Structural Subtyping of Non-Recursive Types is Decidable

Viktor Kuncak and Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{vkuncak, rinard }@Ics.mit.edu

Abstract erties, used both in type systems and program analyses. The
study of subtyping constraints is therefore important for
We show that the first-order theory of structural subtyp- developing techniques that increase the reliability of pro-
ing of non-recursive types is decidable, as a consequence offrams.
a more general result on the decidability of term powers of Subtyping was introduced through the subsumption rule
decidable theories. in [29]. [4, 24, 21] treat subtyping in the presence of recur-
LetX be a language consisting of function symbols and sive types. [49] shows that terms typable in a system with
let C (with a finite or infinite domairC') be anL-structure structural subtyping denote terminating computations. [12]
whereL is a language consisting of relation symbols. We treats intersection types in ML in the presence of computa-
introduce the notion of-term-powerof the structureC, tional effects. [15] presents an extension of ML that allows
denotedPs;(C). The domain o5 (C) is the set ob>-terms a more precise typing of programs than the standard ML
over the set’. Px(C) has one term algebra operation for type system. [34] shows the equivalence of non-structural
eachf € X, and one relation for each € L defined by subtyping and flow-analysis. Set constraints are related to

lifting operations ofC to terms ovelC. the subtyping constraints and form the basis of several pro-
We extend quantifier elimination for term algebras and gram analyses [2, 1, 7, 8, 5, 17].
apply the Feferman-Vaught tEChnique for quantiﬁer elimi- The app"cations of type Systems with Subtyp|ng have
nation in products to obtain the following result. LEtbe motivated the study of the complexity and the decidabil-
a family of L-structures and{ p the family of theirz-term-jty of the subtyping constraints. [19] shows that typability
powers. Then the validity of any closed formifeon K p is equivalent to the satisfiability of a conjunction of atomic
can be effectively reduced to the validity of some closed for-formulas in the language of structural subtyping constraints.
mulag(F) on K. [16] shows that the satisfiability for structural subtyping

Our result implies the decidability of the first-order the- gyer an arbitrary structure of base types is in PSPACE. [45]
ory of structural subtyping of non-recursive types with co- shows that if the ordering on primitive types has the form of
variant constructors, and the construction generalizes to “crowns”, then the satisfiability is PSPACE hard. The need
contravariant constructors as well. for efficient handling of constraints arising from type infer-

ence, and the need for presenting results of type inference in

human-readable form led the researchers to ask more gen-
1. Introduction eral problems about subtyping constraints [35, 39]. [18]

studies the entailment problem for structural subtyping and

In this paper we show that the first-order theory of struc- SNOWS that if the ordering on the primitive types is a lat-
tural subtyping constraints for non-recursive types is decid- i then the entailment is coNP complete. Because the
able. We show this result as a consequence of a more genreé complicated notions of subtyping involve quantifiers
eral result on the decidability of term powers of decidable [47: 42], it is natural to consider the decidability and the
theories, which we show using quantifier elimination. complexity of the fullfirst-order theoryof subtyping con-
straints.

[32] studies the complexity and decidability properties
of feature tree constraints with subsumptiomhich cor-
respond closely to subtyping constraints and have appli-
*Produced April 7, 2003, 11:02pm for submission to LICS 2003 cations in constraint logic programming [3] and computa-

Subtyping Constraints. Subtyping constraints are an im-
portant technique for checking and inferring program prop-

tional linguistics [37]. [32] shows that the first-order the- parameterized by both the edge label theory and the leaf the-
ory of subtyping constraints of feature trees is undecid- ory. The main difficulty in applying the result of [48] to the
able and that the existential entailment problem is PSPACE-decidability of the full first-order theory of structural sub-

complete. The first-order theory abn-structuralsubtyp- typing stems from the need to simultaneously represent 1)
ing constraints has been shown to be undecidable [42]. Inselector operations on trees (which require operations that
this paper we show that the first-order theorystrfuctural manipulate the initial segments of paths in a tree) and the
subtyping of non-recursive types is decidable. prefix-closure property of the tree domain (which requires

This problem was left open in [42]. [42] shows the operations that manipulate the terminal segment of paths in

decidability of the first-order theory of non-structural sub- atree), see [31], [25, Section 7].

typing for the special cases of one unary constructor sym-

bol (where the problem is solved using tree automata tech-preliminaries. If A is a set, writd 4| to denote the cardi-

niques), as well as for the special case of one constant symnajity of 4. An L-structure(model) is a set together with

bol (Where the problem reduces to the dECIdablllty of term functions and relations interpreting the |angud_’ge If S

algebras). is an L-structure and- € L a function or relation sym-
bol, write ar(r) to denote the arity of. (Arity is a non-

Contribution. The main contribution of this paper is a negative integer.) Writgr]¥ to denote the interpretation of

proof that a term power of a structure with a decidable first- r in structureS. An L-formula is a first-order formula in the

order theory is a structure with a decidable first-order the- languagel.. A sentenceés a closed formula. IfC is a family

ory. This result directly implies that the first-order theory of 0f L-structures, aheoryof K is the set of allL-sentences

structural subtyping of non-recursive types is decidable. In that are true in all structures € K. If F'is a sentence, then

addition, we believe that the decidability of term powers is [F]* = true if F'is in the theory ofK” and[F]* = false

of general interest and may be useful for constructing deci- otherwise. The notatiofiE;)? denotes the lisEy, ..., Ej

sion procedures in automated theorem proving. The com-(if & is omitted, it is understood from the context).

plexity of the decidability problem for term powers is non-

elementary because term powers extend term algebras. Thé.1. Structural Subtyping and :-Term-Power

non-elementary bound applies to term algebras as a conse-

guence of the lower bound on the theory of pairing functions ~ We introduce the notion of thE-term-power of some

[14], see also [11]. structureC as a generalization of the structure that arises in
structural subtyping.
Previous Quantifier Elimination Results. We show our We represent primitive types in structural subtyping as

decidability result usingjuantifier elimination Quantifier ~ @n Lc-structureC with the carrierC. We callC the base
elimination [20, Section 2.7] is a fruitful technique that has Structure We assume thal contains only relation sym-
been used to show decidability and classification of booleanP0ls because functions and constants can be represented as
algebras [40, 44], Presburger arithmetic [36], decidability of relations. o
products [30, 13], [28, Chapter 12], and algebraically closed ~ We represent type constructors as free operations in the
fields [43]. Directly relevant to our work are quantifier- t€rm algebra with a finite signatute. Because we repre-
elimination techniques for term algebras [28, Chapter 23], Sént the primitive types as elements@fwe do not need

[27, 41]. Several extensions of term algebras have beerfonstants irt, so we assumar(f) > 1 for eachf € X.

shown decidable using quantifier elimination. [9] gives a _ Before defining term powers, we review the notion of a
terminating term rewriting system for quantifier elimination finite power of & structure, which is a special case of direct

in term algebras with membership constraints, [38] gives Products of structures [20, Section 9.1, Page 413].

guantifier elimination for term algebras with queues, [6]
presents quantifier elimination for the first-order theory of) '
feature trees with arity predicates. [46] shows the decid- ger andl,, = {0,.... M~ 1},;;.”]6 structurj@” Is defined
ability of any feature tree structure whose edge labels are?® fO_IIOWS' The domain af™ is the_ setc” of _aII_totaI
elements of a decidable structure, and [48] shows the de_funcnons fromZ,, to C. Each relationr € Lc is inter-
cidability of the monadic second-order theory of an infinite preted by

binary tree whose edges come from a structure with a de- C™E N — (L4 Criv ())1 —

cidable monadic second-order theory. Compared to struc- ™ () = QTP (0030} =)

tures in [46], term powers allow the additional lifted rela- The notion of term power is the central notion of this paper.
tions between trees, which perform a global comparison of

all leaves in a tree. It may be possible to combine our tech-Definition 2 (Term Power) The X-term-power ofC is a
nique with [46] to obtain a family of decidable structures structure? = Px(C), defined as follows. Lét’ = X U C.

Definition 1 (Finite Power) Letm > 0 be a positive inte-

The domain ofP is the setP of finite groundX’-terms,
where we letr(c) = 0forc € C.

The structureP has the languagd.p YU Lc U
{Ispri}. A constructorf € X is interpreted inP as in the
free term algebra:

A7 ({t5)5) = F({t5)5)

If r € Lo with ar(r) = n then[r]” is the least relatiorp
such that:

L if [r]°({c;)7) thenp({c;)7)
2. if p((ti;)7) for all i wherel < i < k, andar(f) =k

then
p((F({E)D))

Ispri IS @ unary relation symbol interpreted by

llspri]” (p) <= p e C
forall p € P.

The reason for introducinigeg, is that we allowC' to be
infinite, but we keep p finite. If there is a need to identify
explicitly some elements of’ as constants, we represent
them as some of the unary relations& L. Note further
thatif F'is aLc-formula andF” results fromF by replacing
guantifiers with quantifiers bounded by theg, predicate,
then[F]¢n = [F']"n for every valuatiom of C.

2. The Decidability Result

The main result of this paper is the following Theorem 3,

which states the existence of a quantifier-elimination algo-
rithm for term powers that is uniform with respect to the

structureC.

Theorem 3 Let Lo be a language consisting of relation
symbols . a language consisting of function symbols, and
L p the language oE-term-powers of.-structures. There
exists a quantifier-elimination algorithmp mapping L p-
sentences td.-sentences such that for every structdre
in the languagd. and for everyL p-sentence”

[F17©) = [a(F)]°
Proposition 4 follows directly from Theorem 3.

Proposition 4 Let L~ be a language consisting of relation
symbols Y. a language consisting of function symbols, and
Lp the language oE-term-powers ofl-structures. There
exists a quantifier-elimination algorithm mapping L p-
sentences td -sentences with the following property. Let
K be a family ofL¢ structures and

Kp={P=(C)|C e K}

the family of X-term-powers of structures ik. Then
[F]¥7 = [q(F)]* for everyL p-sentencer.

The following Corollary 5 captures the consequence of The-
orem 3 for the theory of structural subtyping, it follows from
the fact that the structur@ = (C, <) for finite C' and any
binary relation< C C? is decidable.

Corollary 5 Let C' be a finite set of primitive types and
< a binary relation onC' representing an order on prim-
itive types. Lel: be a finite set of covariant constructors.
Then the first-order theory of structural subtyping of non-
recursive types built from elements@fas constants using
constructors in is decidable.

Our technique can be generalized to harmbatravariant
constructors as well, see [25, Section 5.5]. The remain-
der of this paper sketches the proof of Theorem 3. When
reading the proof the reader may find it useful to com-
pare how our technique works in two special cases: term
algebras [25, Section 3.4] and structural subtyping with
two primitive types [25, Section 4]. In the case of struc-
tural subtyping with two primitive types it suffices to use
guantifier-elimination for Boolean algebras [40] instead of
the Feferman-Vaught theorem [30, 13].

2.1. Proof Plan

Our proof uses two main ideas.

The first idea is to extend® into the extended term
powerstructurePg. The domain of the new structufeg
is inspired by the observation thatfis a partial order
with a least element, then the relation ~ to defined
by 3to.[r]” (to, t1) A [r]7 (to, t2) is @ congruence relation
on P with respect to the constructor operatiofyg” for
f € X. Like [45, Page 313], we call the equivalence
classeshapesA shape is an abstraction of a term obtained
by throwing away the information about the constants oc-
curring within the term, e.gf (a, f(a,a)) andf(a, f(b, a))
both have the shapg(c®, f*(c%, ¢*)). We introduce shapes
as explicit elements ofPg, and introduce into the lan-
guage ofPr the homomorphismh mapping terms to their
shapes. Our next observation is that elements of the same
~-equivalence classtogether with the operatiorfs]” for
r € L¢ form a finite power structuré™ wherem is the
number of constants occurring in the shape€This allows
us to use the Feferman-Vaught theorem [13, 30] as a step
in our quantifier elimination algorithm. To enable the ap-
plication of the Feferman-Vaught technique, we introduce
for everyn and for everyLc-formulag({z;)?) whose vari-
ables are amondz;)? relations (|¢((x;)?)|=k)(s, (t:)})
and(|p((zi))|>k)(s, (t;)7) of arity n 4+ 1. We call these
relationscardinality constraints Our cardinality constraints
generalize the relations in [30] by introducing an additional
shape argument

The second idea of our proof is the choice of canonical
formulas, which we calktructural base formulas Struc-
tural base formulas are existentially quantified conjunctions

symbols withar(f) = ar(f) for eachf € X. The set of

- A,V
[EAY) 3 . H
shapesPs is the set of grounds-terms. When referring
Proposition 13 to elements ofPr by termwe mean an element d?; by
quantifier-free disjunction of shapewe mean an element dfs. We write X* to denote
formula struct. base formulas . .. h d 36
Proposition 25 an entity pertaining to shapes as opposed to terms;,

denote variables ranging over shapes, &ndknotes terms
that evaluate to shapes.

To specify the semantics of cardinality constraints, we
define the set§o(z1, ..., 21)]72 (s, t1,. .., tx). We make

of unnested literals that satisfy certain consistency rules.@ Parallel with finite direct products [13, Definition 2.1,
These consistency rules help justify the elimination of a Page 63], [20, Section 9.6, Page 458].

quantified variable: because they ensure that the remaining pefinition 6 (Index Sets for Products) If ¢((z;)") is an
conjuncts in the structural base formula entail all the rela- L¢-formula whose variables are amorig;)” ajné
J

tionships between the remaining variables that are a conse; \n . _
quence of the existence of W)j Im = C, then
Figure 1 gives a schematic view of our quantifier elim- [((z))]" (1)) = {i € Ln | [6(x;)21C ({t;(0))1)}
ination algorithm for term powers. On the one hand, exis-
tentially quantifying a structural base formula yields a struc- Define[|¢((xz,)")[=k]°" ((t;)") as
tural base formula because structural base formulas are ex-
istentially quantified conjunctions. On the other hand, the |[[¢(<$]‘>;'L>ﬂc ({t)7)] =k,
conjunction, disjunction, and most importantly, negation, .
of a quantifier-free formula yields a quantifier-free formula. Similarly for [lo((z;)7) >k ((t;)7)-
Quantifier elimination therefore reduces to finding an effec- In the case of term powers, we replace the notion of an index

t!ve transformation from quantifier-free fqrmulas to disjunc- i € I,, by the notion of a leaf of the tree representing a term,
tion of structural base formulas (Proposition 13), and from as follows

structural base formulas to quantifier-free formulas (Propo-
sition 25). Definition 7 (Leaf Sets for Term Powers) If s is a shape,

Applying Proposition 13, then applying existential quan- we call the set of positions of constaritin s leavesof s,
tification and then applying Proposition 25 to obtain a quan- and denote this set byaves(s). We represent each leaf as
tifier free formula corresponds to the usual method of elimi- a sequence of pair§f, i) where f is a constructor of arity
nating quantifiers from conjunctions of literals [20, Lemma k and1 < i < k. If [€ leaves(s) andsh(t) = s, then
2.7.4, Page 70]. Dually, applying Proposition 25, negat- t[I] denotes the elemente C at position! in term¢ i.e. if
ing the resulting quantifier-free formula and then applying ¢ = (f',4*)...(f",i") then
Proposition 13 corresponds to the elimination of quantifier

Figure 1. Scheme of Quantifier Elimination

n 2 1
alternations [10, 46], [28, Chapter 23]. tl] = fin (- fR(fa@)...)
Several operations in the extended strucfgeare nat- Define:
urally viewed agartial operations. We use Kleene's three- '
valued :cogic [ZICi Page 334], [22] fto gi\lle a systematic[ac- [[(b((xj%")]]?’za(g, (t;)1) =
count of partial functions in quantifier elimination, see [25, ATC "
Section 2.3]. The use of partial functions and the three- {1 € leaves(s) | [o((x;)7)I" (1)) }

valued logic in quantifier elimination can be avoided, but

)] i ~Yt Definition 8 (Extended Term Power) The extended term
we find that it naturally captures the ideas of our quantifier

power structureéPg contains term algebra operations on

elimination algorithm. terms and shapes (including selector operations and tests
asin [20, Page 61]), the homomorphisim and cardinality
2.2. Extended Term Power Structure constraint relationg¢|=Fk and |¢|>k, defined as follows:
For the purpose of quantifier elimination we define the 1. constructors in the term algebra of ternfse X
structurePy by extending the domain and the set of opera- LF17= () 5)=F ({t5)5);
tions of the term power structufe. 2. selectors in the term algebra of terms,
The domain ofPg is P = P U Ps wherePs is the set [£:172 (f (%) = ti;
of shapeglefined as follows. LeX® = {c}U{f* | f € X} 3. constructor tests in the term algebra of terms,
be a set of function symbols such thais a fresh constant [sp17=(8) = 3(t;)h. t = F({t)5),
symbol withar(¢®) = 0 and f* are fresh distinct constant Nspri]72 () = (t € C);

4. constructors in the term algebra of shapésge >
[F17= ((5)5) = f2((5)5);:

. selectors in the term algebra of shapes,
LF1P= (F2((85)5)) = t;

. constructor tests in the term algebra of shapes,
[Isp%= (8°) = 35 = = f((t5)5);

. the homomorphism mapping terms to shapes such

and total operations are strict in; when a value of atomic
formula is undefined it evaluates tmdef. Logical oper-
ations and quantifiers are interpreted as in Kleene’s three-
valued logic with truth valuegfalse, undef, true}. We say
that a formula isvell-definedff it evaluates totrue or false

(as opposed tandef) for every valuation assigning values
to free variables. The structuf@g has the property that

the domain of every partial function is expressible as a con-
junction of atomic formulas. This property enables trans-
formation of each well-defined quantifier-free formula to a
disjunction of well-defined conjunctions in Proposition 13,
see also [25, Section 2.3].

The structurePg is at least as expressive Rsbecause
the only operations or relations presenfArbut not inPg

that:
[sh1™= (f((t;)%)) =
shapified(f)(([sh] = (t;))*)

whereshapified(z)=c® if x € C andshapified(f)=f*
if fed;
8. cardinality constraint relations

are[r]” forr € Lc, and we can expreqs]” (t1,...,t)
llo((as))I=k17= (s, {t;)}) = as k
Lo)I72 (s, ()7 = & =7 () lsney=0 A [\ sh(t:) =sh(t1) (2)
1=2
and By a quantifier-free formula we mean a formula without

lo((x))|=k17= (s, {t5)7) =
o)1= (s, {t)7) | =k

whereg((x;)?7) is is a first-order formula over the
base-structure language with free variables
(z;)7, arguments is a shape, arguments;)” are
terms, andk is a nonnegative integer constant.

guantifiers outside cardinality constraints, e.g. the formula
|Vz.x < t|,s = k is quantifier-free.

We define a subclass of quantifier-free cardinality con-
straints calledorimitive formulas denotedbrim(¢) for ev-
ery Lo-sentencey: prim(¢) = |¢| = 1. Note that

[prim(¢)]™>(©) = [¢]° €)
)) o ~so for a given concrete structuéewe may replace prim-
The following equations follow from Definition 8 and Defi- e formulas withtrue andfalse. We nevertheless retain
nition 7 and can be used as an equivalent alternative defini-imitive formulas throughout the quantifier elimination al-
tion of cardinality constraints: gorithm. This ensures that our quantifier elimination al-
NINTPE (S /o | gorithm is uniform wrt. the base structuée In the se-
o) 7 (e ()] = guel we therefore assume some fixed structiend pro-
1, [[¢(<xj>§l)]]c(<cj>;?) ceeq togive a quantifier elimination glgorithm that performs
e . equivalence-preserving transformations wrt. the extended
0, —[o((z7)I"(es)}) term powerPg corresponding t®s(C).
Lo IPE (F2({s0)7), (F (i)
k n n
= 2ic o))" (s, (tis)7)]

We write [¢((t;)")|s=k as a shorthand for the atomic
formula ([¢((z})})|=k)(s, (t;)}), similarly for erals. We call these conjunctiossuctural base formulas
|9((t;)7)|s>k. This is more than a notational conve- We first introduce several auxiliary definitions. Let
nience, see [25] for an approach which introduces sets ofdistinct(u1, ..., u,) be ashorthand foh , ., _, ., u; # u;.
leaves as elements of the domairfgf and definesacylin- If ¢ is a formula andr and y two term variables, then
dric algebra interpreted over sets of leaves. The approachr —, y means that contains a conjunct of the form
in the present paper follows [30] in merging the quantifier = = f(y1,...,v,...,yx) for somef € 3. Similarly if z*
elimination for products and quantifier elimination for andy® are two shape variables theh—, y* means thap
boolean algebras. contains a conjunct of the fornf = f*(y5,..., 4% ..., 4%)

Some of the operations iRz are partial. f;(¢) is de- for somef € ¥. The relation— is the non-reflexive tran-
fined iff Is;(¢) holds, f7(¢°) is defined iff Is;s(¢°) holds. sitive closure of—,4. We next define base formulas for term
Cardinality constraintso((t;)")[==Fk and |¢((t;)})]=>k algebras and state some of their properties; [25] presents a
are defined iffA7_,sh(¢;)=t* holds. We assume that a term quantifier elimination procedure for term algebras based on
evaluates tal if some term operation is undefined. Partial these definitions.

) 2.3. Structural Base Formulas

Our quantifier-elimination algorithm is centered around
certain existentially quantified unnested conjunctions of lit-

Definition 9 (Base Formula) A base formulavith

o free term variableg:, ..

* 7x7n;

e internal non-parameter term variables, . . ., uy;
e internal parameter term variables, i, ..., Uptq;
is a formula of the form:
base(t1, ..., Up, T1y- -y Tyn) =
P m
/\ U; = ti(ul,...,un) A /\ €T; = ’LLji

i=1
A distinct(uq, . .

=1
Cy Un)

where n p + ¢, eacht; is a term of the form
fuiy, ..., u;,) for somef € %, k = ar(f), andj :
{1,...,m} — {1,...,n} is a function mapping indices
of free term variables to indices of internal term variables.

We require each base formula to satisfy the following
conditions:

C1l) base does not violate the occur-check [26, 10]:
—(u . u) for every variableu occurring inbase;

C2) congruence closure property: there are no two dis-
tinct variables u; and u; such that bothu;
fluy,...,w,) andu; = f(u,,...,u,) Ooccur as
conjuncts irbase.

The following Lemma 10 is important for quantifier
elimination in term algebras and term powers.

Lemma 10 Let3 be a base formula of the form

Fua, ..., Up, Upgis oo Uptg- Bo

whereu,41,...,u,4q are parameter variables of, and
Bo is quantifier-free. LelS,,..., Sy, be infinite sets of
terms. Then there exists a valuatiensuch that[5y]o =
true andu;Jo € S;forp+1<i<p+q.

The notion of base formula and Lemma 10 apply to terms

P as well as shapeBs in the structurePg because shapes
are also terms over the alphabét For brevity we writeu*
for an internal shape or term variable, and similariyfor a
free shape or term variablg, for terms, f* for a constructor
in the term algebra of terms or shapes, gfidor a selector
in the term algebra of terms or shapes.

Definition 11 below introducestructural base formu-
las.
thought of as a normal form for existential formulas inter-
preted overPg. A structural base formula contains a copy
of a base formula for shapeshépeBase), a base formula
for terms but without term disequalitiesefmBase), a for-

mula expressing mapping of term variables to shape vari-

ables ¢ermHom), and cardinality constraints on term pa-
rameter nodes of the term base formuwardin). A struc-

tural base formula contains several kinds of variables, clas-where each; is a term of the formy (u;,, ..

the structural base formula. Free variables are the free vari-
ables of the structural base formula; internal variables are
the existentially quantified variables. Parameter variables
are variables whose top-level constructor is not specified
by the structural base formula, in contrast to non-parameter
variables. Primitive non-parameter term variables denote
terms inC, composed non-parameter term variables denote
terms inP \ C.

Definition 11 (Structural Base Formula)
A structural base formubaith:

o free term variableg:q, ..., z,,;
e internal composed non-parameter term variables

ULy e vey Upy
e internal primitive non-parameter term variables
Ur41y -« Up,
e internal parameter term variables, 1, ..., up+q;
o free shape variabless, ..., =} .;
e internal non-parameter shape variable$, . . ., uj;;
e internal parameter shape variables:, . . ., us: . .
is a formula of the form:
Fug, . Un, U, U
shapeBase(us, ..., uSs, 25, ..., &5s) A
termBase(u, ..., Up, T1y. vy Tin) A
termHom(wy, ..., U, us, ..., uss) A
cardin(Up g1, - -+ s Uy Ups g, - - -5 Usys)

wheren = p + ¢, n® = p° + ¢°, and formulashapeBase,
termBase, termHom, cardin are defined as follows.
a5) =

p° s

N g =t (us,. ..

i=1
A distinct(us, . .., u;,)

shapeBase(us, ..., uss, 3, ..

where eaclt; is a shape term of the foriff (u; , ..
for somef € X, k = ar(f), and
j:{1,....,m?} — {1,...,n°} is afunction mapping

indices of free shape variables to indices of internal shape

The disjunction of structural base formulas can be variables.

termBase(u, ..., Un, T1, ..y Tyy) =
T p
A wi=ti(ur,...;un) AN Ispri(ug) A
i=1 i=r41
m
Xr; = Uji

i=1

., u;,) for

sified according to the positions in which they appear within somef € ¥, k = ar(f),andj : {1,...,m} — {1,...,n}

is a function mapping indices of free term variables to
indices of internal term variables.

n
termHom(u1, ..., un,ui, ..., up:) = A\ sh(u;) = s,
i=1
wherej : {1,...,n} — {1,...,n°} is a function such that
{1, dp} € {1,...,p°} and
{pt1,s-- s Jprqr C{p°+1,...,p° + ¢} (aterm variable

is a parameter variable iff its shape is a parameter shape
variable).

Ups) =P1 Ao Ay

where eachy); is a cardinality constraint of the form

H S
cardin(Up 41, -« s Un, Ups 5+ -+ 5

|p(wjy s uj)ws =k
or

lo(wjy sy i) us >k
where{jy,...,5} € {r +1,...,n} and the conjunct

sh(u;,) = w® occurs intermHom for 1 < d <. We
require each structural base formula to satisfy the
following conditions:

P0O) shapeBase does not violate the occur-check:
—(u® = pease 4°) fOr €very shape variable®

occurring inshapeBase;

P1) congruence closure property feitapeBase
subformula: there are no two distinct variablesand

u$ such that bothi; = f(uj ,...,u;) and

ui = flug,. .. ,u?k_) occur as conjuncts in formula
shapeBase;
P2) congruence closure property fosrmBase

subformula: there are no two distinct variablesand
u; such that bothy; = f(uwy,,...,w,) and

uj = f(uy, ...,) OcCcur as conjuncts in formula
termBase;
P3) homomorphism property sii: for every composed

non-parameter term variable such that

u= f(ui,...,u;) OCCUrs intermBase, if conjunct
sh(u) = u® occurs intermHom, then for some shape
variablesus, , ..., u3, termu® = f5(u3 ..., u3,)
occurs inshapeBase where f¢ = shapified(f) and for
everyr wherel < r < k, conjunctsh(u;,) = u$,
occurs intermHom; furthermore:

for every primitive non-parameter variable(i.e.
s.t.Isprju OCCUrs intermBase), conjunctsh(u) = u®
occurs intermHom whereu® is the shape variable
such thatu® = ¢® occurs inshapeBase.

As a special case, we allow quantifier-free formuydés (¢)
in cardin. Note that-(u — . u) for each term vari-
able u follows from PQ) and P3). An immediate conse-

guence of Definition 11 is the following Proposition 12.

Proposition 12 (Quantification of Structural Base) If 3

is a structural base formula and a free shape or term
variable in 3, then there exists a structural structural base
formula; equivalent tadz. 5.

For example, if6 = Fu,w®. sh(u)=u®* A x=u then3z.5
is equivalent tadu, u®. sh(u)=u* wherez=u conjunct was
removed.

We proceed to show that a quantifier-free formula can be
written as a disjunction of structural base formulas, and a
structural base formula can be written as a quantifier-free
formula.

2.4. Conversion to Structural Base Formulas

The conversion to structural base formulas builds on the
conversion to disjunctions of well-defined conjunctions of
unnested literals [25, Section 2.3], congruence closure al-
gorithms [33], and the equality (1).

Proposition 13 (Quantifier-Free to Structural Base)
Every well-defined gquantifier-free formudais equivalent
on Pg to true, false, or a disjunction of structural base
formulas.

Proof Sketch. We outline an algorithm for converting
into a disjunction of structural base formulas. Rules for per-
forming the transformation are presented in the Appendix.

First convertp into the disjunctive normal form (DNF)
using ruleDNF. These rules are valid in three-valued logic
because the three-valued domain is a distributive lattice,
- is idempotent and DeMorgan’s laws hold. For exam-
ple, =(Is¢(z) A y=f1(x)) gets transformed intels(z) Vv
y#f1(x). The resulting DNF is well-defined, but the in-
dividual conjunctions (e.g.y#f1(z)) need not be well-
defined. Applying ruleSVDNF to all conjuncts yields a
disjunction of well-defined conjunctions (e.g.# fi(x)
becomeds;(z) Ay # fi(x)). This transformation pre-
serves the equivalence because the starting disjunction was
well-defined, see [25, Section 2.3].

The next step converts the formula into the unnested
(flat) form by introducing existentially quantified variables
for subterms and free variables, using ruléslF (e.g.
x=f(f(y,z),y) becomes Ju.u=f(y,z) N x=f(u,y)
whereasy+f1(x) becomes3u.u=f,(z) A y#u). The
result is a disjunction of well-defined existentially quanti-
fied conjunctions of unnested literals. Apply ruleENG
to eliminate negations of all atomic formulas except for
disequalities (e.g. i = {f} then —ls;(z) becomes
Ispri(x)). ELNG rules may violate DNF; us®NF rules
again to reestablish the normal form (this also applies to
all subsequent rules that may violate DNF). Eliminate
selector functions and constructor tests using r@legl
(e.g. if f is a binary constructor, thetu. Is¢ (z) A u=fi(z)

becomes3u, vy, ve. z=f(v1,v2) A u=v1). The result the quantification over. can be eliminated. This leads to
contains only the relation and function symbols that the notion ofdeterminations

occur in structural base formulas. Make sure each term

variable has a corresponding shape variable by apply-Definition 14 The setlets of variable determinations of a

ing rules Shpint. For example, Jvy, ve. =f(v1, v2)
becomes Juvq, va, 2%, 0], v5. sh(v1)=v; A sh(va)=v5 A
sh(z)=2* N x=f(v1,v2). Next, apply congruence
closure CongCl) and occur checkccChk). For exam-
ple, 3z, u,vi,ve.x=f(v1,v2) AN y=f(u,v2) A u=vy
becomes Iz, u,ve.z=f(u,v2) A y=z, whereas
x=f(u,v) N u=f(x,v) becomesfalse. Use HomExp

rules to ensure that parameter term variables are mapped to 2-
parameter shape variables, non-parameter term variables
are mapped to non-parameter shape variables, and that

the homomorphism property P3) of Definition 11 holds.
RepeatCongCl and OccChk rules if needed. For example,
Fuy, vg, 2%, 05, v5. sh(vy)=v] A sh(vy)=v§ A sh(z)=a° A
x=f(v1,v2) becomes Jvy, vy, 2%, v5,v5.sh(vy)=v] A
sh(ve)=v§ A sh(z)=2° A a=f(v1,v2) A a°=f5(v],v3).
Eliminate all disequalities between term variables using
the NEQEI rule, which is justified by the negation of the
equivalence:

t1 =ty < Sh(tl) = Sh(tg) A |t1 = t2|sh(t1) =0 (4)
For example, u#x A sh(u)=u®* A sh(z)=z° becomes

((w£2%) V (us=2° A [u#£2|ys >1)) Ash(u)=u® Ash(z)=a".
Repeat previous stages (eQNF, CongCl, OccChk) if

needed. Convert all cardinality constraints into constraints

on parameter term variables, usingCD rules justi-
fied by (1), e.g.|u#v|,s=1 becomes(|u;7#vi|.s=0 A
[ug#valuy=1) V (lmn#vilug=1 A |uz7v2|uy=0)
in the context of u=f(ui,v1) A v=f(v1,v2) A
w=f%(u3, u$) Ash(u)=sh(v)=u® Ash(u;)=sh(vi)=u A
sh(ug)=sh(ve)=u3. Finally, to produce the formula
distinct(us, . . ., u},) useShDis to ensure that for every two
shape variabless; and z3 occurring in the conjunction
exactly one of the conjuncts; =z$ or z5 #z5 iS presentm

2.5. Conversion to Quantifier-Free Formulas

The conversion from structural base formulas to
quantifier-free formulas is the main phase of our quantifier-
elimination algorithm. We split this conversion into several

structural base formulg is the least sef of pairs (u*, t*)
whereu* is an internal term or shape variable and is a
term over the free variables ¢f, such such that:

1. if 2* = u* occurs intermBase or shapeBase for a
free variablex*, then(u*, 2*) € S;

if (u*,t*) € Sandu* = f*(uj,...
shapeBase or termBase then

{(uds fT(E))s o Cu, fE(E)D)} €55

3. if{(uf,t}),..., (u;,t5)} € Sand
u* = f*(uj,...,u;) occurs inshapeBase or
termBase then(u*, f*(¢],...,t5)) € S;

,uj) oceursin

4. if (u,t) € S andsh(u) = u® occurs intermHom then

(u,sh(t)) € S.

Definition 15 An internal variable v* is determinedif
(u*,t*) € dets for some term*. An internal variable is
undeterminedf it is not determined.

Lemma 16 follows by induction using Definition 14.

Lemma 16 Let 3 = 3Fu.C(z*,u*) be a structural base
formula. If (u*,t*) € dets(B) thenC(z*,u*) = u* = t*.
Corollary 17 Let 5 = F(u});.C(z*, (ul);) be a struc-
tural base formula such that each internal variahl¢ is
determined by some terri, that is, (u},t;) € dets(5).
Theng is equivalent to the well-defined quantifier-free for-
mulag’ = C(z*, (t);).

Proof. By Lemma 16 using the rule

Juu =t A plu) <= ¢(t) 5)

which holds when the term is well-defined. Ift is not
well-defined, then botls and 3’ evaluate to falses

Our goal thus reduces to eliminating all undetermined
variables from a structural base formula. We first show how

stages; Proposition 25 below summarizes the overall con-to eliminate undetermined composed non-parameter term

version process.

Consider a structural base formla= 3u*. C(z*,a*)
with free variablesz* and internal variablesi*, where
C(z*,u*) is quantifier-free. C'(z*,u*) defines a relation
between variables*, u*. If this relation has a functional
dependence from the free variabigsto some internal vari-
ableu, with a termt(z*) such thatC'(z*, a*) = u = ("),
then the internal variable can be replaced by z*) and

variables.

Lemma 18 Let « be an undetermined composed non-
parameter term variable in a structural base formua
such thatw is a source i.e. no conjunct of the form
w'=f(u1,...,u,...,ux) Occurs intermBase. Let’ be the
result of removing fronB the variableu and all conjuncts
containingu. Theng is equivalent tg3'.

Proof. The conjunct containingh(u) = «® in termHom for some shape variable® where eachy; is a cardinality
is a consequence of the remaining conjunctg}jrso we constraint of the forn|¢;|=k) (u®, u, (u;)7) or of the form
may drop it. The only remaining occurrence:ofs in the (|¢il>k)(u®,u, (u;)}). Thena can be effectively trans-
atomic formulau=f(v) of termBase subformula. Apply- formed into the formulax’ which is a disjunction of for-
ing (5) therefore makes disappear front’. m mulas of the form

= n -) — S q l .
Corollary 19 (Composed Term Variable Elimination) @y = Nizash(ui) = ANy ¥5

Dropping all undetermined composed non-parameter term,, .. eachy, is of the form(|¢} .|=k)(us, (u;)") or

] . ,J 4,7 ’ J
varlfables from a stru_ctural ba;e formula t(_)gether with the (16, ;1=k)(u, {u;)™). The resulting formulay’ is equiv-
conjuncts that contain them yields an equivalent structural

J
alent toa on all term powersPg.
base formula.

i Lemma 23 (Term Parameter Elimination) Every struc-
Proof. If a structural base formula has an undetermined tural base formula3 without undetermined composed non-

non-parameter composed term variable, then it has an Uny, 3 meter term variables can be effectively transformed
determined non-parameter composed term variable thatis g, 4 equivalent disjunction of structural base formulas
source. Repeatedly apply Lemma 18 to eliminate all unde'without undetermined term variables.

termined non-parameter term variables.
Our next goal is to eliminate undetermined primitive Proof. We show how to eliminate undetermined parameter

non-parameter term variables and undetermined parametef€™m variables and undetermined primitive non-parameter
term variables. The key insight is that these variables arel€'m variables frong. .

related to the determined variables of a structural base for- L€tu be an undetermined parameter term variable or an
mula only through the relations that are expressible in the Undetermined primitive non-parameter term variableu If
product structure of the terms of the same shape. To clar-S & Parameter variable thendoes not occur inermBase

: . . + +
ify the connection with the product-structure, ketc Pg because-(u —* ') for all ', and—(u" —* w) for all u”
be a shape an®®) = {t € P | sh(t) = s}. Define since there are no undetermined composed non-parameter

n : P®) — C* whereC* is the set of finite sequences term variables. Therefore, occurs only intermHom and
of elements fromC, as follows: n(c) = cif ¢ € C; cardin. If u is a primitive non-parameter term variable, then

n(f(tr, ... te)) = nt1) - ... n(ty) wherel; - I, denotes termBase contains only one occurrence af namely the
the concatenation of sequendgsandls. Letn, = n|pe) conjunctlsPR|(u), which is a consequence of the conjuncts
be the restriction ofj to the setP(*). Letm = |leaves(s)|. sh(u) = v in termHom andw® = ¢* in shapeBase, so we

droplspri(u). In both cases, the resulting formula contains
Observation 20 The map, is an isomorphism of the sub- « only in termHom andcardin.

structure of P with the domainP(*) and the finite power Let u* be the shape variable such thét= sh(u) occurs
C™. Moreover, in termHom. Let, ..., v, be all conjuncts otardin that
. containu. Eachy; is of the form|@|.s > k; or || = ks

()72 (s, ()] = 1[I (s (8))7))] and for each variable’ free in¢ the conjuncth(u) = us

occurs intermHom. The structural base formula can there-
fore be written in the formia*. ¢ A a wherea has the form

as in Lemma 22. Applying Lemma 22 we eliminateAp-
plying rulesDNF results in a disjunction of structural base
Lemma 21 Letk > 0. Consider a formulax of the form formulas. By repeating this process we eliminate all unde-
a = Ju. NP ¥ where eachy; is a cardinality constraint Fe_rmined parameter term varigbles and undetermined prim-
of the form(|¢; |=k) (u, (u;)7) or (|¢i|>k) (u, (u;)?). Then itive non-parameter term variables from a structural base

The following is the quantifier-elimination property that im-
plies Feferman-Vaught theorem [13, 30], [20, Section 9.6,
Page 460] for the case of finite products.

o can be effectively transformed intd wherea’is a dis- formula. Each of the resulting structural base formulas con-
junction of conjunctions of cardinality constraints of the tains no undetermined term variablas.

form ([¢7|=k)((u;)}) and (|¢|=F)((u;)7). The resulia’ Finally, we show how to eliminate the undetermined shape
is equivalent tax on each finite powet™. variables.

Lemma 22 is a direct consequence of Lemma 21 and Ob-

servation 20, Lemma 24 (Shape Variable Elimination) Every struc-

tural base formulas without undetermined term variables

Lemma 22 Letk > 0. Consider a formulax of the form can be effectively transformed into an equivalent disjunc-
tion of structural base formulas without undetermined
a = Ju. sh(u) =us AN sh(u) =us AL s variables.

Proof Sketch. It remains to eliminate undetermined shape ables along with the conjuncts that contain them. The result
variables fromg3. This process is similar to term algebra is an equivalent formula because Lemma 10 implies that it
quantifier elimination [25, Section 3.4]; the key ingredient is always possible to find the values of eliminated parame-
is Lemma 10, which relies on the fact that undetermined ter variables, so their existence is a redundant condition. We
parameter variables may take on infinitely many values. Wetherefore eliminate all undetermined shape variables and the

therefore ensure that the conjuncts outsitigpeBase do

resulting structural base formulas contain only determined

not constrain the undetermined parameter shape variablesariablesa

to denote the values from a finite set.

Consider an undetermined parameter shape varigble
u* does not occur intermHom, because all term vari-
ables are determined and a conjungtsh(u) would im-
ply thatu® is determined as wellu® can thus occur only
in cardin within some cardinality constrain|,=k or
|| >k. Moreover, formulap in each such cardinality con-
straint is closed: otherwisgwould contain some free term
variableu and since all term variables are determined,
would be determined as well.

Let »* denote some shape Becausey is a closed for-
mula, |¢| is equal to0 if [¢]¢=false and to the shape size
m = |leaves(s)| if [¢]¢=true. (The fact that closed formu-
las reduce to the constraints on the domain size appears i

straints become constraints on the size of the shape.)
transformg into the disjunctions; Vv . of base formulas
wheres; = 8 A prim(¢) andgB2 = S A prim(—¢). Con-
straints of the formprim(—¢) A |¢|,s=k reduce to0=k,
we replace them byrue if k=0 and false if ££0. On
the other handprim(¢) A |¢|.s=k denotes the constraint
m = k andprim(¢) A |@|.s>k denotesm>k. Hence,
by repeating this process for every formutawhich ap-
pears in some cardinality constraif],s=k or |p|.s>k,
we obtain a conjunction of linear constraints of the form
m = k andm > k. These constraints specify a finite
or infinite setS C {0,1,...} of possible sizesn. Let
A = {s | |leaves(s)| € S}. By nature of our constraints,
if the setS is infinite then it contains an infinite interval
of form {mg, mg + 1,...}, so the setd is infinite. If &
contains a unary constructor afdis nonempty, them is
also infinite. If3 contains no unary constructors afds
finite then A is finite and we can effectively computé.
The cardinality constraints containing are thus equiva-
lent to\/7_, u® = t; whereA = {#5,...,t5}. Transform
the structural base formufainto a disjunction of formulas
\/%_, B; whereg; results fromg by replacing the cardinal-
ity constraints containing® with «* = ¢;. Convert eacly;

to a structural base formula by labelling the subterm# of
with internal shape variables usiti\NF rules, and by do-

ing case analysis on the equality between the new internal

shape variables, usirkhDis rule. By repeating this process
for all shape variableg® where the sef is finite, we obtain
base formulas where the sétis infinite for every undeter-
mined parameter shape varialfe We may then eliminate

all undetermined parameter and non-parameter shape vari-

10

Proposition 25 (Struct. Base to Quantifier-Free)Every
structural base formula can be effectively transformed to
an equivalent well-defined quantifier-free formgla

Proof. Apply Corollary 19, then Lemma 23, and then
Lemma 24. All variables in the resulting disjunction of
structural base formulas are determined, so each of them
is equivalent to some quantifier free formuta by Corol-

lary 17. The disjunctiof/, ¢; is the desired quantifier-free
formulag. m

Summary of Our Quantifier Elimination Algorithm.
Consider a closed p-formula¢. Converty to an extended-
term-power formulap; using (2). Converty; to prenex

[30, Theorem 3.36, Page 13]. In term powers, these Con_q"orm ¢2. Eliminate all quantifiers fromgp, starting from the

We

innermost one, as follows. ¥, = (Q;u});Jv*. ¢ wherey

is quantifier-free then apply Proposition 13, Proposition 12
and then Proposition 25. if; = (Q;u})vv*. ¢ then con-
sider(Q;u}).~3v*. =y and proceed as in the previous case.
By applying Proposition 13 and Proposition 25 to the result-
ing variable-free formula we obtain a propositional combi-
nation ofprim(¢) formulas. Theorem 3 then follows by (3).

Acknowledgements We thank Albert Meyer, Jens Pals-
berg, Tim Priesnitz, Stefan Ratschan, Jakob Rehof, Zhen-
dong Su, and anonymous reviewers for useful comments.

References

[1] A. Aiken, D. Kozen, and E. Wimmers. Decidability of
systems of set constraints with negative constraints.
Information and Computatiqri22, 1995.

[2] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing

with conditional types. IfProc. 21st ACM POPLpages

163-173, New York, NY, 1994.

H. Ait-Kaci, A. Podelski, and G. Smolka. A feature

constraint system for logic programming with entailment.

In Theoretical Computer Scienceolume 122, pages

263-283, January 1994.

R. M. Amadio and L. Cardelli. Subtyping recursive types.

Transactions on Programming Languages and Systems

15(4):575-631, 1993.

L. O. Andersen.Program Analysis and Specialization of

the C Programming Languag®hD thesis, DIKU,

University of Copenhagen, 1994.

R. Backofen. A complete axiomatization of a theory with

feature and arity constraint§ournal of Logic

Programming 24:37-72, 1995.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

W. Charatonik and L. Pacholski. Set constraints with
projections are in NEXPTIME. I®roc. 35th Annual
Symposium on Foundations of Computer Science (FOCS)
pages 642-653, 1994.

W. Charatonik and A. Podelski. Set constraints with
intersection. IrProc. 12th IEEE LICSpages 362-372,
1997.

H. Comon and C. Delor. Equational formulae with
membership constrainttnformation and Computatign
112(2):167-216, 1994.

H. Comon and P. Lescanne. Equational problems and
disunification.Journal of Symbolic Computatipii(3):371,
1989.

K. J. Compton and C. W. Henson. A uniform method for
proving lower bounds on the computational complexity of
logical theories Annals of Pure and Applied Logic
48(1):1-79, July 1990.

R. Davies and F. Pfenning. Intersection types and
computational effects. IRroc. ICFP, pages 198-208,
2000.

S. Feferman and R. L. Vaught. The first order properties of
products of algebraic systemSundamenta Mathematicae
47:57-103, 1959.

J. Ferrante and C. W. Rackoffhe Computational
Complexity of Logical Theoriesolume 718 ofLecture
Notes in MathematicsSpringer-Verlag, 1979.

T. Freeman and F. Pfenning. Refinement types for ML. In
Proc. ACM PLD| 1991.

A. Frey. Satisfying subtype inequalities in polynomial
space.Theoretical Computer Scienc277:105-117, 2002.
N. Heintze and O. Tardieu. Ultra-fast aliasing analysis
using CLA: A million lines of C code in a second. Rroc.
ACM PLDI, 2001.

F. Henglein and J. Rehof. The complexity of subtype
entailment for simple types. IRroc. 12th IEEE LICS
pages 352-361, 1997.

M. Hoand and J. C. Mitchell. Lower bounds on type
inference with subtypes. IRroc. 22rd ACM POPLpages
176-185, 1995.

W. Hodges.Model Theoryvolume 42 ofEncyclopedia of
Mathematics and its Application€ambridge University
Press, 1993.

T. Jim and J. Palsberg. Type inference in systems of
recursive types with subtypindpttp:
IImww.cs.purdue.edu/homes/palsberg/ , 1999.
M. Kerber and M. Kohlhase. A mechanization of strong
Kleene logic for partial functions. In A. Bundy, editor,
Proc. 12th CADEpages 371-385, Nancy, France, 1994.
Springer Verlag, Berlin, Germany. LNAI 814.

S. C. Kleenelntroduction to Metamathematic®. Van
Nostrand Company, Inc., Princeton, New Jersey, 1952. fifth
reprint, 1967.

D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient
recursive subtypingMathematical Structures in Computer
Science5(1):113-125, 1995.

V. Kuncak and M. Rinard. On the theory of structural
subtyping. Technical Report 879, Laboratory for Computer
Science, Massachusetts Institute of Technology,

http://www.mit.edu/"vkuncak/papers/ , 2003.

11

(26]

[27]

(28]

(29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

J. W. Lloyd. Foundations of Logic Programming
Springer-Verlag, 2nd edition, 1987.

M. J. Maher. Complete axiomatizations of the algebras of
the finite, rational, and infinite treeProc. 3rd IEEE LICS
1988.

A. l. Mal'cev. The Metamathematics of Algebraic Systems
volume 66 ofStudies in Logic and The Foundations of
Mathematics North Holland, 1971.

J. C. Mitchell. Type inference with simple type¥ournal of
Functional Programmingl(3):245-285, 1991.

A. Mostowski. On direct products of theorie¥ournal of
Symbolic Logig17(1):1-31, March 1952.

M. Mueller and J. Niehren. Ordering constraints over
feature trees expressed in second-order monadic logic.
Information and Computatigri59(1/2):22-58, 2000.

M. Mueller, J. Niehren, and R. Treinen. The first-order
theory of ordering constraints over feature tré@screte
Mathematics and Theoretical Computer Science
4(2):193-234, September 2001.

G. Nelson and D. C. Oppen. Fast decision procedures
based on congruence closudeurnal of the ACM (JACM)
27(2):356-364, 1980.

J. Palsberg and P. M. O’Keefe. A type system equivalent to
flow analysis.Transactions on Programming Languages
and Systemd 7(4):576-599, July 1995.

F. Pottier. Simplifying subtyping constraints: A theory.
Information and Computatigri70(2):153-183, Nov. 2001.
M. Presburgeriiber die vollsandigkeit eines gewissen
systems der aritmethik ganzer zahlen, in welchem die
addition als einzige operation hervortritt. Gomptes
Rendus du premier Congs des Matematiciens des Pays
slaves, Warsawgages 92-101, 1929.

W. C. Rounds. Feature logics. In J. v. Benthem and A. ter
Meulen, editorsHandbook of Logic and Language
Elsevier, 1997.

T. Rybina and A. Voronkov. A decision procedure for term
algebras with queue®\CM Transactions on Computational
Logic (TOCL) 2(2):155-181, 2001.

V. Simonet. Type inference with structural subtyping: A
faithful formalization of an efficient constraint solver.
Submitted for publication, Mar. 2003.

T. Skolem. Untersuchungdiber die Axiome des
Klassenkalkls andiiber “Produktations- und
Summationsprobleme”, welche gewisse Klassen von
Aussagen betreffen. Skrifter utgit av Vidnskapsselskapet i
Kristiania, |. klasse, no. 3, Oslo, 1919.

T. Sturm and V. Weispfenning. Quantifier elimination in
term algebras: The case of finite languages. In V. G.
Ganzha, E. W. Mayr, and E. V. Vorozhtsov, editors,
Computer Algebra in Scientific Computing (CASTYM
Muenchen, 2002.

Z. Su, A. Aiken, J. Niehren, T. Priesnitz, and R. Treinen.
First-order theory of subtyping constraints.Rroc. 29th
ACM POPL, 2002.

A. Tarski. Arithmetical classes and types of algebraically
closed and real-closed fieldBull. Amer. Math. So¢55,

64, 1192, 1949.

A. Tarski. Arithmetical classes and types of boolean
algebrasBull. Amer. Math. So¢55, 64, 1192, 1949.

[47]

(48]

[45] J. Tiuryn. Subtype inequalities. Proc. 7th IEEE LICS

1992.

[46] R. Treinen. Feature trees over arbitrary structures. In
P. Blackburn and M. de Rijke, editorSpecifying Syntactic
Structureschapter 7, pages 185-211. CSLI Publications

and FolLLlI, 1997.

1145 ofLecture Notes in Computer Sciend®96.

structures.Theoretical Computer Science
275(1-2):311-346, Mar. 2002.

[49] M. Wand, P. M. O’Keefe, and J. Palsberg. Strong
normalization with non-structural subtypiniylathematical

Structures in Computer Sciendg3):419—430, 1995.

Appendix: Transforming Quantifier Free Formulas
to Structural Base Formulas

Rules are applied modulo associativity and commutativity of
and symmetry of equality-. £ denotes a sequence of expressions
The result of substituting termfor variablez in formula

Cis denoted” (z +— t).

DNF: Disjunctive Normal Form

—|EP A Q)] — C[-PV =Q]

Cl
Cl=(PV Q)] = C[-PA-Q]
Cl==P] — C[P]
CIPA(QVR) = Cl(PAQ)V (PAR)

WDNF: Disjunction of Well-Defined Conjunctions

F — DomCI(F) whereF in DNF
DomCI(\/iCi) = ViDomCI(C’i)
DOmC|(/\¢L¢) = /\iDomCI(Li)

DomCI(R(f)) = R(%) A DefCl(?)
DomCI(—R(%)) = —~R(%) A DefCI(¥)
DefCI(D) = A{D;(3) |
f apartial function symbol of arity,
Dy the relation specifying the domain gf
f(3) a subterm occuring in }

UNF: Unnested Form

C1 Vv (Fy.Ca[f(7)]) — C1 V (3y3Fz.2=f(Z) A C2[z]) where
C.[f(z)] a conjunction of literals

occurence&’; [] not in a literal of formw = f(Z)

CyV (3g.C2) — C1 V (FyFu.u=z A Ca(x — u)) where

u a fresh variable

z a free variable s.tC> contains na.'=z for u’ bound

ELNG: Negative Literal Elimination

Cl-lsy(y)] — Cllseri(y) V V{lsg(y) [g € Z\{f}}]
Cllseri(y)] — ClV{lsg(y) [g € 2 }]

Cllsys(y°)] = Cllses () V V{lsgs (v°) | g € T\ {S} }]
Clrlses (y°)] — ClV{lsg=(y°) | g € 2}]

Cl=|lus=k] — C[|¢|us>k+1VV) |lus=i]
Cl=I¢luw k] — CIViZy |lus=i]

I. Walukiewicz. Monadic second-order logic on tree-like

V. Trifonov and S. Smith. Subtyping constrained types. In
Proc. 3rd International Static Analysis Symposjwolume

12

SelEl: Selector and Test Elimination

CiV (HQ*CQ A\ |Sf* (y*)) —
Ci1Vv (3g*3z.Cany™ = f*(z"))

C1V (35".Co Au™=F((u)i) Ao =f7 (u")) —
Ci1V 3y .Co Au™=f"((uf):) Nv*=uj)
Shplnt: Shape Introduction
C1V (Ela*.CQ) —C1V

u occurs inCs

u® fresh shape variable
(> contains neh(u) = u®

(Fa*, v®. sh(u)=u® A C)

CongCl: Congruence Closure

C1V (37" FuiFus. ui=us A C2) —
C1V (37" Fui. Co(us — ul))

Clui=f"(z") ANuz=f"(2")] = Clui=f"(2") N uz=ui]
=" (z) My (&)~ Clfkel, 1”24
Clu=f"(a") Nu=f"(0")] —

Clu™=f(u") ANu"=f"(0") A Aiuj =v;]

Clu*#u*] — Clfalse]

*

Clu*=u*] — Cltrue]
C[P A false] — Clfalse]
C[P V false] — C[P]
C[P A true] — C[P]
C[P V true] — Ctrue]

OccChk: Occur Check

Cy V 8 — C1 where
8 = Ju.Cs for Co conjunction of literals
u 4 u for some variable:

HomExp: Homomorphism Property and Expansion

C[sh(u)=ui A sh(u)=u3] —
C[sh(u)=uj A sh(u)=u3 A uj = u3]
C1 V (3g*.Ca Av=f(u) A sh(v)=v°) —

Cy VvV (3y*3w*.Co Av=f(a) A sh(v)=v°
AV =f2(u°) A Nish(ui) = uj)
C1V (3y".Ca ANv°=f5(u)/\sh()=v°) —
C1 V (35" Fa.Co A°=f5(T°) A sh(v)=v
ANv=f(a) A Nish(u;) = ui)

NEQEI: Term Disequality Elimination

Clur#uz A sh(ui)=uj Ash(uz)=u3] —
Cl(ul #us V (ul # uz Afur # uzlus > 1)) A
sh(ui)=ui A sh(uz)=u5]
CCD: Cardinality Constraint Decomposition

Cl[kb((((uig)5))i)lus=k] —
[V{/\J|¢’(<uw)|u5 =k; | Ejk; = k} A CQ]

)i
Crllo((f ({uig);))) =k] —
CrlVAN o ((uiz)i)lus 2k; | Ejk; =k} A Co

whereC; contains

w = f((u3)i) A Nijs
ShDis: Shape Distinction
C1V (Ea*.C’g) — C1V (3

h(uij)=uj

a” . (uf = us Vou; #uj) ACy)

