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Abstract Security vulnerabilities can be seen as excess undesirable functionality
present in a software system. We present several mechanisms that can either excise
or change system functionality in ways that may 1) eliminate security vulnerabilities
while 2) enabling the system to continue to deliver acceptable service.

1 Introduction

We discuss several automatic techniques for changing program behavior in ways
that may eliminate security vulnerabilities. We take the perspective that vulnerabil-
ities are undesirable functionality and therefore focus on techniques that change or
even eliminate some of the functionality that the system offers to users.

One of the observations motivating our approach is that many software systems
provide substantially more functionality than users require, desire, or are even aware
of. There are several reasons for this phenomenon:

• General-Purpose Software: Because of the high cost of developing software
systems and the consequent need to amortize this cost over many users, many
software systems are designed to contain functionality for a wide range of users.
Because users have such varying needs, each user winds up using only a small
fraction of the total functionality.

• Feature Accretion: As software systems go through their life cycle, developers
almost always preserve existing features (to ensure backwards compatability)
while adding new features. Over time the software accumulates more and more
functionality, much of it obsolete and designed for operating contexts that have
changed since the introduction of much of the functionality.
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• Subsystem Reuse: It is often quicker to build systems by incorporating exist-
ing subsystems than by building the desired functionality from scratch. But good
building blocks are often more general and contain more functionality than nec-
essary for the specific usage scenario at hand.

• Development Errors: Developers have been known to produce software sys-
tems that contain errors. These errors can be the result of simple coding errors,
specification misunderstandings, incorrect specifications, or misunderstandings
of language features, library interfaces, or other aspects of the software develop-
ment environment, to name a few possibilities.

• Vulnerability Insertion: Malicious attackers may insert vulnerabilities into
widely used subsystems so that they can successfully attack systems that in-
corporate the subsystems. One can view the vulnerability as simply additional
undesirable functionality.

A disadvantage of this kind of functionality oversupply is that (from the perspec-
tive of any given user) it produces systems with large attack surfaces (each addi-
tional piece of functionality typically increases the attack surface) in which most of
the attack surface comes from functionality that the user does not need and may not
even be aware of. So automatic techniques that remove superflous functionality can
significantly reduce the size of the attack surface and eliminate the corresponding
vulnerabilities all without substantially impairing the utility of the system for the
current user.

We also consider techniques that may affect desired functionality. The observa-
tion here is that users may be willing to accept different variants of a given piece
of desired functionality. If this functionality contains a vulnerability, it may be pos-
sible change the functionality to eliminate the vulnerability while still providing
acceptable service to users.

We next discuss several techniques that we have used successfully to change
desired functionality or eliminate undesirable functionality.

2 Input Rectification

Most errors are exposed only by a few inputs — errors that occur on most inputs
are usually detected and eliminated during testing. The goal of input rectification
is to automatically convert inputs that expose errors into inputs that the system can
process without error [14, 19, 16].

One approach is to identify a set of constraints that characterize the comfort zone
of the software system — a set of inputs that are similar to those the system has
seen before and for which it is almost certain to deliver expected and acceptable
behavior [16]. The rectifier then automatically converts each input into an input that
is within the comfort zone, typically by discarding pieces of the input that violate
the constraints. The goal is to enable the system to process a safe input that is close
as possible to the original input (and therefore should deliver most of the benefit to
the user) while ensuring that the input is within the comfort zone of the program.
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We have demonstrated that this approach can successfully eliminate vulnerabil-
ities in the Pine email client [16]. The presented results use handcrafted rectifiers.
We anticipate that it should be possible to build rectifiers automatically using the
following approach:

• Fault Attribution: Given an input that exposes an error, use taint tracing [8] to
identify the input regions involved in the computation that contains the error.

• Constraint Synthesis: Synthesize a constraint that the error-exposing input re-
gions fail to satisfy.

• Constraint Enforcement: Perhaps using techniques similar to data structure re-
pair [2, 6, 5, 4, 3, 3], deploy a constraint enforcement technique to automatically
convert the input to an input that does not contain the error.

If successful, this approach would make it possible for a system to automatically
analyze an attack to produce a rectifier that eliminates the attack from all future
inputs.

3 Functionality Excision

It is often possible to view a computation as a collection of tasks [20]. It is pos-
sible to empirically partition the tasks in a program into critical and forgiving
tasks [17, 1, 15]. Eliminating a critical task usually causes the computation to fail.
Eliminating a forgiving task may introduce some noise into the result that the com-
putation produces, but typically does not cause the program to fail [17, 15]. It is
possible to generate behavioral variation by eliminating forgiving tasks, ideally un-
der the direction of a blame assignment mechanism that analyzes a successful attack
to find the task that it exploited. It is possible to view this mechanism as eliminat-
ing the functionality of the eliminated task. Once again, this mechanism may make
it possible to vary the behavior of the system (in a directed way) to automatically
avoid vulnerabilities.

It is also possible to apply this mechanism (at a potentially finer granularity)
to less structured programs by excising code at the granularity of statements, ba-
sic blocks, procedures, modules, or other program units [14]. The basic idea is to
find and eliminate parts of the system that contain counterproductive or undesirable
functionality. Examples of potentially dangerous functionality that may be suitable
targets for this mechanism include interpreters for embedded scripting languages
and vestigial pieces of functionality left over from early versions of the system.

4 Functionality Replacement

It is often possible to find multiple implementations of the same functionality.
Switching in different implementations can deliver combinatorially generated sys-
tem variation that may change the system enough to neutralize an attack. We also en-
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vision the use of machine learning techniques to automatically synthesize alternate
implementations of different pieces of functionality. Even in situations in which it is
difficult to automatically synthesize a complete version of the desired functionality,
these automatically synthesized alternate implementations may enable the system
to deliver acceptable service to its users while eliminating the vulnerability present
in the original implementation.

5 Loop Perforation

Many programs contain loops. For many of these loops, reducing the number of
executed loop iterations reduces the amount of time required to execute the com-
putation. This transformation typically changes the result that the system produces.
But it is often possible to find time-consuming loops which still produce acceptable
results after this transformation [11, 9]. This mechanism can produce, automatically,
a range of computations with different implementations that all provide acceptable
results. If the current implementation of the loop has a vulnerability, it may be pos-
sible to eliminate the vulnerability by changing the number of iterations the loop
performs. Consider, for example, a loop that copies data from one buffer to another.
If the second buffer is too small to hold the data, eliminating a block of the last loop
iterations may eliminate a buffer overflow vulnerability.

6 Dynamic Reconfiguration via Dynamic Knobs

Many systems come with static configuration parameters. Changing the parameter
settings can often either expose or eliminate vulnerabilities — for example, miscon-
figured systems often exhibit vulnerabilities.

We have recently developed a technique that can automatically convert static
configuration parameters into dynamic configuration patterns that can be changed
without requiring the system to restart [10]. This mechanism should make it possible
to automatically eliminate misconfiguration vulnerabilities without disrupting the
execution of the system. It can also make it possible to dynamically change the
configuration so that the system continually presents a different configuration to
potential attackers.

7 Observed Invariant Enforcement

It is possible to observe normal executions of the system to build a model (in the
form of a set of invariants) that characterizes that normal execution [13]. Because
normal executions do not usually exhibit vulnerability exploitations, such exploita-
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tions may fall outside the model. It is often possible to force the system back within
its normal operating mode by changing the state to satisfy any violated invari-
ants [13]. This invariant enforcement can eliminate otherwise exploitable security
vulnerabilities [13].

8 Cyclic Memory Allocation

Memory leaks can cause a system to fail by exhausting its address space. It is pos-
sible to eliminate memory leaks via the simple expedient of statically allocating
a buffer, then cyclically allocating items out of that buffer (instead of allocating a
new element each time) [12]. While this allocation strategy may wind up allocat-
ing multiple live elements in the same buffer slot, the experimental results indicate
that it can enable systems to survive otherwise fatal memory leaks while degrading
gracefully in the presence of overlaid live elements.

9 Failure-Oblivious Computing

Memory addressing errors such as null pointer dereferences or out of bounds mem-
ory accesses can cause programs to fail and open up vulnerabilities for attackers
to exploit. Failure-oblivious computing dynamically checks for memory errors, dis-
carding out of bounds or otherwise illegal writes and manufacturing values for ille-
gal reads. For the tested set of benchmark programs, this technique closes memory
vulnerabilities and enables programs to provide service to legitimate users [18].

10 Conclusion

Security vulnerabilities can be seen as undesirable functionality present in a system.
One way to eliminate such vulnerabilities is to change the functionality in a way
that eliminates the vulnerability. We have identified and experimentally evaluated
several mechanisms that can change the functionality of the program in ways that
may eliminate security vulnerabilities while still leaving the program able to provide
acceptable functionality.
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