
Symbolic Bounds Analysis of
Pointers, Array Indices, and Accessed Memory Regions∗

Radu Rugina and Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

{rugina, rinard}@lcs.mit.edu

Abstract

This paper presents a novel framework for the symbolic
bounds analysis of pointers, array indices, and accessed mem-
ory regions. Our framework formulates each analysis prob-
lem as a system of inequality constraints between symbolic
bound polynomials. It then reduces the constraint system
to a linear program. The solution to the linear program
provides symbolic lower and upper bounds for the values
of pointer and array index variables and for the regions of
memory that each statement and procedure accesses. This
approach eliminates fundamental problems associated with
applying standard fixed-point approaches to symbolic anal-
ysis problems. Experimental results from our implemented
compiler show that the analysis can solve several important
problems, including static race detection, automatic paral-
lelization, static detection of array bounds violations, elimi-
nation of array bounds checks, and reduction of the number
of bits used to store computed values.

1 Introduction

This paper presents a new algorithm for statically extracting
information about the regions of memory that a program ac-
cesses. To obtain accurate information for programs whose
memory access patterns depend on the input, our analysis
is symbolic, deriving polynomial expressions that bound the
ranges of the pointers and array indices used to access mem-
ory. Our prototype compiler uses the analysis information
to solve a range of problems, including automatic race de-
tection for parallel programs, automatic parallelization of
sequential programs, static detection of array bounds viola-
tions, static elimination of array bounds checks, and (when
it is possible to derive precise numeric bounds) automatic
computation of the minimum number of bits required to
hold the values that the program computes.

We have applied our techniques to divide and conquer
programs that access disjoint regions of dynamically allo-

∗This research was supported in part by NSF Grant CCR-9702297.
We intend to maintain a full, updated version of this paper at
www.cag.lcs.mit.edu/∼rinard/paper/pldi00.updated.ps.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
PLDI 2000, Vancouver, British Colombia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006...$5.00.

cated arrays [16, 13, 8]. These programs present a challeng-
ing set of program analysis problems: they use recursion as
their primary control structure, they use dynamic memory
allocation to match the sizes of the data structures to the
problem size, and they access data structures using pointers
and pointer arithmetic, which complicates the static disam-
biguation of memory accesses.

The straightforward application of standard program an-
alysis techniques to this class of programs fails because the
domain of symbolic expressions has infinite ascending chains.
This paper presents a new framework that eliminates this
problem. Instead of using traditional fixed-point algorithms,
it formulates each analysis problem as a system of inequality
constraints between symbolic bound polynomials. It then
reduces the constraint system to a linear program. The so-
lution to the linear program provides symbolic lower and
upper bounds for the values of pointer and array index vari-
ables and for the regions of memory that each statement and
procedure accesses. The analysis solves one symbolic con-
straint system per procedure, then one symbolic constraint
system for each strongly connected component in the call
graph.

1.1 Static Race Detection

Explicitly parallel languages give programmers the control
they need to produce extremely efficient programs. The
drawback is that explicit parallelism can significantly com-
plicate the development process. One of the main compli-
cations is the possibility of data races, or unanticipated in-
teractions that occur at memory locations accessed by par-
allel threads. A divide and conquer program has a data
race when one thread writes a location that another par-
allel thread accesses. Our analysis statically compares the
regions of memory accessed by parallel threads to deter-
mine if there may be a data race. If not, the programmer
is guaranteed that the program is race-free and will execute
deterministically with no unanticipated interactions. Our
analysis therefore eliminates a primary complication associ-
ated with parallel programming.

1.2 Automatic Parallelization

The difficulty of developing parallel programs has led to a
large research effort devoted to automatically parallelizing
sequential programs [1, 3, 17, 23]. Our analysis is capable
of automatically parallelizing sequential divide and conquer
programs. We emphasize the fact that traditional paral-
lelization techniques are of little or no use for this class of

programs — they are designed to analyze loop nests that
access dense matrices using affine index expressions, not re-
cursive procedures that use pointers and offsets into dynam-
ically allocated arrays.

Our analysis allows us to be neutral on the issue of ex-
plicit parallelism versus automatic parallelization. If the
programmer prefers to write a parallel program, our com-
piler will help eliminate one of the key problems, data races.
If the programmer prefers to write a sequential program, our
compiler will automatically parallelize the program so that
it executes efficiently on parallel machines.

1.3 Detecting Array Bounds Violations

For efficiency reasons, low-level languages like C do not
check that array accesses fall within the array bounds. But
array bounds violations are a serious potential problem, in
large part because they introduce unanticipated and difficult
to understand interactions between statements that violate
the array bounds and the data structures that they incor-
rectly access.

Because our algorithms characterize the regions of mem-
ory accessed by statements and procedures, they allow the
compiler to certify that a program will never violate the
array bounds. This is true even for programs that dynam-
ically allocate arrays and use pointer arithmetic to obtain
long-lived pointers into the middle of arrays.

1.4 Eliminating Array Bounds Checks

Safe languages like Java eliminate the possibility of unde-
tected array bounds violations by dynamically checking that
each array access falls within the array bounds. A problem
with this approach is the cost of executing the extra instruc-
tions that check for array bounds violations.

Because our algorithms characterize the regions of mem-
ory accessed by statements and procedures, they allow the
compiler to eliminate array bounds checks. If the regions
accessed by a statement or procedure fall within the array
bounds, the compiler can safely eliminate any associated
checks. Once again, our analysis allows us to be neutral on
the issue of array bounds checks. If the programmer would
prefer to use an unsafe language, the compiler can certify
that the program does not violate the array bounds. If the
programmer would prefer to use a safe language, the com-
piler can automatically eliminate the array bounds checks.

1.5 Bitwidth Analysis

Although our analysis is designed to derive symbolic bounds,
it extracts precise numeric bounds when it is possible to do
so. In this case, it can bound the number of bits required
to represent the values that the program computes. These
bounds can be used to eliminate superfluous bits from the
structures used to store the values, reducing the memory
and energy consumption of hardware circuits automatically
generated from programs written in standard programming
languages [2, 6, 27].

1.6 Contributions

This paper makes the following contributions:

• Analysis Framework: It presents a novel framework
for the symbolic bounds analysis of pointers, array in-
dices, and accessed memory regions. This framework
formulates the analysis problem using systems of sym-
bolic inequality constraints.

• Solution Mechanism: Standard program analyses
use iterative fixed-point algorithms to solve systems of
inclusion constraints or dataflow equations [21]. But
fixed-point methods fail to solve our constraint systems
because the domain of symbolic expressions has infi-
nite ascending chains. Instead of attempting to iterate
to a solution, our new approach reduces each system
of symbolic constraints to a linear program. The so-
lution of this linear program translates directly into a
solution for the symbolic constraint system. There is
no iteration and no possibility of nontermination.

• Pointer Analysis: It shows how to use pointer anal-
ysis to enable the application of the analysis frame-
work to programs that heavily use dynamic alloca-
tion, pointers into the middle of dynamically allocated
memory regions, and pointer arithmetic.

• Analysis Uses: It presents algorithms that use the
analysis results to solve several important problems,
including static race detection, automatic paralleliza-
tion, detection of array bounds violations, elimination
of array bounds checks, and reduction of the number of
bits used to store the values computed by the program.

• Experimental Results: It presents experimental re-
sults that characterize the effectiveness of the algo-
rithms on a set of benchmark programs. Our results
show that the algorithms can verify the absence of
data races in our benchmark parallel programs, de-
tect the available parallelism in our benchmark serial
programs, and verify that both sets of benchmark pro-
grams do not violate their array bounds. They can
also significantly reduce the number of bits required
to store the state of our benchmark bitwidth analysis
programs.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a running example that we use throughout
the paper. Section 3 presents the analysis algorithms, while
Section 4 presents some extensions to these algorithms. Sec-
tion 5 presents experimental results from our implementa-
tion. Section 6 discusses related work. We conclude in Sec-
tion 7.

2 Example

Figure 1 presents a simple example that illustrates the kinds
of programs that our analysis is designed to handle. The
dcInc procedure implements a recursive, divide-and-conquer
algorithm that increments each element of an array. The
example is written in Cilk, a parallel dialect of C [14].

2.1 Parallelism in the Example

In the divide part of the algorithm, the dcInc procedure di-
vides each array into two subarrays. It then calls itself recur-
sively to increment the elements in each subarray. Because
the two recursive calls are independent, they can execute
concurrently. The program generates this parallel execution
using the Cilk spawn construct, which executes its argument
function call in parallel with the rest of the computation in
the procedure. The program then executes a sync instruc-
tion, which blocks the caller procedure until the parallel calls
have finished. After the execution of several recursive lev-
els, the subarray size becomes as small as CUTOFF, at which
point the algorithm uses the base case procedure baseInc
to sequentially increment each element of the subarray.

1: #define CUTOFF 16
2:
3: void baseInc(int *q, int m) {
4: int i;
5: i = 0;
6: while(i <= m-1) {
7: *(q+i) += 1;
8: i = i+1;
9: }

10: }
11: void dcInc(int *p, int n) {
12: if (n <= CUTOFF) {
13: baseInc(p, n);
14: } else {
15: spawn dcInc(p, n/2);
16: spawn dcInc(p+n/2, n-n/2);
17: sync;
18: }
19: }
20: void main(int argc, char *argv[]) {
21: int size, *A;
22: scanf("%d", &size);
23: if (size > 0) {
24: A = malloc(size * sizeof(int));
25: /* code that initializes A */
26: dcInc(A, size);
27: /* code that uses A */
28: }
29: }

Figure 1: Divide and Conquer Array Increment Example

This example reflects the structure of most of the Cilk
programs discussed in Section 5 in that it identifies sub-
problems using pointers into dynamically allocated memory
blocks. This strategy leads to code containing significant
amounts of pointer arithmetic. Arguably better program-
ming practice would use integer indices instead of pointers.
Our pointer analysis algorithm and formulation of the sym-
bolic analysis allows us to be neutral on this issue. Our
algorithm can successfully analyze programs that identify
subproblems using any combination of pointer arithmetic
and array indices. Also note that the exclusive use of ar-
ray indices instead of pointer arithmetic does not signifi-
cantly simplify the analysis problem — the compiler must
still reason about recursively generated accesses to regions
of dynamically allocated memory blocks.

2.2 Required Analysis Information

The basic problem that our symbolic analysis must solve is
to determine the regions of memory that each procedure ac-
cesses. The analysis represents regions of memory using two
abstractions: allocation blocks and symbolic regions. There
is an allocation block for each allocation site in the program,
with the memory locations allocated at that site merged to-
gether to be represented by the site’s allocation block. In
our example, the allocation block a represents the array A
allocated at line 24 in Figure 1.

Symbolic regions identify a contiguous set of memory lo-
cations within an allocation block. Each symbolic region has
a lower bound and an upper bound; the bounds are symbolic
polynomials with rational coefficients. In the analysis results
for each procedure, the variables in each bound represent the
initial values of the parameters of the procedure. In our ex-

ample, the compiler determines that each call to baseInc
reads and writes the symbolic region [q0, q0 + m0 − 1] within
the allocation block a and that each call to dcInc reads and
writes the symbolic region [p0, p0 + n0 − 1] within a.1

The compiler can use this information to detect data
races and array bounds violations as follows. To check for
data races, it compares the symbolic regions from parallel
call sites to see if a region written by one call overlaps with
a region accessed by a parallel call. If so, there is a potential
data race. If not, there is no race. To compare the regions
accessed by the two recursive calls to dcInc, for example, the
compiler substitutes the actual parameters at the call site
in for the corresponding formal parameters in the extracted
symbolic regions. It computes that the first call reads and
writes [p, p+(n/2)−1] in a and that the second call reads and
writes [p+(n/2), p+n− 1] in a. The compiler compares the
bounds of these regions to verify that neither call writes a
region that overlaps with a region accessed by the other call,
which implies that the program has no data races. Note that
the rational coefficients in the bound polynomials allow the
compiler to reason about the calculations that divide each
array increment problem into two subproblems of equal size.

To detect array bounds violations, the compiler compares
the sizes of the arrays against the expressions that tell which
regions of the array are accessed by each procedure. In the
example, the appropriate comparison is between the size of
the array when it is allocated in the main procedure and
the regions accessed by the top-level call to dcInc in the
main procedure. The top-level call to dcInc reads and writes
[A, A+size−1] in a. This symbolic region is contained within
the dynamically allocated block of memory that holds the
array, so the program contains no array bounds violations.

In the remainder of the paper, we present the algorithms
that the compiler uses to analyze the program and solve the
set of problems discussed in the introduction. We use the
array increment program in Figure 1 as a running example
to illustrate how our algorithms work.

3 Analysis Algorithm

The analysis has two goals: to compute an upper and lower
bound for each pointer and array index variable at each
program point and, for each procedure and each allocation
block, to compute a set of symbolic regions that represent
the memory locations that the entire computation of the
procedure accesses. It computes the bounds as a polynomi-
als with rational coefficients and variables that represent the
initial values of the parameters of the enclosing procedure.

3.1 Structure of the Compiler

Figure 2 presents the general structure of the compiler, which
consists of the following analysis phases:

• Pointer and Read-Write Sets Analysis: The com-
piler first runs an interprocedural, context-sensitive,
flow-sensitive pointer analysis that analyzes both se-
quential and parallel programs [25]. It then performs
an interprocedural read-write sets analysis, which uses
the extracted information to compute the allocation
blocks accessed by each instruction and each proce-
dure in the program. The remaining phases rely on
this phase to disambiguate references via pointers.

1Here we use the notation [l, h] to denote the region of memory
between the addresses l and h, inclusive. As is standard in C, we
assume contiguous allocation of arrays, and that the addresses of the
elements increase as the array indices increase. We also use the no-
tation p0 to denote the initial value of the parameter p.

Bounds Checks Elimination

Array Bounds Checking

for Safe Programs

for Unsafe Programs

Region Analysis
Interprocedural

?

?

?

Region Analysis
Intraprocedural

Intraprocedural
Bounds Analysis

Symbolic
Analysis

Automatic Parallelization
for Sequential Programs

Bitwidth Reduction

-¾

-¾

?

?

Analysis Uses

Read-Write Sets
Analyses

Pointer and

Data Race Detection for
Parallel Programs

Figure 2: Structure of the Compiler

• Symbolic Analysis: This phase produces sets of sym-
bolic regions that characterize how each procedure ac-
cesses memory. It first extracts symbolic bounds for
each pointer and array index variable, then uses this
information to compute symbolic bounds for the ac-
cessed regions within each allocation block.

• Uses of the Analysis Results: This phase uses the
symbolic memory access information computed by the
earlier stages to solve the problems discussed above in
the introduction.

The symbolic analysis consists of the following subphases:

• Intraprocedural Bounds Analysis: This phase de-
rives symbolic bounds for each pointer and array index
variable at each program point.

• Intraprocedural Region Analysis: For each allo-
cation block, this phase computes a set of symbolic
regions that characterizes how the procedure directly
reads or writes the allocation block.

• Interprocedural Region Analysis: For each allo-
cation block, this phase computes a set of symbolic
regions that characterizes how the entire computation
of the procedure reads or writes the allocation block.

Both the bounds analysis and the interprocedural region
analysis use a general symbolic analysis framework for build-
ing and solving systems of symbolic inequality constraints
between polynomials. Recursive constraints may be gener-
ated by loops in the control flow (in the case of the bounds
analysis), or by recursive calls (in the case of the region anal-
ysis). By solving arbitrary systems of recursive constraints,
the compiler is able to handle arbitrary flow of control at
both the intraprocedural and interprocedural level.

3.2 Basic Concepts

The analysis uses the following mathematical objects to rep-
resent the symbolic bounds and accessed memory regions:

• Allocation Blocks: There is an allocation block a for
each static or dynamic allocation site in the program,
with the variable declaration sites considered to be the
static allocation sites. All of the elements of each array
are merged together to be represented by the allocation
block from the array’s allocation site. For programs
with structures, each field of each structure has its
own allocation block.

• Program Variables: Vf is the set of pointer and
array index variables from the procedure f . In our
example, VbaseInc = {q, m, i}. vp denotes the value of
the variable v at the program point p; v0 is the initial
value of a parameter v of a given procedure.

• Reference Sets: Cf is the set of initial values of
the parameters of the procedure f . Cf is called the
reference set of f . In our example, CbaseInc = {q0, m0}.

• Polynomials: P ∗
S is the set of multivariate polynomi-

als with rational coefficients and variables in S. Also,
PS = P ∗

S ∪{+∞,−∞}. PCf is the analysis domain for
the procedure f ; all symbolic analysis results for f are
computed as elements of Cf .

Note that even though the polynomials represent inte-
ger values, they have rational coefficients, not integer
coefficients. Rational coefficients enable the compiler
to reason about address computations that contain di-
vision operators. These kinds of address computations
are common in our target class of divide and conquer
computations, which use them to divide a problem into
several subproblems of equal size.

• Symbolic Bounds: For each variable v and program
point p, the analysis computes a symbolic lower bound
lv,p and upper bound uv,p for the value of v at p. The
analysis computes these bounds as symbolic polyno-
mials with rational coefficients and variables from the
reference set of the enclosing procedure.

In our example, the analysis computes li,p = 0 and
ui,p = m0 − 1, where p is the program point before line
7 in Figure 1.

• Symbolic Regions: A symbolic region R in the do-
main of a procedure f is a pair of symbolic bounds
from the analysis domain of f : R ∈ PCf × PCf , R =
[l, u], with l, u ∈ PCf ; l is the lower bound and u is the
upper bound. Each symbolic region represents a con-
tinguous set of memory locations within an accessed
allocation block.

• Symbolic Region Sets: A symbolic region set RS
in the domain of a procedure f is a set of symbolic
regions from f : RS ⊆ PCf × PCf . For each procedure
f and allocation block a, the analysis computes two
symbolic region sets to represent the locations that
the entire computation of f accesses: RWf,a, which
represents the locations that f writes in a, and RRf,a,
which represents the locations that f reads in a. In
our example the analysis computes:

RWbaseInc,a = RRbaseInc,a = {[q0, q0 + m0 − 1]}
RWdcInc,a = RRdcInc,a = {[p0, p0 + n0 − 1]}

where a is the allocation block for the array allocated
at line 24 in Figure 1.

?
·¾

¹ ¸

?

HHH

?

©©©¼

B2

i ≤ m-1

B1

i = 0;

B3

i = i+1;

*(q+i) += 1;

lm,3 ≤ m ≤ um,3

lm,2 ≤ m ≤ um,2

lm,1 ≤ m ≤ um,1

li,1 ≤ i ≤ ui,1

li,2 ≤ i ≤ ui,2

li,3 ≤ i ≤ ui,3

Figure 3: Symbolic Bounds at the Start of Basic Blocks

3.3 Intraprocedural Bounds Analysis

In this phase, the compiler computes symbolic lower and up-
per bounds for each pointer and array index at each program
point. The bounds are expressed as polynomials with ratio-
nal coefficients. The variables in the polynomials represent
the initial values of the formal parameters of the enclos-
ing procedure. We illustrate the operation of this phase by
showing how it analyzes the procedure baseInc from Fig-
ure 1.

3.3.1 Initial Symbolic Bounds

Let B = {Bj |1 ≤ j ≤ l} be the set of basic blocks in the
control-flow graph of the procedure f . For each variable
v ∈ Vf and basic block Bj , the compiler generates a symbolic
lower bound lv,j and a symbolic upper bound uv,j for the
value of v at the start of Bj . Figure 3 presents the control-
flow graph and initial symbolic bounds for the procedure
baseInc from our example.

3.3.2 Symbolic Analysis of Basic Blocks

The compiler next symbolically executes the instructions in
each basic block to produce new symbolic bounds for each
variable at the end of the block and at all intermediate pro-
gram points within the block. These bounds are expressed
as linear combinations of the symbolic bounds from the start
of the block. Figure 4 presents the results of this step in our
example.2 We next explain how the compiler extracts these
bounds.

During the analysis of individual instructions, the com-
piler must be able to compute bounds of expressions. The
analysis computes the lower bound L(e, p) and upper bound
U(e, p) of an expression e at a program point p as follows.
If e contains at least one variable with infinite bounds, then
L(e, p) = −∞ and U(e, p) = +∞. Otherwise, the following
equations define the bounds. Note that in these expressions,
+, −, and · operate on polynomials. Each expression is a
linear combination of the symbolic bounds lv,p and uv,p.

2Our compiler decouples the analysis of i and m from the analysis
of q (see Section 4.3). We therefore present the analysis only for i
and m.

?
·¾

¹ ¸

?

©©©¼
HHH

?

i = 0;

i ≤ m-1

B2

B1

lm,1 ≤ m ≤ um,1

li,1 ≤ i ≤ ui,1

lm,1 ≤ m ≤ um,1

0 ≤ i ≤ 0

lm,2 ≤ m ≤ um,2

B3

i = i+1;

*(q+i) += 1;

lm,2 ≤ m ≤ um,2 lm,2 ≤ m ≤ um,2

li,2 ≤ i ≤ um,2−1

li,2 ≤ i ≤ ui,2

li,2 ≤ i ≤ ui,2

lm,3 ≤ m ≤ um,3

lm,3 ≤ m ≤ um,3

lm,3 ≤ m ≤ um,3

li,3 ≤ i ≤ ui,3

li,3 ≤ i ≤ ui,3

li,3+1 ≤ i ≤ ui,3+1

Figure 4: Symbolic Bounds at the End of Basic Blocks

L(c, p) = c

L(v, p) = vl,p

L(e1 + e2, p) = L(e1, p) + L(e2, p)

L(c · e, p) =
{

c · L(e, p) if c > 0
c · U(e, p) if c ≤ 0

U(c, p) = c

U(v, p) = vu,p

U(e1 + e2, p) = U(e1, p) + U(e2, p)

U(c · e, p) =
{

c · U(e, p) if c > 0
c · L(e, p) if c ≤ 0

For an assignment instruction i of the form v = e, where
v ∈ Vf and e is a linear expression in the program variables,
the analysis updates the bounds of v to be the bounds of
e. Formally, if p is the program point before i and p′ is the
program point after i, then:

lv,p′ = L(e, p)

uv,p′ = U(e, p)

For a conditional instruction i of the form v ≤ e or v ≥ e,
where v ∈ Vf and e is a linear expression in the program
variables, the analysis generates a new upper or lower bound
for v on the true branch of the conditional. If the conditional
is of the form v ≥ e, the new lower bound of v is the lower
bound of e. If the conditional is of the form v ≤ e, the
new upper bound of v is the upper bound of e. Formally,
if p is the program point before the conditional and t is the
program point on the true branch of the conditional, then:

lv,t = L(e, p) if i is of the form v ≥ e

uv,t = U(e, p) if i is of the form v ≤ e

Initialization Conditions:
li,1 = −∞ ui,1 = +∞
lm,1 = m0 um,1 = m0

Symbolic Constraints:
li,2 ≤ 0 0 ≤ ui,2

li,2 ≤ li,3 + 1 ui,3 + 1 ≤ ui,2

lm,2 ≤ lm,1 um,1 ≤ um,2

lm,2 ≤ lm,3 um,3 ≤ um,2

li,3 ≤ li,2 um,2 − 1 ≤ ui,3

lm,3 ≤ lm,2 um,2 ≤ um,3

Objective Function:
min : (ui,2 − li,2) + (um,2 − lm,2)+

(ui,3 − li,3) + (um,3 − lm,3)

Figure 5: Symbolic Constraint System for Bounds Analysis

All other bounds remain the same as the corresponding
bounds from before the conditional.

For all other instructions, such as assignments of expres-
sions that are not linear in the program variables (but see
Section 4.3 for an extension that enables the analysis to
support polynomial expressions in certain cases), call in-
structions, or more complicated conditionals, the analysis
generates conservative bounds. All of the variables that the
analyzed instruction writes have infinite bounds, and all of
the other variables have unchanged bounds. The pointer and
read-write sets analyses compute the set of written variables.

3.3.3 Constraint Generation

The algorithm next builds a symbolic constraint system over
the lower and upper bounds. The system consists of a set of
initialization conditions, a set of symbolic constraints, and
an objective function to minimize:

• The initialization conditions require that at the start of
the entry basic block B1, the bounds of each pointer
or array index parameter v ∈ Vf must be equal to
v0 (the value of that variable at the beginning of the
procedure). For all other variables, the lower bounds
are set to −∞ and the upper bounds to +∞.

• The symbolic constraints require that the range of each
variable at the beginning of each basic block must in-
clude the range of that variable at the end of the prede-
cessor basic blocks. Formally, if Bj is a predecessor of
Bk, l′v,j and u′

v,j are the bounds of v at the end of Bj ,
and lv,k and uv,k are the bounds of v at the beginning
of Bk, then lv,k ≤ l′v,j and u′

v,j ≤ uv,k.

• The objective function minimizes the upper bounds
and maximizes the lower bounds. Therefore the ob-
jective function is: min :

∑
v∈Vf

∑l

j=2
(uv,j − lv,j).

The initialization conditions and symbolic constraints en-
sure the safety of the computed bounds. The objective func-
tion ensures a tight solution that minimizes the symbolic
ranges of the variables. Figure 5 presents the constraint
system in our example.

The analysis next extracts the bounds in terms of the
reference set (the initial values of the parameters). The al-
gorithm does not know what the bounds are, but it proceeds
under the assumption that they are polynomials with vari-
ables in the reference set. It therefore expresses the bounds
as symbolic polynomials. Each term of the polynomial has a
rational coefficient variable cj . The goal of the analysis is to
find a precise numerical value for each coefficient variable cj .
In our example, the bounds are expressed using coefficient
variables and the variables from the reference set {q0, m0}:

li,2 = c1q0 + c2m0 + c3

lm,2 = c4q0 + c5m0 + c6

li,3 = c7q0 + c8m0 + c9

lm,3 = c10q0 + c11m0 + c12

ui,2 = c13q0 + c14m0 + c15

um,2 = c16q0 + c17m0 + c18

ui,3 = c19q0 + c20m0 + c21

um,3 = c22q0 + c23m0 + c24

The initialization conditions define the bounds at the begin-
ning of the starting basic block B1:

lm,1 = m0 um,1 = m0 li,1 = −∞ ui,1 = +∞

3.3.4 Solving the Symbolic Constraint System

This step solves the symbolic constraint system by deriving
a rational numeric value for each coefficient variable. We
first summarize the starting point for the algorithm.

• The algorithm is given a set of symbolic lower and
upper bounds. These bounds are expressed as a set
of symbolic bound polynomials Pi ∈ PC , where C is
the reference set of the currently analyzed procedure.
Each term in each symbolic bound polynomial consists
of a coefficient variable and a product of reference set
variables: Pi =

∑t

i=0
ci · xri,1

1 · · ·xri,s
s .

• The algorithm is also given a set of inequality con-
straints between polynomial expressions and an ob-
jective function to minimize. Formally, the symbolic
constraint system can be expressed as a pair (I, O),
where I ⊆ { Q ≤ R | Q, R ∈ PC } is the set of sym-
bolic constraints and O ∈ PC is the objective func-
tion. The polynomial expressions Q, R, and O are
linear combinations of the symbolic bound polynomi-
als. The analysis described in Sections 3.3.2 and 3.3.3
produces these expressions.

The algorithm solves the constraint system by reducing
it to a linear program over the coefficient variables from
the symbolic bound polynomials. It generates the linear
program by reducing each symbolic inequality constraint
to several linear inequality constraints over the coefficient
variables of the symbolic bound polynomials. Formally, if
Q =

∑t

i=0
cQ

i ·xri,1
1 · · ·xri,s

s and R =
∑t

i=0
cR

i ·xri,1
1 · · ·xri,s

s ,
then:

(Q ≤ R) ∈ I is reduced to: cQ
i ≤ cR

i , for all 0 ≤ i ≤ t

Because the polynomial expressions are linear combinations
of the symbolic bound polynomials, the coefficients cR

i and
cQ
i are linear combinations of the coefficient variables from

the symbolic bound polynomials.
The algorithm also reduces the symbolic objective func-

tion to a linear objective function in the coefficient variables.
This reduction minimizes the sum of the coefficients in the
polynomial expression. Formally, if the objective function is
O =

∑t

i=0
cO

i · xri,1
1 · · ·xri,s

s , then:

min : O is reduced to: min :
t∑

i=0

cO
i

Symbolic Generated Linear
Constraints Constraints

li,2 ≤ 0 : c1 ≤ 0 c2 ≤ 0 c3 ≤ 0
li,2 ≤ li,3 + 1 : c1 ≤ c7 c2 ≤ c8 c3 ≤ c9 + 1
lm,2 ≤ m0 : c4 ≤ 0 c5 ≤ 1 c6 ≤ 0
lm,2 ≤ lm,3 : c4 ≤ c10 c5 ≤ c11 c6 ≤ c12

li,3 ≤ li,2 : c7 ≤ c1 c8 ≤ c2 c9 ≤ c3

lm,3 ≤ lm,2 : c10 ≤ c4 c11 ≤ c5 c12 ≤ c6

ui,2 ≥ 0 : c13 ≥ 0 c14 ≥ 0 c15 ≥ 0
ui,2 ≥ ui,3 + 1 : c13 ≥ c19 c14 ≥ c20 c15 ≥ c21 + 1
um,2 ≥ m0 : c16 ≥ 0 c17 ≥ 1 c18 ≥ 0
um,2 ≥ um,3 : c16 ≥ c22 c17 ≥ c23 c18 ≥ c24

ui,3 ≥ um,2 − 1 : c19 ≥ c16 c20 ≥ c17 c21 ≥ c18 − 1
um,3 ≥ um,2 : c22 ≥ c16 c23 ≥ c17 c24 ≥ c18

Objective Function:
min : ((c13 + c14 + c15) − (c1 + c2 + c3)) +

((c16 + c17 + c18) − (c4 + c5 + c6)) +
((c19 + c20 + c21) − (c7 + c8 + c9)) +
((c22 + c23 + c24) − (c10 + c11 + c12))

Figure 6: Linear Program for Bounds Analysis

At this point the analysis has generated a linear program.
The solution to this linear program directly gives the solu-
tion to the symbolic constraint system.

We emphasize that the symbolic constraint system is re-
duced to a linear program, not to an integer linear pro-
gram. The coefficient variables in the linear program are
rational numbers, not integer numbers.

Figure 6 shows the generated linear program in our ex-
ample. It presents the symbolic constraints on the left hand
side and the generated linear constraints on the right hand
side. For example, the constraint li,2 ≤ li,3 + 1 means that
(c1q0 + c2m0 + c3) ≤ (c7q0 + c8m0 + c9) + 1, which in turn
generates the following constraints: c1 ≤ c7, c2 ≤ c8 and
c3 ≤ c9 + 1. Solving the linear program yields the following
values of the coefficient variables:

c1 = 0 c2 = 0 c3 = 0 c13 = 0 c14 = 1 c15 = 0
c4 = 0 c5 = 1 c6 = 0 c16 = 0 c17 = 1 c18 = 0
c7 = 0 c8 = 0 c9 = 0 c19 = 0 c20 = 1 c21 = −1

c10 = 0 c11 = 1 c12 = 0 c22 = 0 c23 = 1 c24 = 0

This gives the following polynomials for the lower and upper
bounds:

li,2 = 0 ui,2 = m0 lm,2 = m0 um,2 = m0

li,3 = 0 ui,3 = m0 − 1 lm,3 = m0 um,3 = m0

Finally, these bounds are used to compute the symbolic
bounds of the variables at each program point, giving the
final result shown in Figure 7. Note that the analysis detects
that the symbolic range of the index variable i before the
store instruction *(q+i) += 1 is [0, m0 − 1]. In a similar
manner, the bounds analysis is able to determine that the
range of the pointer q at this program point is [q0, q0], which
means that q = q0 before the store instruction.

3.3.5 Positivity Analysis

Both of the transformations that reduce the symbolic con-
straint system to a linear program assume that the variables

0 ≤ i ≤ 0
m0 ≤ m ≤ m0

0 ≤ i ≤ m0

m0 ≤ m ≤ m0

m0 ≤ m ≤ m0

0 ≤ i ≤ m0

m0 ≤ m ≤ m0

m0 ≤ m ≤ m0

m0 ≤ m ≤ m0

m0 ≤ m ≤ m0

0 ≤ i ≤ m0−1

0 ≤ i ≤ m0−1

0 ≤ i ≤ m0−1

1 ≤ i ≤ m0

?
·Â

µ ¸

?

?

HHH
©©©¼

−∞ ≤ i ≤ +∞

i = 0;

B2

B1

i ≤ m-1

m0 ≤ m ≤ m0

B3

i = i+1;

*(q+i) += 1;

Figure 7: Results of the Bounds Analysis

in the reference set Cf are positive. We can apply similar
transformations if we know that a variable is negative. But
if we do not know the sign of a variable in Cf , we cannot
reduce the symbolic system to a linear program. The algo-
rithm therefore performs a simple interprocedural positivity
analysis to compute the sign of the array index variables in
the reference set. It does not check pointer variables, since
they always represent positive addresses.

3.4 Region Analysis

For each procedure f and allocation block a, the region anal-
ysis computes a symbolic region set that represents the re-
gions of a that f reads or writes. An intraprocedural anal-
ysis first builds the regions that each procedure accesses di-
rectly. An interprocedural analysis then uses these symbolic
regions to build symbolic constraint systems that specify
the regions accessed by the complete computation of each
procedure. The algorithm solves each constraint system by
reducing it to a linear program. This approach solves the
hard problem of computing symbolic access regions for re-
cursive procedures.

3.4.1 Region Coalescing

At certain points in the analysis, the algorithm must coalesce
overlapping regions. Figure 8 presents the region coalescing
algorithm. It first tries to coalesce the new region with some
other overlapping region in the region set, in which case the
bounds of the overlapping region are adjusted to accommo-
date the new region. If no overlapping region is found, the
algorithm adds the new region to the region set.

Algorithm Coalesce(Region R, RegionSet RS)
let R = [l, u]
if (∃[l′, u′] ∈ RS, l ≤ l′ ≤ u′ ≤ u) then

return (RS − {[l′, u′]}) ∪ {[l, u]}
else if (∃[l′, u′] ∈ RS, l ≤ l′ ≤ u ≤ u′) then

return (RS − {[l′, u′]}) ∪ {[l, u′]}
else if (∃[l′, u′] ∈ RS, l′ ≤ l ≤ u′ ≤ u) then

return (RS − {[l′, u′]}) ∪ {[l′, u]}
else if (∃[l′, u′] ∈ RS, l′ ≤ l ≤ u ≤ u′) then

return RS
else return RS ∪ {[l, u]}

Figure 8: Region Coalescing Algorithm

Algorithm IntraproceduralRegionAnalysis()
for (each procedure f and each allocation block a) do

RW local
f,a = RRlocal

f,a = ∅
for (each allocation block access in the program) do

let f = the current procedure;
let p = the current program point;
let a = the accessed allocation block;
let e = the address expression of the access;
Rnew = [L(e, p), U(e, p)]
if (write access)
then RW local

f,a =Coalesce(Rnew, RW local
f,a)

else RRlocal
f,a = Coalesce(Rnew, RRlocal

f,a)

Figure 9: Intraprocedural Region Analysis Algorithm

3.4.2 Intraprocedural Region Analysis

Figure 9 presents the pseudo-code for the intraprocedural
region analysis. The algorithm first initializes the read re-
gion sets RRlocal

f,a and write region sets RW local
f,a . These sets

characterize the regions of memory directly accessed by f .
It then scans the instructions to extract the region expres-
sions, using the bounds analysis results to build the region
expression for each instruction. It also coalesces overlapping
region expressions from different instructions.

If a is the memory block dynamically allocated in the
main program in the example, the result of the intraproce-
dural analysis for baseInc and dcInc is:

RW local
baseInc,a = {[q0, q0 + m0 − 1]}

RRlocal
baseInc,a = {[q0, q0 + m0 − 1]}

RRlocal
dcInc,a = ∅

RW local
dcInc,a = ∅

The region analysis uses the pointer analysis information to
determine that the store instruction in baseInc accesses the
allocation block a.

3.4.3 Interprocedural Region Analysis

The interprocedural region analysis uses the results of the
intraprocedural region analysis to compute a symbolic re-
gion set for the entire computation of each procedure, in-
cluding all of the procedures that it invokes. It first builds
the call graph of the computation and identifies the strongly

non-recursive
component

recursive
component

non-recursive
component

scc1 = {main}

scc2 = {dcInc}

scc3 = {baseInc}

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°main

baseInc

dcInc

?̄
²

µ ´

SCC DAGCall Graph

?

?

?

?

Figure 10: Call Graph and SCC DAG in Example

connected components. It then traverses the strongly con-
nected components in reverse topological order, propagating
the access region information between strongly connected
components from callee to caller. Within each strongly con-
nected component with recursive calls, it generates a sym-
bolic constraint system and solves it using the algorithm
from Section 3.3.4. Figure 10 shows the call graph and its
strongly connected components for our example.

3.4.4 Symbolic Unmapping

At each call site, the analysis models the assignments of ac-
tual parameters to formal parameters, then uses this model
to propagate access region information from the callee to the
caller. The analysis of the callee produces a result in terms
of the initial values of the callee’s parameters. But the result
for the caller must be expressed in terms of the caller param-
eters, not the callee parameters. The symbolic unmapping
algorithm performs this change of analysis domain for each
accessed region R from the callee.

• The algorithm first transforms the region R from the
callee domain to a new region R′ by replacing the for-
mal parameters from the callee with the actual pa-
rameters from the call site. The new region [l, u] = R′

expresses the bounds in terms of the variables of the
caller.

• The algorithm next uses the results of the intraproce-
dural bounds analysis presented in Section 3.3 to com-
pute a lower bound for l and an upper bound for u in
terms of the reference set of the caller. These two new
bounds are the symbolic lower and upper bounds for
the unmapped region SUcs(R), the translation of the
region R from the callee domain to the caller domain
at the call site cs.

Let CallSites(f, g) be the set of all call sites with caller
f and callee g. We formalize the symbolic unmapping as
follows.

• Mapping: For two sets of variables S and T , a map-
ping M from S to T is either a function M ∈ S → P ∗

T

(a function from S to symbolic polynomials in T), or
a special mapping Munk, called the unknown mapping.

• Call Site Mapping: For a call site cs ∈ CallSites(f, g),
we define a call site mapping Mcs ∈ (Cg → P ∗

Vf
) ∪

{Munk} as follows:

– if the actual parameters can be expressed as poly-
nomials p1, . . . , pm ∈ P ∗

Vf
then Mcs(vi) = pi,

where v1, . . . , vm are the formal parameters of g.

– otherwise, Mcs = Munk.

• Symbolic Unmapping of a Polynomial: Given a
polynomial P ∈ PS and a mapping M ∈ S → P ∗

T , we
define the symbolic unmapping SUM (P) ∈ P ∗

T of the
polynomial P using M as follows:

P =
∑

ci · xri,1
1 · · ·xri,s

s

SUM (P) =
∑

ci · M(x1)
ri,1 · · ·M(xs)

ri,s

• Symbolic Unmapping of a Region at a Call Site:
Given a region R = [l, u] ∈ PCf × PCf and a call site
cs ∈ CallSites(f, g) with call site mapping M 6= Munk,
we define the symbolic unmapping SUcs(R) ∈ PCf ×
PCf of the region R at call site cs as follows:

SUcs(R) = [L(SUM (l), cs), U(SUM (u), cs)]

If M = Munk, then SUcs(R) = [−∞, +∞].

• Symbolic Unmapping of a Region Set at a Call
Site: Given a region set RS and a call site cs, we
define the symbolic unmapping SUcs(RS) of the region
set RS at call site cs as follows:

SUcs(RS) = {SUcs(R) | R ∈ RS}

• Symbolic Unmapping of Region Sets for Allo-
cation Blocks: Given an accessed allocation block a
and a call site cs ∈ CallSites(f, g), the accessed region
sets RRcs

f,a = SUcs(RRg,a) and RW cs
f,a = SUcs(RWg,a)

describe the regions of a accessed by g at call site cs,
in terms of the reference set of f .

Given these definitions, the interprocedural analysis for
non-recursive procedures is straightforward. The algorithm
simply traverses the call graph in reverse topological or-
der, using the unmapping algorithm to propagate region sets
from callees to callers.

Figure 11 shows the symbolic unmapping process at call
site cs1, where dcInc invokes baseInc in our example. The
compiler starts with the region expression RWbaseInc,a =
[q0, q0+m0−1] computed by the intraprocedural region anal-
ysis. Here a is the accessed allocation block from baseInc.
The compiler creates a call site mapping M that maps the
formal parameters q0 and m0 to the symbolic expressions rep-
resenting the corresponding actual parameters at the call
site: M(q0) = p and M(m0) = n. The analysis uses this
mapping to translate RWbaseInc,a into the new region R′ =
[p, p+ n− 1]. Finally, the compiler uses the bounds of p and
n at the call site to derive the unmapped region:

SUcs1(RWbaseInc,a) = [L(p, cs1), U(p + n− 1, cs1)]

= [p0, p0 + n0 − 1]

The unmapped region SUcs1(RWbaseInc,a) = [p0, p0 + n0 − 1]
characterizes the regions in a accessed by the call instruction
baseAdd(p,n) in terms of the initial values of the parameters
of dcAdd, p0 and n0.

callee domain
Procedure: baseInc
Reference set: {q0, m0}

R = [q0, q0 + m0 − 1]

Bounds information at call site:
p0 ≤ p ≤ p0, n0 ≤ n ≤ n0

with mapping M :
Call site baseInc(p, n)

M : {q0, m0} → {p, n}

caller domain
Procedure: dcInc
Reference set: {p0, n0}

SUcs1(R) = [p0, p0 + n0 − 1]

6

6

[p, p + n− 1]

Figure 11: Symbolic Unmapping Example

3.4.5 Analysis of Recursive Procedures

One way to attack the analysis of recursive procedures
is to use a fixed-point algorithm to propagate region sets
through cycles in the call graph. But this approach fails
because the domain of multivariate polynomials has infinite
ascending chains, which means that the algorithm may never
reach a fixed point. First, the bounds in some divide and
conquer programs form a convergent geometric series. There
is no finite number of iterations that would find the limit of
such a series. Second, recursive programs can generate a
statically unbounded number of regions in the region set.

Our algorithm avoids these problems by generating a sys-
tem of recursive symbolic constraints whose solution deliv-
ers a region set specifying the regions of memory accessed
by the entire strongly connected component. The symbolic
constraint system is solved by using the algorithm presented
in Section 3.3.4 to reduce the symbolic constraint system to
a linear program. The main idea is to generate a set of con-
straints that, at each call site, requires the caller region sets
to include the unmapped region sets of the callee. We next
discuss how the compiler computes the region sets for a set
S of mutually recursive procedures.

Step 1. Define the target symbolic bounds. The compiler
first defines, for each recursive procedure f ∈ S and alloca-
tion block a, a finite set of read regions and a finite set of
write regions. An analysis of the base cases of the recursion
determines the number of regions in each set.

RRf,a = {[lrd
f,a,1, u

rd
f,a,1], . . . , [l

rd
f,a,j , u

rd
f,a,j]}

RWf,a = {[lwr
f,a,1, u

wr
f,a,1], . . . , [l

wr
f,a,k, uwr

f,a,k]}
The bounds of these regions are the target bounds in our
analysis framework. For each procedure f ∈ S, these bounds
are polynomial expressions in PCf . To guarantee the sound-
ness of the unmapping, the constraint system requires the
coefficients of the variables in these bounds to be positive.

Consider, for example, the computation of the region sets
for the strongly connected component S = {dcInc} from
our example.3 Since the base case for this procedure writes

3The compiler decouples the computation of write region sets from
the computation of read region sets (see Section 4.3). We therefore
present the analysis only for the write set of dcInc.

a single region within the allocation block a, the compiler
generates a single write region for dcInc:

RWdcInc,a = {[lwr
dcInc,a, uwr

dcInc,a]}
The bounds of this region are polynomials with variables in
CdcInc = {p0, n0}. The algorithm uses the following bounds:

lwr
dcInc,a = C1p0 + C2n0 + C3

uwr
dcInc,a = C4p0 + C5n0 + C6

where C1, C2, C4, and C5 are positive rational coefficients.

Step 2. Generate the symbolic system of constraints. The
analysis next generates the constraint system for the region
bounds defined in the previous step. The system must en-
sure that two conditions are satisfied. First, the local region
sets must be included in the global region sets:

RRlocal
f,a ⊆ RRf,a ∀f ∈ S

RW local
f,a ⊆ RWf,a ∀f ∈ S

Second, for each call site, the unmapped region sets of the
callee must be included in the region sets of the caller:

SUcs(RRg,a) ⊆ RRf,a ∀f ∈ S, ∀cs ∈ CallSites(f, g)

SUcs(RWg,a) ⊆ RWf,a ∀f ∈ S, ∀cs ∈ CallSites(f, g)

Figure 12 summarizes the constraints in the generated sys-
tem. As in the intraprocedural case, the objective function
minimizes the sizes of the symbolic regions.

Figure 13 presents the system of symbolic constraints for
the interprocedural analysis of dcInc. Because dcInc does
not directly access any allocation block, there are no lo-
cal constraints. The analysis generates call site constraints
for the call sites cs1, cs2, and cs3, at lines 13, 15, and
16 in Figure 1 respectively. At call site cs1, which in-
vokes baseInc, the analysis symbolically unmaps the callee
region [q0, q0 + m0 − 1] to generate the unmapped region
[p0, p0 + n0 − 1]. The bounds of this unmapped region gen-
erate the first two constraints in Figure 13. The recursive
call sites cs2 and cs3 generate similar constraints, except
that now the analysis unmaps the region [lwr

dcInc,a, uwr
dcInc,a] =

[C1p0 + C2n0 + C3, C4p0 + C5n0 + C6]. The positivity of
C1, C2, C4, and C5 ensures the correctness of the symbolic
unmapping for this region. The last four constraints cor-
respond to the call site constraints for cs2 and cs3 after
performing the symbolic unmapping.

Step 3. Reduce the symbolic constraints to a linear program
and solve the linear program. The analysis next uses the
reduction method presented in Section 3.3.4 to reduce the
symbolic constraint system to a linear program. This lin-
ear program contains constraints that explicitly ensure the
positivity of the rational coefficients of the variables in the
bounds. The solution of the linear program directly yields
the symbolic region sets of the recursive procedures in S.
As for the bounds analysis, if the linear program does not
have a solution, the compiler conservatively sets the regions
of all the procedures in S to [−∞, +∞]. In our example,
the algorithm reduces the symbolic constraints to the linear
program in Figure 14. The solution of this linear program
yields the following expressions for the bounds defined in
the first step:

lwr
dcInc,a = p0 , uwr

dcInc,a = p0 + n0 − 1

The write region for dcInc is therefore [p0, p0 +n0 −1]. The
compiler similarly derives the same read region for dcInc.

Local Access Constraints:

lrd
f,a ≤ l ∧ u ≤ urd

f,a ∀f ∈ S, ∀[l, u] ∈ RRlocal
f,a

lwr
f,a ≤ l ∧ u ≤ uwr

f,a ∀f ∈ S, ∀[l, u] ∈ RW local
f,a

Call Site Constraints:

lrd
f,a ≤ L(SUMcs(l), cs) ∧ U(SUMcs(u), cs) ≤ urd

f,a

∀f ∈ S, ∀cs ∈ CallSites(f, g), ∀[l, u] ∈ RRg,a

lwr
f,a ≤ L(SUMcs(l), cs) ∧ U(SUMcs(u), cs) ≤ uwr

f,a

∀f ∈ S, ∀cs ∈ CallSites(f, g), ∀[l, u] ∈ RWg,a

Objective Function:

min :
∑
f∈S

[(urd
f,a − lrd

f,a) + (uwr
f,a − lwr

f,a)]

Figure 12: Interprocedural Symbolic Constraints for a Set
S of Mutually Recursive Procedures

Call Site Constraints:

C1p0 + C2n0 + C3 ≤ p0

C4p0 + C5n0 + C6 ≥ p0 + n0 − 1

C1p0 + C2n0 + C3 ≤ C1p0 + C2
n0
2 + C3

C4p0 + C5n0 + C6 ≥ C4p0 + C5
n0
2 + C6

C1p0 + C2n0 + C3 ≤ C1(p0 + n0
2) + C2(n0 − n0

2) + C3

C4p0 + C5n0 + C6 ≥ C4(p0 + n0
2) + C5(n0 − n0

2) + C6

Objective Function:

min : (C4p0 + C5n0 + C6) − (C1p0 + C2n0 + C3)

Figure 13: Interprocedural Symbolic Constraints for Write
Regions of S = {dcInc} in Example

C1 ≤ 1 C2 ≤ 0 C3 ≤ 0
C4 ≥ 1 C5 ≥ 1 C6 ≥ −1

C1 ≤ C1 C2 ≤ C2/2 C3 ≤ C3

C4 ≥ C4 C5 ≥ C5/2 C6 ≥ C6

C1 ≤ C1 C2 ≤ C1/2 + C2/2 C3 ≤ C3

C4 ≥ C4 C5 ≥ C4/2 + C5/2 C6 ≥ C6

C1 ≥ 0 C2 ≥ 0 C4 ≥ 0 C5 ≥ 0

min : (C4 + C5 + C6) − (C1 + C2 + C3)

Figure 14: Generated Linear Program for Write Regions of
S = {dcInc} in Example

Finally, the compiler analyzes the main procedure. Here
the call site mapping for call site cs4, where procedure main
calls dcInc, is unknown Mcs4 = Munk, so the symbolic un-
mapping generates the whole-array region [−∞, +∞] for the
procedure main. The interprocedural analysis therefore de-
rives the following region sets for the array allocated in main:

RWbaseInc,a = RRbaseInc,a = {[q0, q0 + m0 − 1]}
RWdcInc,a = RRdcInc,a = {[p0, p0 + n0 − 1]}
RWmain,a = RRmain,a = {[−∞, +∞]}

This information enables the compiler to determine that
there are no array bounds violations because of the calls to
baseInc and dcInc. It can also use the analysis results to
determine that there are no data races in these procedures.
If it had been given a sequential version of the program, the
analysis results would allow the compiler to automatically
parallelize it.

4 Extensions

We next present some extensions to the basic symbolic anal-
ysis algorithm presented so far. These extensions are de-
signed to improve the precision or efficiency of the basic
algorithm, or to extend its functionality.

4.1 Correlation Analysis

The compiler uses correlation analysis to improve the pre-
cision of the bounds analysis. Correlated variables are inte-
ger or pointer variables with matching increments in loops.4

When the loop increments correlated variables but the loop
condition specifies bounds only for some of the correlated
variables, the compiler can use correlation analysis to auto-
matically derive bounds for the other correlated variables.

void Merge(int *l1, int *h1,
int *l2, int *h2, int *d) :

while ((l1 < h1) && (l2 < h2))
if (*l1 < *l2) { *d = *l1; d++; l1++; }
else { *d = *l2; d++; l2++; }

Figure 15: Correlated Variables in Mergesort

Figure 15 shows an example of correlated variables in the
main loop of the Merge procedure in Mergesort. Here, the
variables d, l1, and l2 are correlated, but the loop condition
specifies upper bounds only for l1 and l2 (l1 < h10 and
l1 < h20). Correlation analysis enables the compiler to
automatically derive an upper bound for d at the top of the
loop body: d ≤ d0 + (h10 − l10) + (h20 − l20) − 2.

The compiler detects correlated variables by generating
a correlation expression e with the property that the execu-
tion of the loop body does not decrease e if and only if the
variables in e have matching increments. In general, e is a
linear combination of the correlated variables. In our exam-
ple, e = l1 + l2 − d. Note that because the loop does not
decrease e, every increment of d has a matching increment
of either l1 or l2.

To prove that the loop does not decrease e, the compiler
extracts a new lower bound for e at the program point q at

4The analysis also correctly handles increments and decrements by
arbitrary constants.

the top of the loop body (flow of control passes through q
once for every loop iteration). The compiler generates a new
correlation variable v with the property that v = e through-
out the loop, and treats v specially in the bounds analysis,
ensuring that its bounds are valid bounds for e. At the pro-
gram point p before the loop, the analysis sets the bounds
of v to L(e, p) and U(e, p). When an instruction in the loop
body increments one of the variables in e, the analysis ei-
ther increments or decrements both bounds of v, depending
on the sign of the coefficient of the variable in the correla-
tion expression. In our example, the analysis increments the
bounds of v when an instruction increments l1 or l2, and
decrements the bounds of v when an instruction increments
d. For all other instructions that write one of the variables
in e, the analysis sets the bounds of v to the bounds of e. In
our example, this special treatment of v enables the analysis
to compute L(v, q) = l10 +l20 −d0, where q is the program
point at the top of the loop body.

This lower bound l10 + l20 − d0 ≤ v = l1 + l2 − d
translates immediately into an upper bound for d: d ≤ (l1+
l2)− (l10 +l20−d0). The compiler uses the test conditions
l1 < h10 and l2 < h20 to eliminate l1 and l2 from the
inequality, deriving the upper bound for d at the top of
the loop: d ≤ (h10 − 1 + h20 − 1) − (l10 + l20 − d0) =
d0 + (h10 − l10) + (h20 − l20) − 2.

4.2 Integer Division

As presented so far, the algorithm assumes that division is
exact, i.e., it is identical to real division. But address cal-
culations in divide and conquer programs often use integer
division. For positive expressions e, the compiler uses the
following equations to eliminate integer division operations
from lower and upper bound polynomials:

L
(⌊

e

n

⌋
, p

)
=

L(e, p) − n + 1

n

U
(⌊

e

n

⌋
, p

)
=

U(e, p)

n

The compiler uses similar equations if e is negative, or if
there is no information about the sign of e. With these mod-
ifications, the symbolic analysis algorithm correctly handles
programs with integer division.

4.3 Constraint System Decomposition

As presented so far, the algorithm generates a single linear
program for each symbolic constraint system. If it is not
possible to statically bound one of the pointer or array in-
dex variables (in the intraprocedural bounds analysis) or one
of the symbolic regions (in the interprocedural region anal-
ysis), the linear program solver will not deliver a solution,
and the algorithm will set all bounds in the system to con-
servative, infinite values, even though it may be possible to
statically compute some of the bounds. We avoid this form
of imprecision by decomposing the symbolic constraint sys-
tem into smaller subsystems. This decomposition isolates,
as much as possible, variables and regions without statically
computable bounds.

The decomposition proceeds as follows. We first build a
bounds dependence graph. The nodes in this directed graph
are the unknown symbolic bounds lv,p and uv,p in the con-
straint system (in the intraprocedural bounds analysis) or
the lower and upper bounds of the symbolic regions (in
the interprocedural region analysis). The edges reflect the

dependences between the bounds. For each symbolic con-
straint of the form b ≤ e or b ≥ e, where b is a symbolic
bound and e is an expression containing symbolic bounds,
the graph contains an edge from each bound in e to b. In-
tuitively, there is an edge from one bound to another if the
second bound depends on the first bound. The algorithm
uses the bounds dependence graph to decompose the original
constraint system into subsystems, with one subsystem for
each strongly connected component in the graph. It solves
the subsystems in the topological order of the corresponding
strongly connected components, with the solutions flowing
along the edges between the strongly connected components
of the bounds dependence graph. The system decomposition
ensures that:

• The bounds of unrelated variables and regions fall into
different and unrelated subsystems. The analysis there-
fore computes the bounds independently, and a failure
to compute a bound for one variable or region does
not affect the computation of the bounds for the other
variables and regions.

• The bounds of a variable at different program points
fall into different subsystems if the program points are
not in the same loop. Thus, outside loops, the system
decomposition separates the computation of bounds at
different program points.

• Unrelated lower and upper bounds of the same variable
at the same program point fall into different and unre-
lated subsystems. The analysis can therefore compute
a precise lower bound of a variable even if there is no
information about the upper bound of that variable,
and vice versa.

The decomposition also improves the efficiency of the
algorithm. The smaller, decomposed subsystems solve much
faster than the original system. Most of the subsystems
are trivial systems with only one target bound, and we use
specialized, fast solvers for these cases.

Finally, the system decomposition enables the algorithm
to extend the intraprocedural analysis to handle nonlinear
polynomial bounds. We first extend the basic block analy-
sis from Section 3.3 to handle assignments and conditionals
with nonlinear polynomial expressions in the program vari-
ables. These nonlinear expressions generate nonlinear com-
binations of the bounds lv,p and uv,p in the symbolic con-
straint system. Unfortunately, the linear program reduction
cannot be applied in this case because of the presence of
terms that contain products of the coefficient variables.

The system decomposition allows the compiler to use
a simple substitution algorithm to solve this problem and
support nonlinear bounds expressions provided that the rel-
evant bounds are not part of a cycle in the bounds depen-
dence graph. Once the compiler has solved one subsystem,
it can replace bounds in successor subsystems with the so-
lution from the solved subsystem. This substitution elim-
inates nonlinear combinations of bounds in the successor
subsystems, enabling the analysis to use the linear program
reduction or specialized solvers to obtain a solution for the
successor subsystems.

4.4 Analysis Contexts

As presented so far, the symbolic interprocedural analysis
generates a single result for each procedure. In reality, the
pointer analysis generates a result for each context in which
each procedure may be invoked [25]. The symbolic analysis

also generates a result for each context rather than a result
for each procedure.

The pointer analysis algorithm uses ghost allocation blocks
to avoid reanalyzing procedures for equivalent contexts [25].
We therefore extend the unmapping algorithm discussed in
Section 3.4.4 to include a translation from the ghost allo-
cation blocks in the analysis result to the actual allocation
blocks at the call site.

5 Experimental Results

We used the SUIF compiler infrastructure [1] to implement
a compiler based on the analysis algorithms presented in this
paper. We extended the SUIF system to support programs
written in Cilk, a parallel version of C [4]. Given a sequential
C program, our compiler will automatically parallelize it.
Given a Cilk program, our compiler will determine if it is free
of data races. For both kinds of programs, our compiler will
determine if it may violate its array bounds. Our compiler
would also eliminate array bounds checks if the underlying
language (C) had them. We present experimental results for
several divide and conquer programs:

• Fibonacci: Standard recursive Fibonacci benchmark.

• Quicksort: Divide and conquer quicksort.

• Mergesort: Divide and conquer mergesort.

• Heat: Solves heat diffusion on a mesh.

• Knapsack: Solves the 0/1 knapsack problem.

• BlockMul: Divide and conquer blocked matrix mul-
tiply. Allocates temporary arrays on the stack.

• NoTempMul: Divide and conquer blocked matrix
multiply with no temporary arrays.

• LU: Divide and conquer LU decomposition.
We have sequential and parallel versions of all programs.
We would like to emphasize the challenging nature of the
programs in this benchmark set. Most of them contain mul-
tiple mutually recursive procedures, and have been heavily
optimized by hand to extract the maximum performance.
As a result, they heavily use low-level C features such as
pointer arithmetic and casts. Our analysis handles all of
these low-level features correctly.

5.1 Data Race Detection and Array Bounds Violations

The analysis verifies that all of the parallel programs except
Knapsack are free of data races. The data race in Knapsack
is used to prune the search space. This data race is inten-
tional and part of the algorithm design, but causes nonde-
terministic behavior. The analysis was also able to verify
that none of the benchmarks violates the array bounds.

5.2 Automatic Parallelization

The analysis was able to automatically parallelize all of the
sequential programs except Knapsack, whose parallelization
would have a data race. In general, the analysis detected the
same sources of parallelism as in the Cilk programs. We ran
the benchmarks on an eight processor Sun Ultra Enterprise
Server. Table 1 presents the speedups of the benchmarks
with respect to the sequential versions, which execute with
no parallelization overhead. In some cases the parallelized
version running on one processor runs faster than the se-
quential version, in which case the absolute speedup is above
one for one processor. We ran Quicksort and Mergesort on
a randomly generated file of 8,000,000 numbers, and Block-
Mul, NoTempMul and LU on a 1024 by 1024 matrix.

Program Number of Processors
1 2 4 6 8

Fibonacci 0.76 1.52 3.03 4.55 6.04
Quicksort 1.00 1.99 3.89 5.68 7.36
Mergesort 1.00 2.00 3.90 5.70 7.41
Heat 1.03 2.02 3.89 5.53 6.83
BlockMul 0.97 1.86 3.84 5.70 7.54
NoTemp 1.02 2.01 4.03 6.02 8.02
LU 0.98 1.95 3.89 5.66 7.39

Table 1: Absolute Speedups for Parallelized Programs

Percentage of Percentage of
Program Eliminated Eliminated

Register Bits Memory Bits
convolve 35.94% 25.76%
histogram 30.56% 73.86%
intfir 36.72% 1.59%
intmatmul 47.32% 35.42%
jacobi 42.71% 75.00%
life 65.92% 96.88%
median 43.75% 3.12%
mpegcorr 58.20% 53.12%
pmatch 59.38% 47.24%

Table 2: Bitwidth Analysis Results

5.3 Bitwidth Analysis

Bitwidth analysis has recently been identified as a concrete
value range problem [27]. Even though our algorithm is de-
signed to extract symbolic bounds, it extracts exact numeric
bounds when it is possible to do so. By adjusting our al-
gorithm to compute bounds for all variables and not just
pointers and array indices, we are able to apply our algo-
rithm to the bitwidth analysis problem. Table 2 presents
experimental results for several programs. We report reduc-
tions in two kinds of program state: register state, which
holds scalar variables, and memory state, which holds array
variables. Our analysis is able to significantly reduce the
number of bits required to hold the state of the program.

6 Related Work

We discuss several areas of related work: research in sym-
bolic memory access region analysis, array bounds check
elimination, race detection, and parallelizing compilers.

6.1 Symbolic Memory Access Region Analysis

Researchers have previously proposed several algorithms for
the symbolic analysis of accessed memory regions in sequen-
tial programs [18, 24, 15]. These algorithms use fixed-point
approaches to analyze recursive programs, employing a va-
riety of ad-hoc techniques (such as artificially limiting the
number of iterations or using imprecise widening operators)
to avoid the problem of infinite ascending chains in the do-
main of symbolic expressions. In addition, previous tech-
niques tended to exploit the loop structure of the program
to determine the regions of memory directly accessed by
each procedure, rather than providing a general framework
for arbitrary control flow. This paper replaces these limited
techniques with a clean, general formulation of the problem.
As a result, our techniques can successfully analyze a wider
range of programs. And we have generalized our techniques
to analyze both sequential and parallel programs.

6.2 Array Bounds Check Elimination

There is a long history of research on array bounds check
elimination [5, 19, 22, 20]. A typical goal is to move checks
out of loops or to detect that the loop termination condition
ensures that array accesses within the loop do not violate
the array bounds. The goal of optimizing checks in loops
tends to produce intraprocedural analyses that focus on the
simple conditionals that occur frequently in programs that
use loops as their primary control structure.

Our approach is designed to handle programs that use
recursion as their primary control structure. It is possible
to use the extracted pointer and index variable bounds to
eliminate checks at individual array access sites. Our com-
piler instead checks the extracted symbolic regions against
the size of the array at the allocation site to verify that in-
voked procedures do not violate the array bounds. Because
our source language does not have array bounds checks, our
implemented compiler uses this information to detect ar-
ray bounds violations. But for languages with array bounds
checks, the information would enable the compiler to elimi-
nate all checks in the call graph rooted at the invoked pro-
cedure. To make this approach work for our target class of
applications, we had to use symbolic polynomials with ratio-
nal coefficients instead of the simpler expressions often used
in previous approaches that are designed to work well for
loop-based programs. Unlike some previous researchers, we
have not attempted to eliminate partially redundant checks
or move checks to less frequently executed program points.

6.3 Race Detection

Data races are widely recognized as a serious problem for
parallel programmers. Several researchers have attacked the
problem by developing packages that dynamically record in-
formation about the memory locations that parallel threads
access, then use the information to determine the presence or
absence of races in a specific execution of the program [11, 9].
In this context, a data race occurs when one thread writes
a memory location, another thread accesses the same mem-
ory location, and the accesses are not protected by mutual
exclusion or signal/wait synchronization. Our algorithms
differ in that they can statically certify that all executions
of the program are free of data races, and in that they are
designed for programs that use fork/join synchronization,
not mutual exclusion or signal/wait synchronization.

Researchers have also developed static analyses that al-
low programmers to declare the correspondence between
locks and the pieces of data that they protect [28, 10, 12].
The analysis then checks that the program correctly holds
the appropriate lock when it accesses data. We view these
techniques as orthogonal to ours. Our techniques determine
when parallel threads access disjoint regions of dynamically
allocated arrays; lock-based analyses ensure that parallel
threads hold the correct lock when they access shared data.

6.4 Parallelizing Compilers

Previous research in parallelizing compilers has focused on
parallelizing loop nests that access dense matrices using affine
access functions [1, 3, 17]. The techniques presented in this
paper, on the other hand, are designed for programs with re-
cursive procedures, dynamic memory allocation, and pointer
arithmetic. On a more philosophical level, we have gener-
alized our algorithms to the point where they unify the au-
tomatic parallelization problem for sequential programs and
the static race detection problem for parallel programs.

Many parallel tree traversal programs can be viewed as
divide and conquer programs. Shape analysis is designed to
discover when a data structure has a certain “shape” such
as a tree or list [7, 26]. Several researchers have used shape
analysis as the basis for compilers that automatically paral-
lelize divide and conquer programs that manipulate linked
data structures. Commutativity analysis views computa-
tions as sequences of operations on objects [23]. It gener-
ates parallel code if all pairs of operations commute. We
view both commutativity analysis and shape analysis as or-
thogonal to our analyses.

7 Conclusion

This paper presents a new analysis framework for the sym-
bolic bounds analysis of pointers, array indices, and ac-
cessed memory regions. Standard program analysis tech-
niques fail for this problem because the analysis domain
has infinite ascending chains. Instead of fixed point algo-
rithms, our analysis uses a framework based on symbolic
constraints reduced to linear programs. Our pointer anal-
ysis algorithm enables us to apply our framework to com-
plicated recursive programs that use dynamic memory al-
location and pointer arithmetic. Experimental results from
our implemented compiler show that our analysis can suc-
cessfully solve several important program analysis problems,
including static race detection, automatic parallelization,
static detection of array bounds violations, elimination of
array bounds checks, and reduction of the number of bits
used to store computed values.

Acknowledgements

We would like to thank Alex Salcianu and Brian Demsky
for their help in generating the experimental results. We
would also like to thank Darko Marinov for discussions re-
garding the bounds dependence graph and Mark Stephenson
for providing us with the bitwidth analysis benchmarks.

References

[1] S. Amarasinghe, J. Anderson, M. Lam, and A. Lim. An overview
of a compiler for scalable parallel machines. In Proceedings of
the Sixth Workshop on Languages and Compilers for Parallel
Computing, Portland, OR, August 1993.

[2] C. Scott Ananian. Silicon C: A hardware backend for
SUIF. Available from http://flex-compiler.lcs.mit.edu/SiliconC/
paper.pdf, May 1998.

[3] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger,
D. Padua, P. Petersen, W. Pottenger, L. Raughwerger, P. Tu,
and S. Weatherford. Effective automatic parallelization with Po-
laris. In International Journal of Parallel Programming, May
1995.

[4] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall,
and Y. Zhou. Cilk: An efficient multithreaded runtime system.
Journal of Parallel and Distributed Computing, 37(1):55–69,
August 1996.

[5] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating array
bounds checks on demand. In Proceedings of the SIGPLAN ’00
Conference on Program Language Design and Implementation,
Vancouver, Canada, June 2000.

[6] M. Budiu, S. Goldstein, M. Sakr, and K. Walker. BitValue infer-
ence: Detecting and exploiting narrow bitwidth computations.
In Proceedings of the EuroPar 2000 European Conference on
Parallel Computing. Munich, Germany, August 2000.

[7] D. Chase, M. Wegman, and F. Zadek. Analysis of pointers and
structures. In Proceedings of the SIGPLAN ’90 Conference on
Program Language Design and Implementation, pages 296–310,
White Plains, NY, June 1990. ACM, New York.

[8] S. Chatterjee, A. Lebeck, P. Patnala, and M. Thottethodi. Re-
cursive array layouts and fast matrix multiplication. In Proceed-
ings of the 11th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, Saint Malo, France, June 1999.

[9] G. Cheng, M. Feng, C. Leiserson, K. Randall, and A. Stark. De-
tecting data races in Cilk programs that use locks. In Proceedings
of the 10th Annual ACM Symposium on Parallel Algorithms
and Architectures, June 1998.

[10] D. Detlefs, K. R. Leino, G. Nelson, and J. Saxe. Extended static
checking. Technical Report 159, Compaq Systems Research Cen-
ter, 1998.

[11] A. Dinning and E. Schonberg. Detecting access anomalies in pro-
grams with critical sections. In Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, Santa Cruz,
CA, May 1991.

[12] C. Flanagan and S. Freund. Type-based race detection for java.
In Proceedings of the SIGPLAN ’00 Conference on Program
Language Design and Implementation, Vancouver, Canada,
June 2000.

[13] J. Frens and D. Wise. Auto-blocking matrix-multiplication or
tracking BLAS3 performance from source code. In Proceedings
of the 6th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, Las Vegas, NV, June 1997.

[14] M. Frigo, C. Leiserson, and K. Randall. The implementation of
the Cilk-5 multithreaded language. In Proceedings of the SIG-
PLAN ’98 Conference on Program Language Design and Im-
plementation, Montreal, Canada, June 1998.

[15] M. Gupta, S. Mukhopadhyay, and N. Sinha. Automatic paral-
lelization of recursive procedures. In Proceedings of the 1999
Conference on Parallel Algorithms and Compilation Tech-
niques (PACT) ’99, Newport Beach, CA, October 1999.

[16] F. Gustavson. Recursion leads to automatic variable blocking
for dense linear-algebra algorithms. IBM Journal of Research
and Development, 41(6):737–755, November 1997.

[17] M. W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. In-
terprocedural compilation of Fortran D for MIMD distributed-
memory machines. In Proceedings of Supercomputing ’92, Min-
neapolis, MN, November 1992. IEEE Computer Society Press,
Los Alamitos, Calif.

[18] P. Havlak and K. Kennedy. An implementation of interproce-
dural bounded regular section analysis. IEEE Transactions on
Parallel and Distributed Systems, 2(3):350–360, July 1991.

[19] P. Kolte and M. Wolfe. Elimination of redundant array subscript
range checks. In Proceedings of the SIGPLAN ’95 Conference
on Program Language Design and Implementation, San Diego,
CA, June 1995.

[20] V. Markstein, J. Cocke, and P. Markstein. Optimization of range
checking. In Proceedings of the SIGPLAN ’82 Symposium on
Compiler Construction, Boston, MA, June 1982.

[21] F. Nielson, H. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

[22] J. Patterson. Accurate static branch prediction by value range
propagation. In Proceedings of the SIGPLAN ’95 Conference
on Program Language Design and Implementation, San Diego,
CA, June 1995. ACM, New York.

[23] M. Rinard and P. Diniz. Commutativity analysis: A new analy-
sis technique for parallelizing compilers. ACM Transactions on
Programming Languages and Systems, 19(6):941–992, Novem-
ber 1997.

[24] R. Rugina and M. Rinard. Automatic parallelization of divide
and conquer algorithms. In Proceedings of the 7th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, Atlanta, GA, May 1999.

[25] R. Rugina and M. Rinard. Pointer analysis for multithreaded
programs. In Proceedings of the SIGPLAN ’99 Conference on
Program Language Design and Implementation, Atlanta, GA,
May 1999.

[26] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis prob-
lems in languages with destructive updating. ACM Transactions
on Programming Languages and Systems, 20(1):1–50, January
1998.

[27] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis
with application to silicon compilation. In Proceedings of the
SIGPLAN ’00 Conference on Program Language Design and
Implementation, Vancouver, Canada, June 2000.

[28] N. Sterling. Warlock: A static data race analysis tool. In Pro-
ceedings of the 1993 Winter Usenix Conference, January 1994.

