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Abstract

This paper presents a new static type system for multi-
threaded programs; any well-typed program in our system is
free of data races. Our type system is significantly more ex-
pressive than previous such type systems. In particular, our
system lets programmers write generic code to implement
a class, then create different objects of the same class that
have different protection mechanisms. This flexibility en-
ables programmers to reduce the number of unnecessary syn-
chronization operations in a program without risking data
races. We also support default types which reduce the bur-
den of writing the extra type annotations. Our experience
indicates that our system provides a promising approach to
make multithreaded programs more reliable and efficient.

1 Introduction

The use of multiple threads of control is quickly becoming
a mainstream programming practice. But interactions
between threads can significantly complicate the software
development process. Multithreaded programs typically
synchronize operations on shared data to ensure that
the operations execute atomically. Failure to correctly
synchronize such operations leads to data races, which occur
when two threads concurrently access the same data without
synchronization, and at least one of the accesses is a write.

Because data races can be one of the most difficult pro-
gramming errors to detect, reproduce, and eliminate, many
researchers have developed tools that help programmers de-
tect or eliminate data races. These tools include systems
that monitor the execution of a program to dynamically de-
tect potential races [18, 33], static race detection systems
[34, 26, 17], and formal type systems that ensure race-free
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programs [9, 21, 19, 20, 3].

This paper presents a new static type system for multi-
threaded object-oriented programs; this type system guaran-
tees that any well-typed program is free of data races. Every
object in our system is associated with a protection mech-
anism that ensures that accesses to the object never create
data races. Our system enables programmers to specify the
protection mechanism for each object as part of the type of
the variables that refer to that object. The type can spec-
ify either the mutual exclusion lock that protects the object
from unsynchronized concurrent accesses [4], or that threads
can safely access the object without synchronization because
either 1) the object is immutable, 2) the object is accessi-
ble to a single thread and is not shared between threads, or
3) the variable contains the unique reference to the object.
The type checker then uses these type specifications to stat-
ically verify that a program uses objects only in accordance
with their declared protection mechanisms.

Unlike previously proposed type systems for race-free pro-
grams [21, 19, 20, 3], our type system also lets programmers
write generic code to implement a class, then create differ-
ent objects of the class that have different protection mech-
anisms. We do this by introducing a way of parameterizing
classes that lets programmers defer the protection mecha-
nism decision from the time when a class is defined to the
times when objects of that class are created.

Without this flexibility, programmers often must either write
a program that acquires redundant locks just to satisfy the
type checker, or unnecessarily duplicate code to produce
multiple versions of the same classes; these versions differ
only in the code that implements the protection mechanisms.

One of the challenges in designing an effective type system is
to make it powerful enough to express common programming
paradigms. One trivial way to guarantee race-free programs,
for example, is to require every thread to acquire the lock
on every object before accessing the object. But that would
introduce an unnecessary synchronization overhead because
programmers often know from the logic of their programs
that acquiring certain locks is not necessary.

Our type system is expressive enough to verify the absence
of races in many common situations where a thread accesses
an object without acquiring the lock on that object. In
particular, it accommodates the following cases:
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• Thread-local objects: If an object is accessed by only
one thread, it needs no synchronization.

Consider, for example, a Vector class. In our system,
programmers can write a generic Vector implementation.
Some Vector objects can then be created to be thread-
local — these objects can be accessed without any
synchronization. Other Vector objects can be shared
between multiple threads — these objects will contain
their own locks that must be acquired by a thread before
the thread accesses the objects.

Moreover, a program can also create thread-local Vec-
tor objects containing only thread-local elements, and
thread-local Vector objects containing shared elements,
all from the same generic Vector implementation.

With previous systems, the only way to do this is to have
different versions of the Vector class, one for each case.
These versions contain the exact same code except for
synchronization operations.

• Objects contained within other objects: Some-
times, an object is contained within an enclosing data
structure. In such cases, it might be redundant to ac-
quire the lock on that object since the same lock that
protects the enclosing data structure also protects that
object.

Consider, for example, a Stack implementation that
internally uses a Vector. In our system, a program
can create a Vector object from the same generic Vector
implementation such that the Vector object inherits the
protection mechanism of the enclosing Stack object.

If the program then creates a Stack object that is thread-
local, no synchronization operations will be necessary to
access the Stack or the Vector. If the program creates
a shared Stack object, the same lock that protects the
Stack will also protect the Vector.

Previous systems needed multiple Vector and Stack
implementations to support these different cases.

• Objects migrating between threads: Some pro-
grams use serially-shared objects that migrate from one
thread to another. Although these objects are shared
by multiple threads, they are accessed only by a single
thread at a time. Operations on these objects can there-
fore execute without synchronization. Our type system
uses the notion of unique pointers [29, 7, 23] to support
this kind of sharing.

Our system also supports a novel technique that lets
the programs build collection classes that contain unique
objects. For example, programmers can implement a
generic Queue class and use it to create a Queue of
unique objects. This is useful in a producer-consumer
paradigm where producer threads insert items into the
Queue and consumer threads extract them from the
Queue.

• Read-only objects: Programs often use read-only
objects that are initialized once by a single thread,
then read by multiple threads. Because none of the
parallel threads writes a read-only object after it is
initialized, they can all access the object concurrently

without synchronization and without data races. Our
system supports this sharing pattern.

Because our type system is expressive and yet guarantees
race-free programs, programmers can apply efficient protec-
tion mechanisms without risking synchronization errors. For
example, the Java libraries contain two different classes to
implement resizable arrays: the Vector class and the Ar-
rayList class. The methods in the Vector class are syn-
chronized, therefore, multiple threads can use Vector objects
without creating data races. But Vectors always incur a syn-
chronization overhead, even when used in contexts where
synchronization is unnecessary. On the other hand, the
methods in the ArrayList class are not synchronized, there-
fore, ArrayLists do not incur any unnecessary synchronization
overhead. But programs that use ArrayLists risk data races
because there is no mechanism in Java to ensure that Ar-
rayLists are accessed with appropriate synchronization when
used in multithreaded contexts.

Our system enables programmers to implement a single
generic resizable array class. If a program creates a resizable
array object to be concurrently shared between threads, our
system ensures that accesses to the array are synchronized.
If an array is not concurrently shared, our system allows the
program to access the array without synchronization.

Our system also provides default types that reduce the
burden of writing the extra type annotations. In particular,
single-threaded programs incur almost no programming
overhead. We implemented several multithreaded Java
programs in our system. Our experience shows that
our system is sufficiently expressive and requires little
programming overhead.

Finally, we note in passing that any type system that
guarantees race freedom also eliminates issues associated
with the use of weak memory consistency models [31]. A
detailed explanation of this issue can be found in [3].

The rest of this paper is organized as follows. We present
our type system in the context of a core subset of Java
called Concurrent Java [21]. Section 2 presents this subset.
Sections 3, 4, and 5 describe the basic type system that
supports thread-local objects and objects contained within
other objects. Section 6 presents the type checking rules.
Section 7 describes how we provide default types. Section 8
shows how the type system can be extended to handle unique
pointers and read-only objects. Section 9 describes our
experience in using our type system. Section 10 contains
related work, and Section 11 presents our conclusions.

2 A Core Subset of Java
This section presents a variant of Concurrent Java [21],
which is a multithreaded subset of Java [24, 27] with formal
semantics. Our type system is designed in the context of
Concurrent Java. Section 5 describes how the type system
for Concurrent Java can be extended to guarantee race-free
programs.
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P ::= defn* local* e
defn ::= class cn extends c body
body ::= { field* meth* }
field ::= [final]opt t fd = e

meth ::= t mn(arg*) { local* e }
arg ::= t x

local ::= t y
t ::= c | int
c ::= cn | Object

e ::= new c | this | e;e | x | x = e |
e.fd | e.fd = e | e.mn(e*) |
synchronized (e) in {e} |
fork (e*) { local* e }

cn ∈ class names
fd ∈ field names

mn ∈ method names
x, y ∈ variable names

Figure 1: The Grammar for Concurrent Java

class Account {
int balance = 0;
int deposit(int x) {

this.balance = this.balance + x;
}

}
Account a1, a2;

a1 = new Account;
a1.deposit(10);

a2 = new Account;
fork (a2) { synchronized (a2) in { a2.deposit(10); } };
fork (a2) { synchronized (a2) in { a2.deposit(10); } };

Figure 2: A Program With an Account Class

Concurrent Java is an extension to a sequential subset of
Java known as Classic Java [22], and has much of the same
semantics as Classic Java. A Concurrent Java program is a
sequence of class definitions followed by an initial expression.
A predefined class Object is the root of the class hierarchy.
Figure 1 shows the grammar for Concurrent Java. Figure 2
presents an example program written in Concurrent Java.
For simplicity, all the examples in this paper use an extended
language that is syntactically closer to Java.

The expression fork (e∗) e spawns a new thread with
arguments (e∗) to evaluate e. The evaluation is performed
only for its effect; the result of e is never used.

The expression synchronized e1 in e2 works as in Java. e1

should evaluate to an object. The lock on that object is
held while e2 is evaluated. The result of evaluating e2 is
returned.

In the Account example in Figure 2, two threads access
Account a2 concurrently, and must therefore synchronize
their accesses to a2 to prevent data races. Account a1 is
thread-local, therefore the main thread can access a1 without
synchronization.

With previous type systems for race-free programs [21, 3],
one has to either declare Account to be a shared class, in
which case the main thread has to acquire the lock on a1

before accessing it, or one has to declare Account to be a
thread-local class, in which case two threads cannot access a2
concurrently. But as we show in Section 4, our type system
is expressive enough that one can add type annotations to
make the above Account program be well-typed.

3 Object Ownership
The next few sections present our basic type system that
supports thread-local objects and objects protected by
mutual exclusion locks. Section 8 describes how our basic
type system can be extended to handle unique pointers and
read-only objects.

The key to our type system is the concept of object
ownership. This resembles the notion of ownership types
described in [13, 12], even though there it was motivated
by software engineering principles and was used to restrict
object aliasing.

Every object in our system has an owner. An object can be
owned by another object, by itself, or by a special per-thread
owner called thisThread. Objects owned by thisThread, either
directly or transitively, are local to the corresponding thread
and cannot be accessed by any other thread.

Figure 3 presents an example. We draw an arrow from object
x to object y if object x owns object y. In the figure, the
thisThread owner of Thread 1 transitively owns objects o1,
o2, and o3, the thisThread owner of Thread 2 owns object o4,
object o5 transitively owns objects o5, o6, o7, and o8, and
object o9 owns objects o9 and o10.

thisThread

o1 o2

o3

Thread1 Objects Potentially Shared ObjectsThread2 Objects

thisThread

o4
o6

o7

o8

o5 o9

o10

Figure 3: An Ownership Relation

Our ownership relation has the following properties:

1. The owner of an object does not change over time.

2. The ownership relation forms a forest of rooted trees,
where the roots can have self loops.

In our system, it is necessary and sufficient for a thread to
acquire the lock on the root of an ownership tree to gain
exclusive access to all the members in the tree. Moreover,
every thread implicitly holds the lock on the corresponding
thisThread. Thus, a thread can access any object owned
by the corresponding thisThread without explicitly acquiring
any locks.

4 An Example
This section introduces our type system using an example.
Section 5 describes the semantics of our type system in
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// thisOwner owns the Account object
class Account<thisOwner> {

int balance = 0;
int deposit(int x) requires (this) {

this.balance = this.balance + x;
}

}

// Acount a1 is owned by this thread, so it is thread-local
Account<thisThread> a1 = new Account<thisThread>;
a1.deposit(10);

// Account a2 owns itself, so it can be shared between threads
final Account<self> a2 = new Account<self>;
fork (a2) { synchronized (a2) in { a2.deposit(10); } }
fork (a2) { synchronized (a2) in { a2.deposit(10); } }

final Account<self> a3 = new Account<self>;
Account<a3> a4 = new Account<a3>;

Figure 4: A Parameterized Account Class

greater detail.

The language we use is an extension to Concurrent Java
that we described in Section 2. We refer to our language as
Parameterized Race Free Java, or PRFJ.

A class definition in PRFJ is parameterized by a list
of owners. Our way of parameterizing is similar to the
proposals for parametric types for Java [30, 8, 1, 10]. The
difference is that the parameters are values and not other
types.1

Figure 4 shows an example in which the Account class is
parameterized by thisOwner. thisOwner owns the this object.
In general, the first formal parameter of a class always owns
the this object.

In the case of variable a1, the special thisThread owner is
used to instantiate the Account class. Thus, thisThread owns
a1, and hence a1 is local to the main thread. In the case of
a2, the special self owner is used to instantiate the Account
class. This means that a2 owns itself, so it can be potentially
shared between threads.

In PRFJ, methods can require callers to hold locks on
some objects using the requires clause. In the example, the
deposit method requires every thread to hold the lock on the
(root owner of the) Account object before calling the deposit
method. This ensures that there will be no data races when
the deposit method is called. Without the requires clause,
the deposit method would not have been well-typed.

In the example, all the threads that call the deposit method
on a2 first acquire the lock on a2. For a1, however, the main
thread implicitly holds the lock on the thisThread owner that
owns a1. Hence, it does not explicitly acquire any locks
before calling the deposit method on a1.

In addition to object fields, we allow method-local variables

1Race Free Java [21] also uses types parameterized with values.
We describe how it differs from our type system in Section 10.

also to be declared final. A final field or variable cannot
be written into after it is initialized. In our system, an
object field or a method-local variable can also be used to
instantiate a class, but only if the field or variable is declared
final and is already initialized. The example in Figure 4
shows how a class can be instantiated with a final variable.
The Account object a4 is owned by the Account object a3.

Requiring fields and variables that instantiate a class to be
declared final ensures that the owner of an object does not
change over time. Requiring that they be already initialized
guarantees that any object that is newly created using new
is owned by an already existing object (or by itself, if we
instantiate its class by self, or by thisThread). This ensures
that there are no cycles in the ownership relation except for
self loops. Thus, our type system preserves the ownership
properties we presented earlier in Section 3.

In addition, a thread can access an object only if the
thread can name the object’s type. But since the type
name contains the name of the owner, a thread cannot
access an object without being able to name its owner. In
particular, thisThread refers to different owners in different
threads. Variables in one thread cannot name the thisThread
of another thread, and hence cannot refer to objects local to
another thread.

5 Informal Semantics
Figure 5 shows how to obtain the grammar for Parameter-
ized Race Free Java (PRFJ) by extending the grammar for
Concurrent Java.

defn ::= class cn〈firstowner formal*〉 extends c body
c ::= cn〈owner+〉 | Object〈owner〉

meth ::= t mn(arg*) requires (efinal*) {local* e}
firstowner ::= formal | self | thisThread

owner ::= formal | self | thisThread | efinal
local ::= t y | [final]opt t y = e
efinal ::= e

formal ∈ formal owner name

Figure 5: Extensions to Concurrent Java to Obtain PRFJ

The rest of this section presents an informal semantics of
our type system and motivates our design using examples.
Figure 6 shows a stack2 of objects of type T written in PRFJ.
The stack is implemented using a linked list. Section 7.1
later describes how some of the type annotations can be
automatically inferred by the system.

5.1 Parameterizing Classes
Every class in PRFJ is parameterized with one or more
parameters. However, the first parameter always owns the
this object. The TStack class in Figure 6 is parameterized by
two owners — the owner of the stack itself, and the owner
of the elements in the stack.

2If we had parameterized types in the language [30, 8], then
the Stack declaration would have looked like the following: class

Stack<thisOwner>[ T<TOwner> ] {...}
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1 // thisOwner owns the TStack object

2 // TOwner owns the T objects in the stack.

3

4 class TStack<thisOwner, TOwner> {

5

6 TNode<this, TOwner> head = null;

7

8 void push(T<TOwner> value) requires (this) {

9 TNode<this, TOwner> newNode =

10 new TNode<this, TOwner>;

11 newNode.init(value, head);

12 head = newNode;

13 }

14 T<TOwner> pop() requires (this) {

15 if (head == null) return null;

16 T<TOwner> value = head.value();

17 head = head.next();

18 return value;

19 }

20 }

21

22 class TNode<thisOwner, TOwner> {

23

24 T<TOwner> value;

25 TNode<thisOwner, TOwner> next;

26

27 void init(T<TOwner> v, TNode<thisOwner, TOwner> n)

28 requires (this) {

29 this.value = v;

30 this.next = n;

31 }

32 T<TOwner> value() requires (this) {

33 return value;

34 }

35 TNode<thisOwner, TOwner> next() requires (this) {

36 return next;

37 }

38 }

39

40 class T<thisOwner> { int x=0; }

41

42 T<thisThread> t1 = new T<thisThread>;

43 T<self> t2 = new T<self>;

44

45 TStack<thisThread, thisThread> s1 =

46 new TStack<thisThread, thisThread>;

47 TStack<thisThread, self> s2 =

48 new TStack<thisThread, self>;

49 final TStack<self, self> s3 =

50 new TStack<self, self>;

51

52 ...

53 s1.push(t1);

54 s2.push(t2);

55 fork (s3,t2) {synchronized (s3) in {s3.push(t2);}}

56 fork (s3,t2) {synchronized (s3) in {s3.push(t2);}}

Figure 6: A Stack of T Objects

s1.head
(TNode) (TNode)

s1.head.next s2.head.next.next
(TNode)

s1.head.next.next
(TNode)

s2.head.next.value
s2.head.value s2.head.next.next.value

(T)
(T)

(T)

s2.head.nexts2.head
(TNode) (TNode)

s2 (TStack)

thisThread

s1 (TStack)

s1.head.value
(T) s1.head.next.value

s1.head.next.next.value

(T)
(T)

Figure 7: Ownership Relation for TStacks s1 and s2

5.2 Instantiating Classes
As we discussed in Section 4, we can instantiate a class
with self, or thisThread, or final fields, or final variables. In
addition, we can use the formal parameters of a class to
instantiate other classes, and thus propagate the ownership
information. This flexibility enables us to do coarse-grained
locking, where all the objects in a compound data structure
are guarded by a single lock.

In Figure 6, a TStack object owns the TNode object referred
to by head. In the TNode class, the owner of the TNode
object owns the next object. Thus, the TStack object owns
all the nodes in the linked list. The ownership relation for
the TStack s1 is depicted in Figure 7 (assuming the stack
contains three elements).

5.3 Requires Clauses
Methods can require every thread to hold locks on zero or
more objects before the method is invoked.

The value and next methods in the TNode class require every
thread to hold the lock on the this (TNode) object before
invoking those methods. However, as explained in Section 3,
a thread needs to hold the lock on the root of an ownership
tree to gain exclusive access to all the members in a tree.
Thus, the right way to interpret the requires clause on the
value and next methods is that they require every thread to
hold the lock on the root of the ownership tree that contains
the TNode object. This is true for all requires clauses.

The pop method in TStack assumes that the calling thread
holds the lock on the (root) owner of the TStack object, as
specified in its requires clause. The TStack object in turn
owns all the TNode objects in it. Hence it is legal for pop
to call the value and next methods of TNode without using
synchronization operations.

5.4 The self Owner
Based on the discussion so far, all the T objects in any
particular TStack are always owned by the same TOwner.
However, we might sometimes want to create a stack of
T objects that own themselves. To enable this kind of
programming, we use the self owner.

When an object is owned by self, it means that the object
owns itself. In Figure 6, the type for TStack s2 is instantiated
with self for TOwner. The ownership relation for the TStack
s2 is depicted in Figure 7 (assuming the stack contains
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three elements). Since the formal TOwner is instantiated
with actual self, all objects that were declared to be owned
by TOwner are owned by themselves. TStack s2 thus is
a thread-local stack containing potentially shared objects
that own themselves. The self owner enables this kind of
programming.

5.5 The thisThread Owner
Section 4 showed how a type could be instantiated with
thisThread. The thisThread owner comes into scope at the
beginning of each thread. It is meaningful to use thisThread
only for local variables — the local variables before the initial
expression of a thread, the local variables within methods,
and method arguments. In particular, it would be illegal
to instantiate the type of an object field with thisThread
because thisThread does not refer to any particular thread
at that point. Figure 8 shows an illegal usage of thisThread.

class CombinedAccount<thisOwner> {
Account<thisThread> savingsAccount; // illegal
Account<thisThread> checkingAccount; // illegal

}

Figure 8: Illegal Usage of thisThread

5.6 Self-Synchronized Classes
Sometimes, we might want to specify in a class declaration
that instances of the class always own themselves. Consider,
for example, a SharedAccount class where the deposit method
is synchronized, so that the callers of the deposit method do
not have to acquire any locks. This is shown in Figure 9,
where the SharedAccount class extends the Account class
presented in Figure 4.

If a SharedAccount object were owned by some other object,
then it would have been necessary to hold the lock on
the root owner of the SharedAccount object to access the
SharedAccount object. This is because some other thread
might acquire the lock on the root owner and access the
balance field of the SharedAccount object directly.

Thus, the deposit method with the empty requires clause
will type check only if the SharedAccount class is declared
to be always owned by self. To enable this, we allow the
first parameter in a class declaration to be self. This feature
lets us implement self-synchronized classes in our system.
Figure 9 shows an example.

class SharedAccount<self> extends Account<self> {
int deposit(int x) requires () {

synchronized (this) in { super.deposit(x); }
}

}
SharedAccount<self> a = new SharedAccount<self>;
fork (a) { a.deposit(10); }
fork (a) { a.deposit(10); }

Figure 9: A Self-Synchronized Account Class

Note that it is highly unusual to have a type system where
a constant value is used instead of a formal parameter. But
it is necessary in our case because the first parameter in our
system is special, in that it owns the this object.

5.7 Thread-Local Classes
We also allow the first parameter in a class declaration to
be thisThread. Such a class can only be instantiated with
thisThread as the first owner. All instances of such classes
would be thread-local.

6 Type Checking PRFJ Programs
Section 5 presented the grammar for PRFJ. This section
describes some of the important rules for type checking. The
full set of rules can be found in the appendix.

6.1 Rules for Type Checking
The core of our type system is a set of rules for reasoning
about the type judgment: P ; E; ls ` e : t. P, the program
being checked, is included here to provide information about
class definitions. E is an environment providing types for the
free variables of e. ls describes the set of locks held when e
is evaluated. t is the type of e.

The judgment P ; E ` e : t states that e is of type t, while the
judgment P ; E; ls ` e : t states that e is of type t and that ls
contains the necessary locks to safely evaluate e.

A typing environment is defined as follows, where f is a
formal owner parameter of a class.

E ::= ∅ | E, [final]opt t x | E, ownerformal f

A lock set is defined as follows. RO(x) is the root owner of x.

ls ::= thisThread | ls, efinal | ls, RO(efinal)

The rule for fork e checks the expression e using a lock
set that contains thisThread and is otherwise empty since
a new thread does not inherit locks held by its parent.
Moreover, the environment E might have some types that
contain thisThread. But the owner thisThread in the parent
thread is not the same as the owner thisThread in the child
thread. So, all the thisThread owners in the environment
have to be changed to something else; we use the special
owner otherThread for that.

[EXP FORK]

P; E; ls ` ei : ti gi = final ti ei

P; gi [otherThread/thisThread], local1..l; thisThread ` e : t
P; E; ls ` fork (e1..n) {local1..l e} : int

The rule for synchronized e1 in e2 checks that e1 is a final
expression of some type t1 and then type checks e2 in an
extended lock set that includes e1. A final expression is
either a final variable, or a field access e.fd where e is a final
expression and fd is a final field.

[EXP SYNC]

P; E `final e1 : t1
P; E; ls, e1 ` e2 : t2

P; E; ls ` synchronized e1 in e2 : t2
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Note that if e1 is not a root owner, that is, if e1 does not own
itself, then acquiring the lock on e1 is redundant. Our type
system does not prevent this, even though we could modify
our type rules to disallow such redundant locking.

Before we proceed further with the rules, we give a
formal definition for RootOwner(e). The root owner of
an expression e that refers to an object is the root of the
ownership tree to which the object belongs. It could be
thisThread, or an object that owns itself.

[ROOTOWNER SELF]

P; E ` e : cn〈self o∗〉
P; E ` RootOwner(e) = e

[ROOTOWNER THISTHREAD]

P; E ` e : cn〈thisThread o∗〉
P; E ` RootOwner(e) = thisThread

[ROOTOWNER FINAL TRANSITIVE]

P; E ` e : cn〈o1..n〉
P; E `final o1 : c1 P; E ` RootOwner(o1) = r

P; E ` RootOwner(e) = r

If the owner of an expression is a formal owner parameter,
then we cannot determine the root owner of the expression
from within the static scope of the enclosing class. In that
case, we define the root owner of e to be RO(e). 3

[ROOTOWNER FORMAL]

P; E ` e : cn〈o1..n〉
E = E1, ownerformal o1, E2

P; E ` RootOwner(e) = RO(e)

The rule for accessing field e.fd checks that e is a well-typed
expression of some class type cn〈o1..n〉, where o1..n are actual
owner parameters. It verifies that the class cn with formal
parameters f1..n declares or inherits a field fd of type t and
that we do have the lock on the root owner of e.

Since t is declared inside the class, it might contain
occurrences of this and the formal class parameters. When
t is used outside the class, we have to rename this with
the expression e, and the formal parameters with their
corresponding actual parameters.

[EXP REF]

P; E; ls ` e : cn〈o1..n〉 P; E ` ([final]opt t fd) ∈ cn〈f1..n〉
P; E ` RootOwner(e) = r r ∈ ls

P; E; ls ` e.fd : t[e/this][o1/f1]..[on/fn]

The rule for invoking a method checks that the arguments
are of the right type and ensures that we hold the locks on
the root owners of all final expressions in the requires clause
of the method. The expressions and types used inside the

3Thus, while type checking the deposit method in the Account
class in Figure 4, we use the term RO(this) as the root owner of
this.

method have to be renamed appropriately when used outside
their class.

[EXP INVOKE]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t mn(tj xj

j∈1..k) requires (e′
1..m) ...) ∈ cn〈f1..n〉

P; E; ls ` ej : tj [e/this][o1/f1]..[on/fn]
P; E ` RootOwner(e′

i[e/this][o1/f1]..[on/fn]) = r′
i r′

i ∈ ls
P; E; ls ` e.mn(e1..k): t[e/this][o1/f1]..[on/fn]

The rule for type checking a method verifies that the method
body is well typed under the assumption that all the locks
specified in the requires clause are held. When a method
specifies that it requires the lock on some object o, it really
means that it requires the lock on the root owner of o.

[METHOD]

gi = final argi P; E, g1..n `final ei : ti

P; E, g1..n ` RootOwner(ei) = ri

P; E, g1..n, local1..l; thisThread, r1..m ` e : t
P; E ` t mn(arg1..n) requires (e1..m){local1..l e}

6.2 Soundness of the Type System
Our type checking rules ensure that for a program to be well-
typed, an object can be read or written by a thread only if
the thread holds the lock on the root owner of that object.
But since a lock can be held by at most one thread at a time,
a well typed program in our system will not have any data
races.

A complete proof of this can be constructed by defining
an operational semantics for PRFJ (by extending the
operational semantics of Classic Java [22]) and then proving
the generalized subject reduction theorem, that states that
the semantic interpretation of a term’s type is invariant
under reduction. The proof is straight-forward but tedious,
so it is omitted here.

6.3 Runtime Overhead
PRFJ is a statically typed system. The ownership relations
are used only for compile-time type checking and are not
preserved at runtime. Consequently, PRFJ programs have
no runtime overhead when compared to regular (Concurrent)
Java programs.

In fact, one way to compile and run a PRFJ program is
to convert it into a (Concurrent) Java program after type
checking, by removing the type parameters and the requires
clauses from the program.

However, the extra type information in a PRFJ program
can be used to enable program optimizations. For example,
objects that are known to be thread-local can be allocated
in a thread-local heap instead of the global heap.

7 Default Types

The previous sections introduced our basic type system.
This section shows how we can reduce the burden of writing
these extra type annotations.
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7.1 Inferring Owners of Local Variables
In our system, it is not necessary to explicitly augment the
types of method-local variables with their owner parameters.
A simple inference algorithm can automatically deduce the
owner parameters for otherwise well-typed PRFJ programs.

We illustrate our algorithm with an example. Figure 10
shows a class hierarchy and an incompletely typed method
m. The types of local variables a1 and b1 inside m do not
contain their owner parameters explicitly.

1 class A<oa1, oa2> {...};
2 class B<ob1, ob2, ob3> extends A<ob2, ob3> {...};
3
4 class C<oc1> {
5 void m(B<thisThread, this, oc1> b) {
6 A a1;
7 B b1;
8 b1 = b;
9 a1 = b1;
10 }
11 }

Figure 10: An Incompletely Typed Method

The inference algorithm works by first augmenting such
incomplete types with the appropriate number of distinct,
unknown owner parameters. For example, since a1 is of
type A, the algorithm augments the type of a1 with two
owner parameters. Figure 11 shows augmented types for the
example in Figure 10. The goal of the inference algorithm is
to find known owner parameters that can be used in place
of the each of the unknown owner parameters to make the
program be well-typed.

6 A<x1, x2> a1;
7 B<x3, x4, x5> b1;

Figure 11: Types Augmented With Unknown Owner Parameters

The inference algorithm treats the body of the method as
a bag of statements. The algorithm works by collecting
constraints on the owner parameters for each assignment or
function invocation in the method body. Figure 12 shows the
constraints imposed by Statements 8 and 9 in the example
in Figure 10.

8 ==> x3 = thisThread, x4 = this, x5 = oc1
9 ==> x1 = x4, x2 = x5

Figure 12: Constraints on Owner Parameters

Note that all the constraints are of the form of equality be-
tween two owner parameters. Consequently, the constraints
can be solved using the standard Union-Find algorithm in
almost linear time [14].

If the solution is inconsistent, that is, if any two known owner
parameters are constrained to be equal to one another by the
solution, then the inference algorithm returns an error and
the program does not type check. Otherwise, if the solution
is incomplete, that is, if there is no known parameter that is
equal to an unknown parameter, then the algorithm replaces
all such unknown parameters with thisThread.

7.2 Single-Threaded Programs
If a class is declared to be default-single-threaded, then our
system adds default type annotations wherever they are not
explicitly specified by the programmer.

If the class is not explicitly parameterized, the system
parameterizes the class with a single thisThread owner.
If the type of any instance variable in the class is not
explicitly parameterized, the system augments the type with
an appropriate number of thisThread owner parameters. If
a method in the class does not contain a requires clause, the
system adds an empty requires clause to the method.

With these default types, single-threaded programs require
almost no explicit type annotations.

7.3 Multithreaded Programs
Like in the case of single-threaded programs, if a class is
declared to be default-multithreaded, then our system adds
default type annotations wherever they are not explicitly
specified by the programmer.

If the class is not explicitly parameterized, the system
parameterizes the class with a single thisOwner owner.
If the type of any instance variable in the class is not
explicitly parameterized, the system augments the type with
an appropriate number of this owner parameters. If a
method in the class does not contain a requires clause, the
system adds a requires clause that contains all the method
arguments (including the implicit this argument) that are
read or written by the method.

8 Extensions to the Type System

This section describes how our basic type system can be
extended to handle objects with unique pointers and read-
only objects, both of which can be accessed safely without
synchronization.

8.1 Objects with Unique Pointers
Sometimes, objects migrate from one thread to another. For
example, in a producer-consumer paradigm, one or more
threads may produce data that is subsequently processed
by one or more consumer threads. To enable an object to
migrate from one thread to another, we use the notion of
unique pointers [29, 7, 23].

If a variable (or field) x is declared to be the unique pointer
to an object, then it means that there is no other variable
(or field) that has a pointer to that object. If a thread has a
unique pointer to an object, then the thread can access the
object without acquiring any locks.

Regular variables cannot be assigned to unique variables.
Unique variables can be transferred to other regular or
unique variables only by using the following syntax. x and
y are assumed to be unique variables in the example below.

y = x--; // y = x; x = null;
m(y--); // m(y); y = null;
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Guava [3] uses a similar syntax to transfer objects between
variables. This syntax is inspired by the following C
expression syntax. i and j are assumed to be integer
variables below.

j = i--; // j = i; i = i-1;
m(j--); // m(j); j = j-1;

In the above example, if the x is a method-local variable and
is not subsequently used within the method, an optimizing
compiler will eliminate x=null as dead code.

By using the x-- construct, we are in effect shifting some
checking from compile time to runtime. If x is subsequently
dereferenced before being reinitialized, the system will raise
a NullPointer exception at runtime.

A variable (or field) can be declared to be unique in our
system if we instantiate its type by using unique as the first
owner. For example, Account<unique> a declares that a is a
unique pointer to an Account object. Like self, unique is thus
a special owner in our system that can be used to instantiate
classes.

Of course, not all class parameters can be instantiated with
unique. The TOwner parameter in Figure 6 is an example.
To be well-typed, the TStack class would have to declare
that TOwner cannot be unique. We use where clauses to thus
constrain class parameters. This is somewhat similar to the
use of where clauses in [15, 30]. The code in Figure 13 shows
the declaration of TStack with a where clause constraining
TOwner.

class TStack<thisOwner, TOwner> where (TOwner != unique) {
...

}
Figure 13: Using a Where Clause

It is also possible to rewrite the TStack class so that TOwner
can be instantiated with unique. Figure 14 shows how the
code in Figure 6 can be changed to support this. Only the
lines of code that are different from Figure 6 are shown here.

11 newNode.init(value--, head);
18 return value--;
29 this.value = v--;
33 T<TOwner> value() requires (this) {return value--;}

Figure 14: Changes to the TStack code in Figure 6

With the changes to TStack shown in Figure 14, we can
instantiate a stack of unique objects. A producer thread
can now insert unique items into the stack, while consumer
threads can extract the items from the stack and process
them without having to acquire locks on those items. Figure
15 shows an example.

A method-local variable containing a unique pointer can also
be passed as an argument to a method provided the method
declaration specifies that the argument does not escape. To
enable this, types of local variables and method arguments

final TStack<self, unique> s = new TStack<self, unique>;

T<unique> t1 = new T<unique>;
T<unique> t2 = new T<unique>;

synchronized (s) in { s.push(t1--); }
synchronized (s) in { s.push(t2--); }
fork(s) {synchronized(s) in {T<unique> t=s.pop(); t.x=1;}}
fork(s) {synchronized(s) in {T<unique> t=s.pop(); t.x=1;}}

Figure 15: Using a Stack of Unique Objects

can be augmented with an optional !e. This is similar to the
use of effects [28]. We refer to such types as non-escaping
types.

If a variable has a non-escaping type, then it means that
the reference stored in the variable will not escape to any
object field or to another thread. A variable with a non-
escaping type can be assigned only to other variables with
non-escaping types. Similarly, it can passed as a method
argument only if the type of the argument is specified to be
non-escaping in the method declaration.

Figure 16 shows an example where a unique Message object
is passed as an argument to a display method that declares
that the Message argument will not escape.

class Message<thisOwner> {...};

class Util<thisOwner, MsgOwner> {
void display(Message<MsgOwner>!e m) requires(m) {...}

}

Util<self, unique> u = new Util<self, unique>;
Message<unique> m = new Message<unique>;
u.display(m);

Figure 16: Using Effects

Issues Related to the Java Memory Model
Synchronization operations in Java are used not just for mu-
tual exclusion, but also to enforce visibility in multiproces-
sor machines [31]. Therefore, if Thread 1 creates or up-
dates an object x and passes the unique reference to x to
Thread 2 without using synchronization, then updates made
by Thread 1 are not guaranteed to be visible to Thread 2.

But this is not a problem in our system because the
only way Thread 1 can pass the unique reference to x to
Thread 2 is by writing the unique reference into a shared
data structure that can be subsequently read by Thread 2.
But since the shared data structure can only be accessed
with synchronization, the updates made by Thread 1 will be
visible to Thread 2.

8.2 Read-Only Objects
A variable (or field) can be declared to be read-only if we
instantiate its type using readonly as the first owner. Read-
only objects can only be read but cannot be written into;
hence they can be accessed without using any synchroniza-
tion operations.

Figure 17 shows an example where the program first creates
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and initializes a Message object that has a unique reference.
The program then transfers the reference to a read-only
variable. In general, this is the mechanism our system uses
to support the initialization of read-only objects.

A read-only object can be passed as an argument to a
method only if the method declares that the argument will
not be written into by augmenting the type of the argument
with !w. In the example in Figure 17, the read-only Message
object rm is passed as an argument to a read method that
declares that the Message argument will not escape and it
will not be written into.

class Message<thisOwner> {...}

class Util<thisOwner, MsgOwner> {
void init(Message<MsgOwner>!e m) requires(m) {...}
void read(Message<MsgOwner>!ew m) requires(m) {...}
}
Util<self, unique> u = new Util<self, unique>;

Message<unique> m = new Message<unique>;
u.init(m);

Message<readonly> rm = m--;
fork (u, rm) { u.read(rm); }
fork (u, rm) { u.read(rm); }

Figure 17: A Read-Only Message Object

9 Experience

We implemented a number of Java programs in our extended
language including several classes from the Java libraries.
We also modified some server programs and implemented
them in our system. These include an http server, a chat
server, a stock quote server, a game server, and phone, a
database-backed information sever. These programs exhibit
a variety of sharing patterns.

We implemented the library classes in our system to be
externally synchronized. This gives the users of the classes
the flexibility to create different instances of the classes with
different protection mechanisms. In fact, this also helped us
eliminate some unnecessary synchronization operations from
Sun’s implementation of those classes. For example, in the
PrintStream class in Sun’s implementation, the print(String)
method acquires the lock on the PrintStream object and then
calls a method that acquires the lock on a BufferedWriter
object contained within the PrintStream object. Acquiring
the second lock was unnecessary and our implementation
avoids this.

It is also possible to implement self-synchronized versions
of these classes in our system, just like the way they are
implemented in the Java libraries. The self-synchronized
classes can be implemented as subtypes of the regular
classes, similar to the way the SharedAccount class is
implemented as a subtype of the Account class in Figure 9.

One important lesson we learned while implementing pro-
grams in our system is that it is often convenient and some-
times even necessary to have parameterized methods in addi-

tion to parameterized classes. For example, the PrintStream
class has a print(Object) method. Let us say, the Object
argument is owned by ObjectOwner. If we did not have pa-
rameterized methods, then the PrintStream class would have
to have an ObjectOwner parameter. Not only would this be
unnecessarily tedious, but it would also mean that all objects
that can be printed by this PrintStream have to be owned by
the same owner (or by self).

Figure 18 shows the lines of code that needed explicit type
annotations for some of the programs we implemented in our
system. As described in Section 7.1, our system infers the
owner parameters of method-local variables. Moreover, the
default requires clauses provided by the system (described
in Section 7.3) were sufficient in most cases. Thus, most of
the type annotations we had to write involved augmenting
the types of method arguments and return values with
appropriate owner parameters.

Lines Lines
Program of Code Changed

Collection Classes
java.util.Vector 0992 35
java.util.ArrayList 0533 18
java.util.Hashtable 1011 53
java.util.HashMap 0852 46

Other Library Classes
java.io.PrintStream 568 14
java.io.FilterOutputStream 148 05
java.io.OutputStream 134 03
java.io.BufferedWriter 253 09
java.io.OutputStreamWriter 266 11
java.io.Writer 177 06

Multithreaded Server Programs
http 563 26
chat 308 21
stock quote 242 12
game 087 10
phone 302 10

Figure 18: Programming Overhead

9.1 Limitations of the Type System
Our experience suggests that our type system is sufficiently
expressive to accommodate the commonly used protection
mechanisms, and that it can be extended to the cover all the
features in the Java language. However, we did encounter
the following limitations of our type system.

Runtime Casts: Java is not a fully statically typed
language. It allows downcasts that are checked at runtime.
Suppose an object with declared type Object〈o〉 is downcast
to Vector〈o,e〉. We cannot verify at compile time that e is
the right owner parameter even if we assume that the object
is indeed a Vector. And since we do not keep ownership
information at runtime, we cannot verify this during runtime
either.

In general, whenever an object is downcast to a type
containing more than one owner parameter, there is no safe
way to execute the downcast in our system. We provide a
mechanism for escaping the type system in such cases.
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It is also possible to design a compromise solution that
would enable programmers to explicitly preserve some
ownership information at runtime for objects that may be
involved in dynamic casts. The system can then use this
runtime information to safely execute some of the downcast
operations. Other downcast operations that cannot be safely
executed will be disallowed by the system.

Static Variables: Java has global (static) variables that
are accessible to all threads. If a program accesses static
variables without synchronization, our system cannot verify
that this will not lead to data races. Therefore, in our
system, a thread can access a static variable only when it
holds the lock on the Java class that contains the static
variable.

Multithreaded Scientific Programs: We looked at some
scientific programs like barnes and water from the SPLASH-
2 benchmark set [36]. These programs proceed through
phases that are separated by barriers. Within each phase,
there are unsynchronized accesses to disjoint elements of the
same array by different threads. Our type system does not
support these synchronization patterns. To accommodate
such programs, a type system would have to provide a way
for expressing temporal properties — like the fact that two
consecutive phases in the program do not overlap in time.

10 Related Work

There has been much research on approaches that help
programmers detect or prevent data races.

Tools like the Extended Static Checker for Java (Esc/Java)
[26, 17] and Warlock [34] use programmer-supplied annota-
tions to statically detect potential data races in a program.
While these tools are useful in practice, they are not sound,
in that they do not certify that a program is race-free.

Other systems developed mostly in the scientific parallel
programming community [18, 25], and tools like Eraser [33],
detect races dynamically. These tools have the advantage
that they can check unannotated programs. However, they
are also not comprehensive, in that they may fail to detect
certain errors due to insufficient test coverage.

To our knowledge, Concurrent Pascal is the first race-
free programming language [9]. Programs in Concurrent
Pascal used synchronized monitors to prevent data races.
But monitors in Concurrent Pascal were restricted in that
threads could share data with monitors only by copying the
data. A thread could not pass a reference to an object to a
monitor.

More recently, researchers have proposed type systems for
object-oriented programs that guarantee that any well-typed
program is free of data races [21, 19, 20, 3]. The work on
Race Free Java [21] is closest to ours. Race Free Java extends
the static annotations in Esc/Java into a formal type system.
It also introduces a way of parameterizing types with values
that lets programmers use a single lock to guard an entire

compound data structure like a linked list. Race Free Java
also supports the use of thread-local objects by providing
thread-local classes. Instances of thread-local classes need
no synchronization.

Our work builds on this type system by letting programmers
write generic code to implement a class, and create different
objects of the same class that have different protection
mechanisms. For example, in our system, programmers can
write a generic Queue implementation, then create Queue
objects that have different protection mechanisms. These
different objects could include thread-local Queue objects,
shared Queue objects, Queue objects contained within other
enclosing data structures, Queue objects containing thread-
local items, Queue objects containing shared items, and
Queue objects containing unique items. In Race Free Java,
one needed a different Queue implementation to support
each of the above cases. Race Free Java also does not
support unique pointers or read-only objects. But while our
system only supports locking at the granularity of individual
objects, Race Free Java allows more fine-grained locking
where different fields of the same object can be guarded by
different locks.

Guava [3] is another dialect of Java for preventing data
races. It allows programmers to access objects without
synchronization in many common cases where the absence
of synchronization does not lead to data races. Guava
splits the class hierarchy into three distinct sub-hierarchies.
Instances of Monitor classes are self-synchronized shared
objects that correspond to the roots of ownership trees in our
system. Instances of Object classes are either thread-local or
contained within some Monitor. These instances correspond
to objects that are either owned by thisThread or by some
other object in our system. Instances of Value classes
are somewhat analogous to objects with unique pointers
in our system. Again, the primary difference between the
Guava approach and our approach is that our system lets
programmers to write generic code, then create objects that
have different protection mechanisms from the same generic
code.

Vault [16] is a new programming language that is designed
to enforce high-level protocols in low-level software. Besides
verifying absence of date races, the Vault type checker can
also verify other properties like absence of resource leaks and
absence of dangling pointers. But the Vault type system is
not specifically designed to prevent data races and it does not
support some commonly used protection mechanisms. For
example, it does not have a notion of thread-local objects
that can be safely accessed without synchronization.

There has been a lot of work recently on compiler analysis
techniques to eliminate unnecessary synchronizations [2, 35,
11, 5, 6, 32]. In our system, the natural way to implement
most library classes (like a Hashtable, for example) is to
require external synchronization. This has the effect of
moving synchronization operations up the call chain. This
in turn helps programmers structure their programs such
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that locks are acquired only when necessary. Syntactic sugar
can be provided to make it more convenient to acquire the
lock on an object before invoking a method on it. Thus,
our system provides an alternate way to reduce the number
of unnecessary synchronization operations in a program
without risking data races.

The concept of object ownership used in this paper is similar
to the one in ownership types [13, 12], even though there it
was motivated by software engineering principles and was
used to restrict object aliasing.

Our way of parameterizing classes is similar to the proposals
for parametric types for Java [30, 8, 1, 10], except that the
parameters in our system are values and not types.

11 Conclusions

We presented a type system that guarantees that well-
typed programs are free of data races. Our type system
is significantly more expressive than previous such type
systems. Unlike previous type systems, our type system
lets programmers write generic code to implement a class,
then create different objects from the same class that
have different protection mechanisms. This flexibility lets
programmers use a variety of protection mechanisms and
acquire locks only when necessary; thus making programs
more efficient without sacrificing reliability.

Our system also provides default types that reduce the
burden of writing the extra type annotations. In particular,
single-threaded programs require almost no programming
overhead.

We implemented several multithreaded Java programs in our
system. Our experience shows that our system is sufficiently
expressive, and requires little programming overhead.
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A The Type System
This appendix presents the type system described in Sec-
tion 5. The grammar for the type system was shown in
beginning of Section 5. We first define a number of predi-
cates used in the type system informally. These predicates
are based on similar predicates from [22] and [21]. We refer
the reader to those papers for their precise formulation.

Predicate Meaning

ClassOnce(P) No class is declared twice in P
WFClasses(P) There are no cycles in the class hierarchy
FieldsOnce(P) No class contains two fields with the same

name, either declared or inherited
MethodsOnce- No method name appears more than
PerClass(P) once per class

OverridesOK(P) Overriding methods have the same return
type and parameter types as the methods
being overridden. The requires clause of the
overriding method must be the same or a
subset of the requires clause of the methods
being overridden

A typing environment is defined as E ::= ∅ | E, [final]opt t x |
E, ownerformal f

A lock set is defined as ls ::= thisThread | ls, efinal | ls, RO(efinal);
RO(e) is the root owner of e.

We define the type system using the following judgments.
We present the typing rules for these judgments after that.

Judgment Meaning

` P : t program P yields type t
P ` defn defn is a well-formed class definition
P ; E ` wf E is a well-formed typing environment
P ; E ` meth meth is a well-formed method
P ; E ` field field is a well-formed field
P ; E ` t t is a well-formed type
P ; E ` t1 <: t2 t1 is a subtype of t2
P ; E ` field ∈ cn〈f1..n〉 class cn with formal parameters f1..n

declares/inherits field
P ; E ` meth ∈ cn〈f1..n〉 class cn with formal parameters f1..n

declares/inherits meth
P ; E `final e : t e is a final expression with type t
P ; E `owner o o can be an owner
P ; E ` RootOwner(e) = r r is the root owner of the final

expression e
P ; E ` e : t expression e has type t, provided we

have all the necessary locks
P ; E; ls ` e : t expression e has type t

P ; E ` e : t1|t2 expression e has type either t1 or t2,
provided we have all the necessary
locks

P ; E; ls ` e : t1|t2 expression e has type either t1 or t2
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` P : t

[PROG]

ClassOnce(P ) WFClasses(P ) FieldsOnce(P )
MethodsOncePerClass(P ) OverridesOK(P )

P = defn1..n local1..l e
P ` defni P; local1..l; thisThread ` e : t

` P : t

P ` defn

[CLASS]

if (f1 6= self | thisThread) then g1 = ownerformal f1
∀i=2..n gi = ownerformal fi E = g1..n, final cn〈f1..n〉 this

P;E ` c P;E ` fieldi P;E ` methi

P ` class cn〈f1..n〉 extends c { field1..j meth1..k }

P ; E `owner o

[OWNER THISTHREAD]

P; E ` wf
P; E `owner thisThread

[OWNER OTHERTHREAD]

P; E ` wf
P; E `owner otherThread

[OWNER SELF]

P; E ` wf
P; E `owner self

[OWNER FINAL]

P; E `final e : t
P; E `owner e

[OWNER FORMAL]

P; E ` wf
E = E1, ownerformal f, E2

P;E `owner f

P ; E `final e

[FINAL VAR]

P; E ` wf
E = E1, final t x, E2

P; E `final x : t

[FINAL REF]

P; E ` (final t fd) ∈ cn〈f1..n〉
P; E `final e : cn〈o1..n〉

P; E `final e.fd : t[o1/f1]..[on/fn]

P ; E ` wf

[ENV ∅]

P; ∅ ` wf

[ENV OWNER]

P; E ` wf f /∈ Dom(E)
P; E, ownerformal f ` wf

[ENV X]

P; E ` t x /∈ Dom(E)
P; E, [final]opt t x ` wf

P ; E ` t

[TYPE INT]

P; E ` wf
P; E ` int

[TYPE OBJECT]

P;E `owner o
P; E ` Object〈o〉

[TYPE SHARED CLASS]

P ` class cn〈self f2..n〉 ...
P; E ` wf P;E `owner o2..n

P;E ` cn〈self o2..n〉

[TYPE THREAD-LOCAL CLASS]

P ` class cn〈thisThread f2..n〉 ...
P; E ` wf P;E `owner o2..n

P;E ` cn〈thisThread o2..n〉

[TYPE C]

f1 6= self | thisThread
P ` class cn〈f1..n〉 ...

P;E `owner o1..n

P;E ` cn〈o1..n〉
P ; E ` t1 <: t2

[SUBTYPE REFL]

P; E ` t
P; E ` t <: t

[SUBTYPE TRANS]

P; E ` t1 <: t2 P; E ` t2 <: t3
P; E ` t1 <: t3

[SUBTYPE CLASS]

P;E ` cn1〈o1..n〉
P ` class cn1〈f1..n〉 extends cn2〈f1 o∗〉 ...

P; E ` cn1〈o1..n〉 <: cn2〈f1 o∗〉 [o1/f1]..[on/fn]

P ; E ` field

[FIELD INIT]

P; E; thisThread ` e : t
P; E ` [final]opt t fd = e

P ; E ` field ∈ c

[FIELD DECLARED]

P ` class cn〈f1..n〉... { ... field ... }
P; E ` field ∈ cn〈f1..n〉

[FIELD INHERITED]

P; E ` field ∈ cn〈f1..n〉
P ` class cn’〈g1..m〉 extends cn〈o1..n〉...

P; E ` field[o1/f1]..[on/fn] ∈ cn’〈g1..m〉
P ; E ` method

[METHOD]

gi = final argi P; E, g1..n `final ei : ti

P; E, g1..n ` RootOwner(ei) = ri

P; E, g1..n, local1..l; thisThread, r1..m ` e : t
P; E ` t mn(arg1..n) requires (e1..m){local1..l e}

P ; E ` meth ∈ c

[METHOD DECLARED]

P ` class cn〈f1..n〉... { ... meth ... }
P; E ` meth ∈ cn〈f1..n〉

[METHOD INHERITED]

P; E ` meth ∈ cn〈f1..n〉
P ` class cn’〈g1..m〉 extends cn〈o1..n〉...

P; E ` meth[o1/f1]..[on/fn] ∈ cn’〈g1..m〉

P ; E ` RootOwner(e) = r

[ROOTOWNER THISTHREAD]

P; E ` e : cn〈thisThread o∗〉 | Object〈thisThread〉
P; E ` RootOwner(e) = thisThread

[ROOTOWNER OTHERTHREAD]

P; E ` e : cn〈otherThread o∗〉 | Object〈otherThread〉
P; E ` RootOwner(e) = otherThread

[ROOTOWNER SELF]

P; E ` e : cn〈self o∗〉 | Object〈self〉
P; E ` RootOwner(e) = e

[ROOTOWNER FINAL TRANSITIVE]

P; E ` e : cn〈o1..n〉 | Object〈o1〉
P; E `final o1 : c1

P; E ` RootOwner(o1) = r
P; E ` RootOwner(e) = r

[ROOTOWNER FORMAL]

P; E ` e : cn〈o1..n〉 | Object〈o1〉
E = E1, ownerformal o1, E2

P; E ` RootOwner(e) = RO(e)

P ; E ` e : t

[EXP TYPE]

∃ls P; E; ls ` e : t
P; E ` e : t

P ; E; ls ` e : t

[EXP SUB]

P; E; ls ` e : t′ P; E; ls ` t′ <: t
P; E; ls ` e : t

[EXP NEW]

P; E ` c
P; E; ls ` new c : c

[EXP SEQ]

P; E; ls ` e1 : t1 P; E; ls ` e2 : t2
P; E; ls ` e1; e2 : t2

[EXP VAR]

P; E ` wf E = E1, [final]opt t x, E2
P; E; ls ` x : t

[EXP VAR INIT]

P; E; ls ` e : t
P; E; ls ` [final]opt t x = e

[EXP VAR ASSIGN]

E = E1, t x, E2 P; E; ls ` e : t
P; E; ls ` x = e : t

[EXP FORK]

P; E; ls ` ei : ti gi = final ti ei

P; gi [otherThread/thisThread], local1..l; thisThread ` e : t
P; E; ls ` fork (e1..n) {local1..l e} : int

[EXP SYNC]

P; E `final e1 : t1
P; E; ls, e1 ` e2 : t2

P; E; ls ` synchronized e1 in e2 : t2

[EXP INVOKE]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t mn(tj yj

j∈1..k) requires(e′
1..m)...)∈cn〈f1..n〉

P; E; ls ` ej : tj [e/this][o1/f1]..[on/fn]
P; E ` RootOwner(e′

i[e/this][o1/f1]..[on/fn]) = r′
i

r′
i ∈ ls

P; E; ls ` e.mn(e1..k): t[e/this][o1/f1]..[on/fn]

[EXP REF]

P; E; ls ` e : cn〈o1..n〉
P; E ` ([final]opt t fd) ∈ cn〈f1..n〉
P; E ` RootOwner(e) = r r ∈ ls

P; E; ls ` e.fd : t[e/this][o1/f1]..[on/fn]

[EXP ASSIGN]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t fd) ∈ cn〈f1..n〉

P; E ` RootOwner(e) = r r ∈ ls
P; E; ls ` e′ : t[e/this][o1/f1]..[on/fn]

P; E; ls ` e.fd = e′ : t[e/this][o1/f1]..[on/fn]
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