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ABSTRACT

Applications that process complex inputs often react in dif-
ferent ways to changes in different regions of the input.
Small changes to forgiving regions induce correspondingly
small changes in the behavior and output. Small changes
to critical regions, on the other hand, can induce dispropor-
tionally large changes in the behavior or output. Identifying
the critical and forgiving regions in the input and the cor-
responding critical and forgiving regions of code is directly
relevant to many software engineering tasks.

We present a system, Snap, for automatically grouping
related input bytes into fields and classifying each field and
corresponding regions of code as critical or forgiving. Given
an application and one or more inputs, Snap uses targeted
input fuzzing in combination with dynamic execution and
influence tracing to classify regions of input fields and code
as critical or forgiving. Our experimental evaluation shows
that Snap makes classifications with close to perfect preci-
sion (99%) and very good recall (between 99% and 73%,
depending on the application).

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Code inspections and

walk-throughs, Testing tools, Tracing; D.2.8 [Metrics]: Com-
plexity measure, Software science; F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis

General Terms

Experimentation, Measurement

Keywords
Critical input, Forgiving input, Critical code, Forgiving code

1. INTRODUCTION

Many applications process complex, highly structured in-
puts. Small changes in some regions of the input can induce
correspondingly small changes in the behavior and output
of the application. We call such regions forgiving regions,
because the application exhibits a small, forgiving response
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to changes in the region. But changes in other regions (such
as regions that contain metadata summarizing the format
of subsequent regions) can have a much larger impact —
they can dramatically change the behavior and output of
the application. We call such regions critical regions. Un-
derstanding the differences between such input regions (and
the corresponding critical and forgiving regions of code that
process data derived from different input regions) can be
important for a variety of software engineering tasks:

e Program Understanding: Information about which
regions of the input each region of the application pro-
cesses, along with an understanding of which regions
of the input and application are critical and forgiv-
ing, can help developers better understand the appli-
cation’s structure and responses to different inputs. It
can also productively inform activities such as mainte-
nance and the development of new functionality.

e Unsound Transformations: Principled but unsound
program transformations have been shown to provide
a host of benefits, including enhanced robustness and
security [25, 17, 20, 22], improved performance and
power consumption [15, 22, 24, 10], and efficient paral-
lel execution [14]. Distinguishing forgiving and critical
code may help identify appropriate forgiving targets
for unsound transformations that may change the re-
sult that the computation produces.

e Defect Triage: Many software projects have more
defects than they can reasonably attempt to correct.
Because of the dramatic effect that critical input re-
gions can have on the computation, it can be difficult
to comfortably predict the consequences of defects in
critical code (which processes critical data). An effec-
tive defect triage policy may therefore prioritize defects
in critical code over defects in forgiving code (which
processes forgiving data).

e Test Input Selection: Because critical input regions
can have such dramatic effects on the behavior of the
computation, test suites should provide particularly
detailed coverage of these critical regions. The rel-
atively simpler response function of the application
to forgiving input regions makes it feasible to include
fewer test cases for these regions in the test suite.

e Input Sanitization: Input sanitization is a common
approach to protecting applications that are exposed
to potentially hostile inputs [23]. Understanding char-
acteristics of the input format, including distinctions
between critical and forgiving regions of the input, can
be essential to engineering an effective sanitizer.



1.1 Critical Region Inference

We present a system, Snap, for automatically grouping
related input bytes into fields and classifying each field and
the corresponding regions of code that access data derived
from that field as critical or forgiving. Snap’s classification
algorithms work with trace information from instrumented
executions of the application. The ezecution trace contains
the sequence of executed branch instructions, which enables
Snap to reconstruct the set of executed basic blocks. The
influence trace records, for each executed instruction, the in-
put bytes that influenced the operands of the instruction [9].

Given an application and several representative inputs,
Snap performs the following steps:

e Baseline Execution: Snap executes an instrumented
version of the application on a set of representative
inputs to record its baseline execution and influence
traces. Snap uses these traces to establish baselines
for the normal behavior of the application.

e Input Specification Inference: Snap uses the base-
line influence traces to group adjacent input bytes into
fields — it groups adjacent bytes into the same field
if they often both influence operands of the same ex-
ecuted instructions (Section 3.2). Snap will generate
the critical versus forgiving input region classification
at the granularity of fields.

e Instrumented Executions on Fuzzed Inputs: Snap
next generates a suite of fuzzed inputs. It generates
each fuzzed input by fuzzing a different inferred field
of an original representative input. Snap then executes
the application on each fuzzed input to produce a set
of execution traces, one for each fuzzed input.

e Field Classification: Given the baseline execution
traces, the baseline influence traces, and the fuzzed
execution traces, Snap uses hierarchical agglomerative
clustering [28] to classify each input field as critical
or forgiving (Section 3.4). If fuzzing the field causes a
fuzzed execution trace to deviate significantly from the
corresponding baseline execution trace, or if the field
influences one or more operands of a large proportion
of the executed instructions, Snap classifies the field as
critical. Otherwise, it classifies the field as forgiving.

e Code Classification: Given the input field classifi-
cations and the baseline influence traces for all repre-
sentative inputs, Snap uses hierarchical agglomerative
clustering [28] to classify each executed basic block as
critical, forgiving, mized, or neither (Section 3.5). Con-
ceptually, a basic block is critical if the operands of its
instructions are derived primarily from critical input
fields. A basic block is forgiving if the operands of its
instructions are derived primarily from forgiving input
fields. A basic block is mixed if the operands of its
instructions are influenced by the input, but neither
critical nor forgiving fields dominate the influence. If
the operands of the basic block’s instructions are not
influenced by any fields of the input, then Snap classi-
fies the block as neither.

1.2 Experimental Evaluation

To evaluate Snap’s automatic classification technique, we
first acquired a set of benchmark applications and represen-
tative inputs. We then used Snap to 1) group the bytes of
the sample inputs into fields, 2) classify the input fields, and
3) classify the executed blocks of code.

1.2.1 Input Field Classification

We use manually developed test oracles (which are as-
sumed to be completely accurate) to evaluate the accuracy
of Snap’s input field classification. The test oracle for each
benchmark application compares each fuzzed output (the
output that the application produces when run on the corre-
sponding fuzzed input) with the output that the application
produces when run on the corresponding original (unfuzzed)
representative input. The oracle uses this comparison to
classify each input field as either critical or forgiving. Note
that the test oracle is not required for a developer to use
Snap in the field — we use the test oracle only as means to
experimentally evaluate the accuracy of Snap’s classification
for our benchmark applications.

To evaluate the accuracy of Snap’s input field classifica-
tion, we compare its classification with the classification that
the test oracle produces. This evaluation indicates that:

e Precision: The precision of the critical classification
is extremely high — over 99% for all of our bench-
marks. The precision numbers indicate whenever Snap
classifies a field as critical, the oracle almost always
also classifies the field as critical.

e Recall: The recall of the critical field classification is
high, but not as high as the precision. Specifically, for
our set of benchmark applications, the recall ranges
from over 99% to as low as 73%.

1.2.2  Code Classification

We evaluate the utility of Snap’s code classification by
manually examining classified regions of each benchmark
application. In general, we find that there are two kinds
of critical code regions: behavior-critical regions, which typ-
ically process file metadata, select application features to in-
voke, or manipulate application data structures, and output-
critical regions, which typically process the central input file
data (for our benchmark applications, image data). Snap
classifies a code region as behavior-critical if it primarily
accesses data derived from input fields that are critical be-
cause they have a large impact on the behavior of the ap-
plication (as measured by the set of executed basic blocks).
Snap otherwise classifies a code region as output-critical if
it primarily accesses data derived from input fields that are
critical because they influence at least one operand of a large
proportion of the executed instructions. Mixed regions are
typically utilities invoked from a variety of contexts within
the application.

1.3 Contributions

This paper makes the following contributions:

e Basic Concept: It identifies the concepts of critical
and forgiving input fields and the corresponding con-
cepts of critical and forgiving regions of code.

e Automatic Inference Algorithm: It shows how

to use influence tracing, execution tracing, and input
fuzzing (at the granularity of the inferred input fields)
to automatically classify input fields and regions of
code as critical or forgiving.
The automatic inference algorithm further divides crit-
ical fields and data into behavior-critical fields (changes
to behavior-critical fields induce large changes to the
set of basic blocks that the application executes) and
output-critical fields (which influence a large propor-
tion of the executed instructions).



e Experimental Results: It presents experimental re-
sults that show that, for our set of benchmark pro-
grams, Snap exhibits exceptional precision in its classi-
fication of critical input fields and exceptional to good
recall in this classification.

e Qualitative Evaluation: An examination of the clas-
sified input fields and regions of code in our benchmark
applications indicates that Snap can capture meaning-
ful and useful distinctions between the different roles
that fields and regions of code with different classifica-
tions play in the computation.

Section 2 presents an example that illustrates how Snap
automatically classifies input fields and regions of code. Sec-
tion 3 discusses the design of Snap. Section 4 presents the
details of Snap’s implementation. Section 5 provides an ex-
perimental evaluation of the quality and relevance of Snap’s
classifications for several benchmark applications. Section 6
discusses several threats to the validity of our conclusions.
Section 7 discusses the related work. We conclude in Sec-
tion 8.

2. EXAMPLE

The Graphics Interchange Format (GIF) is a widely used
image file format. Each GIF file consists of the following
data regions:

e Metadata: Regions of the input that define the struc-
tural layout of the input itself. This information in-
cludes the size of individual data items and field de-
limiters that allow an application to navigate an input.

e Parameters: Regions of the image that define param-
eters that control various aspects of the computation
and the output that it generates. These parameters
include the height and width of the output and the
compression type of the image.

e Palette: A region of the input that contains the color
table of the image. Fach entry in the color table spec-
ifies a color value. The color of each pixel in the image
is encoded by an index into the color table.

e Data: Regions of the input that contain the image
data itself. Each region contains a compressed se-
quence of indices into the color table. Each region
occupies a contiguous block of the input file; a separa-
tor character that appears before each region specifies
the length of that region.

e Comments: Regions that contain textual comments
associated with the image. These regions allow image
encoders to embed extra annotations, such as the name
of the encoder, into the image file.

Changes or corruptions to different regions of a GIF file can
have different effects on the final rendered image (and the be-
havior of the application that decodes the image). Each im-
age in Figure 1 (except for the original image in Figure 1(a))
presents a decoded GIF image after randomly fuzzing one
of the fields in the original GIF file.

This collection of images illustrates how fuzzing different
regions can have dramatically different effects on the final
decoded image. In particular, some input fields are critical
to the quality (or even presence) of the decoded output im-
age while other regions leave the decoded image largely or
even completely intact.

The metadata region of the input is critical because a
metadata corruption makes the decoder unable to parse the

file and produce an output image. Similarly, a corruption
to the critical parameters region causes substantial distor-
tion in the output; the output has different dimensions and
the content bears no resemblance to the output of the de-
coder on the original image. Heavily referenced parts of the
palette are also critical because changes to these parts of the
palette can visibly distort large portions of the decoded im-
age. Infrequently referenced portions of the palette (and, of
course, portions that are not referenced at all) are forgiving
because they have little or no impact on the decoded image.

The data regions of the image are not necessarily critical
to the quality of the output. The image for the data region
(Figure 1(e)) shows the effects of fuzzing a data region (re-
call that each data region contains a sequence of compressed
color table indices) that occurs near the end of image. In
this case, there is a small amount of localized distortion at
the bottom of the image. In general, the criticality of a
given data region depends on its position in the image file.
Because of the compression algorithm used to encode the
image, each encoded pixel influences all subsequent encoded
pixels. So data regions that occur early in the file are critical,
while data regions that appear late in the file are forgiving.
The comments region of the input is forgiving. In this ex-
ample, text comments have no semantic influence on image
rendering and, therefore, do not affect the output.

Each of these input regions is typically processed by a
different region of application source code: metadata navi-
gation code is distinct and separate from the code that pro-
cesses the parameters, palette, data, and comments. It is
therefore possible extend the classification system to regions
of code. For example, the DGifGetImageDesc function of the
GIF image library reads and validates an image’s descriptor
(which contains of the image parameters). It is therefore
critical because a programmer error that causes this code to
process the parameters incorrectly could cause substantial
distortion in the output.

Snap contains a set of components that work together to
automatically infer these kinds of classifications:
Execution Monitor: Monitors the execution of the de-
coder on a GIF input to record the decoder’s execution and
influence traces. Snap’s other components use the trace in-
formation to group input bytes into fields, classify fields as
critical or forgiving, and extend the field classification to the
application code.

Input Specification Generator: Uses the influence trace
to infer an input specification. This specification groups ad-
jacent input bytes that appear in operands of the same in-
struction together into fields. This component enables Snap
to, for example, group the individual bytes of the GIF in-
put fields that encode integer values (such as the width and
height of the image) together into fields.

Fuzzer: Uses the inferred input specification to produce a
suite of fuzzed GIF image files. Snap produces this fuzzed
input suite by iterating over all the fields in the input field.
It generates several fuzzed input files for each field by setting
the field to extremal values (with the rest of the file left un-
changed). Snap then executes the instrumented decoder on
each fuzzed input file to produce an execution and influence
trace for each fuzzed file.

Field Classifier: Uses the execution and influence traces
from the executions of the decoder on the fuzzed input file
suite to classify each field as either critical or forgiving:
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Figure 1: Selectively Fuzzed GIF Images

e Behavior-Critical Fields: If fuzzing the field pro-
duces a large change in the internal behavior of the
decoder (i.e., produces large changes in the set of basic
blocks that the decoder executes), then Snap classifies
the field as critical. In our GIF example, Snap observes
that fuzzing metadata and parameter fields produces
large changes in the internal behavior of the decoder.
It therefore classifies these fields as critical.
Output-Critical Fields: If fuzzing the field does not
produce large changes in the internal behavior, Snap
next uses the influence trace from the execution on
the original (unfuzzed) input to determine if the field
influences more than a given threshold proportion of
the executed instructions. If so, Snap classifies the field
as critical, otherwise it classifies the field as forgiving.
For example, Snap classifies parts of the color table
as critical because many pixels in the image reference
those parts (so those parts influence the operands of
the many executed instructions that process those pix-
els). It also classifies data regions that appear early
in the file as critical because they influence operands
of instructions in the decompression computation for
all subsequent data regions. But it classifies data re-
gions that appear late in the file as forgiving because
they influence only a relatively small percentage of the
executed instructions. Similarly, it classifies the com-
ments region as forgiving because the comments influ-
ence a very small percentage of the executed instruc-
tions.

Code Classifier: Uses the influence traces from the origi-
nal unfuzzed inputs to determine, for each basic block in the
decoder, which input fields influence the values that the in-
structions in the basic block manipulate. Snap then extends
the field classification to classify each basic block as either
critical, forgiving, mixed, or neither. In this example, Snap
determines that the code that manipulates the metadata,
parameters, and palette is critical, and code that manipu-
lates the comments is forgiving. Although the code that
manipulates the compressed pixel data touch fields of mul-
tiple classifications (because early data regions are critical
while late data regions are forgiving), the Code Classifier
determines that data processing code primarily deals with
critical data and classifies this code as critical. The Code
Classifier additionally identifies general purpose utility func-
tions used internally within the application as mixed because
they are used in multiple contexts.

3. SYSTEM DESIGN

In this section we discuss the design details of each of
Snap’s components. Figure 2 presents the design of Snap as
a box and arrow diagram. The boxes represent components;
the arrows represent the primary interactions between com-
ponents. We discuss each component in turn.

3.1 Execution Monitor

The Execution Monitor takes an instrumented application
and a test input. It runs the application on the input and
records the application’s execution trace and influence trace:

e Execution Trace: The sequence of control transfer
instructions (branch, function call, and return instruc-
tions) executed during the run of the application. Each
entry in the execution trace contains a reference to
the executed control transfer instruction and the ba-
sic block to which it transferred control. Snap uses
the execution trace to compute the set of basic blocks
executed during the run of the application.

e Influence Trace: The sequence of instructions exe-
cuted during the run of the application, including in-
formation that characterizes how input bytes influence
the operands of the instruction. Each entry in the in-
fluence trace contains a reference to an executed in-
struction and (conceptually), for each operand of the
instruction, a set of input bytes that influence the
operand. The set is encoded as a tree that traces out
the sequence of instructions that produced the value of
the operand. Each internal node in the tree represents
a previously executed instruction and the correspond-
ing operand that it produced. Each internal node con-
tains a list of references to the nodes that produced the
executed instruction’s operands. Each leaf of the tree
specifies a set of adjacent input bytes that were read
from the input. To compute the set of bytes that in-
fluence a given operand, Snap traverses the tree to find
all input bytes in leaves reachable from the operand.

3.2 Input Specification Generator

The Input Specification Generator groups adjacent input
bytes into fields. Let ¢ and j denote two adjacent input
bytes, E; be the number of executed instructions whose
operands are influenced by ¢ and not influenced by j, Ej
be the number of executed instructions whose operands are
influenced by j and not influenced by i, and F;; be the num-
ber of executed instructions whose operands are influenced
by both ¢ and j. We then define the affinity A;; of ¢ and j
as follows:

E,+ E; + Eij M

The input specification generator groups ¢ and j into the
same field if 0.75 < A;;. We empirically determined the
value of this threshold early on in the development process
of Snap before applying Snap to the GIF and JPEG bench-
marks. We found that, in practice, the threshold is robust —
any value reasonably close to 0.75 is an effective threshold.

Aij =
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Figure 2: The Design of Snap

3.3 Fuzzer

Given an input and a grouping of the bytes into fields,
the Fuzzer produces a suite of fuzzed inputs by fuzzing each
field of the input in turn. For each input field, the Fuzzer
creates a collection of fuzzed inputs. Each fuzzed input is the
same as the original input except for the value in the fuzzed
input field, which (in the current implementation) is set to
an extremal value (either all Os or all 1s). Other fuzzing
strategies (such as setting the input field to pseudorandomly
selected values) are also possible. The rationale for using
extremal values is that extremal values have been shown
to push applications towards outlier behaviors [9]. In this
way the Fuzzer produces a suite of fuzzed inputs, with each
fuzzed input differing from the original input at one of the
input fields. The Fuzzer then runs the application on each
fuzzed input to produce a suite of fuzzed execution traces,
one for each fuzzed input.

3.4 Field Classifier

The Field Classifier classifies each input field as either
critical or forgiving. It first uses the behavioral distance to
determine if the value of the field substantially influences
the set of basic blocks that the application executes. If so,
it classifies the field as critical and more precisely, as behavior
critical. Otherwise, it uses the output influence to determine
if the field influences one or more operands of a substantial
proportion of the executed instructions. If so, it classifies
the field as critical and more precisely, as output critical.
Otherwise, it classifies the field as forgiving.

3.4.1 Behavioral Distance

The behavioral distance is a number in [0, 1] that measures
the similarity between two executions of an application. If
the behavioral distance is 0, the executions had identical
behavior. If it is 1, the applications had no behaviors in
common. We make this concept precise as follows. For an
execution i of the application, B; denotes the set of exe-
cuted basic blocks (the Field Classifier computes this set by
inspecting the branch events of the execution trace). The
behavioral distance is the normalized Hamming distance D;;
between the two sets of executed basic blocks:
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Here B; is typically the set of basic blocks for a baseline
execution; Bj; is typically set of basic blocks for an execu-
tion on a fuzzed input. The results presented in Section 5
indicate that behavioral distances correlate with large dif-
ferences in the qualitative behavior of the application.

The Field Classifier next uses this measure in combina-
tion with hierarchical agglomerative clustering [28] to find,

Dij =

for the application at hand, a good separation between criti-
cal and forgiving input fields. The clustering algorithm first
computes, for each field, the maximum behavioral distance
(over all fuzzings of that field) between the baseline execu-
tion and the executions on the corresponding fuzzed inputs.
This maximum distance is the behavioral distance for that
field. It then assigns each field to its own cluster, then iter-
atively merges the two closest clusters (where the distance
between two clusters is the minimum difference between the
behavioral distance of a field in one cluster and the behav-
ioral distance of a field in the other cluster). The result
is a dendrogram, or binary tree. Each internal node of the
tree represents a cluster that was produced during the merg-
ing process. Each leaf node represents a single input field;
the root node represents the cluster that contains every field.
The root has two children, one of whose behavioral distances
are smaller than the other. These two children are the crit-
ical and forgiving field clusters; the forgiving cluster is the
one whose fields have the smaller behavioral distances. In
this way the classifier adapts its classification scheme to the
characteristics of the application at hand.

3.4.2  Output Influence

The Field Classifier inspects the influence trace of the
baseline execution to compute each field’s output influence.
The output influence of a field is the proportion of the ex-
ecuted instructions that have at least one operand whose
value the field influences. The Field Classifier classifies all
input fields with an output influence over a parameterized
threshold as critical.

Output influence is designed to capture the influence of
an input field on the quality of the output. In general, the
threshold should be set according to a) the anticipated cor-
relation between how often the application uses data derived
from the field and b) the threshold above which quality loss
constitutes a critical change in the output. For our experi-
ments in Section 5 we set this threshold to be 0.1 (i.e., 10%).

3.5 Code Classifier

The Code Classifier first classifies all basic blocks whose
operands are not influenced by the input as neither. It clas-
sifies the remaining basic blocks as follows.

For each operand of each executed instruction, the Code
Classifier computes the influence value of that operand, which
is the mean, over all input fields that influence the operand,
influence metric of the input field, where the influence met-
ric is O if the field is forgiving and 1 if the field is critical.
For each executed basic block, the Code Classifier then com-
putes the mean and standard deviation, over all executions
of the basic block, influence value of the operands that the
execution of the basic block accesses.



The Code Classifier next uses hierarchical agglomerative
clustering (see Section 3.4.1) on the standard deviations to
divide the basic blocks into a cluster with low standard de-
viations and a cluster with high standard deviations. Snap
classifies all basic blocks in the high standard deviation clus-
ter as mixed. It then classifies all basic blocks in the low
standard deviation cluster as either forgiving (if the com-
puted mean influence value is less than 0.5) or critical (if
the mean is greater than 0.5).

The rationale for this classification scheme is that if there
is a high standard deviation, then the basic block tends to
access data that is significantly influenced by both forgiving
and critical input fields. If there is a low standard devia-
tion, the basic block tends to access data with one primary
influence (either forgiving or critical) and the mean indicates
which influence predominates.

4. IMPLEMENTATION

As described in Section 3.1, the Execution Monitor records
an application’s execution trace and influence trace during
the execution of the application. Each trace can be viewed
as a sequence of events in which each event corresponds to an
executed instruction. Snap statically instruments the source
of the application to produce a new, instrumented applica-
tion. When executed, the instrumented application coor-
dinates with a dynamically loaded runtime to manage and
record the execution trace and influence trace.

4.1 Instrumentor

Snap contains a static source code instrumentor built on
top of the Low Level Virtual Machine (LLVM) compiler
infrastructure [11]. LLVM provides a language and plat-
form independent Intermediate Representation (IR), an in-
trospection library, and an extensible compiler that makes
it possible to easily manipulate and generate native code for
applications compiled to the LLVM IR. Though Snap’s work-
flow currently works with the source of the application, the
instrumentor could target any language, including assembly
language, for which there exists a mechanism to translate the
language to LLVM IR . The LLVM project currently pro-
vides translators for C, C++, Microsoft Intermediate Lan-
guage (MSIL), Java bytecode, Fortran, and Ada.

The instrumentor instruments the instructions with addi-
tional code to coordinate with the runtime. Each fragment
of instrumentation code calls into the runtime to record an
entry in either the execution trace or the influence trace of
the application.

4.1.1 Execution Trace

The instrumentor augments control transfer instructions
(i.e. function call, function return, and branch instructions)
with code that records the identifier of the control transfer
instruction and the identifier of the basic block to which it
transfers control. For example, the entry in the execution
trace for a branch instruction contains the identifier of the
branch instruction and the identifier of the basic block to
which it transferred control.

4.1.2 Influence Trace

The instrumentor also augments each instruction with
additional code to insert entries into the influence trace.
For arithmetic/logical instructions (e.g., instructions with
operands of integer or floating point type), the additional

code records an influence trace entry that captures the di-
rect influence of the operands on the result of the instruction.
The entry contains the identifier of the instruction and, for
each operand of the instruction, a reference to the influence
trace entry for that operand.

For instructions that dereference a pointer operand, the
additional code records the direct influence information for
the contents of the referenced memory. For example, the
store instruction instrumentation records an entry that prop-
agates influence from the stored operand to the memory lo-
cation into which it stores the operand.

Although the instrumentor and runtime coordinate to track
direct influence, the two components do not coordinate to
track indirect influence. For load and store instructions, in-
direct influence would additionally propagate the influence
information for the pointer operand itself to either the out-
put or input operand, respectively. This information would,
for example, propagate influence from the the index of an
array access instruction to the accessed value. For control
transfer instructions, the instrumentor and runtime do not
coordinate to track indirect control influence information.
For example, if an input field influences a branch condi-
tion, the system will not propagate the influence informa-
tion for the conditional to the instructions that are control-
dependent on the branch.

4.2 Runtime System

In addition to an instrumentor, the Execution Monitor
also contains a runtime system. The runtime consolidates
the majority of the logic required to access and manage the
execution trace and the influence trace. Each fragment of
instrumentation code typically contains at least one call into
the runtime. The runtime provides the Execution Monitor
with the following components:

Trace Manager: At its core, the trace manager maintains
a large buffer of events. The trace manager provides an
API that allows the Execution Monitor to record execution
trace entries and influence trace entries to the buffer. As
the Execution Monitor adds entries to the buffer, the trace
manager first serializes and compacts the buffer. The trace
manager then directs the buffer either to disk or to one of
Snap’s analysis components (e.g. the Input Specification
Generator).

Shadow Operands and Shadow Memory: For each in-
struction that the application executes, the Execution Mon-
itor tracks the influence information for the instruction’s
input and output operands. The Execution Monitor uses
shadow operands to hold influence information for instruc-
tion operands and shadow memory to hold the influence
information for memory locations.

Shadow Operand Stack: Applications compiled for LLVM
may optionally pass function arguments and receive function
return values as operands in addition to passing arguments
through memory on the stack. The Execution Monitor uses
the shadow operand stack to pass influence information for
the arguments to a function call and receive influence infor-
mation for the return values of a function call.

Shadow File System: The shadow file system provides
the Execution Monitor with a mechanism to intercept UNIX
file system calls, such as open, read, and write. This allows
the Execution Monitor to automatically identify the appli-
cation’s external inputs.



External Library Model: Although the Execution Mon-
itor instruments the entire application, an application may
invoke functions in a support library for which the source
is not available. To more accurately capture the behavior
of the application, the runtime contains a suite of models
of the execution and influence traces for several commonly
used library functions. For example, the runtime contains
models for many functions in the C standard library, such
as memcpy and memset.

5. EVALUATION

This section presents our experimental evaluation of the
quality of Snap’s input field and code classifications.

5.1 Benchmarks

We evaluate Snap’s classification approach on three bench-
mark applications. All three are written in C; all three
process image files to convert an image file into bitmap file
(BMP format) for presentation to the user:

e GIF: The GIF benchmark processes image files in GIF
format. It consists of 5K lines of code.

e PNG: The PNG benchmark processes image files in
PNG format. It consists of 36K lines of code (including
11K lines of code from the zlib compression library).

e JPEG: The JPEG benchmark processes image files in
JPEG format. It consists of 35K lines of code.

5.2 Test Oracle

To evaluate the accuracy of Snap’s input field classifica-
tion, we developed a set of application-specific test oracles
(which we assume classify input fields with perfect accu-
racy). Given two outputs, one from an original (unfuzzed)
input and the other from a corresponding fuzzed input (iden-
tical to the original input except for the fuzzed field), each
test oracle produces a test distance between the two outputs.
The test distance is a number in the interval [0, 1], with 0
indicating identical outputs and 1 indicating maximally dif-
ferent outputs. For all of our benchmark applications we
use the normalized Hamming distance (as defined in Sec-
tion 3.4.1) over the pixels in the final rendered image as the
test distance.

Each oracle uses a test threshold (a number in the interval
[0,1]) to classify fuzzed input fields as critical or forgiving.
In general, each input field may be fuzzed with several differ-
ent values; each value produces a different fuzzed input file.
If all of the fuzzings produce test distances below or equal
to the test threshold, the oracle classifies the field as forgiv-
ing. Otherwise (i.e., if at least one of the fuzzings produces
a test distance above the test threshold), the oracle classi-
fies the field as critical. For each application, we determined
an appropriate test threshold by visually examining pairs of
outputs to find a value that, in our view, effectively sepa-
rated acceptable from unacceptable BMP file conversions.
For our set of benchmark applications we determined that
an appropriate value for the test threshold was 0.1 (10%).

‘We emphasize once again that we use the test oracles only
as part of our experimental evaluation as a means to enable
us to evaluate the quality of Snap’s classifications for our
benchmark applications. We anticipate that production de-
velopers would use Snap directly without test oracles.

5.3 Methodology

Snap classifies the input fields and code as follows:

¢ Baseline Executions: We obtain five representative
inputs for each application and use Snap to obtain ex-
ecution and influence traces for each input.

e Input Specification Generation: As described in
Section 3.2, Snap uses the influence traces to group
adjacent input bytes into fields.

e Fuzzed Input Suite Generation: For each input
field in each representative input, we use Snap to gen-
erate two fuzzed inputs, one with the field set to all Os,
the other with the field set to all 1s.

e Fuzzing Input Executions: We use Snap to obtain
influence and execution traces for each fuzzed input.

e Input Field Classification: As described in Sec-
tion 3.4, Snap uses the influence and execution traces
from the fuzzed inputs to classify each input field as
critical or forgiving.

e Code Classification: As described in Section 3.5,
Snap uses the input field classification and influence
traces from the original inputs to classify each basic
block as critical, forgiving, mixed, or neither.

We evaluate the quality of Snap’s input field classifica-
tions by comparing them to the input field classifications
that the test oracles produce. We evaluate the quality of
Snap’s code classifications by manually examing the clas-
sified code regions and evaluating the correlation between
their classification and their purpose in the computation.

benchmark Ty Fy, Ty F,

PNG 9580 | 5 451 18
GIF 6951 | 23 || 2149 | 1412
JPEG 5123 | 27 542 | 1831

Table 1: Critical byte classification results

5.4 Input Field Classification Results

Table 1 presents the field classification results. The table
presents four numbers for each benchmark:

e True Positives (7,): The number of bytes that the
test oracle classifies as critical that Snap also classifies
as critical.

e False Positives (F}): The number of bytes that the
test oracle classifies as forgiving but Snap classifies as
critical.

e True Negatives (7},): The number of bytes that the
test oracle classifies as forgiving that Snap also classi-
fies as forgiving.

e False Negatives (F,): The number of bytes that the
test oracle classifies as critical but Snap classifies as
forgiving.

In general, Snap performs well:

e Precision: On each benchmark, 99% of the input file
bytes that Snap classified as critical (an input file byte
is classified as critical if the field that contains the byte
is classified as critical) were also classified as critical by
the test oracle.

e Recall: Of the input file bytes that the test oracle
classified as critical, Snap also classified 99%, 83%, and
73% of the bytes as critical for the PNG, GIF, and
JPEG benchmarks, respectively. A lower value for re-
call indicates that Snap misclassified a critical byte as
forgiving.



Note that Snap’s recall on JPEG is substantially lower than
its recall for the other benchmarks. We attribute this phe-
nomenon to the fact that Snap only works with direct, and
not indirect, influence. As discussed in Section 3.4.2 and Sec-
tion 5.1, Snap classifies an input field as critical if, according
to the influence trace, the field influences the operands of
more than a threshold proportion of the executed instruc-
tions. However, the influence trace only captures direct in-
fluence — it does not capture indirect control-flow influence
or indirect influence induced through pointer arithmetic or
array indexing operations. The JPEG benchmark uses input
bytes in pointer arithmetic. Because Snap does not track
the indirect influence that these pointer arithmetic opera-
tions induce, the output influence calculation undercounts
the number of executed instructions that these bytes influ-
ence. For this reason Snap misclassifies 27% of JPEG’s crit-
ical bytes as forgiving.

Figures 3, 4, and 5 present data for the GIF benchmark.
These figures plot the mean (over all corresponding fuzzed
inputs) test oracle test distance, Snap behavioral distance,
and Snap output influence, respectively, as a function of the
corresponding fuzzed input byte. These graphs illustrate
how Snap’s behavioral distance and output influence met-
rics correlate with different aspects of the test oracle’s test
distance and how appropriately combining these two metrics
enables Snap to identify critical input fields with excellent
precision and excellent to very good recall.

Behavioral Distance: An examination of the behavioral
distance data supports the following observations:

e Clean Separation: There is a clean separation in the
behavioral distance between regions with large behav-
ioral distance (greater than 0.4) and regions with small
behavioral distance (less than 0.4).

e Large Behavioral Distance Implies Large Test
Distance: If there is a large deviation in the behav-
ior of an application (as measured by the behavioral
distance), then there is also a large deviation in the
output — for every input region with a behavioral dis-
tance greater than 0.4, the test distance is at least
0.9 (i.e., at least 90% of the output bytes are differ-
ent). In general, regions that have large behavioral
distances contain information such as the image pa-
rameters (around byte 0) and metadata (around byte
800). Fuzzing these data typically leaves the applica-
tion unable to successfully parse or process the input
image file.

e Large Test Distance Does Not Necessarily Im-
ply Large Behavioral Distance: For many input
regions, the behavioral distance is small but the test
distance is large. In general, these regions (approx-
imately bytes 800 through 1200) contain image data.
Fuzzing the image data typically does not dramatically
change the computation that the application performs,
but can produce a large change in the appearance of
the rendered image.

Output Influence: A striking feature of the output influ-
ence graph (Figure 5) is the downward-sloping line from byte
800 through byte 1200 (approximately). The image com-
pression algorithm is the source of this line — essentially,
each encoded pixel influences the values of all subsequent
encoded pixels. So the proportion of the pixel decoding com-
putation that each pixel influences is directly proportional
to its position in the image file.
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Qutput Influence

1.2

10

0.8

0.6

0.4

0.2

0.0+

02|

0.7

o] 200 400 600 800 1000 1200
position of perturbed byte in file

Figure 3: GIF Test Distance

14‘00

1600

0.6

05

0.4+

03

0.2+

0.1

0.0

-0

1.2

0o

6 260 460 GC;O 860 10‘00 12‘00
Position of byte in file

14‘00

Figure 4: GIF Behavioral Distance

1600

10

0.8

0.6

0.4

0.2

0.0+

02|

0o

6 260 460 60‘0 860 lOIOO lZIOO
Position of byte in file

Figure 5: GIF Output Influence

14‘00

1600



function name
inflate_table
inflate_fast

inflate
png_read_row
png_read_finish _row
updatewindow

(b) Output-critical

function name
png-memcpy-check
png_handle_ IHDR
png_handle_PLTE
png_handle_tRNS
png_do_read_transformations
png_read_start_row

(a) Behavior-critical

function name
png_crc_read
png_crc_error
png-get_uint_31
png read_data
(d) Mixed Usage

function name
png-handle_tIME
png_handle_gAMA
png-handle_TEND
png_handle_pHYs
(c) Forgiving

Figure 6: PNG and zlib code classifications

The test distance graph (Figure 3) exhibits a correspond-
ing (but noisier) line in the same part of the file. This line
shows that the proportion of the computation that each com-
pressed pixel influences correlates closely with the impact of
that pixel on the appearance of the final rendered image.
In this way the output influence metric can capture the im-
pact of each compressed pixel on the visual appearance of
the image and, more generally, the impact of different input
regions on the output.

Unused Data: All of the graphs reflect the fact that almost
all bytes 100 through 800 (approximately) have essentially
no effect on any aspect of the computation or its output.
This region of the input contains unused portions of a fixed-
size image palette. Such regions show up as horizontal lines
on both the behavioral distance and output influence graphs.

5.5 Code Classifications

We evaluate the accuracy of Snap’s code classifications
by examining each executed function to investigate the rela-
tionship between the classifications of the basic blocks in the
function and the role that the function plays in the compu-
tation. For this purpose we manually refine Snap’s critical
code classification to behavior-critical code (code classified
as critical because of behavioral distance) and output-critical
code (code classified as critical because of output influence).
In general, we found that Snap’s code classifications consis-
tently reflect the roles that the different regions of code play
in the computation.

5.5.1 PNG and zlib

Behavior-critical: Figure 6(a) lists the behavior-critical
PNG and zlib functions. The png_handle functions each
implement a particular feature of the file format. Specifi-
cally, png_handle_IHDR reads a PNG file’s initial, manda-
tory header and allocates the library’s initial data struc-
tures. png_handle_PLTE allocates and builds the palette
for a paletted image. png_memcpy_check uses critical data
about the length of fields in the input to allocate memory
buffers. Corruptions to the data that png_memcpy_check
accesses may violate implicit invariants about the intended
size of the allocated buffer and lead to uninitialized reads
or out of bounds writes. For each of these functions, data
corruption or programmer error can lead to critical errors in
the execution of the application.

function name

DGifDecompressLine

DGifDecompressInput
(b) Output-critical

function name
DGifGetLine
DGifGetImageDesc
(a) Behavior-critical

function name
DGifGetWord
(c) Mixed Usage

Figure 7: GIF code classifications

Output-critical: Figure 6(b) lists the output-critical PNG
and zlib functions. These functions decompress the main im-
age data. png_read_row and png_read_finish_row direct
compressed image data from the input file to zlib’s inflate,
inflate_table, and inflate_fast functions. These func-
tions are critical because the entirety of the application’s
output is directed through these functions. Therefore, small
errors in these functions can lead to global distortions in the
output.

Forgiving: Figure 6(c) lists the PNG and zlib functions
that Snap classified as forgiving. Some of these functions
process parts of the input that are not relevant for the in-
tended deployment context of the application. For exam-
ple, png_handle_tIME and png_handle_pHys read the times-
tamp and physical device parameters (respectively) out of
the input buffers and store them in appropriate applica-
tion variables (from which they are never accessed). The
png_handle_IEND function handles the final file delimiter.
Although the PNG specification mandates that every PNG
file must contain this delimiter, the PNG library will still
produce the rendered output image even if it reaches the
end of the input without encountering this delimiter. Faults
in these regions of code will not compromise the output pro-
vided that the application can execute through the corre-
sponding errors.

Mixed Usage: Figure 6(d) lists the PNG and zlib functions
with mixed classifications. These functions are common util-
ity functions. The png_crc_read and png_crc_error func-
tions compute input file checksums. The png_read_data,
png_default_read_data, and png_get_uint_31 functions are
all file reading utility functions.

5.5.2 GIF

Figure 7 presents the code classifications for the GIF bench-
mark. GIF is a relatively simple image format that does not
provide the same level of functionality as PNG and JPEG.
The application is also coded with relatively large functions.
In comparison with PNG and JPEG, it therefore contains
relatively few relevant functions.

Behavior-critical: GIF’s behavior-critical functions are
responsible for parsing the image description header and co-
ordinating the movement of uncompressed output to desti-
nation buffers. Both of these tasks require the manipulation
of the critical data associated with the image’s dimensions
and encoding parameters.

Output-critical: Like the PNG file format, GIF’s image
data decompression functions are output-critical. Faults in
these functions could potentially corrupt the entire rendered
image.

Mixed Usage: GIF’s single mixed usage function is a util-
ity function that reads raw bytes from the input file.



function name
alloc_large
alloc_sarray
alloc_small
free_pool
jpeg_calc_output_dims
jinit_d_main_controller
start_pass_huff_decoder
process_data_simple_main
jpeg_finish_decompress
jpeg-make_d_derived_tbl
jdiv_round_up

(a) Behavior-critical

function name
decode_mcu
jpeg_huff_decode
jpeg-fill_bit_buffer
jpeg-idct_islow

(b) Output-critical

function name
get_interesting_appn
next_marker
read_markers
skip_input_data
skip_variable

(d) Mixed Usage

function name

examine_app0

examine_appl4
(c) Forgiving

Figure 8: JPEG code classifications

553 JPEG

Snap’s classifications for the JPEG library (Figure 8) mir-

ror the results of its classifications for the PNG library.
Behavior-critical: The behavior-critical functions in JPEG
initialize data structures, process the image parameters and
metadata, and allocate memory (JPEG has its own custom
allocator). The functions whose names start with alloc
allocate decompression buffers. jinit_d_main_controller
initializes the state of the parsing engine. In several loca-
tions in the library, jdiv_round_up rounds off the height and
width of the image. Faults in these functions may cause crit-
ical memory system errors or produce invalid initial states
(which can critically impair the application).
Output-critical: JPEG’s output-critical functions decom-
press the image data (these functions play a similar role to
the decompression functions in GIF and PNG) and perform
a variety of image transformations. Faults in these functions
could potentially corrupt the rendered image.
Forgiving and Mixed: JPEG’s forgiving and mixed usage
functions implement functionality that can be critical to the
output of the application. For instance, the mixed usage
functions implement functionality related to navigating the
structure of the file. We attribute the misclassification of
these functions to the misclassification of the critical fields
(see Section 5.4) that influence the data they manipulate.

6. THREATS TO VALIDITY

The primary conclusion of our research is that meaningful
distinctions exist between critical and forgiving input fields
and code, and that Snap’s techniques can automatically and
accurately infer these distinctions.

We note that our set of benchmark applications is rela-
tively small (only three applications) with all benchmarks
in the same area (image file decoding). At this point it
is not clear the extent to which our results may generalize
to other applications in other areas (although other studies
have found meaningful criticality distinctions in other appli-
cation areas, see Section 7).
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Snap uses the input field classification to induce the code
classification. As the inaccuracy in the JPEG code clas-
sification illustrates (see Section 5.5.3), the fact that the
influence trace does not take indirect influence via control
flow, array indexing, or pointer arithmetic into account can
cause Snap to misclassify critical code as forgiving. On the
other hand, including indirect influence in the influence trace
might make the code classification overly aggressive (i.e., the
code classifier might misclassify forgiving code as critical).
It is also possible for some data derived from critical input
fields to be forgiving and vice-versa. It is even possible for
the same data to be forgiving at some points in the com-
putation and critical at others. In these cases Snap might
have to use a more precise analysis technique (potentially,
for example, fuzzing internal application data as well as the
input) to produce a useful classification.

7. RELATED WORK

Snap uses perturbation analysis (which perturbs some as-
pect of the application, its execution, its input, or its internal
data) to classify input regions and code as critical or forgiv-
ing. It is also possible to use software fault injection (which
perturbs the application as opposed to its input) to classify
regions of code as critical or forgiving [26]. In this study,
critical code regions often manipulate input metadata (such
as video stream metadata) while forgiving regions often ma-
nipulate the core video or email data. Another approach
skips task executions to find critical tasks [22, 24]. The re-
sults show that critical tasks tend to create data structures
that subsequent tasks use or copy data between data struc-
tures. These results are broadly consistent with the results
in this paper.

Samurai provides an API that developers can use to al-
locate objects in either the critical heap (which uses object
replication and guard objects to protect its contents against
corruption) or the non-critical heap (which provides no pro-
tection mechanisms) [19]. The results show that, in the ab-
sence of the memory protection mechanisms, corruptions to
objects allocated in the critical heap produce application
failure rates in excess of 50%. Corruptions to objects allo-
cated in the non-critical heap, on the other hand, produce
application failure rates of approximately 2%. A difference
between Snap and Samurai is that Snap focuses on the use of
perturbation analysis to automatically classify input fields
and code as critical or forgiving, while Samurai focuses on
implementation mechanisms that protect critical memory
against corruption.

Snap uses influence tracing to generate input specifications
and to identify critical and forgiving input fields and code
regions. Other applications of taint and influence tracing in-
clude detecting security and/or privacy vulnerabilities [27,
3, 16, 21] and supporting software testing [8, 9, 5]. To en-
able these applications, researchers have developed a range
of taint and information flow tracing techniques and sys-
tems [27, 3, 16, 21, 4, 8, 5, 9].

Researchers have also developed a variety of techniques
for automatically inferring general input file formats [2, 7,
12, 6]. The applications of these formats include reverse
engineering, intrusion detection, and software testing. Au-
tomated fuzz testing [13, 1, 18, 9] is an established technique
for automated test case generation. Our fuzzing technique is
closest to block-based fuzzers, which use input format spec-
ifications to apply fuzzing at the level of input fields [1].



8. CONCLUSION

This paper advocates viewing both inputs and code through

a prism that separates critical regions (which must typically
satisfy hard logical correctness properties for the applica-
tion to function acceptably at all) from forgiving regions
(which can typically tolerate significant perturbations with-
out affecting the acceptability of the execution). Snap uses
dynamic perturbation analysis to automatically classify in-
put fields as either critical or forgiving, then extends this
classification to regions of code within the application. The
resulting classification information is directly relevant for
a variety of software engineering tasks. But perhaps more
importantly, the availability of an automated classification
system can help developers acquire, retain, and pervasively
apply this enlightening and productive perspective across
all of their activities as they engineer complex, challenging
software systems.
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