
Parallel Synchronization-Free Approximate
Data Structure Construction (Full Version)

Martin Rinard, MIT CSAIL

Abstract
We present approximate data structures with synchronization-free
construction algorithms. The data races present in these algorithms
may cause them to drop inserted or appended elements. Neverthe-
less, the algorithms 1) do not crash and 2) may produce a data struc-
ture that is accurate enough for its clients to use successfully. We
advocate an approach in which the approximate data structures are
composed of basic tree and array building blocks with associated
synchronization-free construction algorithms. This approach en-
ables developers to reuse the construction algorithms, which have
been engineered to execute successfully in parallel contexts despite
the presence of data races, without having to understand the com-
plex details of why they execute successfully. We present C++ tem-
plates for several such building blocks.

We evaluate the end-to-end accuracy and performance conse-
quences of our approach by building a space-subdivision tree for
the Barnes-Hut N -body simulation out of our presented tree and
array building blocks. In the context of the Barnes-Hut compu-
tation, the resulting approximate data structure construction algo-
rithms eliminate synchronization overhead and potential anomalies
such as excessive serialization and deadlock. Our experimental re-
sults show that the algorithm exhibits good performance (running
14 times faster on 16 cores than the sequential version) and good
accuracy (the accuracy loss is four orders of magnitude less than
the accuracy gain associated with increasing the accuracy of the
Barnes-Hut center of mass approximation by 20%).

1. Introduction
Many computations (for example, video and image processing
computations, modern internet search and information retrieval,
and many scientific computations) are designed to produce only
an approximation to an ideal output. Because such computations
have the flexibility to produce any one of a range of acceptably
accurate outputs, they can often productively skip tasks [20, 21]
or loop iterations [9, 15, 16, 23, 29], or approximately memo-
ize functions [4] as long as these transformations do not unac-
ceptably degrade the accuracy of the output. Potential benefits
of applying these and other approximate transformations include
reduced power consumption [9, 13–16, 23, 29], increased perfor-
mance [9, 13–16, 23, 29], and the ability to automatically adapt to
changing conditions in the underlying computational platform [23].

1.1 Approximate Data Structures
In this paper we shift the focus to the data structures that the com-
putations manipulate — we present synchronization-free parallel
algorithms for building approximate data structures. These algo-

An abridged version of this paper appears in 5th USENIX Workshop on
Hot Topics in Parallelism, June 24-25, San Jose, CA.

rithms work with data structures composed of tree and array build-
ing blocks. Examples of such data structures include search trees,
array lists, hash tables, linked lists, and space-subdivision trees.
The algorithms insert elements at the leaves of trees or append el-
ements at the end of arrays. Because they use only primitive reads
and writes, they are free of synchronization mechanisms such as
mutual exclusion locks or compare and swap. As a result, they exe-
cute without synchronization overhead or undesirable synchroniza-
tion anomalies such as excessive serialization or deadlock. More-
over, unlike much early research in the field [12], the algorithms do
not use reads and writes to synthesize higher-level synchronization
constructs.

Now, it may not be clear how to implement correct data struc-
ture construction algorithms without sychronization. Indeed, we do
not attempt to do so — the data races in our algorithms may drop in-
serted elements and violate some of the natural data structure con-
sistency properties. But these algorithms 1) do not crash, 2) produce
a data structure that is consistent enough for its clients to use suc-
cessfully, and 3) produce a data structure that contains enough of
the inserted elements so that its clients can deliver acceptably accu-
rate outputs. In effect, we eliminate synchronization by leveraging
the end-to-end ability of the client to tolerate some imprecision in
the approximate data structure that the algorithm produces.

1.2 Building Blocks
Our approximate data structure construction algorithms have the
advantage that they are, essentially, standard sequential algorithms
that have been engineered to execute successfully without synchro-
nization in parallel contexts despite the presence of data races. The
reasons for this successful execution can be quite involved. We
therefore advocate the development of general data structure build-
ing blocks (such as reusable tree and array components) with asso-
ciated approximate construction algorithms. Because these build-
ing blocks encapsulate the reasoning required to obtain successful
synchronization-free construction algorithms, developers can build
their data structures out of these building blocks and reuse the con-
struction algorithms without needing to understand the details of
why the algorithms operate successfully without synchronization
despite the presence of data races. We present several such build-
ing blocks implemented as C++ templates.

1.3 Advantages and Disadvantages
Our unsynchronized approximate data structures are standard, fa-
miliar sequential implementations that execute successfully in par-
allel contexts. They are completely free of the complex and po-
tentially confusing synchronization primitives (for example, mu-
tual exclusion locks, atomic transactions, and wait-free updates)
that complicate the development of synchronized parallel code. Our
unsynchronized approach can therefore offer the following advan-
tages:

1

• Enhanced Correctness and Trustworthiness: There is no ex-
posure to coding errors in complex synchronization primitives
or in the complex, intellectually challenging parallel data struc-
ture implementations that use them.

• Enhanced Portability: There is no reliance on specialized
synchronization primitives that may not be widely implemented
across platforms.

• Simplicity and Ease of Development: There is no need to
learn, use, or rely on complex synchronization primitives —
our unsynchronized data structures use only standard read and
write operations.

As a result, we anticipate that the simplicity, familiarity, and trans-
parency of our approach may make synchronization-free approxi-
mate data structures easier for developers to understand, trust, and
use than their complex, intimidating synchronized counterparts.

A potential disadvantage is that developers have been repeatedly
told that unsynchronized concurrent accesses to shared data are
dangerous. If developers internalize this rigid, incomplete, but cur-
rently widespread perception, they may find unsynchronized data
structures emotionally difficult to accept even when they are the
superior alternative for the task at hand.

1.4 Case Study
In general, we expect the acceptability of the approximate data
structures to depend on end-to-end effects such as 1) how fre-
quently the application’s data structure construction workload elic-
its interactions that drop elements and 2) the effect that any dropped
elements have on the accuracy of the result that the application pro-
duces. We therefore perform a case study that evaluates the per-
formance and accuracy consequences of using our building blocks
for the space-subdivision tree in the Barnes-Hut N -body computa-
tion [1, 24]. This computation simulates a system of N interacting
bodies (such as molecules, stars, or galaxies). At each step of the
simulation, the computation computes the forces acting on each
body, then uses these forces to update the positions, velocities, and
accelerations of the bodies.

Instead of computing the force acting on each body with the
straightforward pairwise N2 algorithm, Barnes-Hut instead inserts
the N bodies into a space-subdivision tree, computes the center of
mass at each node of the tree, then uses the tree to compute the force
acting on each body. It approximates the combined forces from
multiple distant bodies as the force from the center of mass of the
distant bodies as stored in the root of the subtree that includes these
distant bodies. This approximation reduces the complexity of the
force computation algorithm from N2 to N logN . We implement
the space-subdivision tree itself as a hybrid data structure whose
leaves use an array to store multiple inserted bodies.

1.5 Experimental Results
Because the approximate space-subdivision tree construction algo-
rithm is unsynchronized, it may produce a tree that does not contain
some of the inserted bodies. The net effect is that the force compu-
tation algorithm operates as if those bodies did not exist at that
step. Our results show that, in practice, less than 0.0003% of the
inserted bodies are dropped. The effect of these dropped bodies on
the overall accuracy of the computation is negligible. Specifically,
the effect on the computed body positions is four orders of magni-
tude less than the effect of increasing the accuracy of the center of
mass approximation in the force calcuation phase by 20%.

The unsynchronized algorithm exhibits good parallel perfor-
mance (on 16 cores, it runs over 14 times faster than the sequential
tree construction algorithm) and runs over an order of magnitude
faster than a version that uses standard tree locking to eliminate
dropped bodies. It also runs 5% and 10% faster than sophisticated

parallel implementations that use either fine-grained mutual exclu-
sion locks or compare and swap operations, in combination with
strategically placed retry operations, to eliminate dropped bodies.

1.6 Scope
There are deep conceptual connections between approximate data
structures and techniques such as task skipping [20], loop per-
foration [9, 16, 23], early phase termination [21], infinite loop
exit [3, 11], reduction sampling [29], and approximate parallel
compilation [13, 17]. All of these techniques remove parts of the
computation to produce a perforated computation — i.e., a compu-
tation with pieces missing. In the case of approximate data struc-
tures, there is a cascade effect — removing synchronization drops
inserted bodies from the tree, which, in turn, has the effect of elim-
inating the dropped bodies from the force computation.

Many successful perforations target computations that combine
multiple items to obtain a composite result — adding up numbers to
obtain a sum, inserting elements to obtain a space-subdivision tree.
One potential explanation for why applications tolerate perforation
is that the perforations exploit a redundancy inherent in the mul-
tiple contributions. In effect, the original computations were ov-
erengineered, perhaps because developers try to manage the cogni-
tive complexity of developing complex software by conservatively
producing computations that they can easily see will produce a (po-
tentially overaccurate) result.

Tolerating some inaccuracy is a prerequisite for the use of ap-
proximate data structures. Computations that are already inherently
approximate are therefore promising candidates for approximate
data structures. Note that this is a broad and growing class — any
computation that processes noisy data from real-world sensors, em-
ploys standard approximations such as discretization, or is designed
to please a subjective human consumer (for example, search, enter-
tainment, or gaming applications), falls into this class. Applications
such as video or dynamic web page construction may be especially
promising — the results are immediately consumed and the effect
of any approximations move quickly into the past and are forgotten.
Traditional computations such as relational databases or compilers,
with their hard notions of correctness, may be less promising can-
didates.

In our experience, many developers view banking as an applica-
tion domain that does not tolerate imprecision and is therefore not
appropriate for approximate data structures or algorithms. In prac-
tice, the integrity of the banking system depends on periodic recon-
ciliations, which examine transactions, balance accounts, and catch
and correct any errors. Other operations can, and do, exhibit errors.
Because of the error tolerance that reconciliation provides, approx-
imate computing may be completely appropriate in some banking
operations as long as it preserves the integrity of the reconciliation
process. As this example illustrates, approximate computing may
be applicable in a broader range of application domains than many
researchers and developers currently envision.

1.7 Contributions
This paper makes the following contributions:

• Data Structure Construction Algorithms: It presents approx-
imate synchronization-free parallel data structure construction
algorithms. These algorithms have no synchronization overhead
and are free of synchronization-related anomalies such as ex-
cessive serialization and deadlock.
Because these algorithms contain data races, they may drop
inserted or appended elements and may produce data structures
that do not satisfy all of the natural consistency properties.
The produced data structures are, nevertheless, acceptable for
approximate computations that can tolerate dropped elements.

2

• Data Structure Building Blocks: The data structure construc-
tion algorithms operate on general classes of data structures
composed from tree and array building blocks. Examples of
such data structures include hash tables, search trees, array lists,
linked lists, and space-subdivision trees. We present C++ tem-
plates (with associated data structure construction algorithms)
that can be instantiated and combined to implement such data
structures.

• Reasoning Approach: It shows how to reason about the prop-
erties that the algorithms do preserve. This reasoning proceeds
by induction to show that each individual write preserves the
relevant consistency properties.

• Semantic Data Races: Data races are usually defined as un-
synchronized accesses to shared data. Our position is that this
concept is less useful than the concept of semantic data races
— classifying parallel interactions according to the effect they
have on specific data structure consistency properties (see Sec-
tion 2.11). This concept makes it possible to distinguish pro-
ductively between acceptable and unacceptable unsynchronized
updates to shared data structures (based on the consistency
properties that the updates do or do not preserve).

• Evaluation Methodology: Approximate data structures are ac-
ceptable only if they enable the client to operate acceptably.
We therefore propose a methodology that evaluates approx-
imate data structures in the context of a complete applica-
tion. We evaluate their acceptability by comparing their effects
with those of other approximate computing techniques (such
as changing application-specific accuracy parameters) that in-
crease the accuracy. If the accuracy decreases from the approx-
imate data structures are negligible in comparison with the ob-
tained accuracy increases, the approximate data structures are
acceptable in the context of the application.

• Experimental Results: It presents experimental results that
characterize the performance and accuracy of the unsynchro-
nized tree construction algorithms in the context of the Barnes-
Hut N -body simulation algorithm. These results show that the
algorithm exhibits good parallel performance (on 16 cores, run-
ning 14 times faster than the sequential algorithm) and good
accuracy (the effect on the body positions is four orders of mag-
nitude less than increasing an accuracy parameter by 20%). The
algorithm runs an order of magnitude faster than a synchro-
nized version that uses standard tree locking and 5% to 10%
faster than more sophisticated synchronized versions that use
fine-grained locking or compare and swap instructions along
with strategically placed retry operations.

2. Data Structures
We advocate the development of data structure building blocks with
associated construction algorithms. These building blocks can then
be composed to obtain a variety of data structures. We present tree
and array building blocks as C++ templates.

2.1 Approximate Tree Data Structure
Our tree construction algorithm works with trees that contain inter-
nal nodes and external (leaf) nodes. Internal nodes reference other
tree nodes; external nodes reference one or more inserted elements.
To insert an element, the algorithm traverses the tree from the root
to find (or, if necessary, create) the external node into which to in-
sert the element. If the external node is full, it creates a new internal
node to take the place of the external node. It then divides the el-
ements in the external node into the new internal node and links
the new internal node into the tree to take the place of the external
node.

1:template <typename E, class T,
2: class I, int N, class X, typename P>
3:class internal : public T {
4: public: T *children[N];
5: void insert(E e, P p) {
6: int i;
7: T *t;
8: X *x;
9: i = index(e);
10: t = children[i];
11: if (t == NULL) {
12: x = new (p) X((I *) this, i, e, p);
13: children[i] = x;
14: } else if (t->isInternal()) {
15: ((I *) t)->insert(e, p);
16: } else {
17: x = (X *) t;
18: if (!x->insert(e, p)) {
19: I *c = new (p) I((I *) this, i, p);
20: x->divide(c, p);
21: children[i] = (T *) c;
22: insert(e, p);
23: }
24: }
25: }
26: bool isInternal() { return true; }
27: virtual int index(E e) = 0;
28: ...
29:};
30:template <typename E, class T,
31: class I, int N, class X, typename P>
32:class external : public T {
33: public:
34: bool isInternal() { return false; }
35: virtual void divide(I *t, P p) = 0;
36: virtual bool insert(E e, P p) = 0;
37 ...
38:};
39:template <typename E, class T, class I, int N,
40: class X, typename P>
41:class tree {
42: public: virtual bool isExternal() = 0;
43:};

Figure 1. Internal Tree Template and Tree Insert Algorithm

Figure 1 presents a C++ template that implements the insertion
algorithm. In this template E is the type of the elements in the data
structure, T is the type of the superclass of internal and external tree
nodes, I is the internal node class, N is the number of references to
child nodes in each internal node, X is the external (leaf) node class
(instances of this class must implement the divide and insert
methods as declared in the abstract external template, lines 35 to
36), and P is the type of a parameter that is threaded through the
insertion algorithm. The program instantiates this template to ob-
tain the internal node class of the data structure that the application
uses.

The insert method (line 5) implements a standard tree inser-
tion algorithm. It invokes the index method to determine the next
child along the insertion path for the inserted element e (line 9).
If the child is NULL (line 11), it creates a new external node that
contains the inserted element e (line 14) and links the node into the
tree (line 15). If the child is an internal node (line 14), it recursively
descends the tree (line 15). Otherwise, the child is an external node.

3

1:template <typename E, int M>
2:class list {
3: public: int next; E elements[M];
4: virtual bool append(E e) {
5: int i = next;
6: if (M <= i) return false;
7: elements[i] = e;
8: next = i + 1;
9: return true;
10: }
11: ...
12:};

Figure 2. Array List Template and Append Algorithm

The algorithm attempts to insert the element e into the child exter-
nal node (line 18). If the insertion fails (because the external node
is full), it divides the elements in the external node into a new sub-
tree (lines 19 to 20), links the new subtree into place (line 21), then
retries the insertion (line 22).

Consider what may happen when multiple threads insert ele-
ments in parallel. There are multiple opportunities for the inser-
tions to interfere in ways that drop elements. For example, multiple
threads may encounter a NULL child, then start parallel computa-
tions to build new external nodes to hold the elements inserted in
that location in the tree. As the computations finish and link the
external nodes into the tree, they may overwrite references to pre-
viously linked external nodes (dropping all of the elements in those
nodes). But even though these interactions may prevent the tree
from containing all of the inserted elements, the tree still preserves
key consistency properties required for clients to use it successfully
(see Section 2.6.2).

We note that this algorithm may insert elements into the same
external node concurrently. It is the responsibility of the external
node insertion algorithm to operate acceptably in the face of such
concurrent insertions. The approximate array list append algorithm
(see Section 2.2) and approximate extensible array append algo-
rithm (see Section 2.3) do so.

2.2 Approximate Array List Data Structure
Figure 2 presents a C++ template that implements an array list
append algorithm. The template parameters are E, the type of the
elements in the array list, and M, the number of elements in the list.
The algorithm first checks to see if there is room in the array list for
the appended element (line 6). If so, it inserts the element into the
array (lines 7 to 8) and returns true (indicating that the append was
successful). Otherwise it returns false (indicating that the array
was full).

We note that there are multiple opportunities for parallel ex-
ecutions of the append operation to interfere in ways that drop
elements. For example, parallel executions of lines 7 and 8 may
overwrite references to concurrently appended elements.

2.3 Approximate Extensible Array List Data Structure
Figure 3 presents a C++ template that implements an append al-
gorithm for an extensible array list. Researchers have previously
developed a non-template version of this data structure and asso-
ciated construction algorithm [19]. This data structure dynamically
extends the array to accomodate more elements when the current
array becomes full. The template paramters are E, the type of the el-
ements in the array list, M, the number of elements in the initial list,
and P, the type of a parameter threaded through the parallel com-
putation. The append algorithm is similar to the append algorithm

template <typename E, typename P>
class helper {
public:

int next, last;
E *elements;

helper(int n, P p) {
next = 0; last = n;
elements = new (p) E[n];

}
helper(helper<E,P> *h, int n, P p) {

next = h->next; last = n;
elements = new (p) E[n];
for (int i = 0; i < h->last; i++) {
elements[i] = h->elements[i];

}
}
...

};

template <typename E, int M, typename P>
class extensible {
public: helper<E,P> *h;
extensible(P p) {

h = new (p) helper<E,P>(M,p);
}
virtual bool append(E e, P p) {

int i = h->next;
int l = h->last;
if (l <= i) {
h = new (p) helper<E,P>(h, l * 2, p);

}
h->elements[i] = e;
h->next = i + 1;
return true;

}
...

};

Figure 3. Extensible Array List Template and Append Algorithm

for fixed-sized array lists (see Section 2.2), except that it extends
the array if the current array is full.

This data structure uses a separate helper class that contains
the next, last, and elements variables that implement the exten-
sible array. Instances of this helper class satisfy the invariant that
elements[i] is always in bounds if i<last. An alternate strat-
egy that eliminated the helper class by storing the next, last,
and elements directly in the extensible instances would work
for sequential executions but fail for parallel executions — data
races could violate the invariant that elements[i] is always in
bounds if i<last, in which case the append algorithm would per-
form out of bounds accesses.

This data structure therefore illustrates that, although a strength
of the approximate data structures presented in this paper is the fact
that they very closely resemble standard (and relatively simple) se-
quential implementations, they have been engineered to avoid pit-
falls associated with closely related data structures that are correct
in sequential contexts but crash when executed without synchro-
nization in parallel contexts.

2.4 Array Lists As External Tree Nodes
The building blocks presented in Sections 2.1, 2.2, and 2.3 are
designed to work together as components of hybrid data structures
built from arbitrary combinations of trees and arrays.

4

1:template <typename E, int M, class T,
2: class I, int N, class X, typename P>
3:class externalList : public list<E,M>,
4: public external<E,T,I,N,X,P> {
5: public:
6: externalList(I *t, int i, E e, P p) {
7: append(e);
8: }
9: virtual bool insert(E e, P p) {
10: return append(e);
11: }
12: virtual void divide(I *n, P p) {
13: for (int i=0; i < list<E,M>::next; i++) {
14: n->insert(list<E,M>::elements[i], p);
15: }
16: }
17: ...
18:};

Figure 4. Array List As External Tree Node Template

Figure 4 presents a template for implementing external tree
nodes as array list nodes. The externalList template inherits
from both the list and external templates to obtain a template
with the list functionality that can operate as an external tree
node. The insert operation simply invokes the array list append
operation. The divide operation iterates over the elements in the
array list and inserts them into the internal node that is the root
of the new subtree. In both cases the operations execute without
interference on objects that are not (yet) accessible to other threads.

The template in Figure 4 implements the leaves of the tree with
fixed-size array lists. Inheriting from the extensible template in-
stead of the list template would produce a externalExtensible
template that uses extensible arrays to implement the leaves of the
tree.

2.5 Hash Tables
Because hash tables are typically implemented as a combination
of (a single-level) tree and array data structures, it is possible to
build an approximate hash table out of our tree and array build-
ing blocks. Figure 5 shows how to instantiate the internal and
externalExtensible templates to obtain an approximate hash
table. The hash array is implemented as a single-level tree. Each ar-
ray element children[i] references an extensible array bucket
object that holds the inserted elements that fall into that bucket.
The index method uses a hash function to compute the bucket
for each inserted element. The insert and append algorithms,
which perform the hash table insertions, are encapsulated within
the internal and extensible templates.

2.6 Barnes-Hut Algorithm
The Barnes-Hut N -body simulation algorithm works with a hier-
archical space-subdivision tree. This tree contains bodies (the N
bodies in the simulation), cells (each of which corresponds to a
spatial region within the space-subdivision tree), and leaves (each
of which stores a set of bodies that are located within the same leaf
region of the tree).

In the hierarchical structure of the tree, the regions are nested —
each cell is divided into eight octants. Each cell therefore contains
eight references to either a hierarchically nested cell or leaf, each of
which corresponds to one of the octants in the parent cell’s region.

Figure 6 presents the class declarations for the objects that im-
plement the Barnes-Hut space-subdivision tree. The cell class im-
plements the internal nodes in the tree, the leaf class implements

class parent : public
tree<int, parent, hash, 100, bucket, int> {
...

};
class bucket : public
externalExtensible<int, parent, hash, 100,

bucket, 5, int> {
...

};
class hash : public
internal<int, hb, hash, 100, bucket, int> {
public:

int index(int i) { ... }
...

};

Figure 5. Hash Table Classes

class body { ... };
class cell : public
internal<body *, node, cell, 8, leaf, int> {
int index(body *b) { ... }
...

};
class leaf : public
externalList<body *, 10, node, cell, 8, leaf, int>
{ ... };

class node : public
tree<body *, node, cell, 8, leaf, int>
{ ... };

Figure 6. Classes for Barnes-Hut Space Subdivision Tree

the external nodes in the tree. Both of these classes inherit from the
node class. The body class implements the bodies in the simula-
tion. It contains fields that store values such as the position, veloc-
ity, and acceleration of the body.

As Figure 6 indicates, the tree construction algorithms are in-
herited from the internal and externalList template classes.
The only new method required to implement the tree construction
algorithm is the index(b) method, which computes the index of
the octant of the current cell into which the body b falls.

The parallel tree construction algorithm divides the bodies
among the parallel threads. For each of its bodies b, each thread
p invokes c->insert(b,p) (here c is the root of the space-
subdivision tree) to insert the body into the tree. The computa-
tion allocates any required cell or leaf objects from independent
allocation pools associated with thread p.

2.6.1 Natural Consistency Properties
Some natural consistency properties of the tree include:

• Property L1 (Leaf In Bounds): The next field in each leaf
object that appears in the tree is at least 0 and at most M (the
number of elements in the elements array).

• Property L2 (Leaf Prefix): For each leaf object l that appears
in the tree and for all i at least 0 and less than l->next,
l->elements[i] references a body object (and is therefore
not NULL).

• Property L3 (Leaf Postfix): For each leaf object l that ap-
pears in the tree and for all i at least l->next and less than M,
l->elements[i] is NULL;

5

• Property T1 (Tree): The cell, leaf, and body objects reach-
able from the root form a tree, where the edges of the tree con-
sist of the references stored in the children fields of cell
objects and the elements fields of leaf objects. Note that this
property ensures that each body object appears at most once in
the tree.

• Property B1 (Body Soundness): If a body object appears in
the tree (i.e., is referenced by a leaf object reachable from the
root), then it was inserted into the tree.

• Property B2 (Body Completeness): Each body object that was
inserted into the tree actually appears in the tree.

• Property O1 (Octant Inclusion): Each leaf object that ap-
pears in the tree corresponds to a region of space, with the re-
gion defined by the path to the leaf from the root cell object.
The positions of all of the body objects that each leaf object
references fall within that region.

Together, we call these properties the Natural Properties of
the tree. If the tree construction algorithm executes sequentially,
it produces a tree that satisfies these properties.

2.6.2 Synchronization-Free Consistency Properties
We note that the above properties are stronger than the center of
mass and force computation phases actually require to produce an
acceptable approximation to the forces acting on the bodies. And
in fact, our synchronization-free algorithm may not (and in practice
does not) produce a tree that satisfies all of the above Natural
Properties. Specifically, it may produce a tree that violates Property
B2 (the algorithm may drop inserted bodies) and Property L3 (some
parallel interactions may reset the next field back into the middle
of the elements array).

We first consider what requirements the tree must satisfy so that
the center of mass and force computation phases do not crash. It
turns out that Properties T1, B1, O1, L1, and L2 are sufficient to
ensure that the center of mass and force computation phases do not
crash. Our parallel synchronization-free algorithm produces a tree
that satisfies these properties.

We note that all of these properties are hard logical correctness
properties of the type that standard data structure reasoning systems
work with [27, 28]. One way to establish that the algorithm always
produces a tree with these properties is to reason about all possible
executions of the program to show that all executions produce a
tree that satisfies these properties.

In addition to these properties, our parallel synchronization-free
algorithm must satisfy the following property:

• Property A1 (Accuracy): The tree contains sufficiently many
body objects so that the force computation phase produces a
sufficiently accurate result.

In contrast to the hard logical consistency properties that we dis-
cuss above, we do not establish that our algorithm preserves this
property by reasoning about all possible executions. Indeed, this
approach would fail, because some of the possible executions vio-
late this property.

We instead reason empirically about this property by observing
executions of the program. Specifically, we compare the results that
the program produces when it uses our parallel synchronization-
free algorithm with results that we know to be accurate. We use this
comparison to evaluate the accuracy of the results from the parallel
synchronization-free algorithm.

2.7 Memory Model
When we reason about parallel executions, we assume the execu-
tions take place on a parallel machine that implements individual

reads and writes atomically. We also assume that writes become
visible to other cores in the order in which they are performed. The
computational platform on which we run our experiments (Intel
Xeon E7340) implements a memory consistency model that satis-
fies these constraints.

Under the C++11 standard, if a parallel program performs con-
flicting memory accesses that are not ordered by synchronization
operations or explicitly identified atomic read or write instructions,
the meaning of the program is undefined. When using a compiler
that implements this standard, we would identify the writes on lines
13 and 21, Figure 1 and lines 7 and 8, Figure 2 as atomic writes.
We would also identify the reads on line 10, Figure 1, line 5, Fig-
ure 2, and and line 14, Figure 4 (as well as any reads to cell or
leaf fields perfomed in other methods executed during the par-
allel tree construction, the index method, for example) as atomic
reads. The semantics of this program is defined under the C++11
standard. Moreover, when instructed to compile the program using
an appropriate weak memory consistency model, an appropriately
competent C++11 compiler should generate substantially the same
instruction stream with substantially the same performance as our
current implementation for the Intel Xeon E7340 platform.

2.8 Acceptability Argument
We next show that the tree construction algorithm preserves Prop-
erties T1, B1, O1, L1, and L2. We consider each property in turn
and provide an argument that each tree assignment that may affect
the property preserves the property. The argument proceeds by in-
duction — we assume that the tree satisfies the properties before the
assignment, then show that each assignment preserves the property.

• Property L1 (Leaf In Bounds): The next field is initialized
to 0 in the list constructor. Line 8, Figure 2 is the only other
line that changes next. The check at line 6, Figure 2 ensures
that next is at most M. By the induction hypothesis, at line 7,
Figure 2 the index i is at least 0, so next is set to a value that
is at least 1.

• Property L2 (Leaf Prefix): We first show that the assignment
elements[i] = e at line 7, Figure 2 (the only assignment that
changes elements[i]) always sets elements[i] to reference
a non-NULL body b.
There are two cases. The first case is the initial insertion of the
body b into the tree via an invocation of c->insert(b, p),
where c is the root of the tree. In this case b is not NULL because
the algorithm only inserts non-NULL bodies into the tree.
The second case occurs via an execution of the divide method
(line 12, Figure 4), which inserts the bodies from a full leaf ob-
ject into the subtree that will replace that leaf object in the tree.
All of the inserted body objects b come from elements[i]
(line 14, Figure 4), where i is at least 0 and less than next (see
the loop termination condition at line 13 of Figure 4). By the
induction hypothesis all of these body objects are not NULL.
We next show that the assignment next = i + 1 (line 8,
Figure 2) preserves Property L2. By the induction hypothe-
sis we must only show that elements[i] is non-NULL after
the assignment executes. The preceding assignment at line 7,
Figure2) ensures that this is the case.

• Property T1 (Tree): The tree contains cell, leaf, and body
objects. We show that there is at most one path to each such
object from the root:

cell Objects: The algorithm creates a reference to a cell
object only at line 21, Figure 1. In this case the cell object
is newly created at line 19, Figure 1. The only path to this
new cell object must therefore go through the parent object
that contains the children array that references the new

6

cellobject. By the induction hypothesis there is at most one
path to this parent object and therefore at most one path to
the new cell object.

leaf Objects: The algorithm creates a reference to a leaf
object only at line 13, Figure 1. In this case the leaf object
is newly created at line 12, Figure 1. The only path to this
new leaf object must therefore go through the parent object
that contains the children array that references the new
leafobject. By the induction hypothesis there is at most one
path to this parent object and therefore at most one path to
the new leaf object.

body Objects: For each body object b, the algorithm in-
vokes c->insert(b,p), where c is the root of the tree,
exactly once. During this call it creates the first reference
to the body, either inside the leaf constructor (line 12, Fig-
ure 1) or at line 7, Figure 2 via the call to x->insert(e,p)
(line 18, Figure 1).
The algorithm may subsequently create a new reference to
b when the leaf object x that references b becomes full
and the algorithm invokes x->divide(c,p) to create a new
subtree c that holds the referenced body objects. When the
call to divide completes, the subtree rooted at c (which
is not yet reachable) may contain a reference to b. This
reference becomes reachable when the assignment at line
21 of Figure 1 creates a path to the new cell object created
at line 19 of Figure 1. Because this assignment overwrites
the old reference from children[i] to x through which b
was reachable in the original tree, it preserves the invariant
that there is at most one path to b.

• Property B1 (Body Soundness): The tree construction algo-
rithm starts with an empty tree, then invokes the insert pro-
cedure for each body in the simulation. The invoked code only
creates cell and leaf objects, not bodies. All bodies that ap-
pear in the tree are therefore inserted by the tree construction
algorithm.

• Property O1 (Octant Inclusion): The initial insertion of a
body b into the tree traverses a path to an external node, then
inserts b into that node. At each step the algorithm invokes the
index method (line 9, Figure 1 to determine the appropriate
octant at that level into which to insert the body b.
The initial path may be extended when the leaf object that
references b becomes full and the algorithm inserts another
cell object c into the path. At this step, the algorithm again
invokes the index method to determine the correct octant in c
into which to insert the body b.

2.9 Key Concepts
Our algorithms have the advantage that they are essentially clean,
easily-understandable sequential algorithms that execute accept-
ably when run in parallel without synchronization. But as the above
acceptability argument illustrates, the acceptability of the algorithm
relies on two key structuring techniques:

• Link At End: Some data structure updates link a new leaf or
subtree into the tree. Because our algorithms link the leaf or
subtree into place only after they fully initialize and construct
the new leaf or subtree, they ensure that parallel threads only
encounter fully constructed leaves or subtrees that they can
access without crashing.

• Local Read, Check, and Index: One natural way to code the
append operation (Figure 2) would read next (which refer-
ences the next available array element) three times: first to to
check if the array is full (line 6, Figure 2), then again to deter-

mine where to insert the item (line 7, Figure 2), then again to
increment next (line 8, Figure 2). If coded this way, the result-
ing data races could cause out of bounds accesses that crash the
computation.
The append operation in Figure 2 avoids such data races by
reading next into a local variable at the start of the operation,
then using this local variable for all checks, indexing, and up-
date operations. This technique eliminates out of bounds ac-
cesses even in the presence of data races associated with unsyn-
chronized parallel executions.

2.10 Final Check and Data Structure Repair
It is possible to view the tree insertion and array append algorithms
as composed of fine-grained updates, each of which first performs a
check to determine which action to perform, next (in general) exe-
cutes a sequence of instructions that construct a new part of the data
structure, then executes one or more write instructions to commit
the update. The unsynchronized algorithm drops bodies because
writes from parallel threads may change the checked state so that
the check would no longer produce the same result if executed at
the time when the writes that commit the update execute. We call
the time between the check and the commit the window of vulnera-
bility because it is during this time that state changes may interfere
with the atomicity of the check and the update.

We use a technique, final check, to shrink (but not eliminate) the
window of vulnerability. Just before the commit, the final check
performs part or all of the check again to determine if it should
still perform the update. If not, the algorithm discards the action
and retries the insert or append. It is possible to retry immediately
or defer the retry until later, for example by storing the body in a
data structure for later processing. Figure 7 presents a tree insert
algorithm that contains final checks. Figure 8 presents an array
append algorithm with final checks. If a final check fails, both
algorithms immediately retry.

The final check at line 6, Figure 8 may infinite loop if Property
L3 (Leaf Postfix) is violated (so that elements[next] is non-
NULL). A data structure repair algorithm (lines 12 to 19, Figure 8)
eliminates the infinite loop by repairing the data structure to restore
Property L3.

2.11 Semantic Data Races
Of course, even though the algorithm preserves Properties L1, L2,
T1, B1, and O1, it still contains data races (because it performs
conflicting parallel accesses to shared data without synchroniza-
tion). But instead of focusing on a low-level implementation detail
that may have little or nothing to do with the acceptability, we in-
stead focus on the semantic consequences of interactions between
parallel threads.

We make this concept precise as follows. We say that there is
a semantic data race when the parallel execution causes sequences
of instructions from insertions of different bodies to interleave in a
way that the parallel execution produces a tree that violates one or
more of the Natural Properties from Section 2.6.1.

Data races are traditionally defined as unsynchronized conflict-
ing accesses to shared data. Our semantic approach to defining data
races, in contrast, makes it possible to distinguish different kinds
of data races based on the properties that they do and do not vio-
late. Our unsynchronized parallel tree construction algorithms, for
example, may violate Properties L3 and B2, but do not violate the
other properties. Because the clients of the tree construction algo-
rithm can operate acceptably with trees that violate Properties L3
and B2, these data races are acceptable. Other data races are unac-
ceptable because they may cause the data structure to violate crit-

7

1:void insert(E e, P p) {
2: int i;
3: T *t;
4: X *x;
5: i = index(e);
6: t = children[i];
7: if (t == NULL) {
8: x = new (p) X((I *) this, i, e, p);
9: // final check
10: if (children[i] == NULL) {
11: children[i] = x;
12: } else {
13: insert(e, p);
14: }
15: } else if (t->isInternal()) {
16: ((I *) t)->insert(e, p);
17: } else {
18: x = (X *) t;
19: if (!x->insert(e, p)) {
20: I *c = new (p) I((I *) this, i, p);
21: x->divide(c, p);
22: // final check
23: if (children[i] == t) {
24: children[i] = (T *) c;
25: }
26: insert(e, p);
27: }
28: }
29:}

Figure 7. Tree Insert Algorithm With Final Check

1:virtual bool append(E e) {
2: while (true) {
3: int i = next;
4: if (M <= i) return false;
5: // final check
6: if (elements[i] == NULL) {
7: elements[i] = e;
8: next = i + 1;
9: return true;
10: } else {
11: // data structure repair
12: while (true) {
13: if ((elements[i] == NULL) ||
14: (M <= i)) {
15: next = i;
16: break;
17: }
18: i++;
19: }
20: }
21: }
22:}

Figure 8. Append Algorithm With Final Check And Data Struc-
ture Repair

ical properties that must hold for clients (and indeed, for the tree
construction algorithm itself) to execute successfully.

This semantic approach to data races therefore provides the
conceptual framework we need to understand why our unsynchro-
nized parallel tree construction algorithms produce an acceptable
result. Specifically, these algorithms are acceptable because their
data races preserve critical properties that must be true for the com-
putation and its clients to execute successfully.

2.12 Atomic Updates
We discuss data races further by identifying specific updates in
the Final Check version. Each update consists of a check (which
examines part of the data structure to determine if a given condition
holds, in which case we say that the check succeeds) and an action
(a write that the algorithm performs if the check succeeds). If each
update executes atomically, the algorithm does not drop bodies and
satisfies all of the Natural Properties from Section 2.6.1.

• New Leaf: The check for a NULL child reference (line 10,
Figure 7) in combination with the write that links the new leaf
into place (line 11, Figure 7).

• New Cell: The check that the reference to the leaf object t in
children[i] (line 23, Figure 7) has not changed since the test
at line 15, Figure 7 in combination with the write that links the
new cell object c into the tree.

• Insert Body: The check that the slot at elements[i] is NULL
and therefore available (line 6, Figure 8) in combination with
the write that links the element e into the array list (line 7,
Figure 8).

We have developed two versions of the algorithm that execute
these operations atomically (Section 3 presents results from these
versions): one uses mutual exclusion locks, the other uses compare
and swap instructions. Even with these synchronization operations,
these versions still contain data races. But because they preserve
the Natural Properties, they do not contain semantic data races (al-
though the analysis required to verify that this is true is non-trivial).
We therefore view semantic data races as a more productive and ap-
propriate concept for reasoning about the potential interactions in
this algorithm than the traditional concept of data races.

3. Experimental Results
We present results from a parallel Barnes-Hut computation that
uses the algorithms described in Sections 2.1, 2.2, and 2.10 to build
its space-subdivision tree. We implement the computation in C++
using the pthreads threads package. At each step of the simulation
each thread inserts a block of N/T bodies into the tree, where N is
the number of bodies in the system and T is the number of parallel
threads.

For comparison purposes, we implemented several different
versions of the algorithm:

• TL (Tree Locking): This version locks each node in the tree
before it accesses the node. As it descends the tree, it releases
the lock on the parent node and acquires the lock on the child
node. Tree locking is a standard way to synchronize tree up-
dates.

• UL (Update Locking:) This version uses mutual exclusion
locks to make the updates identified in Section 2.12 execute
atomically. It satisfies all of the Natural Properties and does not
drop bodies.

• HA (Hyperaccurate): The Update Locking version above, but
running with an smaller tol parameter (the original tol param-
eter divided by 1.25). With this parameter, the force computa-
tion phase goes deeper into the space-subdivision tree before

8

it approximates the effect of multiple distant bodies with their
center of mass — the smaller the tol parameter, the deeper the
phase goes into the tree before it applies the center of mass ap-
proximation. We use this version to evaluate the accuracy con-
sequences of dropping bodies from the space-subdivision tree.

• CAS (Compare And Swap): This version uses compare and
swap instructions to make the updates identified in Section 2.12
execute atomically. It satisfies all of the Natural Properties and
does not drop bodies.

• FP (First Parallel): The synchronization-free approximate ver-
sions in Figures 1 and 2.

• FC (Final Check): The synchronization-free approximate ver-
sions in Figures 7 and 8 that use final checks to shrink the win-
dow of vulnerability.

Note that the Tree Locking, Update Locking, and Compare and
Swap versions all compute the same result. We run all versions on
a 16 core 2.4 GHz Intel Xeon E7340 machine with 16 GB of RAM
running Debian Linux kernel version 2.6.27. We report results from
executions that simulate 100 steps of a system with 256K bodies.
We initialize the positions and velocities of the 256K bodies to
psuedorandom numbers.

3.1 Accuracy
We define the distance metric ∆X

Y between two versions X and Y
of the algorithm as follows:

∆X
Y =

∑
0≤i<N

d(bXi , bYi)

Here bXi is the final position of the ith body at the end of the sim-
ulation that uses version X of the tree construction algorithm (and
similarly for bYi), d(bXi , bYi) is the Euclidean distance between the
final positions of corresponding bodies in the two simulations, and
N is the number of bodies in the simulation.

We evaluate the accuracy of a given version X by comparing
its final body positions with those computed by the Hyperaccurate
(HA) version. The minimum ∆HA

X , over all versions X 6= HA, all
executions, and all number of cores, is 3041.48.

We next use the distance metric ∆X
Y to evaluate the inaccuracy

that the use of approximate data structures introduces. Specifically,
we compute ∆HA

FP − ∆HA
UL and ∆HA

FC − ∆HA
UL as the additional

inaccuracy metric for the First Parallel and Final Check versions,
respectively. These differences quantify the additional inaccuracy
introduced by the use of approximate data structure construction al-
gorithms in these versions. We compare these differences to ∆HA

UL .
Table 1 presents the maximum (over the eight runs) additional

inaccuracy metric for the First Parallel and Final Check versions
as a function of the number of cores executing the computation.
These numbers show that the accuracy loss introduced by the use
of approximate data structures is four orders of magnitude smaller
than the accuracy gain obtained by increasing the accuracy of the
center of mass approximation (0.26 in comparison with 3041.48).
This fact supports the acceptability of the presented approximate
data structure construction algorithms. The rationale is that, in com-
parison with the Hyperaccurate version, all other versions (includ-
ing the approximate synchronization-free versions) compute results
with essentially identical accuracy.

3.2 Final Check Effectiveness
Table 2 reports the maximum (over all eight executions) of the sum
(over all 100 simulation steps) of the number of bodies that the
First Parallel and Final Check versions drop. Note that there are
256K*100 inserted bodies in total. These numbers show that the
number of dropped bodies is very small — even running on 16

Number of Cores
Version 1 2 4 8 16
FP 0.00 0.05 0.57 0.26 -0.63
FC 0.00 0.02 0.03 0.09 -0.11

Table 1. Maximum additional inaccuracy metric for First Parallel
(∆HA

FP −∆HA
UL) and Final Check (∆HA

FC−∆HA
UL) versions. Compare

with the minimum ∆HA
UL = 3041.48.

Number of Cores
Version 1 2 4 8 16
FP 0 62 80 202 730
FC 0 13 24 34 159

Table 2. Number of dropped bodies (out of 256K * 100 total in-
serted bodies) for First Parallel (FP) and Final Check (FC) versions.

Number of Cores
Version 1 2 4 8 16
FC 1.00 1.88 3.41 7.32 14.15
FP 1.00 1.87 3.38 7.28 14.02
CAS 0.95 1.75 3.23 6.86 13.21
UL 0.90 1.67 3.02 6.51 12.58
TL 0.83 0.87 0.58 0.40 0.39

Table 3. Speedup Numbers for Barnes-Hut Tree Construction

0	

4	

8	

12	

16	

0	
 4	
 8	
 12	
 16	

Sp
ee
du

p	

Number	
 of	
 Cores	

FC	

FP	

CAS	

UL	

TL	

Figure 9. Speedup Curves for Barnes-Hut Tree Construction

cores with no final check to reduce the number of dropped bodies,
in our eight runs the First Parallel algorithm drops at most 730
of the bodies it inserts. Other versions drop significantly fewer
bodies. These numbers also show that the final check is effective
in reducing the number of dropped bodies by a factor of 3 to 6
depending on the number of cores executing the computation.

3.3 Accuracy For Long Simulations
To better understand the effect of the First Parallel and Final Check
versions on the accuracy of the simulation as the number of steps
increases, we computed ∆S

H , ∆FP
S , and ∆FC

S after each of the 100
steps s of the simulation. Plotting these points reveals that they
form curves characterized by the following equations:

∆HA
UL (s) = 0.3s2 + 1.4s

∆UL
FP (s) = 0.002s2 + 0.04s

9

∆UL
FC(s) = 0.0004s2 + 0.008s

These equations show that the difference between the Hyperaccu-
rate and Update Locking versions grows substantially faster than
the difference the between Update Locking and First Parallel/Final
Check versions. Our interpretation of this fact is that the First Par-
allel/Final Check versions will remain as acceptably accurate as the
Update Locking version even for long simulations with many steps.

3.4 Performance
Table 3 presents speedup numbers for the different versions; Fig-
ure 9 presents the corresponding speedup curves. The X axis plots
the number of threads executing the computation. The Y axis plots
the mean speedup (the running time of the parallel version divided
by the running time of the sequential version, which executes with-
out parallelization overhead) over eight executions of each version
(each of which starts with different body positions and velocities).

The Tree Locking version exhibits extremely poor parallel per-
formance — the performance decreases as the number of cores
increases. We attribute the poor performance to a combination of
synchronization overhead and bottlenecks associated with locking
the top cells in the tree. The remaining versions scale well, with
the First Parallel and Final Check versions running between 5% to
10% faster than the versions that contain synchronization. We at-
tribute the performance difference to the synchroinzation overhead
in these versions.

4. Related Work
To date, approximate computing techniqes such as task skip-
ping [20, 21], loop perforation [9, 15, 16, 23, 29], and approximate
function memoization [4] have focused on the computation (as op-
posed to the data structures that the computation may manipulate).
This research, in contrast, focuses on data structure construction
(although the effect may be conceptually similar in that our approx-
imate data structures may drop inserted or appended elements).

The design and implementation of sophisticated wait-free data
structures has been an active research area for some years [7]. Our
research differs in several ways. First, our synchronization-free al-
gorithms we use only reads and writes (wait-free data structures
typically rely on complex synchronization primitives such as com-
pare and swap or, more generally, transactional memory [8]). Sec-
ond, we do not aspire to provide a data structure that satisfies all
of the standard correctness properties. Third, our algorithms are
essentially clean, easily-understandable sequential algorithms that
have been carefully designed to execute in parallel without crash-
ing. Researchers have also designed a similarly simple unsynchro-
nized accumlator and extensible array with a final check [19]. Wait-
free implementations are typically significantly more complex than
their sequential counterparts.

In recent years researchers have acknowledged the need to relax
traditional data structure correctness guarantees, typically by relax-
ing the order in which operations such as queue insertions and re-
movals can complete [10, 22]. Our research differs in that it delivers
approximate data structures (which may drop inserted or appended
elements) as opposed to relaxed data structures (which may relax
the order in which operations execute but do not propose to drop
elements).

Synchronization has been identified as necessary to preserve
the correctness of parallel space-subdivision tree construction al-
gorithms [24]. The desire to eliminate synchronization overhead
motivated the design of an algorithm that first constructs local trees
on each processor, then merges the local trees to obtain the final
tree. Because the local tree construction algorithms execute with-
out synchronization (the merge algorithm must still synchronize its
updates as it builds the final tree) this approach reduces, but does

not eliminate, the synchronization required to build the tree. The al-
gorithm presented in this paper, in contrast, executes without syn-
chronization and may therefore drop inserted bodies. Our results
show that these trees are still acceptably accurate.

The Cilkchess parallel chess program uses concurrently ac-
cessed transposition tables [6]. Standard semantics require syn-
chronization to ensure that the accesses execute atomically. The de-
velopers of Cilkchess determined, however, that the probability of
losing a match because of the synchronization overhead was larger
than the probability of losing a match because of unsynchronized
accesses corrupting the transposition table. They therefore left the
parallel accesses unsynchronized (so that Cilkchess contains data
races) [6]. Like Cilkchess, our parallel tree insertion algorithm im-
proves performance by purposefully eliminating synchronization
and therefore contains acceptable data races.

The QuickStep compiler automatically generates parallel code
for a wide range of loops in both standard imperative and object-
oriented programs [13, 14]. Unlike other parallelizing compilers,
but like the approximate data structure construction algorithms
presented in this paper, QuickStep is designed to generate parallel
programs that may contain data races that acceptably change the
output of the program.

The race-and-repair project has developed a synchronization-
free parallel hash table insertion algorithm [26]. Like our parallel
tree construction algorithm, this algorithm may drop inserted en-
tries. An envisioned higher layer in the system recovers from any
errors that the absence of inserted elements may cause.

This paper (and a previous technical report [18]) presents an al-
gorithm that works with clients that simply use the tree as produced
with no higher layer to deal with dropped bodies (and no need for
such a higher layer). Because we evaluate the algorithm in the con-
text of a complete computation, we develop an end-to-end accuracy
measure and use that measure to evaluate the overall end-to-end ac-
ceptability of the algorithm. This measure enables us to determine
that the approximate semantics of the synchronization-free algo-
rithm has acceptable accuracy consequences for this computation.

Chaotic relaxation runs iterative solvers without synchroniza-
tion [2, 5, 25]. Convergence theorems prove that the computation
will still converge even in the presence data races. The performance
impact depends on the specific problem at hand — some converge
faster with chaotic relaxation, others more slowly.

5. Conclusion
Since the inception of the field, developers of parallel algorithms
have used synchronization to ensure that their algorithms execute
correctly. In contrast, the basic premise of this paper is that parallel
algorithms, to the extent that they need to contain any synchroniza-
tion at all, need contain only enough synchronization to ensure that
they execute correctly enough to generate an acceptably accurate
result.

We show how this premise works out in practice by presenting
general building blocks (with associated encapsulated approximate
data structure construction algorithms) that can be composed to ob-
tain approximate data structures built from trees, fixed-size arrays,
and extensible arrays. We use these building blocks to obtain an
approximate synchronization-free parallel space-subdivision tree
construction algorithm. Even though this algorithm contains data
races, it produces trees that are consistent enough for the Barnes-
Hut N -body simulation to use successfully. Our experimental re-
sults demonstrate the performance benefits and acceptable accuracy
consequences of this approach.

10

References
[1] J. Barnes and P. Hut. A hierarchical o(n log n) force-calculation

algorithm. Nature, 324(4):446–449, 1986.

[2] G. Baudet. Asynchronous iterative methods for multiprocessors. Jour-
nal of the ACM, 25:225–244, April 1998.

[3] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C. Ri-
nard. Detecting and escaping infinite loops with jolt. In ECOOP,
pages 609–633, 2011.

[4] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving
Programs Robust. FSE, 2011.

[5] D. Chazan and W. Mirankar. Chaotic relaxation. Linear Algebra and
its Applications, 2:119–222, April 1969.

[6] Don Dailey and Charles E. Leiserson. Using Cilk to write multipro-
cessor chess programs. The Journal of the International Computer
Chess Association, 2002.

[7] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program.
Lang. Syst., 13(1), 1991.

[8] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proceedings of the
20th Annual International Symposium on Computer Architecture. May
1993.

[9] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal,
and Martin Rinard. Using Code Perforation to Improve Performance,
Reduce Energy Consumption, and Respond to Failures . Technical
Report MIT-CSAIL-TR-2009-042, MIT, September 2009.

[10] Christoph M. Kirsch and Hannes Payer. Incorrect systems: it’s not the
problem, it’s the solution. In DAC, 2012.

[11] Michael Kling, Sasa Misailovic, Michael Carbin, and Martin C. Ri-
nard. Bolt: on-demand infinite loop escape in unmodified binaries. In
OOPSLA, 2012.

[12] Leslie Lamport. A new solution of dijkstra’s concurrent programming
problem. Communications of the ACM, 17(8):453–455, 1974.

[13] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential pro-
grams with statistical accuracy tests. ACM Transactions on Embedded
Computing Systems. ”to appear”.

[14] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential pro-
grams with statistical accuracy tests. Technical Report MIT-CSAIL-

TR-2010-038, MIT, August 2010.

[15] Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. Probabilisti-
cally accurate program transformations. In SAS, pages 316–333, 2011.

[16] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin C.
Rinard. Quality of service profiling. In ICSE (1), pages 25–34, 2010.

[17] Sasa Misailovic, Stelios Sidiroglou, and Martin Rinard. Dancing with
uncertainty. RACES Workshop, 2012.

[18] Martin Rinard. A lossy, synchronization-free, race-full, but still ac-
ceptably accurate parallel space-subdivision tree construction algo-
rithm. Technical Report MIT-CSAIL-TR-2012-005, MIT, February
2012.

[19] Martin Rinard. Unsynchronized techniques for approximate parallel
computing. RACES Workshop, 2012.

[20] Martin C. Rinard. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. In ICS, pages 324–334, 2006.

[21] Martin C. Rinard. Using early phase termination to eliminate load
imbalances at barrier synchronization points. In OOPSLA, pages 369–
386, 2007.

[22] Nir Shavit. Data structures in the multicore age. CACM, 54(3), 2011.

[23] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin C. Rinard. Managing performance vs. accuracy trade-offs with
loop perforation. In SIGSOFT FSE, pages 124–134, 2011.

[24] Jaswinder Pal Singh, Chris Holt, Takashi Totsuka, Anoop Gupta, and
John L. Hennessy. Load balancing and data locality in adaptive
hierarchical n-body methods: Barnes-hut, fast multipole, and radiosity.
Journal Of Parallel and Distributed Computing, 27:118–141, 1995.

[25] J. Strikwerda. A convergence theorem for chaotic asynchronous relax-
ation. Linear Algebra and its Applications, 253:15–24, March 1997.

[26] D. Ungar. Presentation at OOPSLA 2011, November 2011.

[27] Karen Zee, Viktor Kuncak, and Martin C. Rinard. Full functional
verification of linked data structures. In PLDI, pages 349–361, 2008.

[28] Karen Zee, Viktor Kuncak, and Martin C. Rinard. An integrated proof
language for imperative programs. In PLDI, pages 338–351, 2009.

[29] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin C.
Rinard. Randomized accuracy-aware program transformations for
efficient approximate computations. In POPL, pages 441–454, 2012.

11

