael D. Linderman, Matthew Ho, David L. Dill, Teresa H. Meng, and Garry P.

Nolan. Towards program optimization through automated analysis of numerical

precision. In Proceedings of the 8th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, CGO ’10, pages 230–237. ACM, 2010.

Avinash Lingamneni, Kirthi Krishna Muntimadugu, Christian Enz, Richard M. Karp,

Krishna V. Palem, and Christian Piguet. Algorithmic methodologies for ultra-

efficient inexact architectures for sustaining technology scaling. In Proceedings

of the 9th Conference on Computing Frontiers, CF ’12, pages 3–12, New York,

NY, USA, 2012. ACM. .

Avinash Lingamneni, Christian Enz, Krishna Palem, and Christian Piguet. Synthe-

sizing parsimonious inexact circuits through probabilistic design techniques. ACM

Transactions on Embedded Computing Systems (TECS), 12(2s):93, 2013.

J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao. Algorithms

for scheduling imprecise computations. Computer, 24(5):58–68, 1991.

J. W. S. Liu, Wei-Kuan Shih, Kwei-Jay Lin, R. Bettati, and Jen-Yao Chung. Impre-

cise Computations. Proceedings of the IEEE, 82(1):83–94, January 1994.

S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flicker: Saving Refresh-

Power in Mobile Devices through Critical Data Partitioning. Technical Report

MSR-TR-2009-138, Microsoft Research, October 2009.

M. O. Rabin. Probabilistic Algorithms. In Algorithms and Complexity, pages 21 –

40, New York, NY, USA, 1976. Academic Press.

S. Mandal and R. Sarpeshkar. Circuit models of stochastic genetic networks. In

Biomedical Circuits and Systems Conference, 2009. BioCAS 2009. IEEE, pages

109–112, Nov 2009.

H. Bo Marr and Jennifer Hasler. Compiling probabilistic, bio-inspired circuits on a

field programmable analog array. Frontiers in Neuroscience, 8(86), 2014.

454 References

T. C. May and M. H. Woods. Alpha-particle-induced soft errors in dynamic memo-

ries. IEEE Trans. Elect. Dev., 26:2, 1979.

M. Mehrara, M. Attariyan, S. Shyam, K. Constantinides, V. Bertacco, and T. Austin.

Low-cost protection for SER upsets and silicon defects. In Design, Automation &

Test in Europe Conference & Exhibition, 2007. DATE’07, pages 1–6, 2007.

Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan. Best-effort parallel

execution framework for recognition and mining applications. In Parallel and

Distributed Processing Symposium, International, pages 1–12, Los Alamitos, CA,

USA, 2009. IEEE Computer Society.

Fabrice Mérillon, Laurent Réveillère, Charles Consel, Renaud Marlet, and Gilles

Muller. Devil: An idl for hardware programming. In Proceedings of the 4th Con-

ference on Symposium on Operating System Design & Implementation - Volume

4, OSDI’00, pages 2–2. USENIX Association, 2000.

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard.

Chisel: reliability-and accuracy-aware optimization of approximate computational

kernels. In Proceedings of the 2014 ACM International Conference on Object Ori-

ented Programming Systems Languages & Applications, pages 309–328. ACM,

2014.

Natasa Miskov-Zivanov and Diana Marculescu. Mars-c: modeling and reduction of

soft errors in combinational circuits. In DAC ’06: Proceedings of the 43rd annual

conference on Design automation, pages 767–772, New York, NY, USA, 2006.

ACM Press.

Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers to

estimate app energy consumption. In Proceedings of the 18th Annual Interna-

tional Conference on Mobile Computing and Networking, Mobicom ’12, pages

317–328, New York, NY, USA, 2012. ACM.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized al-

gorithms and probabilistic analysis. Cambridge University Press, 2005.

Debabrata Mohapatra, Georgios Karakonstantis, and Kaushik Roy. Significance

driven computation: a voltage-scalable, variation-aware, quality-tuning motion es-

timator. In ISLPED ’09: Proceedings of the 14th ACM/IEEE international sympo-

sium on Low power electronics and design, pages 195–200, New York, NY, USA,

2009. ACM.

Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman &

Hall/CRC, 2010.

Michael Nicolaidis and Damien Chardonnereau. Soft-Error Testing: Key Points.

Computer, 38(2):44 (sidebar), 2005.

References 455

NXP Semiconductors. UM10204, I2C-bus specification and user manual, April

2014.

Nahmsuk Oh, Subhasish Mitra, and Edward J. McCluskey. ED4I: Error detection by

diverse data and duplicated instructions. IEEE Trans. Computers, 51(2):180–199,

2002a.

Nahmsuk Oh, Philip Shirvani, and Edward J. McCluskey. Error detection by dupli-

cated instructions in super-scalar processors. IEEE Transactions on Reliability,

51(1):63–75, March 2002b.

Krishna V. Palem. Energy aware computing through probabilistic switching: A study

of limits. IEEE Trans. Comput., 54:1123–1137, September 2005.

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. Au-

tomatically improving accuracy for floating point expressions. In Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2015, pages 1–11, New York, NY, USA, 2015. ACM.

Sudeep Pasricha, Manev Luthra, Shivajit Mohapatra, Nikil Dutt, and Nalini Venkata-

subramanian. Dynamic backlight adaptation for low-power handheld devices.

IEEE design & test of computers, (5):398–405, 2004.

Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn. Samurai: protecting

critical data in unsafe languages. In Proceedings of the 3rd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2008, Eurosys ’08, pages 219–232,

New York, NY, USA, 2008. ACM.

Amir Pnueli. On the extremely fair treatment of probabilistic algorithms. In STOC

’83: Proceedings of the fifteenth annual ACM symposium on Theory of computing,

pages 278–290, New York, NY, USA, 1983. ACM Press.

Parthasarathy Ranganathan, Erik Geelhoed, Meera Manahan, and Ken Nicholas.

Energy-aware user interfaces and energy-adaptive displays. Computer, 39(3):31–

38, March 2006.

Josyula R. Rao. Reasoning about probabilistic parallel programs. ACM Trans. Pro-

gram. Lang. Syst., 16(3):798–842, 1994.

Joydeep Ray, James C. Hoe, and Babak Falsafi. Dual use of superscalar datap-

ath for transient-fault detection and recovery. In Proceedings of the 34th annual

ACM/IEEE international symposium on Microarchitecture, pages 214–224. IEEE

Computer Society, 2001.

John H. Reif. Logics for probabilistic programming (extended abstract). In STOC

’80: Proceedings of the twelfth annual ACM symposium on Theory of computing,

pages 8–13, New York, NY, USA, 1980. ACM Press.

456 References

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I.

August. Swift: Software implemented fault tolerance. In CGO ’05: Proceedings

of the international symposium on Code generation and optimization, pages 243–

254, Washington, DC, USA, 2005a. IEEE Computer Society.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I. August,

and Shubhendu S. Mukherjee. Design and evaluation of hybrid fault-detection

systems. In ISCA ’05: Proceedings of the 32nd Annual International Symposium

on Computer Architecture, pages 148–159, Washington, DC, USA, 2005b. IEEE

Computer Society.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I. August,

and Shubhendu S. Mukherjee. Software-controlled fault tolerance. ACM Trans.

Archit. Code Optim., 2:366–396, December 2005c.

EL Rhod, CA Lisbôa, and L. Carro. A low-SER efficient core processor architecture

for future technologies. In Design, Automation & Test in Europe Conference &

Exhibition, 2007. DATE’07, pages 1–6, 2007.

S. V. Rice, H. Bunke, and T. A. Nartker. Classes of cost functions for string edit

distance. Algorithmica, 18(2):271–280, 1997.

Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that

discard tasks. In Proceedings of the 20th annual international conference on

Supercomputing, ICS ’06, pages 324–334, New York, NY, USA, 2006. ACM.

Martin Rinard, Henry Hoffmann, Sasa Misailovic, and Stelios Sidiroglou. Patterns

and statistical analysis for understanding reduced resource computing. In Pro-

ceedings of the ACM international conference on Object oriented programming

systems languages and applications, OOPSLA ’10, pages 806–821, New York,

NY, USA, 2010. ACM.

Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun Raghunath,

Michael Stumm, and Mona Vij. User-guided device driver synthesis. In Pro-

ceedings of the 11th USENIX Conference on Operating Systems Design and Im-

plementation, OSDI’14, pages 661–676. USENIX Association, 2014.

Giacinto Paolo Saggese and Anoop Vetteth. Microprocessor sensitivity to failures:

Control vs execution and combinational vs sequential logic. In DSN ’05: Proceed-

ings of the 2005 International Conference on Dependable Systems and Networks

(DSN’05), pages 760–769, Washington, DC, USA, 2005. IEEE Computer Society.

D. Salesin, J Stolfi, and L. Guibas. Epsilon geometry: building robust algorithms

from imprecise computations. In SCG ’89: Proceedings of the fifth annual sym-

posium on Computational geometry, pages 208–217, New York, NY, USA, 1989.

ACM.

References 457

Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati, and Scott

Mahlke. Sage: Self-tuning approximation for graphics engines. In Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-46, pages 13–24, New York, NY, USA, 2013. ACM.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis

Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general

low-power computation. In Proceedings of the 32Nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’11, pages 164–

174, New York, NY, USA, 2011. ACM.

Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate storage

in solid-state memories. In Proceedings of the 46th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO-46, pages 25–36, New York,

NY, USA, 2013. ACM.

John Sartori and Rakesh Kumar. Exploiting timing error resilience in processor

architecture. ACM Trans. Embed. Comput. Syst., 12(2s):89:1–89:25, May 2013.

Matthew Schuchhardt, Susmit Jha, Raid Ayoub, Michael Kishinevsky, and Gokhan

Memik. Optimizing mobile display brightness by leveraging human visual per-

ception. In Proceedings of the 2015 International Conference on Compilers, Ar-

chitecture and Synthesis for Embedded Systems, CASES ’15, pages 11–20, Pis-

cataway, NJ, USA, 2015. IEEE Press.

Naresh R. Shanbhag. Reliable and energy-efficient digital signal processing. In

Proceedings of the 39th Annual Design Automation Conference, DAC ’02, pages

830–835, New York, NY, USA, 2002. ACM.

Naresh R. Shanbhag, Rami A. Abdallah, Rakesh Kumar, and Douglas L. Jones.

Stochastic Computation. In Proceedings of the 47th Design Automation Con-

ference, pages 859–864. ACM, 2010.

Claude E. Shannon. Coding theorems for a discrete source with a fidelity criterion.

IRE National Convention Record, 7(4):142–163, 1959.

Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communica-

tion. University of Illinois Press, Urbana, Illinois, 1963.

W. K. Shih and J. W. S. Liu. Algorithms for scheduling imprecise computations with

timing constraints to minimize maximum error. IEEE Transactions on Computers,

44(3):466–471, 1995.

Donghwa Shin, Younghyun Kim, Naehyuck Chang, and Massoud Pedram. Dynamic

voltage scaling of oled displays. In Proceedings of the 48th Design Automation

Conference, DAC ’11, pages 53–58, New York, NY, USA, 2011. ACM.

458 References

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.

Managing performance vs. accuracy trade-offs with loop perforation. In Proceed-

ings of the 19th ACM SIGSOFT Symposium and the 13th European Conference

on Foundations of Software Engineering, ESEC/FSE ’11, pages 124–134, New

York, NY, USA, 2011. ACM.

D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems, Design and Evalua-

tion. Digital Press, 2nd edition, 1992.

T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W. Krumm, C. A. Kry-

gowski, W. H. Li, J. S. Liptay, J. D. MacDougall, T. J. McPherson, J. A. Navarro,

E. M. Schwarz, K. Shum, and C. F. Webb. IBM’s S/390 G5 Microprocessor de-

sign. IEEE Micro, 19:12–23, March 1999.

R. Smith. An Overview of the Tesseract OCR Engine. ICDAR, 7(1):629–633, 2007.

Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. The case for

lifetime reliability-aware microprocessors. In ACM SIGARCH Computer Archi-

tecture News, volume 32, page 276. IEEE Computer Society, 2004.

ST Microelectronics. L3G4200D MEMS Motion Sensor: Ultra-stable Three-axis

Digital Output Gyroscope, Data Sheet, December 2010.

ST Microelectronics. LPS25H MEMS Pressure Sensor: 260–1260 hPa Absolute Dig-

ital Output Barometer, Data Sheet, January 2014.

Phillip Stanley-Marbell. Sal/svm: an assembly language and virtual machine for

computing with non-enumerated sets. In Virtual Machines and Intermediate Lan-

guages, VMIL ’10, pages 1:1–1:10, New York, NY, USA, 2010. ACM.

Phillip Stanley-Marbell and Diana Marculescu. A Programming Model and Lan-

guage Implementation for Concurrent Failure-Prone Hardware. In Proceedings

of the 2nd Workshop on Programming Models for Ubiquitous Parallelism, PMUP

’06, September 2006.

Phillip Stanley-Marbell and Martin Rinard. Lax: Driver interfaces for approximate

sensor device access. In 15th Workshop on Hot Topics in Operating Systems (Ho-

tOS XV), Kartause Ittingen, Switzerland, May 2015a. USENIX Association.

Phillip Stanley-Marbell and Martin Rinard. Value-deviation-bounded serial data en-

coding for energy-efficient approximate communication. Technical Report MIT-

CSAIL-TR-2015-022, MIT Computer Science and Artificial Intelligence Labora-

tory (CSAIL), June 2015b.

Phillip Stanley-Marbell, Victoria Caparros, and Ronald Luijten. Pinned to the walls:

Impact of packaging and application properties on the memory and power walls.

In Proceedings of the 17th IEEE/ACM International Symposium on Low-power

Electronics and Design, ISLPED ’11, pages 51–56, 2011.

References 459

Phillip Stanley-Marbell, Virginia Estellers, and Martin Rinard. Crayon: Saving

power through shape and color approximation on next-generation displays. In

Proceedings of the Eleventh European Conference on Computer Systems, EuroSys

’16, pages 11:1–11:17, New York, NY, USA, 2016. ACM. .

Eugene W. Stark and Scott A. Smolka. A Complete Axiom System for Finite-State

Probabilistic Processes. Proof, Language and interaction — Essays in honour of

Robin Milner, pages 571–595, 2000.

Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth analysis with

application to silicon compilation. In Proceedings of the ACM SIGPLAN 2000

conference on Programming language design and implementation, PLDI ’00,

pages 108–120, New York, NY, USA, 2000. ACM.

Jun Sun, Wanghong Yuan, Mahesh Kallahalla, and Nayeem Islam. Hail: A language

for easy and correct device access. In Proceedings of the 5th ACM International

Conference on Embedded Software, EMSOFT ’05, pages 1–9. ACM, 2005.

Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. Slipstream processors:

improving both performance and fault tolerance. In Proceedings of the ninth in-

ternational conference on Architectural support for programming languages and

operating systems, pages 257–268. ACM Press, 2000.

Timmy Sundström, Boris Murmann, and Christer Svensson. Power dissipation

bounds for high-speed nyquist analog-to-digital converters. Circuits and Systems

I: Regular Papers, IEEE Transactions on, 56(3):509–518, 2009.

A. Taber and E. Normand. IEEE Trans. Nucl. Sci., 40:120, 1993.

Kiat Wee Tan, Tadashi Okoshi, Archan Misra, and Rajesh Krishna Balan. Focus: A

usable & effective approach to oled display power management. In Proceedings

of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, UbiComp ’13, pages 573–582, New York, NY, USA, 2013. ACM.

Texas Instruments. CC256x Bluetooth® and Dual-Mode Controller, Data Sheet,

January 2014a.

Texas Instruments. HDC1000 Low Power, High Accuracy Digital Humidity Sensor

with Temperature Sensor, Data Sheet, Nov 2014b.

Texas Instruments. TMP006/B Infrared Thermopile Sensor in Chip-Scale Package,

Data Sheet, November 2014c.

Texas Instruments. TPS8267x 600-mA, High-Efficiency MicroSIP™ Step-Down

Converter, Data Sheet, October 2014d.

Texas Instruments. TPS82740x 360nA IQ MicroSIP™ Step Down Converter Module

for Low Power Applications, Data Sheet, June 2014e.

460 References

T. N. Theis and P. M. Solomon. In quest of the “next switch”: Prospects for greatly

reduced power dissipation in a successor to the silicon field-effect transistor. Pro-

ceedings of the IEEE, 98(12):2005 –2014, Dec 2010.

Jonathan Ying Fai Tong, David Nagle, and Rob. A. Rutenbar. Reducing power by

optimizing the necessary precision/range of floating-point arithmetic. IEEE Trans.

Very Large Scale Integr. Syst., 8:273–285, June 2000.

G. V. Varatkar, S. Narayanan, N. R. Shanbhag, and D. L. Jones. Stochastic networked

computation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

PP(99):1–1, October 2009.

Benjamin Vigoda. Analog logic: Continuous-Time analog circuits for statistical sig-

nal processing. PhD thesis, Massachusetts Institute of Technology, 2003.

Benjamin Vigoda, David Reynolds, Jeffrey Bernstein, Theophane Weber, and Bill

Bradley. Low power logic for statistical inference. In Proceedings of the

16th ACM/IEEE international symposium on Low power electronics and design,

ISLPED ’10, pages 349–354, New York, NY, USA, 2010. ACM.

John von Neumann. Probabilistic logics and the synthesis of reliable organisms from

unreliable components. Automata Studies, pages 43–98, 1956.

John von Neumann and Ray Kurzweil. The computer and the brain. Yale University

Press, 2012.

I. Wagner and V. Bertacco. Engineering trust with semantic guardians. In 2007

Design, Automation & Test in Europe Conference & Exhibition, page 140. IEEE,

2007.

David Walker, Lester Mackey, Jay Ligatti, George A. Reis, and David I. August.

Static typing for a faulty lambda calculus. In Proceedings of the eleventh ACM

SIGPLAN international conference on Functional programming, ICFP ’06, pages

38–49, New York, NY, USA, 2006. ACM.

Gregory K Wallace. The jpeg still picture compression standard. Communications

of the ACM, 34(4):30–44, 1991.

Ji Wang, Xiao Lin, and Chris North. GreenVis : Energy-Saving Color Schemes for

Sequential Data Visualization on OLED Displays. 2012.

Chris Weaver and Todd M. Austin. A fault tolerant approach to microprocessor

design. In Proceedings of the 2001 International Conference on Dependable Sys-

tems and Networks (formerly: FTCS), pages 411–420. IEEE Computer Society,

2001.

Herbert S Wilf and Albert Nijenhuis. Combinatorial algorithms: an update. SIAM,

1989.

References 461

Niklaus Wirth. What can we do about the unnecessary diversity of notation for

syntactic definitions? Commun. ACM, 20(11):822–823, November 1977.

Shirley Wong, Simon Lucas, Alex Panaretos, Luis Velazquez, Robert Young, and

Anthony Tang. Robust word recognition dataset. In ICDAR, 2003.

Vicky Wong and Mark Horowitz. Soft error resilience of probabilistic inference

applications. In In Proceedings of the Workshop on System Effects of Logic Soft

Errors, 2006.

Gunther Wyszecki and WS Stiles. Color Science: Concepts and Methods, Quantita-

tive Data and Formulae. Wiley-Interscience, New York, 2000.

YZ Xu, H. Puchner, A. Chatila, O. Pohland, B. Bruggeman, B. Jin, D. Radaelli,

and S. Daniel. Process impact on SRAM Alpha-particle SEU performance. In

2004 IEEE International Reliability Physics Symposium Proceedings, 2004. 42nd

Annual, pages 294–299, 2004.

Mengying Zhao, Yiran Chen, Xiang Chen, and Chun Jason Xue. Online oled

dynamic voltage scaling for video streaming applications on mobile devices.

SIGBED Rev., 10(2):18–18, July 2013.

Neil Zhao. Full-Featured Pedometer Design Realized with 3-Axis Digital Ac-

celerometer. Analog Dialogue, 44(06), June 2010.

James F. Ziegler and William A. Lanford. Effect of cosmic rays on computer mem-

ories. Science, 206(4420):776–788, 1979.

James F. Ziegler and William A. Lanford. The effect of sea level cosmic rays on

electronic devices. Journal of applied physics, 52(6):4305–4312, 1981.

James F. Ziegler, Huntington W. Curtis, Hans P. Muhlfeld, Charles J. Montrose,

B. Chin, Michael Nicewicz, C. A. Russell, Wen Y. Wang, Leo B. Freeman,

P. Hosier, et al. Ibm experiments in soft fails in computer electronics (1978–

1994). IBM journal of research and development, 40(1):3–18, 1996.

	Introduction
	The Cost of Correctness
	Historical Context
	Why Precision Matters in Many Numerical Computations
	Why Some Applications Can Tolerate Errors
	Examples of Improving Efficiency by Permitting Errors
	Fundamental Physical Limits, Energy, and Noise
	Hardware and Software Systems That Exploit Errors
	Outline of the Remainder of This Review

	Types of Errors and Randomization
	Precision, Repeatability, Accuracy, and Reliability
	Accuracy of Models versus Precision of Computations
	Randomized Algorithms
	Stochastic Digital and Analog Computing
	Probabilistic Programming

	Computation, Energy, and Noise
	Devices Use Energy to Guard against Faults
	Types and Sources of Noise and Faults
	Traditional Fault-Tolerant Systems

	Tolerating Errors in Outputs
	Human Perception of Color
	Quantifying Errors in Images
	Display Technology
	Exploiting Perception for Display Energy Efficiency
	Exploiting Perceptual Flexibility in End-To-End Systems

	Tolerating Errors in Inputs
	Lax
	VDBS Encoding
	End-to-end Evaluation

	Conclusion
	References

