
Recursion Unrolling for Divide and Conquer Programs ∗

Radu Rugina and Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

{rugina, rinard}@lcs.mit.edu

Abstract

This paper presents recursion unrolling, a technique for im-
proving the performance of recursive computations. Con-
ceptually, recursion unrolling inlines recursive calls to re-
duce control flow overhead and increase the size of the basic
blocks in the computation, which in turn increases the effec-
tiveness of standard compiler optimizations such as register
allocation and instruction scheduling. We have identified
two transformations that significantly improve the effective-
ness of the basic recursion unrolling technique. Conditional
fusion merges conditionals with identical expressions, con-
siderably simplifying the control flow in unrolled procedures.
Recursion re-rolling rolls back the recursive part of the pro-
cedure to ensure that a large unrolled base case is always
executed, regardless of the input problem size.

We have implemented our techniques and applied them
to an important class of recursive programs, divide and con-
quer programs. Our experimental results show that recur-
sion unrolling can improve the performance of our programs
by a factor of between 3.6 to 10.8 depending on the combi-
nation of the program and the architecture.

1 Introduction

Iteration and recursion are two fundamental control flow
constructs. Iteration repeatedly executes the loop body,
while recursion repeatedly executes the body of the pro-
cedure. Loop unrolling is a classical compiler optimization.
It reduces the control flow overhead by producing code that
tests the loop termination condition less frequently. By tex-
tually concatenating copies of the loop body, it also typically
increases the sizes of the basic blocks, improving the effec-
tiveness of other optimizations such as register allocation
and instruction scheduling.

This paper presents recursion unrolling, an analogous
optimization for recursive procedures. Recursion unrolling
uses a form of procedure inlining to transform the recur-
sive procedures. Like loop unrolling, recursion unrolling re-
duces control flow overhead and increases the size of the
basic blocks in the computation. But recursion unrolling is
somewhat more complicated than loop unrolling. The basic
form of recursion unrolling reduces procedure call overheads
such as saving registers and stack manipulation. We have
developed two transformations that optimize the code fur-
ther. Conditional fusion merges conditionals with identical

∗This research was supported in part by NSF Grant CCR-9702297.

expressions, considerably simplifying the control flow in un-
rolled procedures and increasing the sizes of the basic blocks.
Recursion re-rolling rolls back the recursive part of the pro-
cedure to ensure that a large unrolled base case is always
executed, regardless of the problem size.

1.1 Divide and Conquer Programs

We have applied recursion unrolling to divide and conquer
programs [10, 8, 5]. Divide and conquer algorithms solve
problems by breaking them into smaller subproblems, then
combining the results to generate a solution to the original
problem. They use recursion as their primary control struc-
ture to generate and solve the smaller subproblems. When
the division has reduced the problem to a small size, a base
case computation terminates the recursion.

Divide and conquer algorithms have several appealing
properties that make them a good match for modern paral-
lel machines. First, they tend to have a lot of inherent par-
allelism. Once the division phase is complete, the subprob-
lems are usually independent and can therefore be solved in
parallel. Moreover, the recursive structure of the algorithm
naturally leads to recursively generated concurrency. Both
the divide and combine phases can execute in parallel with
divide and combine phases from other subproblems. This
approach typically generates more than enough concurrency
to keep the machine busy.

Second, divide and conquer programs also tend to have
good cache performance. Once a subproblem fits in the
cache, the program reuses the cached data until the sub-
problem has been completely solved. Because most of the
work takes place deep in the recursive call tree, the program
usually spends most of its execution time running out of the
cache. Furthermore, divide and conquer programs naturally
work well with a range of cache sizes and at all levels of the
memory hierarchy. As soon as a subproblem fits into one
level of the memory hierarchy, the program runs out of that
level or below until the problem has been solved. Divide and
conquer programs therefore automatically adapt to different
cache hierarchies, and tend to run well without modification
on any machine.

To fully exploit these properties, divide and conquer pro-
grams have to be efficient and execute useful computation
most of the time, rather than spending substantial time on
dividing problems into subproblems, or on combining sub-
problems. The size of the base case controls the balance
between the computation time and the divide and combine
time. If the base case is too small, the program spends
most of its time in the divide and combine phases instead

of performing useful computation. Unfortunately, the sim-
plest and least error-prone coding styles reduce the problem
to its minimum size (typically a problem size of one) be-
fore applying a very simple base case. Programmers there-
fore typically start with a simple program with a small base
case, then unroll the recursion by hand to obtain a larger
base case with better performance. This manual recursion
unrolling is a tedious, error-prone process that obscures the
structure of the code and makes the program much more
difficult to maintain and modify.

The recursion unrolling algorithm presented in this paper
automates the process of generating efficient base cases. It
gives the programmer the best of both worlds: clean, simple
divide and conquer programs with efficient execution.

1.2 Conditional Fusion

Since divide and conquer programs split the given problem
into several subproblems, their recursive part typically con-
tains multiple recursive calls. The size of the unrolled code
therefore increases exponentially with the number of times
the recursion is unrolled. Moreover, the control flow of the
unrolled recursive procedure also increases exponentially in
complexity. The typical structure of a divide and conquer
program is a conditional with the base case on one branch
and the recursive calls on the other branch. Recursion un-
rolling generates an exponential number of nested if state-
ments. To substantially simplify the control flow in the un-
rolled code, we apply a transformation called conditional
fusion which merges conditional statements with equivalent
test conditions. This transformation simplifies the gener-
ated code and improves the performance by reducing the
number of conditional instructions and coalescing groups of
small basic blocks into larger basic blocks.

1.3 Recursion Re-Rolling

Recursion unrolling increases the code size both for the base
case and for the recursive part. Compared to the recursive
part of the original recursive program, the recursive part
of the unrolled procedure divides the given problem into a
larger number of smaller subproblems. This has the ad-
vantage that several recursive levels are removed from the
recursion call tree. But this accelerated division into sub-
problems may generate base case subproblems of small size,
even when the recursion unrolling produces unrolled base
cases for larger problem sizes. To ensure that the computa-
tion always executes the more efficient larger base case, we
apply another transformation, recursion re-rolling, which re-
places the recursive part of the unrolled procedure with the
recursive part of the original program.

1.4 Contributions

This paper makes the following contributions:

• Recursion Unrolling: It presents a new technique,
recursion unrolling, for inlining recursive procedures.
This technique iteratively constructs a set of unrolled
recursive procedures. At each iteration, it conceptu-
ally inlines calls to recursive procedures.

• Target programs: It shows how to use recursion un-
rolling for an important class of recursive programs,
divide and conquer programs. Recursion unrolling is
used for these programs to automatically generate more
efficient unrolled base cases of larger size.

void dcInc(int *p, int n) {
if (n == 1) {
*p += 1;

} else {
dcInc(p, n/2);
dcInc(p+n/2, n/2);

}
}

Figure 1: Divide and Conquer Array Increment Example

• Code Transformations: It presents two new code
transformations that substantially improve the perfor-
mance of recursive code resulting from recursion un-
rolling of divide and conquer programs. Conditional
fusion reduces control flow in the unrolled code. Re-
cursion re-rolling rolls back the recursive part of the
unrolled procedure to ensure that the computation al-
ways executes large base cases. These transformations
reduce control flow overhead and increase the sizes of
the basic blocks.

• Experimental Results: It presents experimental re-
sults that characterize the effectiveness of the algo-
rithms on a set of benchmark programs. Our results
show that the proposed code transformations can sub-
stantially improve the performance of our set of divide
and conquer benchmark programs.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a running example that we use throughout
the paper. Section 3 presents the analysis algorithms. Sec-
tion 5 presents experimental results from our implementa-
tion. Section 6 discusses related work. We conclude in Sec-
tion 7.

2 Example

Figure 1 presents a simple example that illustrates the kinds
of computations that our recursion unrolling is designed
to optimize. The dcInc procedure implements a recursive,
divide-and-conquer algorithm that increments each element
of an array.

In the divide part of the algorithm, the dcInc procedure
divides each array into two subarrays. It then calls itself re-
cursively to increment the elements in each subarray. After
the execution of several recursive levels the program gener-
ates a subarray with only one element, at which point the
algorithm uses the simple base case statement *p += 1 to
directly increment the single element of the subarray.

Reducing the problem to a base case of one is the simplest
way to write the program. Larger base cases require a more
complex algorithm, which in general can be quite difficult
to correctly code and debug. But while the small base case
is the simplest and easiest way to code the computation,
it has a significant negative effect on the performance —
the procedure spends most of its time dividing the problem
into subproblems. The overhead of control flow, consisting
of procedure calls and testing for the base case condition,
overwhelms the useful computation. For each instruction
that increments an array element, the computation executes
at least one conditional instruction and one procedure call.
To improve the efficiency of the program, the compiler has
to reduce the control flow overhead.

void dcIncI(int *p, int n) {
if (n == 1) {
*p += 1;

} else {
if (n/2 == 1) {
*p += 1;

} else {
dcIncI(p, n/2/2);
dcIncI(p+n/2/2, n/2/2);

}
if (n/2 == 1) {
*(p+n/2) += 1;

} else {
dcIncI(p+n/2, n/2/2);
dcIncI(p+n/2+n/2/2, n/2/2);

}
}

}

Figure 2: Program After Inlining Recursive Calls

The computation of the procedure can be regarded as
a sequence of useful computation instructions separated by
control flow constructs. To reduce the control flow overhead
the compiler must eliminate some of these control flow con-
structs. After removing these constructs it can then coalesce
adjacent useful instructions. The resulting straight line code
has less control flow overhead and provides a larger base
case.

The compiler can achieve control flow elimination in two
ways. Procedure inlining can eliminate procedure call over-
head. Fusing conditional statements with equivalent condi-
tional expressions can eliminate redundant conditional state-
ments. Our compiler applies both kinds of optimizations.

2.1 Inlining Recursive Procedures

The compiler first inlines the two recursive calls to procedure
dcInc. Figure 2 shows the result of inlining these recursive
calls. For this transformation, the compiler starts with two
recursive copies of the original procedure dcInc, replaces
their recursive calls with mutually recursive calls from one
copy to the other, and then inlines one of them into the
other. The resulting recursive procedure dcIncI has two
base cases: the original base case for n = 1 and a larger
base case for n/2 = 1 (textually, this larger base case is split
into two pieces in the generated code). The larger base case
(for n/2 = 1) performs twice as much computation as the
original base case (for n = 1).

Compared to the original recursive procedure dcInc from
Figure 1, the inlined procedure dcIncI also divides the given
problem into a larger number of smaller subproblems. The
inlined procedure generates four subproblems of quarter size,
while the original procedure generates only two problems of
half size. The transformation therefore eliminates half of
the procedure calls in the dynamic call tree of the program.

2.2 Conditional Fusion

The inlined code in dcIncI also contains more conditionals
and basic blocks than the original recursive code. Since in-
lining has exposed more code in the body of the procedure,
the compiler can now perform intra-procedural transforma-
tions to simplify the control flow of the procedure body.

void dcIncF(int *p, int n) {
if (n == 1) {
*p += 1;

} else {
if (n/2 == 1) {
*p += 1;
*(p+n/2) += 1;

} else {
dcIncF(p, n/2/2);
dcIncF(p+n/2/2, n/2/2);
dcIncF(p+n/2, n/2/2);
dcIncF(p+n/2+n/2/2, n/2/2);

}
}

}

Figure 3: Program After Conditional Fusion

In Figure 2 the compiler recognizes that the two if state-
ments have identical test conditions n/2 == 1. It therefore
applies another transformation, called conditional fusion, to
replace the two conditional statements with a single con-
ditional statement. Figure 3 presents the resulting recur-
sive procedure dcIncF after this transformation. The true
branch of the new conditional statement is the concatenation
of the true branches of the initial if statements. Similarly,
the false branch of the new conditional statement is the con-
catenation of the false branches of the initial if statements.
The test condition of the merged conditional statement is
the common test condition of the initial if statements.

2.3 Unrolling Iterations

Because of the recursive structure of the program, the above
transformations can be repeatedly applied. The recursive
program dcIncF in Figure 3 represents the program after
the first unrolling iteration. It performs the same overall
computation as the original program dcInc from Figure 1,
but it has a different internal structure.

The compiler can now use dcIncF and dcInc to unroll
the recursion further. Since the two procedures perform
the same computation, the compiler can safely replace their
recursive calls with mutually recursive calls between each
other and then inline one of them into the other. The com-
piler can further apply conditional fusion on the resulting re-
cursive procedure. It thus produces the result of the second
unrolling iteration, the recursive procedure dcInc2 shown
in Figure 4. It has a bigger base case for n/2/2 == 1 and
its recursive part divides the problem into an even larger
number of smaller subproblems than dcIncF.

The recursion unrolling process can continue now by
transforming recursive procedures dcInc and dcInc2 into
mutually recursive procedures, and then applying the above
transformations. The unrolling process stops when the num-
ber of iterations reaches the desired unrolling factor.

2.4 Re-Rolling Recursion

Inlining recursive procedures automatically unrolls both the
base case and the recursive part. Depending on the input
problem size, the unrolled recursive part may lead to small
base case subproblems that do not exercise the bigger, un-
rolled base cases. For instance, for procedure dcInc2, if the
initial problem size is n = 8, the recursive calls will divide

void dcInc2(int *p, int n) {
if (n == 1) {
*p += 1;

} else {
if (n/2 == 1) {
*p += 1;
*(p+n/2) += 1;

} else {
if (n/2/2 == 1) {
*p += 1;
*(p+n/2/2) += 1;
*(p+n/2) += 1;
*(p+n/2+n/2/2) += 1;

} else {
dcInc2(p, n/2/2/2);
dcInc2(p+n/2/2/2, n/2/2/2);
dcInc2(p+n/2/2, n/2/2/2);
dcInc2(p+n/2/2+n/2/2/2, n/2/2/2);
dcInc2(p+n/2, n/2/2/2);
dcInc2(p+n/2+n/2/2/2, n/2/2/2);
dcInc2(p+n/2+n/2/2, n/2/2/2);
dcInc2(p+n/2+n/2/2+n/2/2/2, n/2/2/2);

}
}

}
}

Figure 4: Program After Second Unrolling Iteration

the problem into subproblems of size n = 1. Therefore, the
bigger base case for n == 4 does not get executed.

Since most of the time is spent at the bottom of the re-
cursion tree, the goal of the compiler is to ensure that the
bigger base cases are always executed. To obtain this goal,
the compiler applies a final transformation, called recursion
re-rolling, which rolls back the recursive part of the un-
rolled procedure. The result of re-rolling procedure dcInc2
is shown in Figure 5, in figure dcIncR. The compiler de-
tects that the recursive part of the initial procedure dcInc
is executed on a condition which is always implied by the
condition on which the recursive part of the unrolled proce-
dure dcInc2 is executed. The compiler can therefore safely
replace the recursive part of dcInc2 with the recursive part
of dcInc, thus rolling back only the recursive part of the un-
rolled procedure. Thus, the recursive part of the procedure
is unrolled only temporarily, to generate the base cases. Af-
ter the large base cases are generated, the recursive part is
rolled back.

In the remainder of the paper, we present the algorithms
that the compiler uses to perform the transformations of the
program discussed in this section. We use the array incre-
ment program in Figure 1 as a running example to illustrate
how our algorithms work.

3 Algorithms

This section presents in detail the algorithms that enable
the compiler to perform the transformations presented in
the previous section. We first present the overall algorithm,
then we describe each transformation in turn.

void dcIncR(int *p, int n) {
if (n == 1) {
*p += 1;

} else {
if (n/2 == 1) {
*p += 1;
*(p+n/2) += 1;

} else {
if (n/2/2 == 1) {
*p += 1;
*(p+n/2/2) += 1;
*(p+n/2) += 1;
*(p+n/2+n/2/2) += 1;

} else {
dcIncR(p, n/2);
dcIncR(p+n/2, n/2);

}
}

}
}

Figure 5: Program After Re-Rolling

Algorithm RecursionUnrolling (Proc f, Int m)

f
(0)
unroll = clone(f);

for (i=1; i ≤ m; i++)

f
(i)
unroll = RecursionInline(f

(i−1)
unroll, f);

f
(i)
unroll = ConditionalFusion(f

(i)
unroll);

f
(m)
reroll = RecursionReRolling(f

(m)
unroll, f);

return f
(m)
reroll

Figure 6: Top Level of the Recursion Unrolling Algorithm

3.1 Top Level Algorithm

Figure 6 presents the top level algorithm for recursion un-
rolling. The algorithm takes two parameters: a recursive
procedure f to unroll, and an unrolling factor m. The al-
gorithm will unroll f m times. The algorithm iteratively

builds a set S = {f (i)
unroll | 0 ≤ i ≤ m} of unrolled versions

of the given recursive procedure. Different versions have
base cases of different sizes. The internal structure of differ-
ent versions is therefore different, but all versions perform
the same computation.

The algorithm starts with a copy of the procedure f .

This is the version of f unrolled zero times, f
(0)
unroll. Then,

at each iteration i, the algorithm uses the version f
(i−1)
unroll cre-

ated in the previous iteration to build a new unrolled version

f
(i)
unroll of f with a bigger base case. To create the new ver-

sion, the compiler inlines the original procedure f into the
version from the previous iteration. The recursion inlining
algorithm performs the inlining of recursive procedures. It
takes two recursive versions from the set S and inlines one
into another. The safety of this transformation is presented

Algorithm RecursionInline (Proc f 1, Proc f 2)

Proc f 3 = clone(f 1);
Proc f 4 = clone(f 2);

foreach cstat ∈ CallStatements(f 3, f 3) do
replace callee f 3 in cstat with f 4

foreach cstat ∈ CallStatements(f 4, f 4) do
replace callee f 4 in cstat with f 3

foreach cstat ∈ CallStatements(f 3, f 4) do
replace cstat with inlined procedure f 4

return f 3

Figure 7: Recursion Inlining Algorithm for Two Versions of
the Same Recursive Computation

in Section 4. After inlining, the compiler applies conditional
fusion to simplify the control flow and coalesce conditional

statements in the new recursive version f
(i)
unroll.

After it executes m iterations, the compiler stops the

unrolling process. The last unrolled version f
(m)
unroll has the

biggest base case and the biggest recursive part. The com-
piler finally applies recursion re-rolling to roll back the re-

cursive part of f
(m)
unroll.

We emphasize here that recursion inlining moves code
from the inter-procedural level to the intra-procedural level
and conditional fusion moves code from the inter-basic-block
level to the intra-basic-block level. Both transformations
give the opportunity for subsequent compiler passes to per-
form more aggressive optimizations.

3.2 Recursion Inlining

The recursion inline algorithm takes two recursive proce-
dures, f 1 and f 2, which perform the same computation, and
inlines one of them into the other. The result of this trans-
formation is a recursive procedure with a base case bigger
than any of the base cases of procedures f 1 and f 2.

Figure 7 presents the recursion inlining algorithm. Here,
CallStatements(f, g) represents the set of procedure call state-
ments with caller f and callee g. The compiler first creates
two copies f 3 and f 4 of the parameter procedures f 1 and
f 2, respectively. It then replaces each recursive call in f 3
and f 4 with calls to the other procedure. Because f 1 and
f 2 perform the same computation, each of the new mutu-
ally recursive procedures f 3 and f 4 will perform the same
computation as the original procedures f 1 and f 2.

With direct recursion translated into mutual recursion,
each call statement has a different caller and callee. This en-
ables procedure inlining at the mutually recursive call sites.
The compiler inlines the procedure f 4 into f 3, replacing all
call sites to f 3 with the body of f 4. The new version of
the procedure f 3 is a recursive procedure which performs
the same computation as the given procedures f 1 and f 2,
but has a bigger base case and splits a given problem into a
larger number of smaller subproblems.

In general, procedure inlining creates new local variables
for the parameters of the inlined procedure. Our compiler

void dcIncM1(int *p, int n) {
if (n == 1) {
*p += 1;

} else {
dcIncM2(p, n/2);
dcIncM2(p+n/2, n/2);

}
}

void dcIncM2(int *p, int n) {
if (n == 1) {
*p += 1;

} else {
dcIncM1(p, n/2);
dcIncM1(p+n/2, n/2);

}
}

Figure 8: Example of Mutually Recursive Procedures

optimizes inlining by textually replacing actuals in the callee
if the parameters are not written by the callee. This opti-
mization relies, however, on the ability of subsequent opti-
mization passes in the compiler to recognize common subex-
pressions whenever the callee reads an actual parameter
multiple times.

For our example, in the first unrolling iteration, the com-
piler performs recursion inlining with the initial procedure
dcInc for both parameters of the inlining algorithm. The
compiler first generates the mutually recursive procedures
dcIncM2 and dcIncM1 shown in Figure 8. It then inlines
procedure dcIncM2 into dcIncM1 at the recursive call sites
dcIncM2(p,n/2) and dcIncM2(p+n/2,n/2). It thus gener-
ates the unrolled procedure dcIncI from Figure 2. In the
second recursion unrolling iteration, the compiler uses the
initial procedure dcInc and the unrolled procedure dcIncF
as parameters to the recursion inlining algorithm.

In the top level algorithm from Figure 6 the compiler
could use other arguments to the recursion inlining method.
Any pair of procedures in S with unrolling index smaller
than i would be a valid choice for the inlining algorithm
arguments. For instance, if the top level algorithm invokes

the inlining method with RecursionInline(f
(i−1)
unroll, f

(i−1)
unroll), it

produces bigger base cases much faster, at a super-exponen-
tial growth rate with respect to the number of unrolling
iterations. We chose a smaller increase of the base case to
avoid code size blow-up and to allow the compiler to choose
the best base case size from a wider spectrum of sizes.

3.3 Unrolled Code Size

Divide and conquer programs usually split the given prob-
lem into multiple subproblems. When the program has more
than two recursive calls, the algorithm from Figure 6 pro-
duces an exponential increase in the code size. Let r be the
number of recursive calls, C the code size of a procedure
call, and B the base case code size of the initial program.
Then the number of recursive calls and the program code
size after i unrolling iterations, are:

NumberRecCalls(i) = ri+1

CodeSize(i) =
ri+1 − 1

r − 1
· B + ri+1 · C

Algorithm ConditionalFusion (Proc f)

foreach meta-basic-block B
in bottom-up traversal of f do

Boolean failed = false
Statement newcond

foreach meta-statement stat in B do
if (not IsConditional(stat)) then

failed = true
break

else if (IsEmpty(newcond))
newcond = clone(stat)

else if (not SameCondition(newcond, stat))
failed = true
break

else
Append(newcond.True, stat.True);
Append(newcond.False, stat.False);

if (not failed) then
replace B with newcond

return f

Figure 9: Conditional Fusion Algorithm

Also, if the initial program has one conditional state-
ment and no conditional fusion transformation is applied,
the number of conditional statements after i unrolling iter-
ations is:

NumberCond(i) =
ri+1 − 1

r − 1

Finally, if recursion inlining is invoked with f
(i−1)
unroll for

both arguments, the growth rate is super-exponential. The
number of recursive calls after i iterations is r squared i
times:

NumberRecCalls(i) = r2·
··2

3.4 Conditional Fusion

Conditional fusion is an intra-procedural transformation that
merges conditional if statements with equivalent condition
expressions. The conditional fusion algorithm searches the
control flow graph of the unrolled procedure for consecutive
conditional statements with this property.

For detecting such patterns, a hierarchically structured
control flow graph is more appropriate. A hierarchical con-
trol flow graph is a graph of meta-basic-blocks. A meta-basic-
block is a sequence of meta-statements. A meta-statement is
either a program instruction, a conditional statement, or a
loop statement. There is no program instruction that jumps
in or out of a meta-basic-block. Bodies of loop statements
and branches of conditional statements are, in turn, hierar-
chical control flow graphs. Flattening the hierarchical con-
trol flow graph of a procedure produces the (regular) control
flow graph of that procedure.

Using a hierarchical control flow graph representation,
the conditional fusion algorithm is formulated as shown in

Algorithm RecursionReRoll (Proc f 1, Proc f 2)

MetaBasicBlock B1 = RecursivePart(f 1)
MetaBasicBlock B2 = RecursivePart(f 2)

Boolean cond1 = RecursionCondition(f 1)
Boolean cond2 = RecursionCondition(f 2)

if (cond1 implies cond2) then
replace calls in B2 to f 1 with calls to f 2
replace B1 with B2 in procedure f 1

return f 1

Figure 10: Recursion Re-Rolling Algorithm for Two Ver-
sions of the Same Recursive Computation

Figure 9. The compiler traverses the hierarchical control
flow structure in a bottom-up fashion. At each level, it in-
spects the meta-statements in the current basic block B. It
checks if all the meta-statements in B are conditional state-
ments and if they all have equivalent condition expressions.
If not, the failed flag is set to true and no transformation
is performed. When checking the equivalence of condition
expressions, the compiler also verifies that the conditional
statements do not write any of the variables of the condi-
tion expressions. This ensures that condition expressions of
different if statements refer to variables with the same val-
ues. As it checks the statements, the compiler starts build-
ing the merged if statement. If stat is the current condi-
tional statement, the compiler appends its true branch to the
true branch of the new conditional, and its false branch to
the false branch of the new conditional. After scanning the
whole basic block, if the flag failed is not set, the compiler re-
places B with the newly constructed conditional statement.

The algorithm could be extended to duplicate instruc-
tions between conditional with equivalent test expressions,
or to partially merge conditionals whose test expressions are
equivalent only for some values of the program variables.
But for our benchmarks, the simple version of loop fusion
from Figure 9 is enough to substantially simplify the control
flow after recursion inlining.

Given a divide and conquer procedure with a single con-
ditional statement and r recursive calls, conditional fusion
can potentially reduce the number of conditional statements
after i recursive unrolling iterations from ri to only i condi-
tionals.

3.5 Recursion Re-Rolling

The recursion re-rolling transformation rolls back the re-
cursive part of the unrolled procedure, leaving the unrolled
base case unchanged. It ensures that the largest unrolled
base case is always executed, regardless of the input prob-
lem size.

Figure 10 presents the algorithm for recursion re-rolling.
The algorithm is given two procedures which are versions
of the same recursive computation. Procedure f 1 has an
unrolled recursive part and procedure f 2 has a rolled re-
cursive part. To re-roll the recursion of f 1, the compiler
first identifies the recursive parts two procedures, B1 and

B2 respectively. The recursive part of a procedure is the
smallest meta-basic-block in the procedure that contains all
the recursive calls and which represents the whole body of
the procedure when executed.

The compiler then detects the conditions on which the
recursive parts are executed. If the condition cond1 on which
the recursive part of the unrolled procedure is executed al-
ways implies the condition cond2 on which the rolled re-
cursion of f 2 is executed, then the compiler performs the
re-rolling transformation. Again, the compiler verifies that
variables in conditional expressions are not written by other
statements. It therefore ensures that variables in different
conditions refer to the same values. Knowing that both f 1
and f 2 perform the same computation, the compiler first
replaces calls to f 2 in B2 with calls to f 1. It then replaces
block B1 with block B2 to complete rolling back the recur-
sive part of f 1.

In our example, the recursion condition of the unrolled
procedure dcInc2 from Figure 4 is cond1: (n 6= 1) ∧ (n/2 6=
1) ∧ (n/2/2 6= 1). The recursion condition of the initial
procedure dcInc is cond2: n 6= 1. Obviously, cond1 always
implies cond2, so the compiler replaces the recursive part of
dcInc2 with the rolled back recursive part of dcInc. The
resulting procedure with unrolled base case and re-rolled
recursion is procedure dcIncR from Figure 5.

4 Correctness of Transformations

In this section, we present theorems that guarantee the cor-
rectness of the algorithms presented in the paper. To sim-
plify the presentation, we assume that procedures do not
access local variables from other procedures and that recur-
sive procedures do not have any call sites except for the
recursive call sites. We also assume that all the procedures
have the same signature, i.e., the same number of arguments
and the same argument types.

4.1 Proof Concepts

We define the following concepts:

• Program State: The program state for a procedure is
the set of values for global variables, procedure param-
eters, and heap-allocated variables.

• Procedure Activations: A procedure activation A(f, s0)
is an instance of the procedure f with input program
state s0. For an activation A(f, s0) whose execution
terminates, O(f, s0) denotes the program state after
the exe3cution of that activation.

• Dynamic Call Trees: T (f, s0) denotes the dynamic
call tree rooted at an activation A(f, s0). The nodes in
T (f, s0) correspond to procedure activations invoked
during the execution of A(f, s0). Also, H(f, s0) de-
notes the height of the call tree T (f, s0). If the execu-
tion of an activation produces an infinite call chain, the
height of the call tree is infinite. For activations whose
execution terminates, the call tree is finite. There may
be activations that do not terminate, but have finite
dynamic call trees, as in the case of intra-procedural
infinite loops.

• State Sets: Given a directly or indirectly recursive
procedure f and an input program state s0, we define
the state set S(f, s0) to be the set of all input states in
all activations in T (f, s0). We define the call site state

set C(f, s0) to be the set of all input states in activa-
tions directly invoked by A(f, s0). We also define the
terminating state set Term(f) to be the set of input
states on which the procedure f terminates.

• Terminating Equivalent Procedures: Given two recur-
sive procedures f and g, we say that f and g are ter-
minating equivalent, written as f ≡t g, if Term(f) =
Term(g).

• Semantically Equivalent Procedures: Given two re-
cursive procedures f and g, we say that f and g are
semantically equivalent or perform the same computa-
tion, written as f ≡s g, if f ≡t g and for any input
state s0 ∈ Term(f) the execution of the activations
A(f, s0) and A(g, s0) yields the same output program
state O(f, s0) = O(g, s0), after the execution of the
procedures.

• Recursively Included Procedures: Given two recur-
sive procedures f and g, we say that f is recursively
included in g, written as f ¹r g, if f ≡t g and for
any input state s0 ∈ Term(f) and any call site state
s1 ∈ C(f, s0) we have s1 ∈ S(g, s0). Conceptually, the
program state at each call site in A(f, s0) is the input
state of an activation in the call tree T (g, s0), at depth
greater than one. This means that f recurses at least
as fast as g.

To prove the transformations correct, we need to prove
that they generate new procedures that are semantically
equivalent to the original procedure. The proofs of correct-
ness for the traditional inlining and conditional fusion trans-
formations are straightforward, and we omit these proofs.

4.2 Correctness of Recursion Inlining

For the recursion inlining transformation, the key is to show
that transforming direct recursion to mutual recursion pre-
serves both recursive inclusion and semantic equivalence.

Given two recursive procedures f 1 and f 2, we denote by
(f 3,f 4) = MutuallyRecursive(f 1,f 2) the pair of mutually re-
cursive procedures f 3 and f 4 generated from f 1 and f 2 as
follows. The transformation first clones f 1 and f 2, calling
the clones f 3 and f 4. It then replaces each call in f 3 to f 1
with a call to f 4, and each call in f 4 to f 2 with a call to f 3.
Note that except for call statements, the procedures f 1 and
f 3 are identical, as are the procedures f 2 and f 4. The re-
cursion inlining algorithm from Figure 7 basically constructs
the pair (f 3,f 4), and then inlines one procedure into the
other. The following theorem shows that the constructed
pair of mutually recursive procedures (f 3,f 4) preserves re-
cursive inclusion and semantic equivalence to the original
procedure.

Theorem 1 Let f , f 1 and f 2 be recursive procedures such
that:

f 1 ¹r f and f 1 ≡s f

f 2 ¹r f and f 2 ≡s f

If (f 3,f 4) = MutuallyRecursive(f 1,f 2) then:

f 3 ¹r f and f 3 ≡s f

f 4 ¹r f and f 4 ≡s f

The proof is by induction on the height of dynamic call
subtrees for terminating procedure activations. We present
this proof in Appendix A.1. This theorem, combined with
the fact that the standard inlining transformation preserves
recursive inclusion and semantic equivalence, enables us to
conclude that the procedure returned by the algorithm in
Figure 7 is recursively included in and semantically equiva-
lent to the original procedure.

4.3 Correctness of Unrolled Versions

We next use Theorem 1 to prove that the unrolled versions
are recursively included in and semantically equivalent to
the original recursive procedure f .

Theorem 2 Let f be a recursive procedure. Then the un-

rolled versions f
(i)
unroll from Figure 6 satisfy the following

relations:

∀i ≥ 0 : f
(i)
unroll ¹r f and f

(i)
unroll ≡s f

The proof is by induction on the iteration index i. The
proof directly comes from Theorem 1 combined with the fact
that the conditional fusion transformation preserve recursive
inclusion and semantic equivalence.

4.4 Correctness of Recursion Re-Rolling

The following theorem guarantees that the recursion re-
rolling algorithm constructs a procedure that is semantically
equivalent to the original recursive procedure.

Theorem 3 Let f , f 1 and f 2 be recursive procedures such
that:

f 1 ≡s f

f 2 ≡s f

If f 3 = RecursionReRoll(f 1,f 2), then:

f 3 ≡s f

The proof is presented in Appendix A.2. It is based on
the observation that f 3 always recurses exactly as f 2 up
to a certain input state, at which point it executes a base
case computation identical to the base case computation of
f 1 with the that same input. Finally, Theorem 2 combined
with Theorem 3 guarantees that the overall recursion un-
rolling algorithm from Figure 6 constructs a recursive proce-
dure that is semantically equivalent to the original recursive
procedure.

5 Experimental Results

We used the SUIF compiler infrastructure [1] to implement
the recursion unrolling algorithms presented in this paper.
We present experimental results for two divide and conquer
programs:

• Mul: Divide and conquer blocked matrix multiply.
The program has one recursive procedure with 8 re-
cursive calls and a base problem size of a matrix with
one element.

• LU: Divide and conquer LU decomposition. The pro-
gram has four mutually recursive procedures. Each of
them has a base problem size of a matrix with one el-
ement. The main recursive procedure has 8 recursive
calls.

We implemented our compiler as a source-to-source trans-
lator. It takes a C program as input, locates the recursive
procedures, then unrolls the recursion to generate a new C
program. We then compiled and ran the generated C pro-
grams on three machines:

• Pentium III: A Pentium III machine running Linux.

• PowerPC: A PowerPC running Linux.

• Origin 2000: An SGI Origin 2000 running IRIX.

Table 1 presents the running times for various versions of
the Mul program. Each column is labeled with the number
of times that the compiler unrolled the recursion; we report
results for the computation unrolled 0, 1, 2, and 3 times. If
the column is labeled with an f, it indicates that compiler
applied the conditional fusion transformation. If the column
is labeled with an r, it indicates that the compiler applied
the recursion re-rolling transformation. So, for example, the
column labeled 1u+f+r contains experimental results for the
version with the recursion unrolled once and with both con-
ditional fusion and recursion re-rolling. Depending on the
architecture, the best automatically unrolled version of pro-
gram Mul performs between 3.6 to 10.8 times better than
the unoptimized version Table 2 presents the running times
for various versions of the LU decomposition program. De-
pending on the architecture, the best automatically unrolled
version of this program performs between 3.8 to 8.6 times
better than the unoptimized version.

We also evaluate our transformations by comparing the
performance of our automatically generated code with that
of several versions of the programs with optimized, hand
coded base cases. We obtained these versions from the
Cilk benchmark set [9]. The last column in Tables 1 and
2 presents the running times of the hand coded versions.
The best automatically unrolled version of Mul performs
between 2.2 and 2.9 worse than the hand optimized ver-
sion. The performance of the best automatically unrolled
version of LU is basically comparable to that of the hand
coded version. These results show that our transformations
can generate programs whose performance is close to, and in
some cases identical to, the performance of programs with
hand coded base cases.

5.1 Impact of Re-Rolling

The running times in Tables 1 and 2 emphasize the impact
of recursion re-rolling on the performance of the program.
Whenever the unrolled recursion makes the program skip
its largest unrolled base case, recursion re-rolling can deliver
substantial performance improvements.

For instance, in the case of program Mul with recursion
unrolled twice, running on the Origin 2000, on a matrix of
512x512 elements, recursion re-rolling dramatically improves
the performance — with recursion re-rolling, the running
time drops from 29.81 seconds to 3.95 seconds. For this ex-
ample, recursion inlining and conditional fusion produce ad-
ditional base cases of sizes 2 and 4. But because the unrolled
recursive part divides each problem in four subproblems at
each step, these base cases never get executed. The program
always executes the inefficient base case of size 1. Re-rolling

Machine Input Size Unrolling Types Hand Coded
0u 1u 1u+f 1u+f+r 2u 2u+f 2u+f+r 3u+f+r

Pentium III 512 9.22 3.41 2.83 2.97 11.49 9.34 2.69 2.55 1.16
Pentium III 1024 73.80 69.43 64.75 23.61 32.51 24.63 20.70 20.47 9.19

PowerPC 512 14.35 4.19 3.28 2.89 17.32 25.19 1.63 1.33 0.59
PowerPC 1024 114.60 136.84 137.20 23.17 33.87 35.91 12.91 10.74 4.69

Origin 2000 512 30.57 9.92 6.77 6.84 30.54 29.81 3.95 3.62 1.24
Origin 2000 1024 244.44 239.64 230.43 54.59 81.13 58.55 31.46 28.73 9.90

Table 1: Running Times of Unrolled Versions of Mul (seconds)

Machine Input Size Unrolling Types Hand Coded
0u 1u 1u+f 1u+f+r 2u 2u+f 2u+f+r 3u+f+r

Pentium III 512 3.14 2.15 2.00 0.99 1.86 1.32 0.84 0.83 0.71
Pentium III 1024 24.77 14.62 13.14 8.53 21.25 15.86 6.99 6.58 5.48

PowerPC 512 4.88 4.15 4.01 1.16 2.41 2.25 0.73 0.66 0.70
PowerPC 1024 39.16 26.58 24.91 9.46 29.20 32.33 5.91 5.33 5.64

Origin 2000 512 10.77 7.34 6.56 2.42 5.06 3.31 1.39 1.26 1.20
Origin 2000 1024 85.86 48.47 40.98 19.20 54.56 44.53 10.96 9.95 9.57

Table 2: Running Times of Unrolled Versions of LU (seconds)

the recursion ensures that the efficient base case of size 4
gets always executed.

The structure of the inlined recursion also explains why
programs whose recursive part is not re-rolled may perform
worse after several inlining steps. For instance, the Mul pro-
gram on a Pentium III has a surprisingly high running time
of 11.49 seconds after two unrolling iterations, compared to
its fast execution of 3.41 seconds after a single unrolling iter-
ation. The reason for this performance difference is that, for
the given problem size of 512, the problem is always reduced
to a base case of size 2 when recursion is unrolled once, while
the program always ends up executing the smaller and inef-
ficient base case of size 1 when recursion is unrolled twice.
Re-rolling the recursion ensures that the largest and most
efficient base case is always executed. For example, consider
Mul with the recursion unrolled twice, running on the Pen-
tium III, on a matrix of 512x512 elements. The running
time after re-rolling drops to 2.69 seconds as compared to
9.34 seconds without recursion unrolling.

Finally, our results for different program sizes show that
the impact of re-rolling depends on the program size. For LU
running on the PowerPC, with recursion unrolled twice, the
version with re-rolling runs 3.08 times faster than the origi-
nal version for a matrix of 512x512 elements, and 5.47 times
faster than the original version for a matrix of 1024x1024
elements. The fact that the size of the base case that gets
executed before re-rolling depends on the problem size ex-
plains this discrepancy. Our results show that in the vast
majority of cases, re-rolling improves the performance re-
gardless of the input problem size. The only two exceptions
are for program Mul with one unrolling iteration, running
on a matrix of 512x512 elements. Here, re-rolling produces
a slight slowdown because the programs were already exe-

cuting their largest base cases before re-rolling.

5.2 Impact of Conditional Fusion

Our results show that conditional fusion can achieve speedups
of up to 1.5 over the versions without conditional fusion, as
in the case of the Mul program running on the SGI Ori-
gin 2000, on a matrix of 512x512 elements, with recursion
unrolled once. In the majority of cases, fusion of condition-
als improves program performance. In a few cases, though,
the modified cache behavior after conditional restructuring
causes a slight degradation in the performance.

The major advantage of conditional fusion transforma-
tion is that it enables recursion re-rolling, which has signif-
icant positive impact on the running times. To apply re-
cursion re-rolling, the compiler has to identify and separate
the recursive parts and the base cases. Conditional fusion is
the key transformation that enables the compiler to identify
these parts in the unrolled code.

Finally, for all our benchmarks, the combined effects of
conditional fusion and recursion re-rolling always improves
the running times as compared with the programs with re-
cursion unrolling alone.

6 Related Work

Procedure inlining is a classical compiler optimization [3, 2,
4, 6, 12, 7, 11]. The usual goal is to eliminate procedure call
and return overhead and to enable further optimizations by
exposing the combined code of the caller and callee to the
intraprocedural optimizer. Some researchers have reported
a variety of performance improvements from procedure in-
lining; others have reported that procedure inlining has rel-
atively little impact on the performance.

Our initial recursion unrolling transformation is essen-
tially procedure inlining. We augment this transformation
with two additional transformations, conditional fusion and
recursion re-rolling, that significantly improve the perfor-
mance of our target class of divide and conquer programs.
We therefore obtain the benefit of a reduction in procedure
call and return overhead. We also obtain more efficient code
that eliminates redundant conditionals and sets up the re-
cursion so as to execute the efficient large base case most of
the time.

In general, we report much larger performance increases
than other researchers. We attribute these results to sev-
eral factors. First, we applied our techniques to programs
that heavily use recursion and therefore suffer from signifi-
cant overheads that recursion unrolling can eliminate. Sec-
ond, conditional fusion and recursion re-rolling go beyond
the standard procedure inlining transformation to further
optimize the code.

7 Conclusion

This paper presents recursion unrolling, a technique for im-
proving the performance of recursive computations. Like
loop unrolling, recursion unrolling reduces control flow over-
head and increases optimization opportunities by generating
larger basic blocks. But recursion unrolling is somewhat
more complicated than loop unrolling. The basic form of
recursion unrolling reduces procedure call overheads such as
saving registers and stack manipulation. We have developed
two transformations that optimize the code further. Condi-
tional fusion merges conditionals with identical expressions,
considerably simplifying the control flow in unrolled proce-
dures. Recursion re-rolling rolls back the recursive part of
the procedure to ensure that the biggest unrolled base case
is always executed, regardless of the problem size.

We have implemented our techniques and applied them
to an important class of recursive programs, divide and con-
quer programs. Our experimental results show that recur-
sion unrolling can substantially improve the performance of
these programs. Specifically, they show that our combined
techniques can improve the performance of our benchmark
programs by a factor of between 3.6 to 10.8 depending on
the combination of the program and the architecture. They
also show that conditional fusion and recursion re-rolling
have a significant positive effect on the overall performance
of the programs.

References

[1] S. Amarasinghe, J. Anderson, M. Lam, and A. Lim. An
overview of a compiler for scalable parallel machines. In
Proceedings of the Sixth Workshop on Languages and
Compilers for Parallel Computing, Portland, OR, Au-
gust 1993.

[2] Andrew W. Appel. Unrolling recursion saves space.
Technical Report CS-TR-363-92, Princeton University,
March 1992.

[3] C. Chambers and D. Ungar. Customization: Optimiz-
ing compiler technology for SELF, a dynamically-typed
object-oriented programming language. In Proceedings
of the SIGPLAN ’89 Conference on Program Language
Design and Implementation, Portland, OR, June 1989.
ACM, New York.

[4] P. Chang, S. Mahlke, W. Chen, and W. Hwu.
Profile-guided automatic inline expansion for C pro-
grams. Software—Practice and Experience, 22(5):349–
369, May 1992.

[5] S. Chatterjee, A. Lebeck, P. Patnala, and M. Thot-
tethodi. Recursive array layouts and fast matrix mul-
tiplication. In Proceedings of the 11th Annual ACM
Symposium on Parallel Algorithms and Architectures,
Saint Malo, France, June 1999.

[6] K. Cooper, M. W. Hall, and L. Torczon. An experi-
ment with inline substitution. Software—Practice and
Experience, 21(6):581–601, June 1991.

[7] J. W. Davidson and A. M. Holler. A study of a C
function inliner. Software—Practice and Experience,
18(8):775–790, August 1988.

[8] J. Frens and D. Wise. Auto-blocking matrix-
multiplication or tracking BLAS3 performance from
source code. In Proceedings of the 6th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, Las Vegas, NV, June 1997.

[9] M. Frigo, C. Leiserson, and K. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In
Proceedings of the SIGPLAN ’98 Conference on Pro-
gram Language Design and Implementation, Montreal,
Canada, June 1998.

[10] F. Gustavson. Recursion leads to automatic vari-
able blocking for dense linear-algebra algorithms. IBM
Journal of Research and Development, 41(6):737–755,
November 1997.

[11] S. Richardson and M. Ganapathi. Interprocedural anal-
ysis versus procedure integration. Information Process-
ing Letters, 32(3):137–142, August 1989.

[12] R. Scheifler. An analysis of inline substitution for a
structured programming language. Commun. ACM,
20(9), September 1977.

A Correctness Proofs

A.1 Proof of Theorem 1

The proof consists of two steps. First we prove that for each
input state on which procedure f terminates, procedures f 3
and f 4 also terminate, yield the same output state as f , and
satisfy the recursive inclusion condition. Second, we prove
that for each input state on which procedure f 3 or procedure
f 4 terminates, procedure f also terminates. The combined
results of these steps immediately prove Theorem 1.

Step 1. First we show that for any state s ∈ Term(f)
the following relations hold:

s ∈ Term(f 3) (1)

s ∈ Term(f 4) (2)

∀s1 ∈ C(f 3, s) : s1 ∈ S(f, s) (3)

∀s1 ∈ C(f 4, s) : s1 ∈ S(f, s) (4)

O(f 3, s) = O(f, s) (5)

O(f 4, s) = O(f, s) (6)

To prove this, we show that for any state s′ ∈ S(f, s) the
above relations hold. We prove this by induction on the
height h of the subtree T (f, s′). The proof by induction is
applicable here because for any h, 0 ≤ h ≤ T (f, s), there
is at least one state in S(f, s) whose subtree has height h.
This holds because A(f, s) terminates, so T (f, s) has finite
height.

For the base case, let s′ ∈ S(f, s) be a program state such
that H(f, s′) = 0. Hence the activation A(f, s′) does not
invoke any procedure. Therefore C(f 1, s′) = C(f 2, s′) = ∅,
otherwise it would contradict the hypothesis that f 1 ¹r f
and f 2 ¹r f . It means that procedures f 1 and f 2 are not
executing any recursive code either. But from construction,
procedures f 1 and f 3, respectively f 2 and f 4, are identical
except for the recursive calls. Hence activations A(f 1, s′)
and A(f 3, s′), respectively A(f 2, s′) and A(f 4, s′), execute
identical code, and relations (1) through (6) trivially follow
the similar relations for f 1 and f 2 from hypothesis.

For the induction step, assume that relations (1)-(6) hold
for all the states in s′ ∈ S(f, s) with H(f, s′) ≤ h − 1. We
want to prove that these relations hold for all the states with
recursive trees with height H(f, s′) = h. Let s′ be such a
state with H(f, s′) = h and consider now the activations of
f 1, f 2, f 3, and f 4 with input state s′. The main idea is
to prove that the activations A(f 1, s′) and A(f 3, s′), respec-
tively A(f 4, s′) and A(f 2, s′) execute the same sequence of
statements and all the executed call statements terminate
and yield the same program state. We show the proof only
for A(f 1, s′) and A(f 3, s′). The proof is similar for A(f 2, s′)
and A(f 4, s′).

First we match statements in f 1 and f 3. Recursive calls
in f 1 are matched with mutually recursive calls in f 3, and all
the other statements in f 1 are matched with their identical
corresponding statements from f 3. Consider two matching
statements stmt in f 1 and stmt ′ in f 3. Assume that stmt
is reachable with input state s′′ in activation A(f 1, s′), and
stmt ′ is also reachable with the same input state s′′ in activa-
tion A(f 3, s′). We want to prove that these statements ter-
minate their execution, and the program state after the exe-
cution of the statements is the same. First consider the case
when stmt and stmt ′ are not recursive calls. These state-
ments are then identical, by construction. They are not call
statements, therefore they both terminate. Being identical,
the program state after the execution of these statements is
identical. Consider now that stmt is a recursive call in f 1

and stmt ′ is a mutually recursive call in f 3 to f 4. Since the
program point before stmt ′ is reachable and is a recursive
call site to f 1, it means that s′′ ∈ C(f 1, s′). From hypoth-
esis, f 1 ¹r f , therefore s′′ ∈ C(f 1, s′) implies s′′ ∈ S(f, s′).
Also since A(f 1, s′) terminates, states s′ and s′′ are differ-
ent. Hence, A(f, s′′) is part of T (f, s′), but is not the root of
the tree, so H(f, s′′) < H(f, s′) = h. Therefore we can ap-
ply the induction hypothesis for activations with input state
s′′. First, the induction hypothesis from rule (2) shows that
s′′ ∈ Term(f 4). Also, s′ ∈ Term(f), hence s′ ∈ Term(f 1).
This implies s′′ ∈ Term(f 1). Thus, both statements stmt
and stmt ′ terminate on input s′′. Moreover, rules (5) and (6)
in the induction hypothesis show that O(f 1, s′′) = O(f 3, s′′).
This proves that the states after the execution of statements
stmt and stmt ′ are identical in this case as well.

Hence we proved that activations A(f 1, s′) and A(f 3, s′),
respectively A(f 2, s′) and A(f 4, s′), execute the same se-
quence of matching statements, and the execution of each
statement terminates and yields the same state. The equiv-
alence of executions for these activations directly prove rela-
tions (1)-(6). They follow from similar relations for f 1 and
f 2 in the hypothesis.

Step 2. We prove now that for any state s ∈ Term(f 3)
we have:

s ∈ Term(f) (7)

O(f, s) = O(f 3, s) (8)

and for any state s ∈ Term(f 4) we have:

s ∈ Term(f) (9)

O(f, s) = O(f 4, s) (10)

We will prove only relations (7) and (8), for program
states s ∈ Term(f 3). The proof for relations (9) and (10),
for states s ∈ Term(f 4), is similar. Consider a state s ∈
Term(f 3). The dynamic call tree T (f 3, s) has therefore fi-
nite height. We will prove that for any state s′ ∈ S(f 3, s)
the following property holds. If s′ is the input state for an
activation A(f 3, s′) then:

s′ ∈ Term(f) (11)

O(f, s′) = O(f 3, s′) (12)

and if s′ is the input state for an activation A(f 4, s′) then:

s′ ∈ Term(f) (13)

O(f, s′) = O(f 4, s′) (14)

We will prove these relations by induction on the height of
the dynamic call tree of activations with input state s′ in
T (f 3, s). Again, the applicability of a proof by induction
comes from the fact that A(f 3, s) terminates. The proof
uses the same kind of reasoning as the induction proof from
Step 1.

For the base case, let s′ be the input state of an activation
of f 3 or of f 4 in T (f 3, s), with dynamic call tree of height
h = 0. Suppose this is an activation A(f 3, s′) of procedure
f 3. Since H(f 3, s′) = 0, it means that this activation does
not execute any recursive calls. But from construction, f 3 is
identical to f 1 except for the procedure calls. Therefore, in
this case, f 3 and f 1 execute identical code for input state s′.
Hence, s′ ∈ Term(f 3) implies s′ ∈ Term(f 1). Then, using
the hypothesis, f 1 ≡t f , we get that s′ ∈ Term(f), which
proves relation (11). Also, since f 3 and f 1 execute identical
in this case, it means that the program state after the execu-
tion of these procedures is identical: O(f 1, s′) = O(f 3, s′).

From hypothesis f 1 ≡s f , therefore O(f, s′) = O(f 3, s′),
which proves relation (12). We use a similar reasoning to
prove relations (13) and (14) for an activation of f 4 with
height H(f 4, s′) = 0.

For the induction step, assume properties (11)-(14) hold
for all the input states to activations having dynamic call
trees with heights less or equal to h−1. Consider an activa-
tion with input state s′ whose dynamic call tree has height h.
Assume this is an activation A(f 3, s′) of procedure f 3. The
proof is similar for activations of procedure f 4. We have now
to prove relations (11) and (12). Again, we first match pro-
gram points and statements in f 1 and f 3 and prove equiv-
alence of states at matching program points. The key to
proving the induction step is to prove that reachable recur-
sive calls in f 1 terminate and yield the same program state
as their equivalent mutually recursive calls in f 3. Consider
two matching statements stmt and stmt ′ such that stmt is
a recursive call in f 1 and stmt ′ is a mutually recursive call
in f 3 to f 4. Let s′′ be an input state to both of these state-
ments. Since the activation A(f 4, s′′) is part of the dynamic
call tree T (f 3, s′), if means that H(f 4, s′′) ≤ h − 1. There-
fore, by induction hypothesis, from relation (13) for state
s′′, we have that s′′ ∈ Term(f). This implies, by hypoth-
esis, that s′′ ∈ Term(f 1). Therefore both stmt and stmt ′

terminate. Moreover, by induction hypothesis, relation (14)
for s′′ shows that O(f, s′′) = O(f 4, s′′). But from hypothe-
sis, O(f 1, s′′) = O(f, s). Hence, O(f 1, s′′) = O(f 4, s′′), and
the execution of statements stmt and stmt ′ yields the same
state. Therefore, we conclude that the activations A(f 1, s′)
and A(f 3, s′) execute the same sequence of matching state-
ments and all of the statements in the sequence terminate
and generate identical output state. Hence, A(f 1, s′) termi-
nates, so s′ ∈ Term(f 1). In turn, this implies s′ ∈ Term(f),
which proves relation (11). Equivalence of executions for
A(f 1, s′) and A(f 3, s′) also means that O(f 3, s′) = O(f 1, s′).
From hypothesis, O(f 1, s′) = O(f, s′). Therefore O(f, s′) =
O(f 3, s′), which proves relation (12). This concludes the in-
duction step.

A.2 Proof of Theorem 3

The proof is based on the following observations. First, for
all the program states s for which A(f 3, s) executes its re-
cursive part, A(f 2, s) also executes its recursive part, and for
all the program states s for which A(f 2, s) executes its base
case, A(f 2, s) also executes its base case. By construction,
A(f 2, s) and A(f 3, s) execute identical code in these cases.
Second, an activation A(f 3, s) executes its base case if and
only if the activation A(f 1, s) executes its base case. By con-
struction, in this case A(f 1, s) and A(f 3, s) execute identical
code. These properties directly come from the construction
of f 3.

We first extend the notion of semantic equivalence for
procedure activations. We say that two activation frames
A(f, s) and A(g, s′) are semantically equivalent if s = s′,
s ∈ Term(f) if and only if s ∈ Term(g), and s ∈ Term(f)
implies O(f, s) = O(g, s). Basically, two procedures are se-
mantically equivalent if all of their activations with identical
input state are semantically equivalent.

The proof consists of two steps. First we prove that for
each input state s on which A(f 3, s) terminates, A(f 2, s) and
A(f 3, s) are semantically equivalent. Second, we prove that
for each input state s on which A(f 3, s) terminates, A(f 2, s)
and A(f 3, s) are semantically equivalent. The combined re-
sults of these steps immediately prove Theorem 3.

Step 1. Let s ∈ Term(f 3). We want to prove that
A(f 2, s) and A(f 3, s) are semantically equivalent. Since s ∈
Term(f 3), the dynamic call tree T (f 3, s) is finite. From the
first observation, the activations corresponding to internal
nodes of the tree perform the same intra-procedural compu-
tation as the activations of f 2 with the same input state.

Also, each leaf of T (f 3, s) corresponds to an activation
A(f 3, s′). From the first observation, activation A(f 3, s′)
is semantically equivalent to activation A(f 1, s′). But from
hypothesis, f 1 ≡s f 2, activation A(f 3, s′) is semantically
equivalent to activation A(f 2, s′). Therefore we can replace
each leaf node corresponding to an activation A(f 3, s′) in
T (f 3, s) with the dynamic tree of A(f 2, s′). The resulting
computation is guaranteed to terminate and is semantically
equivalent to A(f 3, s). But this dynamic tree has identical
structure with the dynamic call tree of A(f 2, s), and the acti-
vations corresponding to similar nodes in these trees execute
the same intra-procedural computation. We therefore con-
clude that in this case A(f 2, s) and A(f 3, s) are semantically
equivalent.

Step 2. Let s ∈ Term(f 2). We want to prove that
A(f 2, s) and A(f 3, s) are semantically equivalent. Since s ∈
Term(f 2), the dynamic call tree T (f 2, s) is finite. For each
s′ ∈ S(f 2, s′) such that A(f 1, s′) executes its base case, we
replace the subtree of the activation A(f 2, s′) with a leaf cor-
responding to A(f 1, s′). Because of semantic equivalence of
f 1 and f 2, the semantics of the overall computation A(f 2, s)
is preserved in the resulting dynamic tree. Using the two ob-
servations, we deduce that the resulting tree has the same
structure as the dynamic tree of A(f 3, s), and the activa-
tions corresponding to similar nodes in these trees execute
the same intra-procedural computation. This proves that
A(f 2, s) and A(f 3, s) are semantically equivalent.

