
An Integrated Synchronization and Consistency Protocol for the Implementation of
a High-Level Parallel Programming Language

Martin C. Rinard (martin@cs.ucsb.edu)
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA 93106

Abstract

This paper presents experimental results that character-
ize the performance of the integrated synchronization and
consistency protocol used in the implementation of Jade,
an implicitly parallel language for coarse-grain parallel
computation. The consistency protocol tags each replica
of shared data with a version number. The synchronization
algorithm computes the correct version numbers of the repli-
cas of shared data that the computation will access. Because
the protocol piggybacks the version number information on
the synchronization messages, it generates fewer messages
than standard update and invalidate protocols. This paper
characterizes the performance impact of the consistency
protocol by presenting experimental results for several Jade
applications running on the iPSC/860 under several differ-
ent Jade implementations.

1 Introduction

The traditional shared memory programming model pro-
vides separate abstractions for communication and synchro-
nization. The parallel threads of control communicate im-
plicitly by reading and writing the shared memory and syn-
chronize explicitly using synchronization constructs such as
locks and barriers. Implementing the abstraction of shared
mutable memory on a modern distributed memory hardware
platform is a challenging task. System builders must imple-
ment a message passing protocol to coordinate multiple ac-
cesses to multiple physical memories. Efficiency concerns
complicate the implementation process. The long latencies
and potential message passing overhead associated with ac-
cessing a remote memory have motivated implementors to
build systems that replicate data for fast local access. But
any time a system replicates mutable data, it must solve the
consistency problem: it must prevent tasks from accessing
out of date replicas of shared data. The standard way to

solve the consistency problem is to use an invalidate or up-
date consistency protocol. These protocols send messages
that eliminate or overwrite any out of date replicas whenever
a task writes shared data.

The end result is usually a system that contains two dis-
tinct protocols: a synchronization protocol to implement
the synchronization abstractions, and a consistency proto-
col to manage the replication. But because most programs
synchronize their accesses to shared data, separating the
protocols may generate more message traffic than that re-
quired to correctly execute the program. A locked update
to a shared object, for example, may generate multiple in-
teractions with remote processors: one to acquire the lock,
one to fetch the shared object, and, when other processors
write the object, interactions to invalidate or update the out
of date replica of the object. A more efficient system would
combine the messages and generate fewer interactions.

The implementation of Jade, a portable, implicitly paral-
lel programming language designed for exploiting task-level
concurrency[5], uses an integrated synchronization and con-
sistency protocol. It exploits both its knowledge of how the
computation will access data and its control of the synchro-
nization algorithm to merge the consistency protocol into
the synchronization protocol. Instead of using an update
or invalidate protocol to eliminate out of date replicas, the
Jade implementation uses a consistency protocol based on
version numbers. All replicas are tagged with a version
number that counts the number of times the program wrote
the data to generate that version. Every time the program
accesses shared data, the synchronization algorithm auto-
matically calculates the number of the correct version to
access. The consistency algorithm uses the version num-
bers to ensure that the program always accesses the correct
version of each piece of shared data. The implementation
eliminates excess message traffic by piggybacking all ver-
sion number information on the messages that implement
the synchronization protocol. The end result is a single ef-
ficient protocol that generates fewer total messages than the
combination of an isolated synchronization protocol and an

isolated consistency protocol.
In this paper we present experimental results for several

Jade applications running on the iPSC/860. We built ver-
sions of the Jade implementation that use invalidate, update
and an integrated synchronization and communication pro-
tocols, then collected results for several Jade applications
running under the different implementations. The experi-
mental results characterize the performance impact of the
Jade version number protocol relative to an invalidate or up-
date protocol. These experiments reveal that there is a wide
variance in the performance impact of the update protocol
relative to the other two protocols. For some applications the
update protocol degrades the performance by sending many
superfluous update messages to processors that never access
the updated version. For other applications the update proto-
col improves the performance by distributing a new version
of shared data with a single broadcast message rather than
multiple point to point messages. Motivated by our appli-
cations experience, we developed a hybrid communication
and consistency protocol for Jade that realizes the broadcast
performance improvements while avoiding any performance
degradation caused by excessive communication.

Because of space restrictions, we have made no attempt
to make this paper self-contained. A full version is available
[6].

2 Experimental Results

To experimentally evaluate the performance impact of
using the version number consistency protocol instead of
an update or invalidate protocol, we implemented three ver-
sions of the Jade implementation. Each uses a different
consistency protocol.

� Version: The Version implementation uses the ob-
ject queue synchronization protocol and the version
number consistency protocol.

� Invalidate: The Invalidate implementation uses the
same synchronization protocol as the Version imple-
mentation, but obtains the effect of a standard inval-
idate protocol by sending invalidate and invalidate
acknowledge messages.

� Update: The Update implementation uses the same
synchronization protocol as the Version implemen-
tation, but obtains the effect of a standard update
protocol by sending update and update acknowledge
messages. An update protocol has the potential to
either improve or degrade the overall performance.
The protocol may waste communication bandwidth
by sending new versions of objects to processors that
never actually access the new versions. On the pos-
itive side, eagerly updating versions of objects can

eliminate object request messages and the latency as-
sociated with waiting for requested versions of objects
to arrive. It is also much more efficient to broadcast a
single message containing the new version of an ob-
ject accessed by all processors than to send a separate
point to point message to every processor.

We evaluate the Jade implementations by measuring the
performance of several Jade applications running under each
of the protocols. The applications are Water, which evalu-
ates forces and potentials in a system of water molecules in
the liquid state, Ocean, which simulates the role of eddy and
boundary currents in influencing large-scale ocean move-
ments and Panel Cholesky, factors a sparse positive-definite
matrix. The full version of the paper also presents experi-
mental results for String, which computes a velocity model
of the geology between two oil wells.

2.1 Ocean

The computationally intensive section of Ocean uses an
iterative method to solve a set of discretized spatial partial
differential equations. Conceptually, it stores the state of
the system in a two dimensional array. On every iteration
the application recomputes each element of the array using
a standard five-point stencil interpolation algorithm.

To express the computation in Jade, the programmer de-
composed the array into a set of interior blocks and boundary
blocks. Each block consists of a set of columns. The size of
the interior blocks determines the granularity of the compu-
tation and is adjusted to the number of processors executing
the application. There is one boundary block two columns
wide between every two adjacent interior blocks.

At every iteration the application generates a set of tasks
to compute the new array values in parallel. There is one
task per interior block; that task updates all of the elements
in the interior block and one column of elements in each
of the border blocks. Almost all of the communication
therefore takes place when border blocks move between
adjacent processors in response to each task’s request to
update the block.

Figure 1 presents, for each of the three Jade implemen-
tations, the total number of messages sent during the Ocean
computation as a function of the number of processors exe-
cuting the computation. The Version and Invalidate imple-
mentations send an almost identical number of messages,
which means that the Invalidate implementation sends al-
most no invalidate messages. Because each task updates all
the border objects that it accesses, there is never more than
one outstanding replica of the current version of each border
block, and the border block updates generate no invalidation
messages.

The Update implementation generates significantly more
messages than the Version and Invalidate implementations.

The extra messages are generated as a result of the algorithm
that the Jade implementation uses to deallocated obsolete
object replicas.

||0

|100

|200

|300

|400

 Number of Processors

 N
um

be
r

of
 M

es
sa

ge
s

(T
ho

us
an

ds
) Update

Invalidate
Version

2 4 8 16 24 32

Figure 1: Number of Messages Sent for Ocean

||0

|60

|120

|180

|240

 Number of Processors

 C
om

m
un

ic
at

io
n

(M
by

te
s) Update

Invalidate
Version

2 4 8 16 24 32

Figure 2: Communication Volume for Ocean

Figure 2 presents the communication volume for each of
the three implementations. The communication volume is
the sum of the sizes of all messages sent during the execu-
tion of the application. Even though the Update implemen-
tation sends significantly more messages than the Version
and Invalidate implementations, all three implementations
generate approximately the same communication volume.
The object messages that contain the border blocks domi-
nate the overall communication volume and the small up-
date acknowledge and deallocate messages which generate
the increased message count for the Update implementa-
tion have a negligible impact on the overall communication
volume.

2.2 Panel Cholesky

Panel Cholesky factors a sparse, positive-definite matrix.
The computation decomposes the matrix into a set of panels.
The algorithm generates two kinds of tasks: internal tasks,

which modify one panel, and external tasks, which read one
panel and modify another panel. The computation generates
one internal task for each panel and one external task for each
pair of panels with overlapping nonzero patterns. All panels
are initialized on the processor that executes the main thread
of control. The first time a processor writes a panel it fetches
the panel from this processor.

||0

|50000

|100000
|150000

|200000

 Number of Processors

 N
um

be
r

of
 M

es
sa

ge
s Update

Invalidate
Version

2 4 8 16 24 32

Figure 3: Number of Messages Sent for Panel Cholesky

||0

|140

|280

|420

|560

 Number of Processors

 C
om

m
un

ic
at

io
n

(M
by

te
s) Update

Invalidate
Version

2 4 8 16 24 32

Figure 4: Communication Volume for Panel Cholesky

Figure 3 presents, for each of the three Jade implemen-
tations, the total number of messages sent during the Panel
Cholesky computation as a function of the number of pro-
cessors executing the computation. The Version and Invali-
date implementations send an identical number of messages,
which means that the Invalidate implementation sends no in-
validate messages.

The Update implementation sends substantially more
messages than the Version and Invalidate implementations.
The elevated message count is caused by superfluous update
messages. Every time a task completes, the Update im-
plementation sends an update message containing the new
version of the modified panel to the main processor. Because
the main processor reads no updated version until the end of
the computation, the vast majority of the update messages

are wasted.
Figure 4 presents the communication volume for each of

the three implementations. The difference in the number of
messages sent translates into an even larger relative differ-
ence in the total communication volume. Panel Cholesky
illustrates the major weakness of an update protocol—it may
dramatically increase the overall communication overhead
by sending superfluous update messages.

2.3 Water

The Water computation performs an interleaved sequence
of parallel and serial phases. Each serial phase uses the re-
sults of the previous parallel phase to calculate the new
molecule positions. Each parallel task reads the array con-
taining the molecule positions and updates an explicitly
replicated contribution array. At the end of the parallel
phase the computation performs a parallel reduction of the
replicated contribution arrays to generate a final contribution
array.

||0

|2000

|4000

|6000

|8000

 Number of Processors

 N
um

be
r

of
 M

es
sa

ge
s Update

Invalidate
Version

2 4 8 16 24 32

Figure 5: Number of Messages Sent for Water

||0

|30

|60

|90

|120

 Number of Processors

 C
om

m
un

ic
at

io
n

(M
by

te
s) Update

Invalidate
Version

2 4 8 16 24 32

Figure 6: Communication Volume for Water

Figure 5 presents the total number of messages sent for
Water. Figure 6 presents the communication volume. The

Invalidate implementation sends substantially more mes-
sages than the Version implementation, but the difference
has no significant effect on the communication volume. The
large object messages dominate the overall communication
volume and the small invalidate messages have a negligible
effect on the overall communication overhead. The Update
implementation sends fewer messages than the other imple-
mentations and generates substantially less communication
volume. The reason for this behavior is that the Update
implementation uses a single broadcast operation to transfer
the new molecule positions, while the Invalidate and Version
implementations use multiple point-to-point messages.

3 Adaptive Broadcast

Our applications experience led us to develop a hybrid
implementation that combines the advantages of the Update
and Version implementations. The largest potential perfor-
mance improvement associated with the use of an update
protocol comes from using a single broadcast message to
distribute objects accessed by all processors. The challenge
is therefore to develop an algorithm that broadcasts objects
when appropriate, but does not suffer from the potential
excessive communication problems characteristic of update
protocols.

Our final protocol starts with the standard version based
protocol, but tracks how processors access objects. If all
processors ever access the same version of a given object,
the implementation switches to an update protocol for that
object by broadcasting each new version of the object to
all processors. In practice this adaptive broadcast protocol
works well—it degrades the performance of none of our
applications and both Water and String perform as well with
a version protocol augmented with adaptive broadcast as
they do with an update protocol.

4 Related Work

The idea of using version numbers for consistency and
concurrency control is fairly old. The NAMOS system used
a version-based scheme for concurrency control and consis-
tency in a distributed database[4]. The Sprite file system also
used a consistency scheme based on version numbers[3].
Both of these systems, like the Jade implementation, present
the abstraction of mutable data and use version numbers as
an internal implementation mechanism.

SAM [7] and VDOM [1], two more recent systems in the
field of parallel computation, expose the concept of version
numbers directly in the programming model. When a SAM
or VDOM task writes an object it provides a number for the
newly generated version of the object. When a task reads
an object, it specifies the number of the version it needs to
access and synchronizes on the generation of that version.

TreadMarks[2] is a page-based software distributed
shared memory system that exploits the flexibility of re-
lease consistency to combine synchronization and invali-
dation messages. Whenever a processor acquires a lock it
sends a lock acquire request message to the last processor
to hold the lock. When the request arrives and the holder
releases the lock, the holder sends a lock acquire response
message to the requestor. The lock acquire request message
contains enough information so that the holder can calculate
which pages are out of date at the requestor. The holder pig-
gybacks a list of these pages on the lock acquire response
message sent to the requestor. The requestor invalidates
these pages before proceeding beyond the lock acquire op-
eration.

Midway[8] is a software distributed shared memory sys-
tem that allows programmers to associate data objects with
synchronization objects such as locks. The Midway imple-
mentation further divides each object into software cache
lines and tracks cache line modifications. When a proces-
sor acquires a read lock, the implementation transfers the
updated cache lines for the lock’s object to the processor
acquiring the lock. The message that grants the lock con-
tains the updated cache lines. The write lock acquisition
algorithm is similar except that the implementation must
invalidate existing read locks.

5 Conclusion

Parallel systems with separate synchronization and con-
sistency protocols may generate excess message traffic. We
have presented an alternative: the integrated synchroniza-
tion and consistency protocol used in the implementation of
Jade. By using version numbers as a consistency mecha-
nism, the Jade implementation is able to merge the consis-
tency protocol into the synchronization protocol. The end
result is an integrated protocol that minimizes the overall
message traffic.

We have presented experimental results that compare the
performance of several Jade applications under three proto-
cols: the version number protocol, an update protocol and
an invalidate protocol. The results show that the invalidate
protocol may send substantially more messages than the ver-
sion number protocol. The additional messages, however,
do not significantly degrade the performance—the commu-
nication overhead is dominated by the large messages that
transfer objects between processors.

For some applications the update protocol generates ex-
cessive message traffic that substantially degrades the per-
formance. For other applications the update protocol im-
proves the performance by broadcasting versions of objects
accessed by all processors. Motivated by our application
experience, we have developed a hybrid protocol. This
protocol realizes the performance improvements that broad-

casting offers, but avoids the performance degradation as-
sociated with excessive message traffic.

References

[1] M. Feeley and H. Levy. Distributed shared memory with
versioned objects. In Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages and
Applications, pages 247–262, May 1992.

[2] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations
and Operating Systems. Technical Report Rice COMP TR93-
214, Rice University, November 1993.

[3] M. Nelson, B. Welch, and J. Ousterhout. Caching in the sprite
network file system. ACM Transactions on Computer Systems,
6(1):134–154, February 1988.

[4] D. Reed. Naming and Synchronization in a Decentralized
Computer System. PhD thesis, Dept. of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology,
September 1978.

[5] M. Rinard. The Design, Implementation and Evaluation of
Jade, a Portable, Implicitly Parallel Programming Language.
PhD thesis, Stanford, CA, 1994.

[6] M. Rinard. An integrated synchronization and consistency pro-
tocol for the implementation of a high-level parallel program-
ming language. Technical Report TRCS95-25, Dept. of Com-
puter Science, University of California at Santa Barbara, De-
cember 1995. http://www.cs.ucsb.edu/TRs/TRCS95-25.html.

[7] D. Scales and M. S. Lam. An efficient shared memory system
for distributed memory machines. Technical Report CSL-TR-
94-627, Computer Systems Laboratory, Stanford University,
July 1994.

[8] M. Zekauskas, W. Sawdon, and B. Bershad. Software write
detection for a distributed shared memory. In Proceedings of
the First USENIX Symposium on Operating Systems Design
and Implementation, Monterey, CA, November 1994.

