
Journal of Programming Languages6 (1998), 1–35

Implicitly synchronized abstract data types:
data structures for modular parallel
programming

Martin C. Rinard

Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
rinard@mit.edu

Programmers use abstract data types to control the complexity of developing serial programs. Abstract data types
promote modular programming by encapsulating state and operations on that state. In parallel environments abstract
data types must also encapsulate the concurrency generation and synchronization code required for their correct use
and present interfaces that require no information about the global concurrency pattern. An abstract data type is said
to be implicitly synchronized if it meets these requirements. Implicitly synchronized abstract data types promote
modular parallel software and help programmers manage the complexity of developing parallel programs. This paper
defines the concept of implicitly synchronized abstract data types and shows how the implicitly parallel language Jade
supports their development and use.

Keywords: Parallel programming, abstract data types

Over the last decade, research in parallel computer architecture has led to the development of many new
parallel machines. Collectively, these machines have the potential to increase dramatically the resources
available to solve important computational problems. The widespread use of these machines has, however,
been limited by the difficulty of developing useful parallel software.

Programmers have traditionally developed software for parallel machines using explicitly parallel lan-
guages (Lusk et al. 1987, Sunderam 1990). These languages provide constructs that programmers use to
create parallel tasks. The tasks typically interact using synchronization operations such as locks, condition
variables and barriers and/or communication operations such as send and receive. Explicitly parallel lan-
guages give programmers maximum control over the parallel execution, and they can exploit this control
to generate extremely efficient computations.

The problem is that explicitly parallel languages present a complex programming environment. A major
source of this complexity is the need to manage many of the low level aspects associated with mapping a
computation onto the parallel machine. The programmer must decompose the program into parallel tasks
and generate the synchronization operations that coordinate the execution of the computation. Because
the synchronization code controls the interactions between all of the parallel tasks, the programmer must
develop a comprehensive mental model of the global concurrency structure and keep that model in mind
when writing the synchronization code.

The author is now at the Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

0963–9306c 1998 Chapman & Hall

2 Martin C. Rinard

In serial environments programmers use abstract data types to manage the construction of complex
programs. Each abstract data type presents an interface consisting of a set of operations that manipulate
a given data structure. Because abstract data types hide the implementation of the data structure and
operations from the clients that use them, they encapsulate the complexity of implementing the data
structure and its operations. Programmers can therefore control the complexity of implementing a serial
program by decomposing the program into a set of independent abstract data types.

In parallel environments abstract data types must encapsulate more than just the representation of data
and the implementation of operations that manipulate that data. Each abstract data type must also en-
capsulate the concurrency generation and synchronization code required for its correct use and present
an interface that requires no information about the global concurrency pattern. If an abstract data type
satisfies these properties we say that it is implicitly synchronized.

Implicitly synchronized abstract data types allow programmers to control the complexity of building
parallel applications. Programmers can build complex parallel applications by combining implicitly syn-
chronized abstract data types, with the task of synchronizing the parallel program effectively decomposed
into the task of synchronizing each abstract data type.

In this paper we first discuss some of the obstacles that programmers using explicitly parallel languages
face when they attempt to develop implicitly synchronized abstract data types. The conclusion of this
discussion is that, in general, explicitly parallel languages make it impossible to completely encapsulate
the synchronization code required to correctly order operations on abstract data types: in many cases both
the abstract data type and its clients must contain synchronization code to order the operations correctly.
Programmers using explicitly parallel languages must therefore rely on less modular synchronization
techniques or only use abstract data types in restricted contexts.

We then present the implicitly parallel programming language, Jade. Jade programmers start with a
program written in a standard serial, imperative language, then use Jade constructs to describe how parts
of the program access data. The Jade implementation analyses this information to extract the concurrency
automatically and execute the program in parallel. The main contribution of this paper is to show how the
Jade language design supports the effective construction of implicitly synchronized abstract data types. In
particular, Jade’s implicitly parallel approach effectively solves the operation ordering problem that often
precludes the construction of implicitly synchronized abstract data types in explicitly parallel languages.

The rest of the paper is organized as follows. In section 1 we set the context for the paper by describ-
ing how existing parallel languages have approached the issue of modularity. Sections 2–7 present the
Jade language and show how to build different kinds of implicitly synchronized abstract data types using
Jade. Section 8 caps the discussion of Jade by providing a detailed exposition of the semantics of Jade
constructs. Section 9 presents the key data structure, object queues, that the Jade implementation uses
to extract the concurrency and synchronize the computation. This data structure allows the Jade imple-
mentation to present a high level parallel programming model that supports the construction of implicitly
synchronized abstract data types. We describe our applications experience in section 10; this experience
enables us to evaluate how the modularity ideas in Jade worked in practice.

1 Background

The issue of modularity arises in many parallel programming language designs. In this section we briefly
discuss different approaches that various languages have taken.

Implicitly synchronized abstract data types: data structures for modular parallel programming 3

1.1 Modularity in explicitly parallel languages

Many explicitly parallel languages contain features that are designed to support the construction of im-
plicitly synchronized abstract data types. Almost all of these designs attempt to leverage the consistency
properties of the abstract data type to synchronize the computation. The basic mechanism is to allow an
abstract data type to delay the execution of operations that it is temporarily unable to execute in a satis-
factory way. A standard example is a queue abstract data type that delays dequeue operations when there
are no elements in the queue.

We briefly survey several proposed language mechanisms that are designed to allow programmers to
specify when operations should be delayed. Path Pascal programmers can specify sets of enabled op-
erations using path expressions (Campbell and Kolstad 1980, Kolstad and Campbell 1980). Each path
expression specifies a partial order on the operations of a given abstract data type. At any given time the
abstract data type can only execute operations that are consistent with the specified partial order. Argus
provides atomic transactions that access multiple abstract data types (Liskov 1988). Conceptually, the Ar-
gus implementation ensures the serializability of the transactions by delaying the execution of operations
that would interfere with their atomicity.

Many concurrent object-oriented languages have provided mechanisms that allow programmers to syn-
chronize operations on objects. In the Actor model of computation, for example, the execution of an
operation is delayed until the previously executing operation specifies a replacement behaviour for the
object (Agha 1986). If an object cannot successfully execute a given operation in its current state, it can
explicitly buffer the operation. It then resends the message to itself when it becomes able to execute the
operation.

Other concurrent object-oriented programming languages have provided more sophisticated support
for delayed operations. A basic mechanism is that each operation executes with exclusive access to
the receiver object. This implicit form of mutual exclusion synchronization originally appeared in the
context of monitors (Hoare 1974), and was used in monitor-based languages such as Concurrent Pascal
(Brinch-Hansen 1975, Brinch-Hansen 1977) and Mesa (Mitchell et al. 1979, Lambert Butler and Redell
1980). Concurrent object-oriented languages also adopt this synchronization mechanism, in part because
it meshes well with the concept of operations on objects. Many languages relax the exclusive execution
constraint to allow the concurrent execution of operations that only read the same object. Like monitor
languages, many concurrent object-oriented languages also provide condition variables to temporarily
delay the execution of operations.

Some concurrent object-oriented languages provide higher-level support for delayed operations. In
POOL-T and ABCL/1 each object’s behaviour is determined by a script that it executes (America 1987,
Yonezawa et al. 1986). When the object is ready to execute another operation, it executes a select construct
that specifies the set of operations that it can legally execute at that point in time. The construct blocks
until one of the operations attempts to execute. The Rosette system (Tomlinson and Singh 1989) allows
programmers to identify a set of object states and specify the set of operations that an object in a given
state can legally execute. When an operation completes its execution it specifies the object’s next state.
Capsules (Gehani 1993) allow the programmer to declaratively specify conditions that the object’s state
must meet for it to execute each operation.

4 Martin C. Rinard

1.2 A fundamental problem with explicit parallelism

In all of the explicitly parallel languages described above, the basic assumption is that multiple threads
of control will attempt to asynchronously perform operations on abstract data types. The goal of the
synchronization code is to order the operations correctly. But this assumption introduces a fundamental
problem into the programming model. The behaviour of an abstract data type depends on the order in
which its operations execute. In general, the operations must execute in a specific order for the program
to generate the correct result. This order typically depends not only on the semantics of the abstract data
type, but also on the semantics of its clients. It is therefore impossible for the abstract data type to contain
all of the synchronization code required for its correct use. The clients must also contain synchronization
code that helps to impose a correct operation execution order. This synchronization code violates the
encapsulation of the abstract data type and destroys the modularity of the program.

We illustrate this problem with an example. Consider a bank balance abstract data type that has deposit
and withdraw operations. The bank’s policy is to charge a penalty if the balance drops below a certain
minimum amount. The ending balance in the account may depend on the order in which the deposit and
withdraw operations execute – in some execution orders the account may incur penalties; in others it may
not. For a program that uses this abstract data type to execute correctly, it must execute the deposit and
withdraw operations in a correct order. Furthermore, the abstract data type by itself cannot determine what
a correct order should be – from the perspective of the abstract data type, orders that generate minimum
balance penalties are just as consistent as orders that do not. To use this abstract data type correctly in an
explicitly parallel context, the clients must contain additional synchronization that orders the deposit and
withdraw operations. This synchronization violates the encapsulation of the bank balance abstract data
type.

1.3 Synchronization strategies for explicitly parallel languages

Because explicitly parallel languages do not support implicitly synchronized abstract data types, program-
mers have evolved a set of less modular synchronization strategies. An examination of these strategies
provides additional insight into the synchronization problems that programmers face when they use ex-
plicitly parallel languages.

Many parallel programs can be structured as a sequence of phases in which precedence constraints
occur only between phases. Within phases all operations on a given data structure either commute (i.e.
generate the same result regardless of the order in which they execute) or can execute concurrently. For
example, the Barnes–Hut application for solving gravitationalN-body problems (Singh 1993) organizes
its data into an octree. The computation can be decomposed into a tree building phase (in which all tree
operations commute) and a tree use phase (in which all tree operations execute concurrently). For such
computations programmers can easily build abstract data types that are implicitly synchronized within
each phase.

The only problem left is generating the synchronization required to separate phases. The most common
way to do this is to insert barriers between phases. When a thread completes its computation for one
phase, it waits until all other threads have completed that phase. The threads then proceed to the next
phase.

Barrier synchronization can reduce the cognitive complexity of generating the synchronization code by
eliminating the need to consider interactions between phases. But it also wastes concurrency potentially
available between phases and can cause poor performance if the computational load of each phase is not

Implicitly synchronized abstract data types: data structures for modular parallel programming 5

evenly balanced across the processors. The rigidity of barriers also limits the range of applications that
they can effectively synchronize.

Event counts are another synchronization mechanism. The programmer may know that one operation
on a data structure must be performed a certain number of times before another operation can legally ex-
ecute. The programmer can synchronize the computation by maintaining a count of the number of times
the first operation has been performed. If the second operation is invoked too early, the invoking task sus-
pends until the required number of other operations execute. Many parallel sparse Cholesky factorization
algorithms use this synchronization mechanism (Rothberg 1993). The problem with this mechanism is
that some part of the program must know enough about the global structure of the computation to generate
the number of times the different parts of the computation will update each data structure.

The SAM (Scales and Lam 1994) and VDOM (Feeley and Levy 1992) systems introduce another
mechanism: associating a version number with each mutable object. The version number counts the
number of times the object has been modified to generate the current version. When a part of the program
reads the object it specifies which version it needs to access, waiting until that version is generated. New
versions are generated into new storage, leaving the old version intact for tasks to access.

Both SAM and VDOM rely on some external mechanism to determine which version of each object the
program needs to access. Requiring the client of the object to correctly generate the version identifiers can
destroy modularity. Each part of the program that uses the object must know how many times other parts of
the program have written the object. SAM addresses this problem by providing libraries that encapsulate
the version identifier calculation for common data structures with common accessing patterns. In effect,
each such data structure is an implicitly synchronized abstract data type built on top of the version number
synchronization mechanism.

1.4 Eliminating mutable data

One way to eliminate the synchronization problems associated with explicit concurrency is to eliminate
mutable data. Futures (Halstead 1985, Halstead 1986) and I-Structures (Arvind and Thomas 1981, Nikhil
and Pingali 1989, Nikhil 1990) support implicitly synchronized data structures that are written only once.
A future is a place holder that holds the result of a function that may execute concurrently with its caller.
Parts of the computation that read the future implicitly suspend until the function generates the result. Like
futures, I-structures implicitly support the producer/consumer synchronization patterns characteristic of
many parallel programs. An I-structure initially starts out undefined, with parts of the program that read
the I-structure implicitly suspending until the computation defines it.

Futures and I-structures support a monotonic model of computing. Instead of modelling computation as
reads and writes to a mutable shared memory, languages built on these mechanisms model computation
as the monotonic generation of information. This monotonicity enables the producer and consumer to
synchronize implicitly via the value definition mechanism.

Both futures and I-structures allow programmers to build implicitly synchronized abstract data types
for monotonic computations. All synchronization is implicit; the producer need have no knowledge of
how the consumer will use the value and the consumer needs to know nothing about how the producer
will generate the value. Programmers can represent the state of abstract data types with data structures
containing futures and I-structures. The operations either incrementally define the encapsulated data
structure or read some part of it. These operations can be invoked from any part of the program with no
additional synchronization. The only restriction is that the data structure cannot contain mutable data.

6 Martin C. Rinard

1.5 Jade

Like the explicitly parallel languages described in section 1.1, Jade supports a programming model based
on operations on abstract data types that implement their state with mutable data. The key difference
is that Jade is an implicitly parallel language. Its sequential semantics totally orders the operations in
the program. Programmers using explicitly parallel languages must write complex synchronization code
to regenerate a correct execution order for multiple operations executed by multiple parallel threads of
control. Jade programmers, on the other hand, write code that declaratively specifies how operations in a
serial program will access the data that implements the abstract data type’s internal state. The Jade imple-
mentation then relaxes the serial execution order to generate parallel execution. Independent operations
(operations are independent if neither accesses a piece of data that the other writes) can execute concur-
rently. If operations are not independent, the Jade implementation preserves the correct execution order
from the original serial program. As we will see, this approach allows Jade programmers to build ab-
stract data types that completely encapsulate all of the synchronization and concurrency generation code
required for their correct use.

Although we focus on how Jade supports implicitly synchronized abstract data types, we note in passing
that Jade’s implicitly parallel programming model offers several other advantages over explicitly parallel
models. Explicit parallelism introduces the possibility of undesirable program behaviour such as deadlock
or livelock. It also introduces the possibility of nondeterministic execution, which is often undesirable,
for example, because it complicates the debugging process. Because Jade preserves the serial semantics,
it is impossible to write a Jade program that deadlocks or livelocks. Jade programs are also guaranteed to
execute deterministically. (Section 3.3 introduces an extension, commuting access declaration statements,
that programmers can use to create nondeterminisitic execution.)

Although the current Jade implementation uses no sophisticated static analysis, the language is de-
signed to enable such analysis. Because Jade programs have the same semantics as the serial languages
that compilers are designed to work with, compilers can apply the same analysis techniques and transfor-
mations to Jade programs that they apply to serial programs. Explicit parallelism, on the other hand, can
dramatically reduce the compiler’s ability to analyse the program and apply transformations (Chow and
Harrison 1992).

2 The Jade programming language
Jade programmers start with a serial program and use Jade constructs to specify how parts of the program
access data. The Jade implementation dynamically analyses this information to automatically extract the
concurrency present in the application.

For pragmatic reasons the current version of Jade is structured as an extension to C. Stable implementa-
tions of Jade exist for a wide range of computational platforms, including shared memory multiprocessors
(the Stanford DASH machine), homogeneous message passing machines (the Intel iPSC/860) and hetero-
geneous networks of workstations. Jade programs port without modification between all of the platforms.

Jade is based on three fundamental concepts: shared objects, tasks and access specifications. Shared
objects and tasks are the mechanisms that the programmer uses to specify the granularity of, respectively,
the data and the computation. The programmer uses access specifications to specify how tasks access
shared objects. The next few sections describe how programmers can use these mechanisms to build
implicitly synchronized abstract data types.

Implicitly synchronized abstract data types: data structures for modular parallel programming 7

int shared*value;

Fig. 1. Shared object declaration.

2.1 Shared objects

Jade supports the abstraction of a single mutable memory that all parts of the computation can access.
Each piece of data allocated in this memory is called a shared object. Programs use pointers to refer to
shared objects. Programmers use thesharedkeyword to identify pointers to shared objects; Fig. 1 shows
how to use this keyword to declare a pointer to anint shared object.

Programmers use shared objects to implement the mutable state encapsulated in each abstract data type.
Outside the abstract data type each reference to a shared object is conceptually an opaque handle passed
to abstract data type operations. Inside the abstract data type the operations manipulate the encapsulated
state by reading and writing the corresponding shared objects. In a language with explicit support for
abstract data types the compiler would enforce the encapsulation of shared objects. Because C has no
such support, the encapsulation is a programming convention in the current implementation of Jade.

2.2 Tasks

Jade programmers explicitly decompose the serial computation into tasks. Each task corresponds to the
execution of a block of code; the programmer uses a Jade construct (thewithonly construct described in
section 3) to explicitly identify the blocks of code whose execution generates a task.

Because Jade is an implicitly parallel language with serial semantics, Jade programmers use tasks only
to specify the granularity of the parallel computation. The implementation, and not the programmer,
decides which tasks execute concurrently. A legal Jade implementation may, for example, simply execute
the program sequentially. The Jade tasking construct therefore identifies potential concurrency and does
not force the implementation to provide the abstraction of parallel execution. The ICC++concconstruct
exhibits a similar property. While the ICC++ implementation may execute the statements in aconcblock
concurrently (subject to local data dependence constraints), it is also free to execute the statements serially
(Chien et al. 1996). A major difference is that the ICC++ implementation is only guaranteed to preserve
the local data dependence constraints. The Jade implementation preserves all of the data dependence
constraints.

In most parallel programming languages the implementation is not free to execute tasks sequentially –
it must preserve the abstraction of parallel execution. In these languages tasks interact using standard syn-
chronization and communication constructs such as monitors (Hoare 1974), futures (Halstead 1985) and
message-passing operations (Pierce 1988). Programmers can use these constructs to write tasks that can
not complete without interacting with other tasks. To execute the program correctly, the implementation
must preserve the abstraction that tasks execute in parallel. Failure to do so may lead to deadlock. This is-
sue arises when an implementation executes tasks sequentially to eliminate task creation and management
overhead. To avoid deadlock, the implementation must be prepared to undo the decision to sequentialize
a task; lazy task creation provides this functionality (Mohr et al. 1990).

Jade programmers typically create a task to perform the computation associated with each operation on
an abstract data type. The tasking construct itself is encapsulated inside the implementation of the abstract
data type. If there is concurrency available within the operation, the task creates child tasks that cooperate
to concurrently perform the independent parts of the operation.

8 Martin C. Rinard

2.3 Access specifications

In Jade, each task has an access specification that declares how it will access individual shared objects. It
is the responsibility of the programmer to provide an initial access specification for each task when that
task is created. As the task runs, the programmer may dynamically update its access specification to more
precisely reflect how the remainder of the task accesses shared objects.

The key to building implicitly synchronized abstract data types in Jade is developing a programming
methodology that encapsulates all access specifications inside the definition of the abstract data type.
The simplest abstract data types bundle the access specifications with the encapsulated tasking construct.
Abstract data types that are used in more sophisticated contexts export operations that encapsulate access
specifications.

2.4 Parallel and serial execution

The Jade implementation analyses access specifications to determine which tasks can execute concur-
rently. This analysis takes place at the granularity of individual shared objects. For access specifications
that only declare reads and writes, the dynamic data dependence constraints determine the concurrency
pattern. If one task declares that it will write an object and another declares that it will access the same
object, there is a dynamic data dependence between the two tasks and they must execute sequentially. The
task that would execute first in the serial execution of the program executes first in all parallel executions.
If there is no dynamic data dependence between two tasks, they can execute concurrently.

This execution strategy preserves the relative order of reads and writes to each shared object. If a
program only declares read and write accesses, the implementation guarantees that all parallel executions
preserve the semantics of the original serial program and therefore execute deterministically.

More sophisticated access specifications may allow the implementation to further relax the sequential
execution order. For example, if two tasks declare that their accesses to a given object commute, the
implementation has the freedom to execute the tasks in either order. In this case the implementation
determines the execution order dynamically, with different orders possible in different executions.

This parallelization strategy correctly synchronizes the execution of programs that use abstract data
types. The client simply invokes abstract data type operations and each operation generates a task to
perform its computation. The Jade implementation analyses the access specifications to determine which
operations can execute concurrently. If operations must execute serially the implementation automatically
generates the synchronization required to enforce the appropriate precedence constraints. The resulting
parallel execution preserves the semantics of both the client and the abstract data type.

3 The tasking construct
We start our discussion of how to build implicitly synchronized abstract data types in Jade by presenting
thewithonly construct. This construct allows the programmer to identify a task and specify how it ac-
cesses shared objects. Each abstract data type operation uses this construct to generate a task to perform
its computation. Figure 2 presents the general syntactic form of the construct.

The task bodysection contains the serial code executed when the task runs. Theparameterssection
contains a list of variables from the enclosing environment. These variables may be either base values from
the underlying language (int, double, char, etc.) or pointers to shared objects. When the task is created,
the implementation copies the values of these variables into a new environment; the newly created task

Implicitly synchronized abstract data types: data structures for modular parallel programming 9

withonly f access specificationg do (parameters for task body) f
task body

g

Fig. 2. Thewithonly construct.

will execute in this environment. This environment construction mechanism is similar to the standard call-
by-value procedure call mechanism. If a parameter points to a shared object, inside the task it still points
to the same object as it did in the context enclosing the task. There is no implicit deep copy. It would be
straightforward for the compiler to automatically generate theparameterssection by performing a simple
scan of the task body to identify all of the accessed variables from the enclosing context. We elected,
however, to emphasize the similarity with the standard parameter passing mechanism by requiring the
programmer to explicitly list the task parameters.

When a task is created, the Jade implementation executes theaccess specificationsection to generate
an initial access specification for the task. This section is an arbitrary piece of code containing access
declaration statements. Each such statement declares how the task will access a given shared object. The
task’s access specification is the union of all such declarations. The task uses pointers to shared objects
to declare which objects it will access. For example, therd(o) (read) statement declares that the task
may read the shared object thato points to, and thewr(o) (write) statement declares that the task may
write the shared object thato points to. The declaration order does not matter – if a task declares that it
will read or write an object, it can perform the access an arbitrary number of times at any point during
its execution. Theaccess specificationsection may contain dynamically resolved variable references and
control flow constructs such as conditionals, loops and function calls. The programmer is therefore free
to use information available only at run time when generating a task’s access specification.

The Jade implementation dynamically checks each task’s accesses to ensure that it respects its access
specification. If a task attempts to violate its access specification, the implementation will detect the
violation and generate a run-time error identifying the undeclared access. The Jade implementation does
not check for lower level errors such as incorrect casts or array bounds violations. We view any such
checking as the responsibility of the language that Jade extends.

3.1 A methodology for simple abstract data types

Thewithonly construct supports a methodology for building simple abstract data types. Starting with a
serial implementation of the abstract data type, the programmer uses thewithonly construct to make each
operation into a separate task. Theaccess specificationsection of eachwithonly construct declares how
the operation will access the data structure representing the state of the abstract data type.

Because thewithonly construct is encapsulated inside each operation, the new parallel abstract data
type presents the same interface as the original serial abstract data type. When clients invoke operations,
the Jade implementation dynamically analyses the data usage declarations to concurrently execute opera-
tions with no dynamic data dependences. Because the abstract data type completely encapsulates the code
required to generate correct parallel execution, the abstract data type is implicitly synchronized.

10 Martin C. Rinard

typedef structf
int key, data;

g entry;

typedef entryshared*index;

Fig. 3. Index data structure declarations.

3.2 An example: the index abstract data type

We illustrate our programming methodology by presenting the implementation of a simple index abstract
data type. This data type implements a mapping from keys to data items; this data type is also known as
a dictionary. The implementation of the index uses a hash table implemented with an array. To find the
element corresponding to a given key, the abstract data type hashes the key to obtain an index into the
array. If there are no collisions the element will be stored in the array element stored at that index. It uses
linear probing to resolve collisions in the array (Sedgewick 1988). Figure 3 defines the hash table data
structure. The programmer uses thesharedkeyword to declare that the hash table is a shared object.

The index exports two operations:lookup, which retrieves the data item indexed under a given key, and
insert, which inserts a data item into the index under a given key. Figure 4 contains the definition of the
lookupoperation. This operation takes three parameters:i, which points to the shared object containing
the hash table,k, which is the key to look up, andd, which holds the result of the lookup. The operation
first hashes the key, then uses the result to index the array that implements the hash table. A check of
the key stored in the array element determines if that entry contains the correct item. Because of the
linear probing algorithm used to resolve collisions, the item may not be in the first array element that the
operation checks. It therefore linearly searches the array starting at the first array element looking for an
entry with the correct key. Following our programming methodology, this operation uses thewithonly
construct to create a task to perform the lookup. This task’s access specification uses therd(i) access
declaration statement to declare that the task will read the hash table and thewr(d) access declaration
statement to declare that the operation will write the result.

Similary, theinsertoperation in Fig. 5 creates a task to perform the insertion. The insertion first hashes
the key to find the array element in which to store the item. If another key/item pair has already hashed
to that array element, the operation linearly searches the array looking for a free entry. When it finds a
free entry it inserts the item. Because the operation will both read and write the hash table, thewithonly ’s
access specification section contains both ard(i) and awr(i) access declaration statement. (Thewr(i)
access declaration statement by itself only allows the task to write but not read the hash table.)

The indexis an implicitly synchronized abstract data type. All of the code required to generate correct
parallel execution is encapsulated in its implementation. The tasking constructs and access declaration
statements are completely encapsulated inside the operations in the sense that the client can not observe
the presence or absence of these statements. It is possible to substitute parallel and serial implementations
of the abstract data type without changing the client.

The access specifications determine whether successive index operations execute serially or in paral-
lel. Successiveinsertoperations execute serially. Successivelookupoperations can execute concurrently.
Moreover, the implementation preserves the sequential execution order for tasks with dynamic data de-

Implicitly synchronized abstract data types: data structures for modular parallel programming 11

void lookup(index i, int k, intshared�d) f
withonly f rd(i); wr (d); g do (i;k;d) f

int j, first;
j = hash(k);
first = j;
while (TRUE)f

if (i [j].key == k)f
�d = i[j].data;
break;

g

j++;
if (j == SIZE HASH) j = 0;
if (j == first) f
�d = 0; /* not found */
break;

g

g

g

g

Fig. 4. Index lookup operation

void insert(index i, int k, int d)f
withonly f rd(i); wr(i); g do (i;k;d) f

int j, first;
j = hash(k);
first= j;
while (TRUE)f

if (i [j].key == 0)f
i[j].key = k;
i[j].data = d;
break;

g

j++;
if (j == SIZE HASH) j = 0;
if (j == first)
/* table full */
exit(�1);

g

g

g

Fig. 5. Index insert operation.

12 Martin C. Rinard

lookup(i;1;d1);
insert(i;2;5);
insert(i;3;6);
lookup(i;2;d2);
lookup(i;3;d3);

Fig. 6. indexclient code

pendences. For example, the implementation executes interleavedlookupand insert operations in the
same order as in the original serial program. Because this ordering preserves the data dependences of
the original serial program, the Jade program is guaranteed to generate the same result. This execution
strategy therefore preserves such desirable characteristics as deterministic execution.

Superficially, the access declaration statements resemble read and write lock constructs in explicitly
parallel languages. It is important to realize that there is a fundamental difference between Jade and
explicitly parallel languages with read and write locks. Read and write locks merely ensure that if a task
writes an object, it will execute in some sequential order with respect to other tasks that access the object.
But the order is arbitrary. The programmer must insert additional synchronization to ensure that the
program generates a correct execution order. All too often the result is a set of synchronization constructs
scattered throughout the program. Because these constructs interact with each other in complicated and
often unanticipated ways, they impair the structure and modularity of the program. Because Jade preserves
the original sequential execution order between tasks that write an object and tasks that access the object,
there is no need for additional concurrency management code.

3.3 Commuting operations
The semantics of theindexabstract data type allow successive insertions to execute in any order as long as
they have exclusive access to the hash table. The programmer may express this commutativity information
by replacing therd(i) andwr(i) access declaration statements in Fig. 5 with thecm(i) access declaration
statement. This statement declares that the operation may read and write the hash table, but that its
accesses commute with other operations that also declare commuting accesses.

3.4 Using the index abstraction
To use theindexabstraction, the client just invokes the operations. Figure 6 contains a code fragment
that uses an index. Figure 7 contains the dynamic task graph that this computation generates under the
assumption that the programmer uses thecm(i) access declaration statement in theinsertoperation. The
first lookupoperation executes before the twoinsertoperations. Theinsertoperations commute, executing
with exclusive access to the hash table. The final twolookupoperations execute concurrently. The client
contains no code that deals with the parallel execution.

3.5 Using commuting operations
Because the Jade implementation does not verify that operations declared to commute do in fact com-
mute, commuting access declaration statements introduce the possibility of nondeterministic execution.
We therefore view commuting operations as an extension of the basic Jade paradigm rather than an inte-
gral part of it. We expect programmers to only use commuting access declaration statements when the

Implicitly synchronized abstract data types: data structures for modular parallel programming 13

lookup(i,2,d2) lookup(i,3,d3)

lookup(i,1,d1)

insert(i,2,5) insert(i,3,6)

mutual exclusion constraint precedence constraint

Fig. 7. Task graph

operations return equivalent values to their callers and leave the abstract data type in equivalent states re-
gardless of the order in which they execute. (We assume the following notion of equivalence: two return
values are equivalent if they are equal. States are equivalent if it is impossible to observe that they are dif-
ferent – in other words, all sequences of operations that execute on abstract data types in equivalent states
return equivalent values.) These two properties together ensure that programs with commuting operations
preserve the semantics of the original program.

The granularity at which the operations access the state of the abstract data type can have a significant
impact on whether they commute or not. Commuting operations typically access the state of the object
multiple times; in most cases all of the accesses must be performed atomically for operations to commute.
The insert operation in Fig. 5, for example, first finds an empty array element, then stores the new entry
into that element. The index abstract data type must implement and export its insertion functionality
at at least that combined granularity if the operations that implement the insertion functionality are to
commute.

Granularity issues may also arise at the level of multiple abstract data types. It is not difficult to
imagine a sequence of operations on several abstract data types that commutes with other sequences
of operations. The individual operations themselves, however, may not commute with the individual
operations in other sequences. Consider, for example, a bank account abstract data type that exports two
operations: deposit-with-balance, which deposits an amount into the account and returns the new balance,
and withdraw-with-balance, which withdraws an amount and returns the new balance. (We would like
to thank the first reviewer for this example.) These operations do not commute: even though they leave
the account in the same state regardless of the order in which they execute, the return values may be
different in different execution orders. It is possible to use withdraw-with-balance and deposit-with-
balance to implement a transfer-with-balance computation. This computation transfers an amount from
one account to another and returns the combined amount in the two accounts. Multiple transfer-with-

14 Martin C. Rinard

balance computations commute, but the operations used to implement the computation do not commute.
The commutativity arises only because of interactions between the two account abstract data types that
participate in the computation.

The methodology presented in this paper for implicitly synchronized abstract data types does not sup-
port this kind of commutativity – in part because the commutativity arises only at the level of multiple
abstract data types. Jade, however, does support this kind of commutativity. A Jade task can declare
commuting accesses to multiple shared objects. As long as the task performs the accesses sequentially,
the computation will execute correctly.

It is also possible to imagine a set of operations on several abstract data types that commutes with other
sets of operations. But within each set operations may execute concurrently with or commute with other
operations in the same set, as long as each set as a whole executes atomically with respect to the other
sets. It might be possible, for example, to execute the withdraw-with-balance and deposit-with-balance
operations that together make up a transfer-with-balance computation concurrently. Jade does not support
these kinds of concurrency patterns – there is no easy way to express the relaxation of the sequential
execution order in a way that not only exposes the concurrency and commutativity but also preserves the
atomicity of each set of operations relative to the other sets of operations.

This discussion illustrates a fundamental limitation of the concept of implicitly synchronized abstract
data types. There are concurrency patterns whose minimal synchronization constraints arise because of
interactions between abstract data types. In such situations it may be impossible to both maintain the
modularity of the abstract data types and fully exploit the concurrency and commutativity. The methodol-
ogy described in the paper imposes a conservative solution: it uses the original sequential execution order
for tasks with dynamic data dependence constraints. This solution preserves the modularity boundaries,
but may not fully exploit the available commutativity.

3.6 Abstract data types with multiple shared objects

The index abstract data type described above implements its state using a single shared object. It is of
course possible to conceive of more complex abstract data types that implement their state with multiple
shared objects. This situation may arise, for example, if the abstract data type encapsulates some private
data that is not visible outside the implementation. Jade fully supports this implementation strategy: the
access specification sections inside the abstract data type simply use multiple access declaration state-
ments to specify how the operations will access the individual shared objects that together implement
the abstract data type’s state. Jade also supports more structured versions of this approach. Section 4
below presents a programming methodology for layered abstract data types; section 7 describes how Jade
supports hierarchical abstract data types. In both of these cases the abstract data types implement their
internal state with multiple encapsulated shared objects.

4 Layered abstract data types
Programmers often structure large, complex programs using nested layers of abstract data types, imple-
menting one layer in terms of the interface exported by the next layer. In our methodology the logical
nesting of abstract data types generates nested task creation. A task that performs a given operation in-
vokes operations on the next layer of abstract data types. These operations in turn create child tasks that
perform the actual operation.

Implicitly synchronized abstract data types: data structures for modular parallel programming 15

void declareinsert(index i, int k, int d)f
df cm(i);

g

void declarelookup(index i, int k, intshared�d) f
df rd(i); df wr(d);

g

Fig. 8. Index access declaration operations.

In Jade each task must declare how its entire computation accesses shared objects, including how its
child tasks access shared objects. This requirement ensures that the Jade implementation has enough
information to correctly synchronize the computation in the face of hierarchically created tasks that update
mutable data. To satisfy this requirement, each operation’s task must declare both how it will access data
and how the operations that it invokes access data.

4.1 Encapsulating access declarations

In layered contexts implicitly synchronized abstract data types preserve their encapsulation boundary by
exporting operations that declare how other operations access data. In this methodology operations on
abstract data types come in pairs. One operation performs the actual computation while an associated
access declaration operation declares how the first operation will access shared objects. If a task invokes
an operation, it includes the associated access declaration operation in its access specification section.
Access declaration operations extend abstract data types for use in layered contexts without compromising
encapsulation.

Figure 8 shows the access declaration operations required to use the index abstract data type in layered
contexts. The operations use the deferred form of the access declaration statements (df rd(o), df wr(o),
anddf cm(o)) rather than the immediate form that appears in earlier examples. The deferred form declares
that the task may eventually access the object, but that it will not do so immediately. Before the task
can access the object, it must change its deferred access declaration to an immediate access declaration
(section 6 below describes thewith construct that the task uses to change its access specification). This
information about when a task will perform its accesses may allow the implementation to further relax
the sequential execution order. For example, if a task declares an immediate access, it can not execute
until all previous tasks that access the object have completed. If the task declares a deferred access, it may
execute concurrently with other previous tasks that also access the object. Only when the task changes its
deferred access declaration to an immediate access declaration does it have to wait for previous tasks that
access the object to complete.

In addition to giving a task the right to eventually access an object, deferred access declarations also
enable a task to create child tasks that declare that they will access the object. In the example the client
of the indexabstraction will never directly access the index’s hash table. It will instead invoke index
operations, which in turn create child tasks to actually perform the accesses.

4.2 A layered abstract data type

We now demonstrate how to construct a layered abstract data type built on theindexabstraction. This
new abstract data type is part of an employee database system and, given an employee number, stores

16 Martin C. Rinard

typedef structf
index salary, phone;

g shared*record;

Fig. 9. Record data structure definition.

void store(record r, int e, int s, int p)f
withonly f

rd(r);
declareinsert(r ! salary;e;s);
declareinsert(r ! phone;e; p);

g do (r;e;s; p) f
insert(r ! salary;e;s);
insert(r ! phone;e; p);

g

g

Fig. 10. Store operation

that employee’s phone number and salary. Figure 9 contains the declaration of the shared object that
implements thisrecordabstraction. This shared object contains twoindexabstract data types.

Figure 10 presents the implementation of thestoreoperation, which stores a phone number and salary
into the record. This operation uses thedeclareinsertaccess declaration operation to declare the accesses
that the nestedinsert operations will perform. Because the twoinsert operations access different hash
tables, they can execute concurrently.

4.3 Access declaration operations

Access declaration operations are the key addition required to extend the programming methodology to
layered abstract data types. They enable each operation to declare how all of its invoked operations will
access data without violating the encapsulation of any of the abstract data types. But the addition of these
operations complicates the methodology – they increase the size of each abstract data type’s interface and
appear to create an additional programming burden. We believe, however, that the complication is mini-
mal. First, the access declaration operations are used in a highly regular, stylized way. Access declaration
operations and normal operations come in pairs. This association dramatically reduces the cognitive com-
plexity of the interface. Second, it is possible in our methodology to automatically generate the access
declaration operations. Each operation consists of awithonly construct whose task body performs the
computation associated with the operation. The corresponding access declaration operation consists of
the code from the access declaration section of thewithonly construct with all immediate access declara-
tion statements converted to the corresponding deferred access declaration statements. If the abstract data
type is layered, the access specification sections may invoke access declaration operations for operations
on nested abstract data types. These invocations are simply transferred unchanged into the body of the
automatically generated access declaration operation. Although we have not built a tool to automatically
generate access declaration operations, we believe the fact that it would be straightforward to do so attests
to their minimal engineering impact.

Implicitly synchronized abstract data types: data structures for modular parallel programming 17

Access declaration operations also raise a potential efficiency issue. Because the implementation ex-
ecutes them dynamically, they may increase the overhead. The problem obviously becomes worse for
deeply layered abstract data types. For these abstract data types the access declaration operations may
introduce additional traversals of the layered objects as the access declaration operations traverse the data
structures to generate correct access specifications. In general the overhead becomes an issue if the task
size is not large enough to amortize it away profitably.

Finally, situations may arise in which a significant part of a task’s computation is devoted to determining
precisely which objects it will access. Most of these cases are best handled using hierarchical objects as
described below in section 7. In some cases, however, the inability to quickly generate precise access
specifications may impose unacceptable overhead. The task may duplicate computation performed in its
access specification section as it computes which objects to access.

4.4 Atomicity and layered abstract data types
Each operation on a layered abstract data type generates multiple operations on the nested objects that
implement its state. If all of the abstract data types only use read and write access declaration statements, it
is clear that the clients cannot observe this decomposition. The serial semantics ensures that the execution
order preserves the data dependences, which guarantees that the program generates the same result as if it
executed serially.

With commuting access declaration statements the situation is a bit more complicated. In our example
the twostoreoperations will generate two insertions into the salary index and two insertions into the phone
index. Furthermore, the declaration thatinsert operations commute enables the Jade implementation to
perform the insertions into the salary database in a different order from the insertions into the phone
database. Thestoreoperation may therefore not execute atomically in the sense thatinsert operations
from onestoreoperation may execute in different orders with respect toinsert operations from another
storeoperation.

The key point is that if the operations commute according to the definition in section 3.3, it is impossible
for the clients to observe this lack of atomicity. Any operation that performslookupoperations on the two
indexabstract data types will be ordered in one of three ways with respect to the twostoreoperations:
either before both of the operations, after both of the operations, or between the two operations. If the
lookupis ordered before the twostoreoperations, it will execute before all of theinsert operations that
the storeoperations generate. If it is ordered after the twostoreoperations, it will execute after all of
the insertoperations have completed. If it is ordered between them, bothinsertoperations from the first
storeoperation will have completed and neitherinsertoperation from the secondstoreoperation will have
executed. In no case will thelookupbe able to observe a state in which one of theinsertoperations from
a givenstoreoperation has executed and the otherinsertoperation has not. The implementation therefore
preserves the atomic semantics of thestoreoperation, even though the implementation may interleave the
execution ofinsert operations from differentstoreoperations. As long as the operations commute, this
argument generalizes to arbitrary layered abstract data types that contain commuting access declaration
statements.

5 Creating objects
Jade programmers create new objects using thecreate object construct. Figure 11 shows how to use
this construct to implement acreateindexoperation that creates a new index. This operation uses the

18 Martin C. Rinard

index createindex(int n)f
return(create object(entry[n]));

g

Fig. 11. Creating a new index.

with f access specificationg cont;

Fig. 12. Thewith construct.

create object construct to create and return a new array ofentry data structures. Thecreate object
construct itself takes one parameter: the type of the object to create. The task that created the object
automatically obtains a deferred read, write and commuting access declaration on the created object. It
can therefore create child tasks that declare that they will access the new object or use awith construct to
declare that the task itself will access the new object.

6 The with construct
Each abstract data type operation uses thewithonly construct to specify how it will access shared ob-
jects and to create a task to perform its computation. Jade also provides another construct (thewith
construct) and several additional access declaration statements. Programmers can use these constructs to
update tasks’ access specifications. This mechanism allows programmers to exploit pipelining concur-
rency available between operations on the same abstract data type.

Figure 12 presents the general syntactic form of thewith construct. (Thecont keyword stands for
continue and is intended to emphasize the imperative interpretation of the construct.) As in thewithonly
construct, theaccess specificationsection is an arbitrary piece of code containing access declaration state-
ments. These statements refine the task’s access specification to more precisely reflect how the remainder
of the task will access shared objects.

Theno rd(o) (no future read too), no wr(o) (no future write too) andno cm(o) (no future commuting
access too) allow programmers to declare that a task will no longer access a shared object in the specified
way. This reduction may eliminate conflicts between the task executing thewith and later tasks. The later
tasks may therefore execute as soon as thewith executes rather than waiting until the first task completes.

Programmers can also use therd(o), wr(o) andcm(o) access declaration statements in awith construct
to change a deferred access declaration to the corresponding immediate access declaration. In this case
the task waits until it can legally perform the access, then proceeds. It is also possible to use thedf rd(o),
df wr(o) anddf cm(o) access declaration statements in awith construct to change an immediate access
declaration back into a deferred declaration.

In the absence of hierarchical objects (described in section 7), awith construct can only change a
deferred access declaration to an immediate access declaration, an immediate declaration to a deferred
declaration or eliminate a declaration. It cannot add a declaration on another object to the task’s access
specification. In the absence of hierarchical objects, the only way a task can acquire its initial access
declaration on an object is to either create the object (see section 5) or to have its initialwithonly statement
declare that the task will access the object. Thewith construct is therefore used for two purposes: to allow
tasks to access objects that they create and to allow tasks with dynamic data dependences to overlap the

Implicitly synchronized abstract data types: data structures for modular parallel programming 19

typedef struct tshared*tree;
typedef struct tf

int key, data;
tree left, right;

g node;
typedef tree index;

Fig. 13. Tree data structure declaration

parts of their execution that are independent.

7 Hierarchical objects
Many programs manipulate hierarchical data structures such as lists and trees. Jade supports these pro-
grams by allowing programmers to expose the hierarchical structure between shared objects. Hierarchical
objects allow programmers to more conveniently and efficiently express how programs access hierarchical
data structures.

The basic idea is that there are parent objects and child objects. The parent–child relationship is estab-
lished when the child object is created. If a task declares that it will access a parent object, this declaration
implicitly gives the task the right to declare that it will also access a child object of the parent object, or
to create child tasks that access child objects. Because the concept of hierarchical objects nests, the pro-
grammer can create tasks that incrementally refine their access specifications as they traverse hierarchical
data structures.

7.1 A binary lookup tree index
We illustrate the use of hierarchical objects by presenting another implementation of theindexabstract
data type. This implementation represents the index with a binary search tree. Figure 13 contains the
declaration of the tree node shared object. Each node points to a left node and a right node; each node is
a child object of the node that points to it.

Programmers create hierarchical objects using thecreate child object(p; t) construct. The first param-
eter(p) is a pointer to the parent object of the new child object. The second parameter(t) is the type of
the new object. The construct returns a pointer to the new child object. Figure 14 illustrates the use of the
create child object construct.

Figure 15 contains the definition of theinsertoperation. This operation is implemented with a wrapper
routine that creates a task to recursively perform the actual insertion. The task walks down the tree looking
for an empty slot. When it finds an empty slot it calls thecreatenodeoperation to create a new tree node,
then inserts the new node into the empty slot. Thecreatenodeoperation uses thecreate child object
construct to make the new node a child object of its parent node in the tree.

Structuring the tree as hierarchical objects allows the implementation to cleanly describe this data
access pattern. At every step in the traversal the task declares that it will commutatively access the current
node. When the task decides which subtree to search, it uses awith construct to describe how the step
changes its access specification. Thewith construct uses thewr(c) statement to declare which child node
it will access and theno wr(t) access declaration statement to declare that it will no longer access the
current node. Eachwith construct therefore refines the task’s access specification to match the way it

20 Martin C. Rinard

tree createnode(tree t, int k, int d)f
tree c= create child object(t, node);
withonly f wr(c); g do (c;k;d) f

c! key= k;
c! data= d;

g

return(c);
g

Fig. 14. Tree node creation routine.

void declareinsert(tree t, int k, int d)f
df wr(t);

g

void insert(tree t, int k, int d)f
withonly f wr(t); g do (t;k;d) f

aux insert(t;k;d);
g

g

void auxinsert(tree t, int k, int d)f
tree c;
if (k < t ! key)f

if (t ! le f t == NULL)t ! le f t = createnode(t;k;d);
elsef

c= t ! le f t;
with f wr(c); no wr(t); g cont;
aux insert(c;k;d);

g

g else if (k> t ! key) f
if (t ! right == NULL)t ! right = createnode(t;k;d);
elsef

c= t ! right;
with f wr(c); no wr(t); g cont;
aux insert(c;k;d);

g

g else t! data= d;
g

Fig. 15. Tree insert routines.

Implicitly synchronized abstract data types: data structures for modular parallel programming 21

void declarelookup(tree t, int k, intshared�d) f
df rd(t); df wr(d);

g

void lookup(tree t, int k, intshared�d) f
withonlyf rd(t); wr(d); g do (t;k;d) f

aux lookup(t;k;d);
g

g

void auxlookup(tree t, int k, intshared�d) f
tree c;
if (t ! key== k) f
�d = t ! data;
return;

g

if (k< t ! key)c= t ! le f t;
else c= t ! right;
if (c== NULL) f
�d = 0;
return;

g

with f rd(c); no rd(t); g cont;
aux lookup(c;k;d);

g

Fig. 16. Tree lookup operation.

traverses the tree. The tree traversal works in part because of an informal contract betweenaux lookup
and its callerlookup. If aux lookupis called with an immediate read declaration on the root of the subtree,
it will successfully perform the lookup on the subtree. As part of its computation theaux lookupis free to
declare that its enclosing task will no longer access parts of the tree. The fact that the tree is encapsulated
inside a single abstract data type ensures that the conditions on this contract will always be met and that
the computation will execute correctly.

Figure 16 contains the newlookupoperation. Like theinsert operation, this operation consists of a
wrapper routine and a traversal routine. The traversal routine walks down the tree looking for a node with
a matching key, incrementally refining its access specification at each level.

Like the hash table implementation of theindexabstraction, the binary search tree implementation is
implicitly synchronized: it completely encapsulates the code required for concurrent execution. Both
implementations exploit concurrency between lookup operations and correctly synchronize lookups and
insertions. But because the binary search tree implementation uses a more concurrent data structure, it
also exploits pipelining concurrency available between both operations. Successive inserts and lookups
concurrently access the tree in a pipelined fashion, with the second following the first down the tree as

22 Martin C. Rinard

they refine their access specifications. As soon as one goes left and the other goes right they execute
concurrently. Successive lookups, of course, execute concurrently from the start.

7.2 Interchangability

Both the hash table and the tree implementations of theindexabstract data type completely encapsulate
the representation of the state, the implementations of the operations that manipulate the state, and, of
equal importance, the constructs required to exploit correctly synchronized parallel execution both within
and between operations. This full encapsulation allows the programmer to use the implementations inter-
changably, picking the alternative best suited for the situation at hand. The client code, of course, remains
the same for all implementations.

7.3 Limitations

Hierarchical objects are designed for data structures whose natural access pattern is hierarchical. Such
data structures include standard search trees and space subdivision trees such as octrees. But hierarchical
data structures are in general unsuitable for expressing parallel computations that traverse graph data
structures. The problem is that each graph node may not have a unique parent node. The presence of
multiple paths to the same node means that the access pattern cannot be modelled using a strict hierarchy.
A similar problem occurs with circular data structures or data structures such as doubly linked lists that
may be traversed in multiple directions. It is impossible to model all of the access patterns of such data
structures using hierarchical objects.

The reason Jade restricts hierarchical objects to hierarchies is that at each point in a hierarchy there is
a single object that controls access to the entire hierarchy below it. Before a task can access any of the
objects in the hierarchy, it must go through the object at the top of the hierarchy. This object provides a
concrete locus of synchronization for the objects in the hierarchy. Any potential dynamic data dependence
between tasks that may access the same object in the hierarchy will show up in the access declarations for
all objects above that object in the hierarchy. This property enables the Jade implementation to use the
task queue mechanism described in section 9 to synchronize tasks’ accesses to objects.

8 Semantics of access specifications
The current Jade implementation uses a conservative approach to exploiting concurrency. It does not
execute a task until it knows that the task can legally perform all of its declared accesses. This section
defines how the access specifications of tasks interact to generate parallel and serial execution.

Each access specification consists of a set of access declarations. Each access declaration is generated
by an access declaration statement and gives the task the right to access a given object. Access declara-
tions also impose serialization constraints on the parallel execution. The nature of the constraint depends
on the semantics of the declared accesses. The current Jade implementation supports mutual exclusion
constraints and constraints that force tasks to execute in the same order as in the original serial program.

The set of serialization constraints is a lattice. Figure 17 shows the serialization constraint lattice for
the current version of Jade. In principle this lattice could expand to include arbitrary constraints. The
serialization constraint between two tasks is the least upper bound of the set of serialization constraints
induced by the cross product of the two access specifications. The two access declarations must refer to
the same shared object to impose a constraint.

Implicitly synchronized abstract data types: data structures for modular parallel programming 23

!

(serial execution)

$

(mutually exclusiveexecution)

k

(no constraint – parallel execution)
Fig. 17. Serialization constraint lattice

Table 1. Induced serialization constraints

rd(o) wr(o) cm(o) df rd(o) df wr(o) df cm(o)
rd(o) k!!kkk

wr(o) !!!kkk

cm(o) !!$kkk

df rd(o) k!!kkk

df wr(o) !!!kkk

df cm(o) !!kkkk

Table 1 presents the induced serialization constraints for the current version of Jade. In this table the
access declaration from the first task (in the sequential execution order) is in the leftmost column of the
table; theaccessdeclaration from thesecond task ison the top row of the table.

There is one somewhat subtle point about the serialization constraints. There may be serialization
constraintsbetween a child task and its parent task. Because the child task executesbefore the remainder
of the parent task, in Table 1 the child task’s access declaration would appear in the leftmost column
while theparent task’saccessdeclaration would appear in the top row. If there isan induced serialization
constraint between thechild and parent tasks, theparent task must suspend until thechild task finishesor
executesa with construct that eliminates theconstraint.

For Jade’sconservativeapproach to exploiting concurrency to succeed, the implementation must know
ahead of time aconservativeapproximation of theaccesses that each task and itschild taskswil l perform.
TheJadeimplementation thereforerequiresthat each task’saccessspecification correctly summarizehow
it (and its child tasks) wil l access shared objects. From the programmer’s perspective, this requirement
takes the form of several ruleswhich govern theuse of accessspecifications.

� To accessashared object, atask’saccessspecificationmust containan immediateaccessdeclaration

24 Martin C. Rinard

Table 2. Enabled accesses

Access declaration Enabled accesses
rd(o) read fromo
wr(o) write too
cm(o) read fromo and write too

that enables the access. Table 2 summarizes which access declarations enable which accesses.

� If a task’s initial access specification contains an access declaration on a given object, its parent
task’s access specification (at the time the task is created) must also contain one of the following
access declarations:

– A corresponding access declaration on the same object. The declaration must be either a
deferred or an immediate access declaration.

– A corresponding access declaration on the object’s parent object. The declaration must be an
immediate access declaration.

Table 3 summarizes the rules.

� A with construct can change a deferred access specification to a corresponding immediate access
specification, an immediate to a corresponding deferred access specification, or eliminate an access
specification. Table 4 summarizes the rules.

� When a task creates an object that has no parent object, its access specification is automatically
augmented with deferred read, write and commuting access declarations for that object.

� When a task creates a child object, its access specification does not change.

There are additional restrictions associated with commuting access declarations. To prevent deadlock,
the Jade implementation does not allow a task to execute awith construct that declares an immediate
access to any object when the task’s access specification already contains an immediate commuting decla-
ration. The implementation also prevents a task from creating any child tasks while its access specification
contains an immediate commuting declaration.

9 Implementation
Given the declarative nature of the Jade programming paradigm, the Jade implementation assumes the
responsibility for extracting the concurrency and synchronizing the computation. In effect, there is a
general-purpose synchronization algorithm encapsulated inside the Jade implementation. The program-
mer obliviously reuses this synchronization algorithm every time he or she writes a Jade program. The
specific mechanism that the Jade implementation uses to extract the concurrency and synchronize the
computation is object queues.

There is a queue associated with each object that controls when tasks can access that object. Each task
has an entry in the queue of every object that it declares that it will access. Each entry declares how the
task will access the object. Entries appear in the queue in the same order as the corresponding tasks would

Implicitly synchronized abstract data types: data structures for modular parallel programming 25

Table 3. Access specification rules for thewithonly construct

If child task declares Parent task must declare one of
st(o) st(o), df st(o) or st(po)
df st(o) st(o), df st(o) or st(po)

In this tablepo is the parent object ofo andst2 frd ;wr ;cmg.

Table 4. Access specification rules for thewith construct

If a with declares Task must declare one of
st(o) st(o), df st(o) or st(po)
df st(o) st(o), df st(o) or st(po)
no st(o) st(o) or df st(o)

In this tablepo is the parent object ofo andst2 frd ;wr ;cmg.

execute in a sequential execution of the program. Each entry stays in the queue until the task finishes or
uses awith construct to eliminate the corresponding access declaration.

A task’s entry isenabledwhen it can legally perform the declared access. A read entry is enabled when
there are only read entries before it in the queue. A write entry is enabled when it is the first entry in the
queue. Because deferred declarations do not give tasks the right to actually access the object (the task must
use awith construct to change the deferred declaration to an immediate declaration before performing the
access), the corresponding deferred entries are always enabled.

Each task has a count of the number of its queue entries that are not enabled. When this count drops to
zero the task can legally execute. The implementation then schedules the task for execution and eventually
the task runs.

9.1 A task lifetime

We describe the object queue algorithm in more detail by presenting the object queue manipulations that
take place during the lifetime of a task. Here are the events that take place:

� Task creation: When a task is created, it inserts an entry into the queue of each object that it
declares that it will access. If the task’s parent task has an entry in the object queue, the new task
inserts its entry just before the parent task’s entry. If the parent task has no entry in the object queue,
the object must be a child object and the parent must have an entry in the parent object’s queue.
In this case the implementation inserts the task’s entry at the end of the object queue. After the
implementation inserts the object queue entries, it sets the task’s count to the number of entries that
are not enabled.

The new task’s entries may also change its parent entries from enabled to not enabled. In this case
the implementation must also increase the parent task’s count and suspend the parent task until the
child completes or eliminates its corresponding entries.

� Changing a deferred to an immediate entry: When a task executes awith construct, it may
change a deferred entry to an immediate entry. If the new immediate entry is not enabled, the
implementation increments the task’s count and suspends the task.

26 Martin C. Rinard

� Changing an immediate to a deferred entry: A task may also change an immediate entry to a
deferred entry. This change has no effect on the task’s count.

� Eliminating an entry: A task may use awith construct to eliminate an object queue entry. This
change may make other tasks’ entries become enabled; if so, the implementation decrements the
task counts appropriately. If one of the tasks’ counts becomes zero, the implementation enables the
task to execute.

� Creating a new entry: If a with construct declares an access to an object that is not in the task’s
access specification, the object must be a child object and the task must declare that it will access
its parent object. In this case the implementation inserts the new declaration at the end of the object
queue. If the new entry is not enabled, the implementation increments the task’s count and suspends
the task.

� Task completion: When a task completes, the implementation eliminates all of its entries. This
elimination may cause other tasks’ entries to become enabled; the implementation decrements their
counts as appropriate. If one of the tasks’ counts becomes zero, the implementation enables the task
to execute.

9.2 Extensions for commuting declarations

Commuting declarations introduce an extra level of complexity into the synchronization algorithm. There
are two kinds of synchronization constraints that apply to commuting declarations: serialization con-
straints (the implementation must preserve the serial order for commuting accesses relative to other ac-
cesses) and exclusion constraints (the commuting accesses must execute in some serial order).

The implementation enforces serialization constraints using the object queue mechanism. Each com-
muting declaration inserts an entry in the object queue. Immediate commuting entries become enabled
when there are only commuting entries before them in the queue.

The implementation enforces exclusion constraints with an exclusion queue. Associated with each
object is an exclusion queue. If a task declares an immediate commuting access it will insert an exclusion
entry into the corresponding exclusion queue before acquiring the right to access the object. The entry is
enabled when its entry becomes the first entry in the exclusion queue. The task itself becomes enabled
when all of its object queue and exclusion queue entries are enabled. The task removes its exclusion entry
when it completes or uses awith construct to eliminate the immediate commuting declaration.

The implementation avoids deadlock by properly sequencing the queue insertions. When a task is
created it inserts all of its object queue entries into the object queues according the algorithm in section 9.1.
It then waits for all of its object queue entries to become enabled. It then sorts its immediate commuting
entries according to an arbitrary order on objects and progressively inserts the exclusion entries into the
corresponding exclusion queues. It inserts each exclusion entry only after all previous exclusion entries
are enabled.

In effect, the exclusion queues implement a mutual exclusion lock on each object, and the tasks acquire
the locks in the sort order. Every task that holds an object lock is either enabled or will become enabled
as soon as it acquires the rest of its locks. Because the tasks acquire locks in the sort order, one task must
eventually acquire all of its locks and become enabled.

Implicitly synchronized abstract data types: data structures for modular parallel programming 27

� Remote processor
� Same cluster
� Same processor

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

|0

|10 000

|20 000

|30 000

|40 000

|50 000

|60 000

|70 000

|80 000

 Number of declarations

 E
xe

cu
tio

n
tim

e
(c

yc
le

s)

�
�

�
�

�
�

�
�

� �

� � � � � � � � � �

� � � � � � � � � �

(a) DASH

� Remote processor
� Same processor

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

|0

|10 000
|20 000

|30 000

|40 000

|50 000

|60 000

|70 000

|80 000

 Number of declarations
 E

xe
cu

tio
n

tim
e

(c
yc

le
s)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(b) iPSC/860

Fig. 18. Task overhead in processor cycles.

9.3 Performance results

Figure 18 graphs the dynamic overhead per task as a function of the number of access declaration state-
ments for the current version of Jade. Communication costs are a significant part of the overhead for
remote task execution. On the iPSC/860 the software message overhead also contributessubstantially to
the overall remote task execution overhead. The task creation overheads are determined by how long it
takesto perform basic operationssuch asallocating atask, inserting and deleting object queueentriesand
communicating a task’sdata to a remoteprocessor. As thenumber of processors increases, theonly com-
ponent of these times that increases is the communication time. On our two platforms this time increases
becausemessagesmust traversemorecommunication linksto get to remoteprocessorson alargemachine
than on a small machine. But the link traversal time is a very small part of the overall communication
time (the communication time is dominated by the time required to launch the communication into the
network), so to a first approximation the task overhead does not increase as the number of processors
increases. Figure18 characterizestheoverhead in theabsenceof contention. If concurrently created tasks
declare that they wil l accessdisjoint setsof objects, there isno contention for object queuesand theover-
head should be similar to that presented in Fig. 18. If concurrently created tasks declare that they will
access the same object, the object queue insertions happen sequentially. The object queue mechanism
may therefore cause serialization that would not be present with a different synchronization mechanism.
Consider a set of tasks that all read the same object. The object queuewil l serialize the insertion of their
declarations into the object queue. If the tasks have no inherent data dependence constraints, the task
queue insertionsmay artificially limi t theparallelism in the computation.

28 Martin C. Rinard

10 Applications
We have implemented a set of benchmark applications in Jade. We attempted to find applications that
accurately reflect the scientific and engineering programs that programmers actually run in practice. The
final application set consists of four complete scientific applications and one computational kernel. The
complete applications are

� Water, which evaluates forces and potentials in a system of water molecules in the liquid state

� String (Harris et al. 1990), which computes a velocity model of the geology between two oilwells

� Search (Browning et al. 1994, Browning et al. 1994), which uses a Monte Carlo technique to
simulate the interaction of several electron beams at different energy levels with a variety of solids

� Ocean, which simulates the role of eddy and boundary currents in influencing large-scale ocean
movements.

The computational kernel is

� Panel Cholesky, which factors a sparse positive-definite matrix.

The SPLASH benchmark set (Singh et al. 1992) contains variants of the Water, Ocean and Panel Cholesky
applications.

10.1 Programming effort
Table 5 presents some of the static characteristics of these programs. We have obtained the original serial
version of every application except Search – this was developed in Jade and no other version exists. A
comparison of the number of lines of code in the original serial version with the number of lines of code
in the parallel version indicates that using Jade usually involves a modest increase in the number of lines
of code in the application. The one exception is Ocean. The parallel tasks in this application concurrently
write disjoint pieces of a central data structure. To express the concurrency in Jade, the programmer
had to explicitly decompose this data structure into multiple shared objects. The resulting changes in the
data structure indexing algorithm almost tripled the size of the program. The number of Jade constructs
required to parallelize the application (and especially the number ofwithonly constructs) is usually quite
small.

The main issue when building Jade applications is determining the correct shared object structure.
Once an appropriate shared object structure has been chosen, inserting the task constructs and generating
access specifications imposes very little additional programming overhead. The actual programming effort
required to develop a correct shared object structure varied from application to application. For all of the
applications except Ocean the modifications were confined to small, peripheral sections of the code. The
key to the success of these applications was the programmer’s ability to preserve the original structure
accessing algorithm for the core of the computation. For Ocean, on the other hand, the programmer had
to decompose a key array used heavily in the core of the computation. The programmer therefore had to
change the basic indexing algorithm for almost all of the program’s data and the program almost tripled
in size.

Jade programmers typically develop a program in two stages. In the first stage they start with a serial
program that performs the desired computation, then apply the appropriate data structure modifications.

Implicitly synchronized abstract data types: data structures for modular parallel programming 29

Table 5. Static application characteristics

Object
Application Lines of code Lines of codewithonly with creation

serial version Jade version sites sites sites
Water 1219 1471 2 20 7
String 2587 2941 3 37 19
Search – 716 1 9 3
Panel Cholesky 2047 2484 2 15 18
Ocean 1274 3262 27 28 20

Only when they have debugged the program using standard debugging techniques for serial programs do
they insert the Jade constructs required to parallelize the program. The fact that Jade preserves the serial
semantics makes this approach productive. Because none of the Jade constructs change the semantics,
programmers can parallelize the program with no fear of introducing undetected programming errors that
make the program generate an incorrect result. In our experience the fact that Jade enables programmers
to use this development strategy makes it significantly easier to develop parallel programs. The use of
Jade also generated clean final source programs with good modularity. All of the Jade constructs are
appropriately encapsulated, and the basic structure of the serial version is preserved in the parallel version.

Water, String and Search exhibit similar concurrency patterns and we were able to reuse the Jade access
declaration code developed for one application in the others. But even though the concurrency patterns
were similar, the data structures that the applications used were different. The reuse therefore took place
by copying Jade code from one application into another rather than by reusing an entire abstract data type.
We believe, however, that this kind of reuse is not an important issue for Jade programs. Given the ease of
generating the task constructs and access specifications given an appropriate shared object structure, the
ability to reuse code in this way is a relatively unimportant aspect of Jade.

The most important kind of reuse is the implicit reuse of the general-purpose synchronization and con-
currency management algorithms in the Jade implementation. These algorithms support Jade’s implicitly
parallel approach and enable the implementation to provide the programming advantages that Jade offers.

10.2 Performance
Figures 19–23 plot the speedup curves for the applications running on both DASH and the iPSC/860. We
generated these curves by first developing a version of the compiler that strips all of the Jade constructs
out of a Jade program, yielding a serial program that executes with no Jade overhead. We then measured
the execution time of this serial program running on one processor, and the execution times of the Jade
program running on multiple processors. The speedup curve for a given application plots the execution
time of the serial program with no Jade overhead divided by the execution time of the Jade program as a
function of the number of processors executing the Jade program. The speedup curves therefore present
the performance increase over an efficient serial program that a programmer could expect to achieve using
Jade, and give a good indication of how well the programs utilize the parallel machine.

The Water, String and Search applications all speed up almost linearly to 32 processors on both plat-
forms. All of the applications have a large task size and the amortized Jade overhead is neglible. For these
applications the use of Jade enables efficient execution in addition to all of the software development
advantages. Because the applications scale so well, there is no potential performance improvement to be

30 Martin C. Rinard

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(a) DASH

|

0
|

8
|

16
|

24
|

32
|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(b) iPSC/860

Fig. 19. Water.

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(a) DASH

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(b) iPSC/860

Fig. 20. String.

Implicitly synchronized abstract data types: data structures for modular parallel programming 31

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(a) DASH

|

0
|

8
|

16
|

24
|

32
|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(b) iPSC/860

Fig. 21. Search.

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(a) DASH

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(b) iPSC/860

Fig. 22. Ocean.

32 Martin C. Rinard

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(a) DASH

|

0
|

8
|

16
|

24
|

32
|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

(b) iPSC/860

Fig. 23. Panel Cholesky.

gained by using an explicitly parallel programming system. For these applications Jade was a complete
success: it allowed the programmer to develop clean, portable parallel applications that perform very well
on both shared memory and message passsing machines.

The Ocean and Panel Cholesky applications do not scale as well. On DASH they exhibit relatively poor
speedup and on the iPSC/860 they barely speed up at all. For these applications the poor performance
is caused by serialized task management overhead. Neither application has a task size large enough
to profitably amortize the task management overhead. The iPSC/860 does not support the fine-grain
communication required to efficiently support task management. The iPSC/860 performance is therefore
substantially worse than the performance on DASH, which provides much better support for fine-grain
communication. In both of these applications the primary performance problem is the communication
and computation overhead associated with managing tasks, not communication overhead caused by an
inappropriate data decomposition.

It is possible for a programmer using an explicitly parallel language to get much better performance
for Ocean running on DASH (Chandra et al. 1993). The programmer can develop an application-specific
synchronization algorithm that has less overhead than the algorithm embedded inside the Jade imple-
mentation. It would be possible, however, to develop a Jade implementation that used static analysis to
generate optimized parallel code that eliminated most if not all of the dynamic task management overhead.

For Panel Cholesky it is possible to increase the performance on DASH using sophisticated schedul-
ing and synchronization algorithms, although an inherent lack of concurrency in the application limits
the performance (Rothberg 1993). Given the dynamic nature of this computation, a maximally efficient
implementation seems to require the knowledge, insight and programming effort that only a skilled pro-
grammer using an explicitly parallel language can provide.

In general, these results show that Jade delivers good performance and is an excellent overall choice
for applications with a task size large enough to successfully amortize the task management overhead.

Implicitly synchronized abstract data types: data structures for modular parallel programming 33

For programmers to achieve optimal performance on applications with a smaller grain size, they may
need to invest the programming effort required to develop a highly tuned explicitly parallel version of the
application.

11 Conclusion
In this paper we have described a methodology for parallel programming based on implicitly synchronized
abstract data types. These abstract data types promote the development of modular parallel programs by
encapsulating all of the code required to generate correct parallel execution. This paper also shows how to
implement implicitly synchronized abstract data types in Jade. Jade’s implicitly parallel approach allows
programmers to adapt a proven methodology from serial computing for use in parallel contexts.

Acknowledgements
The author would like to thank Dave Probert and the anonymous reviewers for their invaluable comments
and recommendations.

References
Agha, G. (1986)Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cam-

bridge, MA.

America, P. (1987) POOL-T: A parallel object-oriented language. InObject Oriented Concurrent Pro-
gramming(eds A. Yonezawa and M. Tokoro), pp. 199–220. MIT Press, Cambridge, MA.

Arvind and Thomas, R. (1981) I-structures: An efficient data type for functional languages. Technical
Report MIT/LCS/TM-210, MIT.

Brinch-Hansen, P. (1975) The programming language Concurrent Pascal.IEEE Transactions on Software
Engineering1(2),199–207.

Brinch-Hansen, P. (1977)The Architecture of Concurrent Programs. Prentice-Hall, Englewood Cliffs,
NJ.

Browning, R., Li, T., Chui, B. et al.(1994) Empirical forms for the electron/atom elastic scattering cross
sections from 0.1–30keV.Journal of Applied Physics, 76(4), 2016–22.

Browning, R., Li, T., Chui, B. et al.(1995) Low-energy electron/atom elastic scattering cross sections for
0.1–30keV.Scanning17(4), 250–3.

Campbell, R. and Kolstad, R. (1980) An overview of Path Pascal’s design.ACM SIGPLAN Notices, 15(9),
13–14.

Chandra, R., Gupta, A. and Hennessy, J. (1993) Data locality and load balancing in COOL. InProceedings
of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San
Diego, CA, May.

34 Martin C. Rinard

Chien, A., Reddy, U., Plevyak, J. and Dolby, J. (1996) ICC++ – A C++ dialect for high performance
parallel computing. InProceedings of the 2nd International Symposium on Object Technologies for
Advanced Software, Kanazawa, Japan, March.

Chow, J. and Harrison, W. III (1992) Compile-time analysis of parallel programs that share memory.
In Proceedings of the Nineteenth Annual ACM Symposium on the Principles of Programming Lan-
guages, January, pp. 130–41.

Feeley, M. and Levy, H. (1992) Distributed shared memory with versioned objects. InProceedings
of the ACM Conference on Object-Oriented Programming Systems, Languages and Applications,
pp. 247–262.

Gehani, N.H. (1993) Capsules: A shared memory access mechanism for concurrent C/C++.IEEE Trans-
actions on Parallel and Distributed Systems4(7), 795–811.

Halstead, R. Jr (1985) Multilisp: A language for concurrent symbolic computation.ACM Transactions
on Programming Languages and Systems7(4), 501–38.

Halstead, R., Jr (1986) An assessment of Multilisp: lessons from experience.International Journal of
Parallel Programming15(6), 459–501.

Harris, J., Lazaratos, S. and Michelena, R. (1990) Tomographic string inversion. In60th Annual Interna-
tional Meeting, Society of Exploration and Geophysics, Extended Abstracts, pp. 82–5.

Hoare, C.A.R. (1974) Monitors: an operating system concept.Communications of the ACM, 17(10),
549–57.

Kolstad, R. and Campbell, R. (1980) Path Pascal user manual.ACM SIGPLAN Notices, 15(9), 15–24 .

Lambert Butler, W. and Redell, D.D. (1980) Experience with processes and monitors in Mesa.Commu-
nications of the ACM23(2), 105–17.

Liskov, B. (1988) Distributed programming in Argus.Communications of the ACM31(3), 300–12.

Lusk, E., Overbeek, R., Boyle, J. et al.(1987)Portable Programs for Parallel Processors. Holt, Rinehart
and Winston, New York.

Mitchell, J.G., Maybury, W. and Sweet, R. (1979) Mesa language manual, version 5.0. Technical Report
CSL-79-3, Xerox Palo Alto Research Center, April.

Mohr, E., Kranz, D. and Halstead, R. (1990) Lazy task creation: a technique for increasing the granu-
larity of parallel programs. InProceedings of the 1990 ACM Conference on Lisp and Functional
Programming, June, pp. 185–97.

Nikhil, R. (1990) Id version 90.0 reference manual. Technical Report 284-1, Computation Structures
Group, MIT Laboratory for Computer Science, September.

Nikhil, R. and Pingali, K. (1989) I-structures: data structures for parallel computing.ACM Transactions
on Programming Languages and Systems11(4), 598–632.

Implicitly synchronized abstract data types: data structures for modular parallel programming 35

Pierce, P. (1988) The nx/2 operating system. InProceedings of the Third Conference on Hypercube
Concurrent Computers and Applications, Pasadena, CA, January (ed. Geoffrey Fox), pp. 384–90.

Rothberg, E. (1993) Exploiting the memory hierarchy in sequential and parallel sparse Cholesky factor-
ization. PhD thesis, Stanford, CA, January.

Scales, D. and Lam, M.S. (1994) The design and evaluation of a shared object system for distributed
memory machines. InProceedings of the First USENIX Symposium on Operating Systems Design
and Implementation, Monterey, CA, November.

Sedgewick, R. (1988)Algorithms. Addison-Wesley, Reading, MA.

Singh, J. (1993) Parallel hierarchicalN-body methods and their implications for multiprocessors. PhD
thesis, Stanford University, February.

Singh, J., Weber, W. and Gupta, A. (1992) SPLASH: Stanford parallel applications for shared memory.
Computer Architecture News, 20(1), 5–44.

Sunderam, V. (1990) PVM: a framework for parallel distributed computing.Concurrency: Practice and
Experience, 2(4), 315–39.

Tomlinson, C. and Singh, V. (1989) Inheritance and synchronization with enabled-sets. InProceedings
of the ACM Conference on Object-Oriented Programming Systems, Languages and Applications,
October, pp. 103–12.

Yonezawa, A., Briot, J.-P. and Shibayama, E. (1986) Object oriented concurrent programming in ABCL/1.
In Proceedings of the OOPSLA-86 Conference, Portland, OR, September, pp. 258–68.

	1 Background
	1.1 Modularity in explicitly parallel languages
	1.2 A fundamental problem with explicit parallelism
	1.3 Synchronization strategies for explicitly parallel languages
	1.4 Eliminating mutable data
	1.5 Jade

	2 The Jade programming language
	2.1 Shared objects
	2.2 Tasks
	2.3 Access specifications
	2.4 Parallel and serial execution

	3 The tasking construct
	3.1 A methodology for simple abstract data types
	3.2 An example: the index abstract data type
	3.3 Commuting operations
	3.4 Using the index abstraction
	3.5 Using commuting operations
	3.6 Abstract data types with multiple shared objects

	4 Layered abstract data types
	4.1 Encapsulating access declarations
	4.2 A layered abstract data type
	4.3 Access declaration operations
	4.4 Atomicity and layered abstract data types

	5 Creating objects
	6 Thewith construct
	7 Hierarchical objects
	7.1 A binary lookup tree index
	7.2 Interchangability
	7.3 Limitations

	8 Semantics of access specifications
	9 Implementation
	9.1 A task lifetime
	9.2 Extensions for commuting declarations
	9.3 Performance results

	10 Applications
	10.1 Programming effort
	10.2 Performance

	11 Conclusion
	Acknowledgements
	References

