
Panel

The Ultra Challenge: Software Systems Beyond Big

Steven Fraser (Chair)
QUALCOMM

 Gregor Kiczales
University of British

Columbia

Ricardo Lopez
QUALCOMM

Peter G. Neumann
SRI

Linda Northrop
SEI

Martin Rinard
MIT

Douglas Schmidt
Vanderbilt University

Kevin Sullivan
University of Virginia

Abstract
How can the ultra large systems (ULS) of the future be
built if they will have the complexity of trillions of lines of
code, maintain continuous 24x7 operations with no
downtime, and live in a hostile environment with unpre-
dictably changing requirements? This panel will discuss
and debate the challenges posed by ultra large systems in
terms of their design, growth, deployment and dynamics.

Categories & Subject Descriptors:
H.4 Information Technology and Systems
J.9 Computer Applications
K.0 Computing Milieux

General Terms: Design, Management, Reliability, Security

Keywords: Complexity, design, software, systems, ultra, ULS

1. Steven Fraser (chair), sdfraser@acm.org
STEVEN FRASER is a member of QUALCOMM’s Learning
Center in San Diego, California with responsibilities for
technical learning and development. Prior to joining
QUALCOMM, Fraser held a variety of diverse software
technology program management roles at Nortel/NT/BNR
including: Process Architect, Senior Manager (Disruptive
Technology and Global External Research), and Process
Engineering Advisor. In 1994 he spent a year as a Visiting
Scientist at the Software Engineering Institute (SEI) col-
laborating with the Application of Software Models project
on the development of team-based domain analysis tech-
niques. Fraser was the General Chair for XP2006, the
Panels Chair for OOPSLA’03 and has organized panels at
both OOPSLA and reuse/agile-oriented conferences. Fraser
holds a doctorate in Electrical Engineering from McGill
University in Montréal – and is a member of the ACM and
a senior member of the IEEE.

2. Gregor Kiczales, gregor@cs.ubc.ca
GREGOR KICZALES is a full professor at the University of
British Columbia. A primary theme of his work is focused
on enabling programmers to write programs that, as much

as possible, look like their design. He also seeks to unravel
inconsistencies between our field's accounts of computing
and the real nature of the beast. While at Xerox PARC, he
led the teams that developed aspect-oriented programming
and AspectJ. He was the principal designer of the CLOS
metaobject protocol, and was one of the designers of the
Common Lisp Object System.
Existing programming languages, and theoretical founda-
tions on which they are built, are based on idealizations of
software that are tenuous in current practice and that will
break down for ULS systems. Our foundations treat soft-
ware as abstract, isolated, closed-world, "mathematical"
programs. But real software does not fit this idealization at
all - instead it is a concrete intentional artifact that is richly
embedded into an environment of physical and intentional
artifacts. One challenge is developing an ability to better
cope with the rich semantic relationships between a pro-
gram and the rest of the world. Identifiers in the code may
refer to entities outside the computation the code directly
engenders. Intentional artifacts other than code form part of
the overall software ecosystem and have semantic refer-
ences to and from the code (configuration files, build
scripts, bug databases, email archives of design discussions
and so on). The validity at any moment in time of these
intentional relationships is a critical factor in whether the
code does as intended. Another challenge is to better cope
with the fact that computations are physical processes,
running on real computers over real networks. One of our
most pervasive memes is that computer scientists don't
have to respect the laws of physics. But in fact software is
encoded physically, and has classic properties of physical
systems, including the fact that its size affects aspects of
viability and behavior such as scalability, distribution,
latency etc. Many of the problems we struggle most with
arise from our inability in fact to ignore physics. These
differences in our field between our current foundations
and the reality of large complex systems are more than just
a typical difference between theory and practice. In impor-
tant ways our present foundations do not just simplify
practice; they fail to account for essential aspects of soft-
ware in the real world. These limitations cause us problems
today, and unless we can make progress in these areas they
will become major obstacles to developing ULS systems.

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

929

3. Ricardo Lopez, rjlopez@qualcomm.com
RICARDO LOPEZ is a Principal Engineer in the Office of the
Chief Scientist at QUALCOMM. He is responsible for soft-
ware architecture, software process, and sometime Just
Plain Old Software (JPOS). Architecting and designing
software for over thirty years, he has been an evangelist for
OO technology for the last twenty years and he has the
arrow heads to prove it.
Providing software in today’s world requires a deep under-
standing of the increasing dependence that civilization has
placed upon this uniquely human artifact; it begs improved
sensitivity to the inherent complexities naturally encoun-
tered as we expand the horizons of our software into
ubiquitous computing and all the increased leverage that
will entail; and it demands a commitment to quality,
security and trust not found currently on the campuses of
our largest software producers.

4. Peter G. Neumann, neumann@csl.sri.com
Peter G. Neumann, (PhD, Dr.rer.nat.) has been at SRI
International in Menlo Park, California for 35 years (where
he is Principal Scientist in the Computer Science Lab),
following 10 years at Bell Labs in Murray Hill, New
Jersey. His research has been concerned with high-
assurance systems and how they can be developed as
predictable compositions of more easily understood
subsystems. He was heavily involved in Multics in the
1960s. At SRI, his research has focused on computer
systems and networks, including the design of the Provably
Secure Operating System PSOS (an object-oriented
capability-based architecture project from 1973 to 1980),
trustworthiness/dependability, security, reliability, surviv-
ability, safety, formal methods, and many risks-related
issues such as voting-system integrity, crypto policy, social
implications, and human needs including privacy. His
1995 book, Computer-Related Risks, is still timely. He is a
Fellow of the ACM, IEEE, and AAAS. He received the
National Computer System Security Award in 2002 and the
ACM SIGSAC Outstanding Contributions Award in 2005.
He is a member of the U.S. Government Accountability
Office Executive Council on Information Management and
Technology, and the California Office of Privacy Protec-
tion advisory council. He has taught courses at Darmstadt,
Stanford, U.C. Berkeley, and the University of Maryland.
Visit www.csl.sri.com/neumann for further background,
Senate and House testimonies, papers, bibliography, and
www.csl.sri.com/neumann/chats4.pdf and .html.
Consider two straw-man polarized approaches for ultra-
large-scale systems:
1. If we had trustworthy operating systems, predictably
composable architectures that are designed to be easily
administratable and evolvable, realistic system develop-
ment and software engineering practices, inherently sound
programming languages, pervasive use of assurance

techniques, and better education that supported all of that,
THEN we might be able to build trustworthy ultra-large-
scale systems. This is a little like the joke about “if we had
ham, we could have ham and eggs – if we had eggs.”
2. If we slap together an unbounded collection of often
incompatible architecture-less poorly designed untrust-
worthy components into an open-ended Internet-accessible
unconstrained environment, with neither far-sighted a
priori requirements nor an engineering-oriented develop-
ment discipline, and with potentially untrustworthy users
and diverse would-be adversaries, THEN we are not likely
to have any assurance that the systems would do what is
really needed. For realistic ultra-large-scale systems, can
we get there from here? Are there any feasible middle
grounds? What is most important? Are we shooting a
straw herring in the foot?

5. Linda Northrop, lmn@sei.cmu.edu
LINDA NORTHROP has more than 35 years of experience in
software development as a practitioner, researcher, man-
ager, consultant, and educator. She currently is director of
the Product Line Systems Program at the SEI where she
leads the work in software architecture, software product
lines, and predictable component engineering. She recently
led a year long study including leaders in the software
community to define technical and social challenges to the
creation of ultra-large-scale systems that will evolve in the
next generation. The report, Ultra-Large-Scale Systems:
The Software Challenge of the Future (ISBN 0-9786956-0-
7), has just been published. She is coauthor of Software
Product Lines: Practices and Patterns and chaired both the
first and second international Software Product Line
Conferences (SPLC1 and SPLC2). She is a past chair of the
OOPSLA Steering Committee and OOPSLA 2001 confer-
ence Chair. Before joining the SEI, she was associated with
both the United States Air Force Academy and the State
University of New York as professor of computer science,
and with both Eastman Kodak and IBM as a software
engineer. As a private consultant, Linda also worked for an
assortment of companies covering a wide range of software
systems. She is a recipient of the Carnegie Science Award
of Excellence for Information Technology and the New
York State Chancellor’s Award for Excellence in Teaching.
Today’s primary approach to system monitoring and
assessment is through the use of measurements. We
characterize the quality of a system by a set of measure-
ments captured at critical probe points defined for the
system’s constituent component and networks. Using
measurements we monitor a system’s health in terms of its
security, availability, performance, reliability, usability, etc.
The scale, decentralization, distribution, and heterogeneity
of ULS systems will challenge today’s measurement
practices. It is not clear what we should measure. What
system-wide, end-to-end and local quality-of-service
indicators are relevant to ULS systems? For example,

930

does reliability as we know it have a meaning in a ULS
system? Moreover, we don’t have a clear understanding of
why those indicators would change, how they should be
prioritized, and how measurement processes will handle
continual changes to components, services, usage, and
connectivity. People are also an important integral part of
ULS systems and so there must be indicators for the hu-
man, organizational, economic, and business elements of
the system as well as the technical elements. It is likely
that at least some ULS system indicators should be statisti-
cal, composite measures of a system’s overall state, like the
gross national product. Current quality measures and
measurement process will simply not be adequate for ULS
systems.

6. Martin Rinard, rinard@cag.csail.mit.edu
MARTIN RINARD is a Professor in the MIT Department of
Electrical Engineering and Computer Science and a
member of the MIT Computer Science and Artificial
Intelligence Laboratory. His research interests have
included parallel and distributed computing, programming
languages, program analysis, program verification, and
software engineering. Much of his current research focuses
on techniques that enable software systems to execute
successfully in spite of the presence of errors. His research
results include a semantics for concurrent constraint
languages, a meta-language for implicitly parallel pro-
grams, commutativity analysis for automatically parallel-
izing object-oriented programs, synchronization optimiza-
tions for eliminating locking overhead in parallel programs,
new pointer and escape analysis algorithms, the Hob and
Jahob program analysis and verification systems, data
structure repair (which enables programs to recover from
data structure corruption errors), and failure-oblivious
computing (a technique for enabling programs to execute
successfully through otherwise fatal memory addressing
errors).
All ultra large systems are built as assemblages of existing
systems. The most important challenges that developers of
ultra large systems face are therefore already well known to
the software development community. The scale and
ambition of these systems, however, changes the context in
which these challenges play out. The result is that some
challenges may become more difficult to deal with
successfully, in some cases requiring new perspectives,
new expectations, or new system construction, operation,
and maintenance techniques. Major development issues
will revolve around the difficulty of making multiple
different software systems interact successfully. The
standard approach is to use interaction mechanisms from
middleware packages. The continuing need to make
multiple software systems interact will motivate the
development of new and more elaborate middleware
packages that support an increasing variety of interaction
paradigms. In particular, existing software systems are

brittle in that they often fail catastrophically when pre-
sented with unexpected or missing interactions. One new
middleware theme will be the automatic conversion of
potentially problematic interactions into interactions that
conform to the expectations of the involved software
systems. Techniques may include automatically changing
potentially problematic values, synthesizing missing
interactions, and removing interactions that may cause
problems for the receiving system.
A second set of issues will center around appropriately
configuring the component software systems as they are
transplanted from their original operating environments
into their new environment as part of the larger system.
Developers will increasingly employ multiple virtual (or, in
some cases, even physical) machines as one mechanism to
replicate, as closely as possible, the original operating
environment so as to maximize the chances that the
systems will operate successfully. In some cases the virtual
machine may develop to the point that it becomes an
elaborate simulation of the environment (both physical and
logical) in which the system was originally deployed.
Another motivation for these techniques will be the need to
support software systems that run only in obsolete operat-
ing environments. We expect that developers will usually
accept the (often substantial) inefficiencies associated with
the extensive use of middleware and virtual machines as a
matter of course. In a sufficiently large system, some parts
will always be operating sub-optimally or even completely
broken. The need to keep the system operating in the face
of these defects will motivate the development of new
techniques for graceful degradation in the face of problems:
techniques that enable software systems to execute through
otherwise fatal errors, replace broken components with
much simpler components with reduced functionality, and
operate in the presence of interaction patterns that the
software was originally not designed to support.
One perspective change will be an acceleration of the shift
from deductive to inductive reasoning about the operation
of the system. In a large system nobody understands the
individual components and their interactions well enough
to accurately predict its behavior. Instead, the system will
be constructed, its behavior observed, and adjustments
made as undesirable behaviors become suspected or
apparent.
A key development risk associated with large systems is
the possibility that the system will not work (or will take an
unacceptable amount of time or resources to develop)
because of unrealistic expectations about the behavior,
functionality, resource consumption, or performance
characteristics of one or more of the components when
operating within the final system. Competent organizations
will minimize, but not eliminate, these risks by designing
their systems with the aid of experts who specialize in
understanding the software systems that the organization
plans to use. It will be especially important to recognize

931

unrealistic development plans quickly to minimize the
amount of wasted development time and resources. Note
that the extensive use of existing systems in a new devel-
opment effort can make the amount of time and effort
required to complete the development less predictable.
Because nobody will understand how a sufficiently large
system will behave in its full range of potential operating
conditions, there is always the risk that a deployed system
will unexpectedly fail to provide acceptable service. While
society largely accepts substantial (and arguably unneces-
sary) amounts of mortality and morbidity in endeavors not
perceived to involve large software systems (examples
include traffic accidents, medical errors, and gunshot
wounds), it remains to be seen how society will react to
disasters directly attributable to unexpected aspects of the
operation of large software systems. It is possible that we
will find out the answer to this question over the next
several decades as newly deployed software systems
directly affect an increasingly large part of society. On the
other hand, software systems have been the cause of
remarkably few disasters in the past, and while there is
obviously some limit to the size and complexity of software
systems that we can safely develop and deploy, it is not
clear how close we are to that limit.

7. Douglas C. Schmidt, schmidt@dre.vanderbilt.edu
DOUGLAS C. SCHMIDT is a Full Professor in the Electrical
Engineering and Computer Science Department, the Asso-
ciate Chair of Computer Science and Engineering, and a
Senior Researcher at the Institute for Software Integrated
Systems (ISIS) at Vanderbilt University. For over a decade,
his research has focused on patterns, optimization tech-
niques, and empirical analyses of object-oriented and
component-based frameworks and model-driven develop-
ment tools that facilitate the development of distributed
real-time and embedded (DRE) middleware and applica-
tions on parallel platforms running over high-speed net-
works and embedded system interconnects. Schmidt is an
internationally renowned and widely cited expert on dis-
tributed computing middleware patterns, middleware
frameworks, and Real-time CORBA. He has published
over 300 works in top IEEE, ACM, IFIP, and USENIX
technical journals, conferences, and books that cover a
range of topics, including high-performance communica-
tion software systems, parallel processing for high-speed
networking protocols, real-time distributed computing with
CORBA, Real-time Java, object-oriented patterns for
concurrent and distributed systems, and model-driven
development tools. Schmidt received B.S. and M.A. de-
grees in Sociology from the College of William and Mary
in Williamsburg, Virginia, and an M.S. and a Ph.D. in
Computer Science from the University of California, Irvine
(UCI).
Software engineers have traditionally created, integrated,
and tested entire systems internally in-house before ship-

ping them to end-users. In contrast, ULS systems will
increasingly be developed in situ in the deployment envi-
ronment due to the blurring between design time and
runtime. This trend creates the need for synergistic model-
driven engineering environments and runtime platforms for
deploying, configuring, and validating the behavior of
reusable components and integrated applications to ensure
they meet the quality-of-service (QoS) requirements in the
context in which they execute.
The scale of ULS systems will also require in situ systems,
processes, and techniques for measuring, analyzing, and
modeling the interactions between configuration choices
and the achievement of desired functional and QoS quali-
ties. Unlike traditional small-scale software systems that
could be analyzed and validated using precise quality
assurance (QA) techniques, ULS systems will need ad-
vances in statistical, usage-based QA techniques to provide
confidence that their implementations can be depended on
to meet end-to-end requirements in harsh operational
environments. ULS systems will therefore need distributed
continuous QA environments that can divide complex QA
processes into multiple test subtasks, intelligently dissemi-
nate and execute these subtasks to a distributed grid of in-
house and in-the-field platforms, and fused together the
results to inform and guide the QA process.

8. Kevin Sullivan, sullivan@cs.virginia.edu
KEVIN SULLIVAN is an Associate Professor and Virginia
Engineering Foundation Faculty Fellow in Computer
Science at the University of Virginia. He received his
undergraduate degree from Tufts University in 1987 and
the PhD in Computer Science and Engineering from the
University of Washington in 1994. His research interests
are in software-intensive systems, in general, and in soft-
ware engineering and languages, in particular. He has long
been interested in issues and models of modularity in
software design, and is currently working on the technical
and economic aspects of modularity in software system
design. Sullivan also has broad interests in the dependabil-
ity characteristics of software and software-intensive
systems. He has served as associate editor for the ACM
Transactions on Software Engineering and Methodology
and the Journal of Empirical Software Engineering and on
the program and executive committees of many top confer-
ences including the International Conference on Software
Engineering (ICSE), the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE), the ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL) and the Aspect-Oriented
Software Development (AOSD) conference. Sullivan was
also a member of the core team that wrote the Ultra-Large-
Scale Systems report recently issued by the Software Engi-
neering Institute.
The theory and practice of software-intensive system
design has traditionally focused on interesting and impor-

932

tant technical aspects of the activity: e.g., formalizing
architecture, program synthesis, the semantics of program-
ming languages, notations and mechanisms for specifica-
tion and verification, compositional components, etc.
Although such work is elegant and of great value, it is not
enough, by itself, to enable adequately the reliable devel-
opment of successful ULS systems.
One underlying problem is that we lack a theory and
practice connecting technical aspects of design to what
Studenmaier calls the ambience of design: the “economic,
military, social, personal and environmental needs and
constraints” that surround designs and designed arti-
facts, and to which they respond (Vincente, 1990). One
quick glance at the state of the art in software economics
makes the point: research has focused mainly on cost and
schedule estimation, but little progress has been made on
modeling and analyzing the ways in which design strategies
and structures satisfy ambient economic goals. Simply put,
there has been little work on reliable estimation
of economic benefits. For example, even though modularity
in software design has been studied for decades as a
technical issue, testable theories of the economics of
modularity are just emerging — and not primarily from
within the software engineering and languages field.
On this panel Sullivan will take the position that what we
need is a significantly increased emphasis on fundamental
and applied research leading to testable scientific theories
and useful mechanisms connecting technical aspects of
software-intensive system design to ambient objectives and
constraints. Our capitalist economic system in particular
dictates that most designers see and seek economic value in

new designs (Baldwin and Clark, 1999). It is thus particu-
larly important that we develop a rich scientific under-
standing of design economics. This task is not one that
likely can be accomplished by researchers in computer
science and engineering alone, but will require close
collaboration between us and design-focused researchers in
other disciplines, including but not limited to financial
economics.
Success in this endeavor is especially needed to enable the
development of ULS systems. Their complexity will be
so great that tight control of design, development, deploy-
ment, operation and evolution will in many cases be
untenable. Rather, our main viable point of influence at the
whole-system level will be to engineer the ambience so as
to create conditions within which decentralized design
activities will nevertheless produce satisfactory problem
definitions, design architectures, components and systems.
Rather than focusing just on improving our abilities to
tightly manage technical aspects of designs, we thus also
need to develop new approaches to what might be called
design environmentalism and stewardship. Heaping on
another metaphor, we need to shift our attention from
engineering the plants, which is untenable, to engineering
the gardens so that the plants will grow (borrowed from
Dick Gabriel). A scientific discipline of design economics,
as described here, has the potential to deliver the concepts,
methods and tools we need to reliably establish and
maintain fertile ambient conditions — gardens — in which
successful ULS system designs and artifacts might emerge
and grow healthy over time.

933

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

