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Abstract

Graceful performance degradation during overload condi-
tions is the primary objective of soft real-time systems. Util-
ity accrual soft real-time scheduling algorithms allow specifi-
cation of highly customized temporal system behavior dur-
ing overload. Such algorithms are typically found in real-
time supervisory systems where significant run-time uncer-
tainty exists. This paper outlines an investigation of sev-
eral utility accrual scheduling algorithms implemented in a
Real-Time Java (RTJ) environment. These alternate sched-
ulers are constructed, tested, and evaluated under the MIT
FLEX/RTJ Compiler Infrastructure. The scheduling frame-
work for this environment and its associated scheduling prim-
itives are described and the corresponding performance char-
acteristics are profiled. Furthermore, we outline the archi-
tecture of an experimental distributed Real-time Java sched-
uler.
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1. Introduction

The Real-Time Specification for Java (RTSJ) mandates
a strict fixed-priority preemptive scheduler with 28 unique
priority levels [30]. This is consistent with core facilities
traditionally provided by real-time operating systems. The
properties of this scheduling model are well-understood and
widely utilized [11, 6]. Augmented with built-in support for
priority inversion [30, 15], RT'SJ provides the essential tools
for hard real-time programming. This base scheduler is the
minimal RTJ scheduler implementation requirement.

Beyond the base scheduler, the specifications anticipate
construction of alternate schedulers and provide the requi-
site APT’s to accommodate them: real-time threads now
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enjoy language-level support for such dynamic scheduling
notions as deadline, cost, and cost enforcement.

The motivation for this paper is to investigate the viability
of construction of such dynamic schedulers in general, and
Utility Accrual (UA) schedulers in particular.

1.1 Contributions
Below is an outline of contributions of this paper:

e Utility Accrual RTJ scheduling: We demonstrate
the viability of constructing UA schedulers in Real-
time Java. By corollary, we demonstrate the imple-
mentation of complex dynamic deadline schedulers.
We present the performance measurements for these
algorithms in a FLEX/RTJ environment, compare the
results with their counterparts in a QNX RTOS [18]
environment, and note the associated performance char-
acteristics.

e User-Level RTJ Thread multiplexor: The
FLEX/RTJ chooseThread is designed to offer fine-
grain thread control at the user-level: any thread can
be arbitrarily chosen for execution at any point for an
arbitrary period of time. Presenting a single point-of-
entry into the system, the thread multiplexor is simple
and effective.

e Separation of policy and mechanism: Inherent
complexities of interactions between the JVM and the
OS kernel present significant technical challenges for
implementation of alternate scheduling policies at the
user level. JVM’s typically implement a thin schedul-
ing layer over the existing OS scheduler, map Java
threads onto native threads, and thereby leverage the
properties of the underlying scheduler.

The FLEX/RTJ scheduling framework abstracts away
implementation complexities by providing a high-level
construct for transparent thread manipulation. It al-
lows the programmer to focus on policy rather than
implementation mechanisms.



¢ Experimental Distributed RTJ Thread Sched-
uler: We outline a framework for scheduling of dis-
tributed threads in a real-time Java environment. This
is a chooseThread implementation over sockets and
includes the basic scheduling API’s required for a dis-
tributed system.

e Implementation: Concurrency on a uniprocessor sys-
tem is merely a high-level abstraction — albeit an effec-
tive one. The thread multiplexor is in essence a seri-
alizer. To utilize it, the programmer needs to adopt a
“systems-level perspective” in place of the traditional
higher level concurrency constructs. We discuss in-
sights and experience gained from implementation of
our schedulers in this environment.

1.2 Organization

The remainder of this paper is organized as follows: sec-
tion 2 outlines the basic concepts of utility accrual schedul-
ing and provides an example. Section 3 is a discussion of
the scheduling framework, its design objectives, provided
system facilities, outline of the distributed threads manage-
ment scheme, and implementation details. Section 4 out-
lines the experimental results. The discussion of experiment
design is followed by a description of each implemented algo-
rithm and the corresponding performance results and obser-
vations. The performance of the scheduling framework itself
is discussed in section 5. Section 6 presents a discussion of
possible future enhancements and issues, and we conclude
the paper in section 7.

2. Utility Accrual Scheduling

Real-time systems, by definition, are those designed to
predictably adhere to a predefined set of timeliness con-
straints [20, 21]. Hard real-time systems must always sat-
isfy all predefined timeliness requirements. Soft real-time
systems, by contrast, are those designed to exhibit a spe-
cific temporal behavior when the system is unable to meet
all its timing constrains.

The most commonly used notion of a timing constraint is
the deadline. A deadline is a point in time prior to which,
the completion of an activity yields the most utility; and
conversely, less utility is derived by completion of the task
after that specific point in time. In the context of hard real-
time systems, this is the binary choice of completing a task
by the deadline and gaining its full utility, or gaining no
utility for task completion after the deadline [20]. It is of
no utility, for example, to service a network request after
the connection has timed out.

In soft real-time systems, the utility of a task is a function
of its completion time. Completion of a task after the dead-
line may yet be of some utility — a radar “ghost” resulting
from delayed processing of residual data is preferable to a
blank screen.

An emerging class of real-time control systems, collec-
tively known as supervisory systems [3], are increasingly
incorporating soft real-time algorithms for resource schedul-
ing decision support. Supervisory systems are typically com-
prised of a hierarchy of lower level real-time systems, and

function in complex environments with significant run-time
uncertainty.

In the absence of a priori knowledge of upper bounds on
task execution times, the hard optimality criterion of always
meeting all deadlines is difficult to guarantee at desing time.
As soft real-time systems enter overload conditions, the “se-
quencing optimality” can then be defined in terms of pro-
ducing a specific system-wide behavior such as minimizing
missed deadlines, maximizing aggregate utility, etc.

The timing constraints of such supervisory systems can
be accurately expressed in terms of Time/Utility Functions
(TUF’s) [20]. Figure 1 illustrates several examples of TUF’s.
This generalization offers a great degree of versatility for
representing timeliness requirements. Deadline timing con-
straints can be viewed as a special case, and modeled using
rectangular TUF’s — Figure 1(b).

Supervisory systems are specifically designed to operate
in environments where there exists a potential for overload.
TUF-based algorithms can be found in a wide range of ap-
plication domains such as telecommunications, defense, and
industrial automation. [23] Utility accrual models can also
aide management and decision support systems: during a
catastrophic natural disaster, an overloaded emergency re-
sponse center can temporarily delay dispatching of emer-
gency supplies to a remote location in favor of first servicing
a nearby high population density area.
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Figure 1: TUF examples

Supervisory system design is a significant software (and
systems) engineering effort and requires global knowledge
of dynamically varying conditions to appropriately compose
the corresponding TUF’s. Examples of highly sophisticated
UA-based supervisory systems in complex environments in-
clude MITRE Corporation’s AWACS tracking system [22],
and the BM/C? System developed by General Dynamics
and Carnegie Mellon University [27].

Figure 1(d) illustrates the data processing TUF for two
sensors 180 degrees out of phase, each with a 10 second
period. The sensor data processing deadline is therefore 10
seconds. If, however, the data from one sensor is processed
within the first 5 seconds of the period, it can improve the



quality of the data received from the out of phase sensor.
Completion of data processing beyond the first 5 seconds
can still partially strengthen the incoming data from the out
of phase sensor. The utility of the data, however, linearly
diminishes to zero with the approaching 10 second deadline
as new sensor data will be collected [22]. A more detailed
UA algorithm design and implementation process is outline
in [27].

3. The Scheduling Framework

Although the RTSJ explicitly supports scheduling policies
other than fixed-priority preemptive, it does not elaborate
the interfaces to allow the creation of such schedulers:

If the RTSJ required a deadline scheduler, its im-
plementation would require kernel work on any of
the real-time platforms (such as VzWorks, OS-
9,QNX, Neutrino, LynzOS, PSOS, and Linuz).
Instead, the RTSJ has scheduler API’s that make
an effort to anticipate scheduling paradigms that
are unlike anything known today. The goal was
to let OS/JVM vendors build new schedulers and
make them accessible through the RTSJ API’s.
Unfortunately, the RTSJ does not attempt to ez-
pose the interfaces that would let a programmer
create a new scheduler. That is a job for some-
one with access to the internals of the JVM and
the supporting system software. [8]

The design of the FLEX/RTJ scheduling framework bridges
this gap and alleviates the need for detailed knowledge of,
and access to, the JVM or the OS.

3.1 FLEX/RTJ

We implemented the general real-time scheduler frame-
work and user threads package using the MIT FLEX com-
piler infrastructure. FLEX is an ahead-of-time compiler for
Java that generates both native code and C.

Real-Time Java is a superset of the Java language (RTSJ)
which provides a framework for building real-time systems.
FLEX has an implementation of Real-Time Java which in-
cludes both region-based memory management [28, 29, 32,
33] and a scheduler framework.

Separation of policy from mechanism to achieve flexibility
in real-time user threads packages is not a new idea [34].

Our threads package exports thread multiplexing and lock
handling (which influences scheduling policies) to the user
scheduler. User schedulers can be written entirely in Java.
Since the chooseThread abstraction can implement any in-
terleaving of threads, many policies can be implemented sim-
ply by providing a single method. Performance of the system
is often dependent on the performance of the chooseThread
method. The system restricts interaction with the sched-
uler to a minimal interface, enhancing productivity by re-
ducing the scope of the interactions which must be consid-
ered when debugging or optimizing an implementation of a
new scheduling algorithm. For example, a simple preempt-
ing round-robin policy can be expressed in only four lines of
code using chooseThread.

3.2 Design Benefits

The primary design benefit of the scheduler framework is
to provide a single, central point of control for all timing as-
pects of the Real-Time Java system. Without centralized in-
formation and control, a single event can invalidate any hard
real-time guarantees of the system. For instance, a sched-
uler may choose to defer handling an asynchronous event or
asynchronous interrupt in favor of running a higher-priority
task. The scheduler may need to know about all timers in
the system in order to perform adequate admission control.
Priority inheritance relies on knowledge of locks held in the
system.

A second design benefit is to provide a single point where
knowledge and control of the operating system, Real-Time
Java libraries, the Java runtime, the user program, middle-
ware, and information from static program analysis can be
brought together. For instance, the user program or mid-
dleware may inform a specialized user scheduler of unique
scheduling characteristics of an asynchronous event (which
may prove useful to an implementation of the Distributed
Real-Time Specification for Java. [16]

A third design benefit is to promote concise and flexi-
ble scheduler design through the use of minimal interfaces
with expressive power. Since the scheduler may potentially
need to manage information about many different aspects
of the system simultaneously, complex, sophisticated sched-
ulers which take advantage of the full flexibility of the sys-
tem are often hard to write. Concise schedulers are easier
for programmers to write and debug. Furthermore, the sys-
tem provides a debugging interface which logs every event
occurring in the system, every choice made by the sched-
uler, and the state maintained by the scheduler which led to
a particular choice. A utility provides a graphical summary
of the choices made by the scheduler and the time interval
which has elapsed between each scheduling point, a simple
overview of scheduler behavior. Since the scheduler is sim-
ply a Java class, a scheduler can even be tested outside of
the system during initial development.

3.3 System Facilities

The system provides several primitives to facilitate the
implementation of hard and soft real-time scheduling poli-
cies as described in Figure 2. Work and system load can be
estimated using clock. A reservation interface allows sched-
ulers to interact with the TimeSys kernel to provide hard
real-time guarantees when running under a TimeSys RTOS.
setQuanta provides preemption capabilities and sleep can
yield time to the kernel. contextSwitch can force a context
switch in response to handling an event.

The system can generate many events which can affect
policy decisions (Figure 3). The scheduler can choose to ei-
ther handle or ignore them. POSIX thread events are gener-
ated by native methods or by the runtime in response to Java
synchronization. All POSIX thread events can be handled
by the scheduler. RTSJ events are generated by our RTSJ
implementation and can inform the scheduler of all aspects
of the RTSJ which influence scheduling. Events generated
by the user program, compiler, or middleware are all policy-
specific. Thread entry and exit, blocking and unblocking



Provided by user scheduler:

chooseThread (time) — { thread, quanta }
Chooses a user thread from the currently
available threads to run for the next quanta
of time or until blocked, whichever occurs first.
The scheduler multiplexes user threads into
a heavy thread. The time provided to
chooseThread is the start of the context
switch.

feasibility
Standard RTSJ interface to determine
feasibility of a set of tasks.

Utilities provided by system:
getDefaultScheduler() — { scheduler }
To install a scheduler, simply point
this to your scheduler (a Java object
allocated in immortal memory).

contextSwitch()
Force a context switch at the earliest
available time.

setQuanta(time)
Reset the time until the next context switch.
setQuanta is provided to adjust the current
schedule in response to events.

clock() — time
Return process CPU time used by the process
for calculating work done by a thread.

sleep(time)
Yield control to the operating system
scheduler for time.

Optional RTOS-specific utilities provided by
System:
reserveCPU/NET — success flag

Interface to TimeSys linux to provide
CPU/NET reservation access to scheduler.
The returned flag indicates whether the
reservation was successful.
Successive calls to reserveCPU/NET
simply modify the current reservation.

Mandatory event handlers provided by user
scheduler:
addThreadremoveThread (thread)
Called by the system to give the scheduler
an opportunity to update internal data
when a Java or C thread starts or ends.

enableThreaddisableThread (thread)
Called by the system to inform scheduler of
threads unblocking or blocking on locks.

Optional event handlers for making policy decisions:
pthread events
Handlers are provided to allow the scheduler
to be notified of all pthread events handled by
our user-threads package.

RTSJ events
Handlers are provided to allow the scheduler to
be notified of all events generated by our
RTSJ implementation.

Policy-specific events support:
user program events
The scheduler can provide its own API to the
user program or middleware for generating
events directly (via a simple method call).

compiler generated events
The compiler can weave code into the user
program to call methods on the scheduler
directly based on program analysis simply
by inserting CALL instructions
into the program during compilation.

Figure 2: Scheduler interface

Figure 3: Scheduler event handler interface



Utilities provided by the system:

bind(scheduler name) — thread
Bind the current scheduler to scheduler
name in the name service and start a server
to handle events. Returns the thread
which handles incoming events.
Network timing can be managed through
chooseThread, disableThread,
and enableThread

resolve(scheduler name) — scheduler stub
Resolve the scheduler name in the name
service to a stub which represents the
destination scheduler.

generateDistributedEvent (destination,
message ID, data) — thread
Create an event on the destination scheduler
using a network call.
Returns the thread which handles outgoing
events.

Optional event handler for distributed real-time
scheduling:

handleDistributedEvent (name, message ID,
data)
Allow the scheduler to respond to an event
generated by another scheduler.

Figure 4: Distributed real-time thread and event
support

cannot be ignored by the scheduler since they impact the
active thread list.

3.4 Distributed Real-time Java Threads

A socket-based implementation provides distributed event
support (Figure 4). generateDistributedEvent can gener-
ate an event on another scheduler across the network. The
event can be handled by handleDistributedEvent. In the
socket-based implementation, a client thread and a server
thread are scheduled by the scheduler. The server thread
causes disableThread to be called on the scheduler when
no pending request is available. enableThread informs the
scheduler that an event has arrived. The client thread causes
disableThread to be called when a request has been sent.
The scheduler can then use chooseThread and setQuanta to
provide hard real-time bounds on the processor time given
to servicing the network. We have implemented an RMI-
based mechanism that allows communication between mul-
tiple RTJ schedulers each running on remote node.

3.5 Implementation

The thread multiplexor uses a standard, signal-based,
sigsetjmp and siglongjmp implementation. The system
tells the kernel to use signal-interruptable kernel calls. The
system saves the thread context using sigsetjmp. The sys-
tem then sets a timer at the end of a context switch to
cause a SIGALRM to be generated after an interval set by
setQuanta. The signal handler calls chooseThread to deter-
mine the next thread to be run, retrieves the saved registers
associated with the thread and uses siglongjmp to simulta-
neously unblock SIGALRM and restore the program counter
to that saved by the context switch.

Thread start involves setting up a jump buffer and envi-
ronment that appears like a sigsetjmp from the thread’s
start. Blocking on a lock calls disableThread to inform the
scheduler of the blocked status and then forces a context
switch by signalling SIGALRM. Unblocking calls enableThread.
SIGALRM is blocked during scheduler calls to prevent reentry,
facilitate local reasoning about the correctness of the policy
implementation, and provide bounds on stack usage. There-
fore, the scheduler implementation should provide bounds
on method calls to ensure bounded preemption latency.

4. Scheduler Performance

In this section we present an overview of the implemented
scheduling algorithms followed by the associated performance
results.

4.1 Experiment Design
The following points regarding our experimental setup are
of significance:

e The algorithms we investigated were initially coded
and tested in a simulated environment. The simulated
scheduler performance depicts ideal conditions under
various processor loads as the simulator assumes in-
stantaneous preemption, and no scheduler or OS over-
head.

e Each scheduler was tested with a set of concurrent pe-
riodic tasks and its behavior at each scheduling point
was verified against a manual trace for various execu-
tion hyper-periods and load conditions.

e The tasks in the system are vacuous threads executing
busy wait to generate artificial CPU load.

e The experiments were performed with garbage collec-
tion disabled.

o We tested the schedulers with the highest possible pri-
ority under the TimeSys Linux RTOS [19] to mini-
mize OS overhead and eliminate unanticipated CPU
contention from other processes — alternatively, it is
possible to use the TimeSys CPU reservations mecha-
nism to guarantee each scheduler a dedicated share of
the CPU as in [9].

e We then tested the same scheduling policies with iden-
tical task/load conditions in a QNX Neutrino RTOS
[24] environment using C/POSIX implementations.



e The performance of each scheduler is then compared
to its simulated, and QNX counterparts.

e In addition to the utility accrual schedulers, we im-
plement the well-known Rate Monotonic, and Earliest
Deadline First (EDF) schedulers to establish a base-
line.

4.2 RMA

Rate Monotonic Analysis (RMA) provides a verifiably op-
timal priority assignment algorithm for systems with fixed-
priority preemptive schedulers and independent periodic tasks
[10]. Priorities, in descending order, are assigned to tasks in
ascending order of period — i.e., the highest priority goes
to the task with the lowest period (highest frequency), etc.

Rate Monotonic (RM) is a static scheduling algorithm
as the corresponding priorities are assigned at design time
and remain constant throughout run-time. RMA has been
proven to be optimal: if a task set cannot be scheduled us-
ing this policy, it is not possible to schedule the same task
set using any other fixed-priority scheduling algorithm. Fur-
thermore, Liu and Layland [10] derived a test that guar-
antees the schedulability of a set of NV independent periodic
tasks solely based on their CPU utilization:

N
> <Q> < N@2YYN —1)
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Where C; and T; are a task’s execution time and period re-
spectively. As the lower bound asymptotically approaches
69.3%, any arbitrary set of N tasks with a lower total uti-
lization demand is guaranteed to be schedulable. This test
is considered to be sufficient, but not necessary [21] — it
does not imply that a task set with higher CPU utilization
demand is not schedulable. Studies have shown that a ran-
dom set of tasks can effectively be scheduled according to
rate monotonic assignment up to approximately 88% CPU
utilization [1].

Response time analysis [4] provides the sufficient and nec-
essary schedulability test for RMA (as well as other schedul-
ing policies). Figure 5 shows the typical performance of our
implementation of an RM scheduler.

Though rate monotonic assignment continues to provide
some level of deadline satisfaction during overload, its scope
is limited since it merely services the highest frequency task
without regard to any other selection criteria. As the CPU
utilization (C;/T;) for the highest frequency task approaches
100%, the overall deadline satisfaction ratio approaches that
of the highest frequency task — all other tasks are ignored.

4.3 EDF

The Earliest Deadline First (EDF) scheduling algorithm
merely executes tasks in ascending order of deadline at any
scheduling point [10]. This is a dynamic scheduling policy
as the tasks’ absolute deadlines are determined at run-time
and the execution order of tasks are arranged accordingly.

EDF is shown to be optimal (up to 100% CPU utilization)
for uniprocessor systems: if a task misses a deadline under
an EDF scheduler, no other policy can arrange a schedule
where the task meets its deadline [10]:
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EDF suffers from a “domino effect” [26] at or near over-
load. The point at which EDF fails, however, can be used as
a performance indicator of system overhead. RED (Robust
Earliest Deadline Scheduling) [2] addresses the instability of
EDF during overload and uses the mechanism of “deadline
tolerance” for enhanced scheduling decision making.

The performance of our EDF implementation is depicted
in Figure 6.
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Figure 6: Performance of EDF scheduler

4.4 LBESA

LBESA (Locke’s Best Effort Scheduling Algorithm) [26]
was the first publicly available utility accrual real-time sched-
uler intended for supervisory control systems. LBESA was
implemented in the Alpha distributed real-time OS kernel
[7]. The BM/C? system [27] was developed using Alpha.



1. Create an empty schedule.

. Sort all tasks by deadline.

3. For each task (in increasing order of deadline):
3.1. Insert task in schedule at deadline position.
3.2. Check schedule feasibility.

3.3. While (schedule not feasible and schedule
not empty):
3.3.1 Remove task with lowest potential
utility density from schedule.
4. Execute task in schedule with earliest deadline.

N

Figure 7: Sketch of LBESA algorithm

LBESA uses non-convex functions (values cannot increase
after a decrease) to describe time utility. Furthermore, it
stochastically characterizes task execution times using prob-
ability distribution functions. Task interarrival times need
not necessarily be periodic or deterministic. Tasks are as-
sumed to be independent. A general overview of the algo-
rithm is outlined in Figure 7.

The algorithm produces an EDF-based absolute deadline
ordering and determines feasibility. If the system is in over-
load, the algorithm continually rejects the task with the
lowest potential utility density until a feasible schedule is
achieved.

The concept of potential utility density used by LBESA
is analogous to the notion of “return on investment.” At
any arbitrary point, the time invested thus far in the task’s
execution can be weighed against the potential return on
investment at maturity - utility yield at task completion.

Reflecting the nature of its application domain, a full
LBESA implementation is proportionally complex and re-
quires significant system resources. We implemented the
basic algorithm for the special case of rectangular TUF’s
and known worst case execution times. The scheduler per-
formance is illustrated in Figure 8.
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Figure 8: Performance of LBESA scheduler

In this experiment, the performance of the QNX imple-
mentation closely follows the simulation results, whereas the
RTJ implementation somewhat lags behind. Due to higher
aggregate system overhead and lower time resolution, the
RTJ implementation “slips” early-on and determines a ten-
tative schedule infeasible, whereas the QNX implementation
is able to make the deadline. The subsequent scheduling de-
cisions by each system therefore vary, resulting in the per-
formance disparity.

4.5 DASA

DASA (Dependent Activity Scheduling Algorithm) [14]
is another example of a utility accrual resource scheduler
used in supervisory control systems. The second generation
of the Alpha OS includes an implementation of DASA. The
Open Group’s OSF.1 MK7.3a [25] distributed RTOS also
incorporates DASA.

DASA has the twofold objectives of maximizing system-
wide accrued utility while minimizing the number of missed
deadlines.

Concurrent tasks can develop relative dependencies as
they serially access devices, channels, and other exclusively
shared system resources: a task requesting a resource is
considered dependent on the task currently holding that
resource. Given its objectives, DASA makes appropriate
scheduling decisions while taking into account such dynamic
dependencies, and the corresponding precedence relation-
ships. The algorithm assumes that possible deadlock re-
sulting from cycles in the dependency graphs can be de-
tected and resolved. A simplified version of the algorithm,
DASA/ND [13], can be used in systems where tasks are
known to be independent. The performance of the DASA/ND
scheduler is illustrated in Figure 9.

110

100 4

a0 4

80 1

701

kO 4

501

% ACCRUED UTILITY

4o 4

—=—Simulation

e ANX
309 ——FLEX/RTJ
20 T T T T T r

50 70 90 110 130 150 170 190

PROCESSOR LOAD

Figure 9: Performance of DASA /ND scheduler

DASA considers all deadlines as hard, and exclusively re-
lies upon rectangular utility functions. Utility maximization
at any scheduling point is achieved by dynamically deter-
mining the task that would yield the most utility if chosen
to continue. The remaining competing tasks may then be



1. Create an empty schedule.
Determine dependencies among tasks.
3. Calculate potential utility density for

each task.
4. Resolve deadlocks if detected.
Sort tasks by potential utility densities.
Examine each task in decreasing order of
potential utility density:
6.1. Tentatively add the task and its dependent

tasks to the schedule in deadline order.

6.2. Test schedule feasibility.
6.3. If not feasible, remove task from schedule.
6.4. Optimize schedule if possible.
7. Execute task in schedule with earliest deadline.

hd

e o

Figure 10: Sketch of DASA algorithm

preempted or aborted (during overload) in favor of the cho-
sen task. DASA is equivalent to EDF (i.e., is optimal) up to
the theoretical bound of 100% CPU utilization [14]. Figure
10 is a generalized sketch of the algorithm.

Tasks in DASA are assumed to contain the static deter-
ministic attributes of worst case execution time, absolute
deadline, and utility. Furthermore, the timinig requirements
of the shared resources need to be known in advance: should
a task be selected for abortion, the scheduler must know how
soon the held resources can be released and reassigned.

Figure 11 shows the performance of a limited DASA im-
plementation. Only one shared system resource is simulated
to eliminate the possibility of deadlock, and tasks are as-
sumed to implicitly release the resource at the conclusion of
their execution.
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Figure 11: Performance of DASA scheduler

As with LBESA, the performance disparity between the
RTJ and QNX implementations is due to the relative over-
head incurred by each system. The schedulers make identi-
cal decisions up to the point of nearing system performance
limits. Though the task attributes (e.g., release time, exe-

cution profile, potential utility, etc.) are the same for each
implementation, the schedulers make differing decisions af-
ter the initial “slip” caused by reaching performance bound-
aries. The RTJ implementation does, however, continue to
accrue utility as best it can, given the circumstances of its
environment.

Furthermore, it should be noted that the aggregate ac-
crued utility of each system is highly dependent on the
present task-sets and their associated attributes — it is pos-
sible (though not likely) for a task-set to produce identi-
cal ordering of scheduling decisions by each implementation
during overload.

5. Scheduling Framework Performance

The two metrics which drive the performance of the schedul-
ing system are the preemption latency and context switch
service time. The difference in time from the time set by
setQuanta and the time the signal handler runs is mea-
sured as preemption latency. The scheduling system block-
ing SIGALRM and the operating system clearing interrupts
during timing critical sections influences preemption latency.
The difference in time from the time of the beginning of the
signal handler to the actual context switch is the context
switch service time. Context switch service time is primar-
ily influenced by the performance of chooseThread. There-
fore, the performance of the system in terms of preemp-
tion latency and context switch service time is dependent
on the policy implementation. The typical context switch
service time for the complex AU schedulers are measured
to be on the order of 1000 micro-seconds whereas the sim-
pler scheduling algorithms require approximately 50 micro-
seconds. The preemption latency, however, is less affected
by the chooseThread implementation. The typical preemp-
tion latency for UA schedulers is approximately 20 micro-
seconds whereas their simple scheduler counterparts stay be-
low 10.

6. Future Work

While well-suited to their application environment, both
LBESA and DASA have inherent limitations: LBESA does
not account for task dependencies and takes non-convex
TUF’s; DASA only takes rectangular TUF’s and requires
deterministic parameters. Generic Benefit Scheduling algo-
rithm (GBS) [17] is the next iteration of UA algorithms
and is capable of handling arbitrary TUF’s while allowing
for task dependencies. A full RTJ implementation of GBS
would further explore UA scheduling in a RTJ and DRTJ
environment.

RTSJ provides the language-level APT’s for alternate sched-
ulers. FLEX/RTJ thread multiplexor provides a high-level
abstraction for low-level thread manipulation (and there-
fore, arbitrary scheduling). An intermediate layer can be
constructed to formally specify and map the semantic re-
quirements of real-time threads onto the chooseThread ab-
straction.

The runtime system allows each RTJ thread to choose its
own scheduler therefore making it possible for the simulta-
neous existence of multiple concurrent threads each under a



different scheduling policy. It is also possible to construct a
hierarchical scheduling environment. A framework such as
HLS (Hierarchical Loadable Schedulers) [12] can be adapted
to Real-time Java in order to analyze CPU allocation guar-
antees in the case of multiple scheduling policies.

7. Conclusions

Our implementations and subsequent performance anal-
yses demonstrate the viability of complex utility accrual
scheduling in a Real-time Java environment. We outline
the implemented algorithms and compare their respective
performance measures.

The FLEX/RTJ thread multiplexor scheduling primitive
provides an effective and flexible tool for construction of ar-
bitrary schedulers. This abstraction now allows RTJ sched-
uler construction to be a user-level activity rather than a
static JVM/OS component.

The scheduling framework has been extended to accom-
modate distributed thread management. The corresponding
high-level scheduling abstractions are designed to parallel
the simplicity and effectiveness of the stand-alone frame-
work. Preliminary tests of the experimental system indicate
the viability of extending the existing scheduling model.

FLEX has been ported to a variety of architectures such
as x86, StrongARM, and PowerPC under operating sys-
tems such as RedHat, Debian, Familiar, and TimeSys Linux.
Users can compile to alternate targets using C cross-compilers.
The FLEX/RTJ framework provides an effective array of
tools for embedded systems design and implementation.

8. Acknowledgements

The UA scheduling-related effort in this paper owes much
to the seminal work of E. Douglas Jensen, C. Douglas Locke,
and Raymond Clark. We are grateful to C. Scott Ananian,
Brian Demsky, Catalin Francu, Brian Fink, and Dumitru
Daniliuc for contributing code which influenced this work.

9. ferenc
(1] J.%e%oczll;y,r}_;.gﬁa, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Ezact Characterization and Average

Case Behavior In Proceedings of IEEE Real-Time Systems
Symposium, December 1992.

[2] G. Buttazzo, and J. Stankovic. RED: Robust earliest
deadline scheduling In Proceedings of the 3rd International
Workshop on Responsive Computing Systems pages
100-111, September 1993.

[3] E. D. Jensen Asynchronous Decentralized Real-Time
Computer Systems In Real-Time Computing Proc. of
NATO Advanced Study Institute, Springer Verlag, October
1992.

[4] P. Harter Response times in level-structured systems ACM
Trans. Computer Systems vol. 5, pp. 232-248, Aug. 1987

[5] L. Sha, M. Klein, and J. Goodenough. Rate Monotonic
Analysis for Real-Time Systems Software Engineering
Institute, Carnegie-Mellon University, USA.
CMU/SEI-91-TR-6

[6] G. Buttazzo. Hard Real-time Computing Systems :
Predictable Scheduling Algorithms and Applications
Boston, Massachusetts: Kluwer Academic Publishers, 1997.

[7] E. Jensen and, J. Northcutt. Alpha: A Non-Proprietary
Operating System for Large, Complez, Distributed

(8]
[9]

[10]

[11]

[12]

(13]

Real-Time Systems In Proceedings of The IEEE Workshop
on Ezperimental Distributed Systems Pages 35-41, 1990.
P. Dibble. Real-Time Jave Platform Programming Paulo
Alto, California: Sun Microsystems Press, 2002.

D. de Niz, and R. Rajkumar Chocolate: A
Reservation-Based Real-Time Java Environment on
Windows NT In Proceedings of the IEEE Real-time
Technology and Applications Symposium Washington D.C.,
June 2000

C. Liu, and J. Layland. “Scheduling Algorithms for
Multiprocessing in a Hard-Real-Time Environment”.
JACM, vol. 20, pp. 46-61, January 1973.

M. Klein, T. Raylya, B. Pollak, R. Obenza, and

M. Harbour. A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for
Real-Time Systems. Norwell, Massachusetts: Kluwer
Academic Publishers, 1993.

J. Regehr, and J. Stankovic HLS: A Framework for
Composing Soft Real-Time Schedulers Proceedings of the
22nd IEEE Real-Time Systems Symposium (RTSS 2001),
3-14, London, UK, December 2001.

P. Li, B. Ravindran, and T. Hegazy. “Implementation and
Evaluation of a Best-Effort Scheduling Algorithm in an
Embedded Real-Time System”. In Proc. 2001 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp.22-29, Tucson,
Arizona, November 4-6, 2001.

R. Clark Scheduling Dependent Real-Time Activities. PhD
thesis, Carnegie Mellon University, 1990. CMU-CS-90-155.
L. Sha and R. Rajkumar and J. P. Lehoczky Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization In IEEE Transactions on Computers Vol.
39, Number 9, Pages 1175-1185, 1990.

Distributed Real-Time Specification for Java
http://www.drtsj.org

P. Li, B. Ravindran, and H. Wu. GBS: A Utility Accrual
Scheduling Algorithm for Real-Time Activities With
Mutual Ezclusion Resource Constraints Submitted to RT'SS
2003 http://nile.ece.vt.edu/submissions/RTSS03-Irw.pdf
P. Li, B. Ravindran, J. Wang and, G. Konowicz Peng L3
and Binoy Ravindran and Jinggang Wang and Glenn
Konowicz In Peng Li and Binoy Ravindran and Jinggang
Wang and Glenn Konowicz May 1990.

TimeSys Inc. http://www.timesys.com

E. Douglas Jensen Real-Time for the Real World
http://www.real-time.org/deadlines.htm

A. Burns, and A Wellings Real-Time Systems and
Programming languages London, UK: Addison Wesley, 2001
R. Clark and E. D. Jensen and A. Kanevsky and J. Maurer
and P. Wallace and T. Wheeler and Y. Zhang and D. Wells
and T. Lawrence and P. Hurley An Adaptive, Distributed
Airborne Tracking System In Proceedings of The Seventh
IEEE International Workshop on Parallel and Distributed
Real-Time Systems Springer-Verlag, April 1999

E. D. Jensen, and B. Ravindran Guest Editor’s
Introduction to Special Section on Asynchronous
Real-Time Distributed Systems In IEEE Transactions on
Computers, IEEE Computer Society August, 2002.

QNX Real-Time Operating System http://www.qnx.com
MKT7.3a Relase Notes The Open Group Research Institute
http://www.real-time.org/docs/RelNotes7.Book.pdf

C. Locke. Best-Effort Decision Making for Real-Time
Scheduling. PhD thesis, Carnegie Mellon University, 1986.
CMU-CS-86-134.

D. Maynard, S. Shipman, R. Clark, J. Northcutt,

R. Kegley, B. Zimmerman, and P. Keleher. “An example



(28]

29]

(30]

31]

(32]

(33]

(34]

real-time command, control, and battle management
application for Alpha.” Technical report, CMU Computer
Science Dept., December 1988. Archons Project Technical
Report 88121.

W. Beebee, Jr. Region-based memory management for
Real-Time Java. MEng thesis, Massachusetts Institute of
Technology, September 2001.

W. Beebee, Jr. and M. Rinard. An implementation of
scoped memory for Real-Time Java. In First International
Workshop on Embedded Software (EMSOFT), October
2001.

G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,

D. Hardin, and M. Turnbull. The Real-Time Specification
for Java. Addison-Wesley, 2000. Latest version available
from http://www.rtj.org.

A. Corsaro and D. Schmidt. Evaluating Real-Time Java
features and performance for real-time embedded systems.
In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), September 2002.

A. Silcianu, C. Boyapati, W. Beebee, Jr., and M. Rinard.
A type system for safe region-based memory management
in Real-Time Java. Technical Report TR-869, MIT
Laboratory for Computer Science, November 2002.

C. Boyapati, A. Silcianu, W. Beebee, Jr., and M. Rinard.
Ownership types for safe region-based memory management
in Real-Time Java. In ACM Conference on Programming
Language Design and Implementation (PLDI), June 2003.
Thorsten Kramp. FREE JAzz: An User-Level Real-Time
Threads Package Designed for Flexibility SFB 501 Report,
October 1998.

10



