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Abstract
We present a new technique for verifying commutativity conditions,
which are logical formulas that characterize when operations com-
mute. Because our technique reasons with the abstract state of veri-
fied linked data structure implementations, it can verify commuting
operations that produce semantically equivalent (but not necessar-
ily identical) data structure states in different execution orders. We
have used this technique to verify sound and complete commuta-
tivity conditions for all pairs of operations on a collection of linked
data structure implementations, including data structures that ex-
port a set interface (ListSet and HashSet) as well as data structures
that export a map interface (AssociationList, HashTable, and Ar-
rayList). This effort involved the specification and verification of
765 commutativity conditions.

Many speculative parallel systems need to undo the effects of
speculatively executed operations. Inverse operations, which undo
these effects, are often more efficient than alternate approaches
(such as saving and restoring data structure state). We present a new
technique for verifying such inverse operations. We have specified
and verified, for all of our linked data structure implementations, an
inverse operation for every operation that changes the data structure
state.

Together, the commutativity conditions and inverse operations
provide a key resource that language designers, developers of pro-
gram analysis systems, and implementors of software systems can
draw on to build languages, program analyses, and systems with
strong correctness guarantees.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.4 [Software Engineering]:
Software/Program Verification; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Reliability, Verification

Keywords Commutativity Condition, Data Structure, Inverse Op-
eration, Verification

1. Introduction
Commuting operations on shared data structures (operations that
produce the same result regardless of the order in which they
execute) play a central role in many parallel computing systems:

• Parallelizing Compilers: If a compiler can statically detect
that all operations in a given computation commute, it can
generate parallel code for that computation [41].
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• Deterministic Parallel Languages: Including support for
commuting operations in deterministic parallel languages in-
creases the expressive power of the language while preserving
guaranteed deterministic parallel execution [5, 42].

• Transaction Monitors: If a transaction monitor can detect
that operations within parallel transactions commute, it can use
efficient locking algorithms that allow commuting operations
from different transactions to interleave [17, 49]. Because such
locking algorithms place fewer constraints on the execution
order, they increase the amount of exploitable parallelism.

• Irregular Parallel Computations: Exploiting commuting op-
erations has been shown to be critical for obtaining good paral-
lel performance in irregular parallel computations that manip-
ulate linked data structures [28–30]. The reason is essentially
the same as for efficient transaction monitors — it enables the
use of efficient synchronization algorithms for atomic transac-
tions that execute multiple (potentially commuting) operations
on shared objects. For similar reasons, exploiting commuting
operations has also been shown to be essential for obtaining
good parallel performance for the SPEC benchmarks [7].

Despite the importance of commuting operations, there has been
relatively little research in automatically analyzing or verifying the
conditions under which operations commute. Indeed, the determin-
istic parallel language, transaction monitor, and irregular parallel
computation systems cited above all rely on the developer to iden-
tify commuting operations, with no way to determine whether the
operations do, in fact, commute or not. A mistake in identifying
commuting operations invalidates both the principles upon which
the systems operate and the correctness guarantees that they claim
to provide.

1.1 Previous Research
Commutativity analysis [41] uses static program analysis to find
operations that produce identical concrete object states in all exe-
cution orders. But this approach is inadequate for linked data struc-
tures — consider, for example, a linked list that implements a set
interface. Operations that insert elements into this data structure
commute at the semantic level — all insertion orders produce the
same abstract set of elements. But they do not commute at the
concrete implementation level — different insertion orders (even
though they produce the same set) produce different linked lists.
Any commutativity analysis that reasons at the concrete implemen-
tation level (as opposed to the abstract semantic level) would there-
fore conservatively conclude that such operations do not commute.

Another approach uses random interpretation [22] to detect
commuting operations [1]. This technique explores control flow
paths from different execution orders, with affine join operations
combining states from different control flow paths to avoid expo-
nential blowup in the number of analyzed states. Instead of directly
comparing states from different execution orders, the technique rea-
sons about the return values of the functions that the program uses
to observe the different states. Because effective affine join opera-
tions do not currently exist for linked data structures, this approach
does not detect commuting operations on linked data structures.



Both of these approaches are designed only to find operations
that commute in all possible object states and for all possible
parameter values. But some operations commute only under certain
conditions. Consider, for example, an operation that removes a key,
value pair from a hash table and an operation that looks up a given
key in the hash table. These operations commute only if the two
keys are different. Recognizing and exploiting such commutativity
conditions is essential to obtaining good parallel performance for
many irregular computations [28–30] — these computations use
the commutativity conditions to dynamically recognize and exploit
commuting operations whose commutativity properties they cannot
statically resolve.

1.2 Semantic Commutativity Analysis
This paper presents a new approach for verifying the specific con-
ditions under which operations on linked data structures seman-
tically commute. Instead of reasoning directly about the concrete
data structure state, this approach builds on the availability of fully
verified linked data structure implementations [51, 52] to reason
at the higher semantic level of the (verified) abstract data structure
state. The approach is therefore able to detect operations that com-
mute at the semantic level even though they may produce different
concrete data structure states. We have used this approach to verify
both soundness (conceptually, if the conditions hold, the operations
produce the same abstract data structure state regardless of the or-
der in which they execute, see Section 4) and completeness (con-
ceptually, if the conditions do not hold, then different execution or-
ders produce different abstract data structure states, see Section 4)
of commutativity conditions.

We have specified and verified sound and complete commuta-
tivity conditions for all pairs of operations from a variety of linked
data structure implementations:

• Sets: ListSet and HashSet both implement a set interface. List-
Set uses a singly-linked list; HashSet uses a hash table.

• Maps: AssociationList, HashTable, and ArrayList all imple-
ment a map interface. AssociationList uses a singly-linked list
of key, value pairs; HashTable implements a separately-chained
hash table — an array contains linked lists of key, value pairs
with a hash function mapping keys to linked lists via the array.
ArrayList maps integers to objects and is optimized for storing
maps from a dense subset of the integers starting at 0.

• Accumulator: Accumulator maintains a value that clients can
increase and read.

Altogether, we specified and verified 765 commutativity conditions
(216 from ListSet and HashSet, 294 from AssociationList and
HashTable, 243 from ArrayList, and 12 from Accumulator).

Because the implementations of all of these data structures have
been verified to correctly implement their specifications, the se-
mantic commutativity conditions and inverses are guaranteed to be
valid for the concrete data structure implementations that execute
when the program runs. We emphasize, however, that our technique
works with data structure specifications, not data structure imple-
mentations. In particular, it is capable of verifying semantic com-
mutativity conditions and inverses even in the absence of any im-
plementation at all (in this case, of course, the commutativity con-
ditions and inverses are sound only to the extent that the actual data
structure implementation, when provided, correctly implements its
specification).

We note that the well-known difficulty of reasoning about se-
mantic properties of linked data structures [43] has limited the
range of available results in this area. These verified commutativity
conditions therefore provide a solid foundation for the use of these
linked data structures in a range of parallel programs and systems.

1.3 Inverse Operations
In one of our usage scenarios, the system uses the commutativity
conditions to dynamically detect speculatively executed operations
that do not commute with previously executed operations [28–
30]. In this case, the system must roll the data structure back to
the abstract semantic state before the operations executed, then
continue from this restored state.

Executing inverse operations that undo the effect of executed
operations can be substantially more efficient than alternate ap-
proaches (such as pessimistically saving the data structure state be-
fore operations execute, then restoring the state to roll back the ef-
fect of the operations). Note that even though the restored abstract
semantic state is the same, the underlying concrete states may dif-
fer. For example, the inverse of an operation that removes an ele-
ment from a set implemented as a linked list inserts the removed
element back into the list. Even though the reinserted element may
appear in a different position in the list, the restored abstract set is
the same as the original set.

We have developed an approach that is capable of verifying
semantic inverse operations. We have specified inverses for all of
the operations on our set of data structures that update the data
structure state. We have used our approach to verify that all of these
inverses undo the effect of the corresponding operation to correctly
restore the initial abstract state of the linked data structure.

We note that the need to undo the effects of executed opera-
tions occurs pervasively throughout computer systems, from clas-
sical database transaction processing systems [21] to systems that
recover from security breaches [20, 27, 38, 45]. In addition to the
specific motivating use described above, the verified inverse oper-
ations may therefore find broader applicability in a variety of con-
texts in which it is desirable to efficiently undo data structure state
changes.

1.4 Jahob
We use the Jahob program specification and verification system to
specify and verify the data structure implementations, commutativ-
ity conditions, and inverse operations. Jahob enables developers to
write higher-order logic specifications for Java programs [51, 52]. It
also enables developers to guide proofs of complex program prop-
erties by using the Jahob integrated proof language to resolve key
choice points in these proofs [52]. Once these choice points have
been resolved, Jahob uses integrated reasoning to invoke a variety
of powerful reasoning systems (such as first-order provers [44, 48],
SMT provers [10, 19], MONA [24], and the BAPA [31, 34] deci-
sion procedure) to discharge the resulting automatically generated
verification conditions [51, 52].

In our approach, a data structure implementor specifies com-
mutativity conditions for pairs of data structure operations and/or
inverses for individual operations that update the data structure
state. Our commutativity condition and inverse operation verifica-
tion system generates stylized Jahob methods whose verification
establishes the validity of the corresponding commutativity condi-
tions and inverse operations. In our experience, Jahob is often able
to verify these methods without further intervention from the data
structure implementor. Specifically, for our set of linked data struc-
ture implementations, all but 57 of the 1530 automatically gener-
ated commutativity testing methods and all of the eight automat-
ically generated inverse testing methods verify as generated. If a
method does not verify, the data structure implementor uses the Ja-
hob proof language [52] to appropriately guide the verification of
the method. For our set of linked data structure implementations,
Jahob was able to verify the remaining 57 commutativity testing
methods after we augmented the methods with a total of 201 Jahob
proof language commands (see Section 5).



1.5 Contributions
This paper makes the following contributions:

• Semantic Commutativity Analysis: It presents a new commu-
tativity analysis technique that verifies the soundness and com-
pleteness of semantic commutativity conditions for linked data
structures. Because this analysis reasons about the abstract se-
mantic state of the data structure (as opposed to the concrete im-
plementation state), it can verify semantic commutativity con-
ditions that are inherently beyond the reach of previously pro-
posed approaches.
To the best of our knowledge, this analysis is the first to verify
semantic commutativity conditions for linked data structures.

• Semantic Commutativity Conditions: It presents verified
sound and complete commutativity conditions for a variety of
linked data structures. In this paper all of these commutativity
conditions are provided by the developer and verified by our
implemented system.
To the best of our knowledge, these are the first fully verified
semantic commutativity conditions for linked data structures.

• Semantic Inverse Analysis: It presents a new analysis for ver-
ifying inverse operations that undo the effect of previously exe-
cuted operations on linked data structures. Because the analysis
reasons about the abstract data structure state, it can verify se-
mantic inverses that correctly restore the abstract data structure
state even though they may produce different concrete states.
To the best of our knowledge, this analysis is the first to verify
semantic inverse operations for linked data structures.

• Semantic Inverse Operations: It presents verified inverses for
operations that update the data structure state. Systems can use
these operations to efficiently roll back speculatively executed
data structure operations.
To the best of our knowledge, these are the first fully verified
semantic inverse operations for linked data structures.

• Experience: It discusses our experience using the Jahob [6, 51,
52] program specification and verification system to specify and
verify commutativity conditions and inverse operations for a
group of data structures including a ListSet and HashSet that
implement a set interface, an AssociationList, HashTable, and
ArrayList that implement a map interface, and an Accumulator.

We emphasize that in this paper, we focus on the specification
and verification of the commutativity conditions and inverse opera-
tions. We assume that any parallel system that uses these conditions
will implement some synchronization mechanism that ensures that
the operations execute atomically. Such mechanisms are already
implemented and available in many of the systems which we ex-
pect to be of interest [5, 7, 17, 28, 29, 41, 42, 49].

2. Example
Figure 1 presents the Jahob interface for the HashSet class, which
uses a separately-chained hash table [9] to implement a set inter-
face. The HashSet class, like all of our data structures, is writ-
ten in Java augmented with specifications written in the Jahob
higher-order logic specification language. The interface exports
a collection of specified operations. Each operation specification
consists of a precondition (the requires clause), a postcondition
(the ensures clause), and a modifies clause. These specifications
completely capture the desired behavior of the data structure (with
the exception of properties involving execution time and/or mem-
ory consumption) [51, 52].

2.1 Abstract State
The interface uses the abstract state of the HashSet to specify
the behavior of HashSet operations. This state consists of the
set contents of objects in the HashSet, the size of this set, and
the flag init, which is true if the HashSet has been initialized (see
lines 2, 3, and 4 of Figure 1). The specification for the add(v)
operation, for example, uses this abstract state to specify that, if the
HashSet is initialized and the parameter v is not null, it adds v to
the set of objects in the HashSet (see lines 11-14 of Figure 1).

2.2 Concrete State and Abstraction Function
When the program runs, the HashSet operations manipulate the
concrete state of the HashSet. The concrete state consists of the
array table, which contains pointers to linked lists of elements in
the HashSet, and the int _size, which stores the size of the hash
table (see lines 5 and 6 of Figure 1).

An abstraction function in the form of Jahob invariants (not
shown, but see the complete data structure specifications and im-
plementations available in the technical report version of the pa-
per [26]) specifies the relationship between the concrete and ab-
stract states [51, 52]. Like all of the data structures in this paper, we
have used the Jahob system to verify that the HashSet correctly im-
plements its interface [51, 52]. This verification, of course, includes
the verification of the abstraction function.

2.3 Commuting Operations
Consider the add(v1) and contains(v2) operations on a Hash-
Set s. These operations commute if and only if v1 does not equal
v2 or v1 is already in s. Figure 2 presents the two methods that
our system automatically generates to verify the soundness and
completeness of this commutativity condition. The first method
(contains_add_between_s_40, line 1 of Figure 2) verifies
soundness. The second method (contains_add_between_c_40,
line 14 of Figure 2) verifies completeness. The methods are written
in a subset of Java with Jahob annotations [52].

2.4 Verifying Commutativity Condition Soundness
The generated soundness testing method executes the add(v1) and
contains(v2) operations in both execution orders on equivalent
HashSets (HashSets with the same abstract state). The method
specification checks that, if the commutativity condition is true,
then both execution orders produce the same return values and final
abstract HashSet states. If Jahob verifies the method (which it does
in this case without developer assistance), it has verified that if the
commutativity condition holds, then the operations commute.

The requires clause (lines 2 and 3 of Figure 2) ensures that the
method starts with two HashSets (sa and sb) that have identical
abstract states. The method first applies the sa.contains(v1)
and sa.add(v2) operations to one of the HashSets (sa). A Jahob
assume command (line 8 of Figure 2) instructs Jahob to assume
the commutativity condition (v1 ~= v2 | r1a). The method next
executes the two operations in the reverse order on the second
HashSet sb (lines 10 and 11 of Figure 2). The assert command
at the end of the method (line 12 of Figure 2) checks that the
return values are the same in both execution orders and that the two
HashSets have the same abstract states at the end of the method.

In this example the commutativity condition works with the be-
tween state that is available after the first operation executes but
before the second operation executes. A system would use such a
between condition just before executing the add(v2) operation to
dynamically check if this operation commutes with a previously ex-
ecuted contains(v1) operation. We also verify before conditions
(which may be used to determine if two operations that have yet
to execute will commute when they execute) and after conditions
(which may be used to trigger rollbacks when already executed op-
erations do not commute [28, 29]).



1 public class HashSet {
2 /*: public ghost specvar init :: "bool" = "False"; */

3 /*: public ghost specvar contents :: "obj set" = "{}"; */
4 /*: public specvar size :: "int"; */

5 private Node[] table;
6 private int _size;

7 public HashSet()
8 /*: modifies "init", "contents", "size"
9 ensures "init & contents = {} & size = 0" */ { ... }

10 public boolean add(Object v)
11 /*: requires "init & v ~= null"
12 modifies "contents", "size"
13 ensures "(v ~: old contents --> contents = old contents Un {v} & size = old size + 1 & result) &
14 (v : old contents --> contents = old contents & size = old size & ~result)" */ { ... }

15 public boolean contains(Object v)
16 /*: requires "init & v ~= null"
17 ensures "result = (v : contents)" */ { ... }

18 public boolean remove(Object v)
19 /*: requires "init & v ~= null"
20 modifies "contents", "size"
21 ensures "(v : old contents --> contents = old contents - {v} & size = old size - 1 & result) &
22 (v ~: old contents --> contents = old contents & size = old size & ~result)" */ { ... }

23 public int size()
24 /*: requires "init"
25 ensures "result = size" */ { ... }
26 }

Figure 1. The Jahob HashSet Specification

1 static void contains_add_between_s_40(HashSet sa, HashSet sb, Object v1, Object v2)
2 /*: requires "sa ~= null & sb ~= null & sa ~= sb & sa..init & sb..init & v1 ~= null & v2 ~= null &
3 sa..contents = sb..contents & sa..size = sb..size"
4 modifies "sa..contents", "sb..contents", "sa..size", "sb..size"
5 ensures "True" */
6 {
7 boolean r1a = sa.contains(v1);
8 /*: assume "v1 ~= v2 | r1a" */
9 sa.add(v2);

10 sb.add(v2);
11 boolean r1b = sb.contains(v1);

12 /*: assert "r1a = r1b & sa..contents = sb..contents & sa..size = sb..size" */
13 }

14 static void contains_add_between_c_40(HashSet sa, HashSet sb, Object v1, Object v2)
15 /*: requires "sa ~= null & sb ~= null & sa ~= sb & sa..init & sb..init & v1 ~= null & v2 ~= null &
16 sa..contents = sb..contents & sa..size = sb..size"
17 modifies "sa..contents", "sb..contents", "sa..size", "sb..size"
18 ensures "True" */
19 {
20 boolean r1a = sa.contains(v1);
21 /*: assume "~(v1 ~= v2 | r1a)" */
22 sa.add(v2);

23 sb.add(v2);
24 boolean r1b = sb.contains(v1);

25 /*: assert "~(r1a = r1b & sa..contents = sb..contents & sa..size = sb..size)" */
26 }

Figure 2. HashSet Commutativity Testing Methods for Between Commutativity Condition for contains(v1) and add(v2)



1 static void add_0(HashSet s, Object v)
2 /*: requires "s ~= null & s..init & v ~= null"
3 modifies "s..contents ", "s..size"
4 ensures "True" */
5 {
6 boolean r = s.add(v);
7 if (r) { s.remove(v); }

8 /*: assert "s..contents = s..(old contents) & s..size = s..(old size)" */
9 }

Figure 3. HashSet Inverse Operation Testing Method for add(v)

1 static void put_0(HashTable s, Object k, Object v)
2 /*: requires "s ~= null & s..init & k ~= null & v ~= null"
3 modifies "s..contents ", "s..size"
4 ensures "True" */
5 {
6 Object r = s.put(k, v);
7 if (r != null) { s.put(k, r); } else { s.remove(k); }

8 /*: assert "s..contents = s..(old contents) & s..size = s..(old size)" */
9 }

Figure 4. HashTable Inverse Operation Testing Method for put(k, v)

2.5 Verifying Commutativity Condition Completeness
The contains_add_between_c_40 method, which checks com-
pleteness, uses a similar pattern except it negates both the com-
mutativity condition and the assertion at the end of the generated
method. If Jahob verifies the method (which it does in this case
without developer assistance), it has verified that if the commuta-
tivity condition does not hold, then the operations produce different
return values or different abstract data structure states when they
execute in different orders.

2.6 Verifying Inverse Operations
Figure 3 presents the generated inverse testing method for the
HashSet add(v) operation. This method first executes the add(v)
operation, then the inverse if (r) { s.remove(v); }. The in-
verse must consider two cases: when v was in the set before the
execution of add(v) (in which case the inverse must not remove v)
and when v was not in the set before the execution of add(v) (in
which case the inverse must remove v). Note that the inverse uses
the return value r to distinguish these two cases. The final assert
command forces Jahob to prove that the final abstract state is the
same as the initial abstract state. Note that there is no requirement
that the final concrete state must be the same as the initial concrete
state.

Figure 4 presents the inverse testing method for a more complex
operation, the HashTable put(k, v) operation. If the initial state
of the HashTable mapped k to a value, the inverse reinserts the
mapping (the value to which the HashTable mapped k is available
as the return value r from the put(k, v) operation). If the initial
state did not map k to a value, the inverse removes the mapping that
the add(k,v) inserted, leaving k unmapped as in the initial state.

Both of the inverses in our example use the return value from the
operation to carry information from the initial state that the inverse
can then use to undo the effect of the operation. This approach
works for all of our linked data structures. We note that it is, in
general, possible for operations to destroy information from the
initial state that the inverse needs to restore this initial state. In this
case the operation needs to save information from the initial state
so that the inverse can later use this saved information to restore the
initial state.

3. Commutativity and Inverse Testing Methods
The commutativity testing method generator takes as input the data
structure interface and, for each pair of data structure operations,
developer-specified before, between, and after commutativity con-
ditions. It produces as output the commutativity testing methods. It
then presents each method to the Jahob program verification sys-
tem [51, 52]. If the method verifies, the system has verified the cor-
responding commutativity condition. If it does not verify, either the
commutativity condition is not sound or complete or Jahob is not
capable of verifying the soundness and completeness without ad-
ditional developer assistance. The developer then, as appropriate,
either modifies the commutativity condition or augments the gen-
erated commutativity testing methods with additional proof com-
mands written in the Jahob proof language [52].

3.1 Completeness Commutativity Testing Template
Figure 5 presents the template that the generator uses to produce the
completeness commutativity testing method. The generation pro-
cess simply iterates over all commutativity testing conditions (and
corresponding pairs of operations in the data structure interface),
filling in the template parameters as appropriate. In Figure 5 all
template parameters appear in italic font.

The name of the commutativity testing method contains the
names of the two operations, a field that specifies whether the
method tests a before, between, or after commutativity condition,
the tag c (which identifies the method as a completeness testing
method), and a numerical identifier id. The method takes as param-
eters two data structures (sa and sb) and the parameters of the two
data structure operations. The requires clause ensures the data
structures are distinct but have identical abstract states.

The generated method uses Jahob assume commands to instruct
Jahob to assume that the preconditions of the operations hold in the
first execution order. If the preconditions do not involve the state
of the data structure (as in our example in Figure 2), the generator
moves the preconditions up into the requires clause.

The generator also uses an assume command to insert the nega-
tion of the commutativity condition (recall that the template is a
completeness template and therefore includes the negation of the
condition) in the appropriate place in the generated method. The



template identifies the insertion points for all three kinds of com-
mutativity conditions (before, between, and after). A generated
method, of course, contains a commutativity condition at only one
of these points.

The method next contains the operations in the reverse order,
with assume commands instructing Jahob to assume that the pre-
conditions of the operations hold. Once again, if the preconditions
do not depend on the data structure state, the generator places them
in the requires clause of the method, not before the operation
invocations as in the template.

The method ends with the final assertion (which Jahob must
prove) that either one of the corresponding return values or the final
abstract states are different in the two different execution orders.

As is appropriate for a completeness testing method, this struc-
ture forces Jahob to prove that if the operation preconditions and the
negation of the commutativity condition holds in the first execution
order, then either one of the operation preconditions is violated in
the reverse execution order or the final assertion holds.

3.2 Soundness Commutativity Testing Template
The soundness commutativity testing template has the same basic
structure as the completeness template, with the exception that 1) it
inserts the commutativity testing condition (not its negation), 2) it
omits the assume command for the operation preconditions in the
second execution order, and 3) the final assertion forces Jahob to
prove that the return values and final abstract states are the same in
both execution orders.

As is appropriate for a soundness testing method, this structure
forces Jahob to prove that if the operation preconditions and com-
mutativity condition holds in the first execution order, then the op-
eration preconditions hold in the reverse execution order and the
return values and final abstract states are the same.

3.3 Inverse Testing Methods
The inverse testing method generator takes as input the data struc-
ture interface and a developer-specified set of inverse operation
pairs. It produces as output the inverse testing methods and feeds
each method to the Jahob program verification system [52]. As for
the commutativity testing methods, the developer may, if necessary,
augment the inverse testing methods with additional Jahob proof
commands.

Figure 6 presents the template that the generator uses to produce
the inverse testing methods. The generation process simply iterates
over all of the specified inverses, filling in the template parameters
(in italic font) as appropriate. The final Jahob assert command
requires Jahob to prove that the final abstract state (after the appli-
cation of the inverse operation) is the same as the initial abstract
state from the start of the method. Jahob must also prove the pre-
condition of the inverse operation.

4. Formal Treatment
We assume a set s ∈ S of concrete states and a corresponding set
ŝ ∈ Ŝ of abstract states. We also assume that the data structure
defines an abstraction function α : S→ Ŝ.

The commutativity and inverse testing methods work with log-
ical formulas written in the higher-order logic Jahob specification
language [52]. For our data structures, the specifications, commuta-
tivity conditions, commutativity testing methods, and inverse test-
ing methods require only first-order logic.

Given an operation m(v) on a given data structure, pre(m(v))
denotes the precondition of the method m from the data struc-
ture specification. The precondition is a logical formula written in
the Jahob specification language [52]. It is expressed in the name
space of the caller (i.e., with the formal parameter from the defini-

1 static void method1_method2_(before | between | after)_c_id
2 (sa decl, sb decl, argv1 decls, argv2 decls)
3 /*: requires "sa ~= null & sb ~= null & sa ~= sb &
4 sa abstract state = sb abstract state"
5 modifies "sa frame condition", "sb frame condition"
6 ensures "True" */
7 {
8 [/*: assume "~(before commutativity condition)" */]
9 /*: assume "method1 precondition" */

10 r1a type r1a = sa.method1(argv1);
11 [/*: assume "~(between commutativity condition)" */]
12 /*: assume "method2 precondition" */
13 r2a type r2a = sa.method2(argv2);
14 [/*: assume "~(after commutativity condition)" */]

15 /*: assume "method2 precondition" */
16 r2b type r2b = sb.method2(argv2);
17 /*: assume "method1 precondition" */
18 r1b type r1b = sb.method1(argv1);

19 /*: assert "~(r1a = r1b & r2a = r2b &
20 sa abstract state = sb abstract state)" */
21 }

Figure 5. Template for Completeness Commutativity Testing
Methods

1 static void method_id(s decl, argv decls)
2 /*: requires "s ~= null & method precondition"
3 modifies "s frame condition"
4 ensures "True" */
5 {
6 r type r = s.method(argv);
7 execute inverse operation();

8 /*: assert "s abstract state = s initial abstract state" */
9 }

Figure 6. Template for Inverse Testing Methods

tion of m replaced by the actual parameter v from the caller). We
write α(s) |= pre(m(v)) if the precondition is true in the abstract
state α(s).

We write 〈s′,r〉 = s.m(v) if executing the operation m(v) in
state s produces return value r and new state s′. Given a starting
state s and two operations m1(v1) and m2(v2), we are interested in
the following states and return values (see Figure 7):

• 〈sÀ;2,rÀ;2〉 = s.m1(v1): the intermediate state sÀ;2 and return
value rÀ;2 that results from executing m1(v1) in the original
state s.

• 〈s1;Á,r1;Á〉 = sÀ;2.m2(v2): the final state s1;Á and return
value r1;Á that results from executing m2(v2) in the intermedi-
ate state sÀ;2.

• 〈sÁ;1,rÁ;1〉 = s.m2(v2): the intermediate state sÁ;1 and return
value rÁ;1 that results from executing m2(v2) in the original
state s.

• 〈s2;À,r2;À〉 = sÁ;1.m1(v1): the final state s2;À and return
value r2;À that results from executing m1(v1) in the intermedi-
ate state sÁ;1.

We are interested in states and return values for the two op-
erations m1(v1) and m2(v2) executing in both execution orders
(m1(v1) followed by m2(v2) and m2(v2) followed by m1(v1)). The
subscripts in our notation are designed to identify both the execu-
tion order and (with a circle) the most recent operation that has
executed. So, for example, sÀ;2 denotes the state after the opera-
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Figure 7. Execution on Concrete States and Abstract States

tion m1(v1) executes when the operation m1(v1) executes first and
then m2(v2) executes. Similarly, r2;À denotes the value that the
operation m1(v1) returns when the operation m2(v2) executes first
and then the operation m1(v1) executes and returns r2;À.

4.1 Commutativity Conditions
A commutativity condition φ is a logical formula written in the Ja-
hob specification language [52]. In general, the free variables of
φ can include the arguments v1 and v2, the return values rÀ;2 and
r1;Á, and abstract specification variables that denote various ele-
ments of the three abstract states α(s), α(sÀ;2), and α(s1;Á). We
write (〈sÀ;2,rÀ;2〉= s.m1(v1); 〈s1;Á,r1;Á〉= sÀ;2.m2(v2)) |= φ

if the commutativity condition φ is satisfied when the operations
execute in the order m1(v1); m2(v2) (first m1(v1), then m2(v2)).

We anticipate that static analyses will work with commutativity
conditions that involve the abstract state. Systems that dynamically
evaluate commutativity conditions, of course, must work with the
concrete data structure state, not the abstract data structure state.
We therefore use the abstraction function to translate commutativ-
ity conditions over the abstract states into commutativity conditions
over the concrete states. Section 5 presents examples that illustrate
this translation.

4.1.1 Soundness and Completeness
Conceptually, a commutativity condition is sound if, whenever the
commutativity condition and the preconditions of the two opera-
tions are satisfied in the first execution order, then 1) the precondi-
tions of the operations are satisfied in the second execution order,
2) the operations return the same return values in both execution or-
ders, and 3) the abstract final states are the same in both execution
orders. We formalize this concept as follows.

Given a commutativity condition φ for two operations m1(v1)
and m2(v2), the verification of the soundness commutativity testing
method for these two operations establishes (by the construction of
this method) the following property:

Property 1 (soundness).
If α(s) |= pre(m1(v1)) and α(sÀ;2) |= pre(m2(v2)) and
(〈sÀ;2,rÀ;2〉= s.m1(v1); 〈s1;Á,r1;Á〉= sÀ;2.m2(v2)) |= φ

then α(s) |= pre(m2(v2) and α(sÁ;1) |= pre(m1(v1)) and
rÀ;2 = r2;À and r1;Á = rÁ;1 and α(s1;Á) = α(s2;À).

Conceptually, a commutativity condition is complete if, when-
ever the preconditions of the two operations are satisfied in the first
execution order but the commutativity condition is not satisfied,
then either 1) the preconditions of the operations are not satisfied
in the second execution order, 2) the return values are different in
the second execution order, or 3) the abstract final states are dif-

ferent in the two execution orders. We formalize this concept as
follows.

Given a commutativity condition φ for two operations m1(v1)
and m2(v2), the verification of the completeness commutativity
testing method for these two operations establishes (by the con-
struction of this method) the following property:

Property 2 (completeness).
If α(s) |= pre(m1(v1)) and α(sÀ;2) |= pre(m2(v2)) and
(〈sÀ;2,rÀ;2〉= s.m1(v1); 〈s1;Á,r1;Á〉= sÀ;2.m2(v2)) |= ~φ

then α(s) |= ~pre(m2(v2)) or α(sÁ;1) |= ~pre(m1(v1)) or
rÀ;2 6= r2;À or r1;Á 6= rÁ;1 or α(s1;Á) 6= α(s2;À).

4.1.2 Kinds of Commutativity Conditions
In general, a system or analysis may wish to test if a commutativity
condition is satisfied either 1) before either operation executes, 2)
after the first operation executes but before the second operation
executes, and/or 3) after both operations execute. We therefore
identify the following kinds of commutativity conditions:

• Before Condition: A commutativity condition φ is a before
condition if its free variables include at most the arguments v1
and v2 and elements of the initial abstract state α(s). Because
a before condition does not involve the return values rÀ;2 and
r1;Á, the intermediate state α(sÀ;2), or the final state α(s1;Á),
it is possible to evaluate the condition before either of the
operations executes.

• Between Condition: A commutativity condition φ is a between
condition if its free variables include at most the arguments v1
and v2, the initial abstract state α(s), the first return value rÀ;2,
and elements of the intermediate abstract state α(sÀ;2). Be-
cause the between condition does not involve the second return
value r1;Á or the final abstract state α(s1;Á), it is possible to
evaluate the condition after the first operation m1(v1) executes
but before the second operation m2(v2) executes. Note that if
the between condition references elements of the initial abstract
state α(s), the system may need to save corresponding values
from this state before the first operation m1(v1) executes so that
it can subsequently use the saved values to evaluate the between
condition after the first operation executes.

• After Condition: All commutativity conditions are after con-
ditions. Note that if an after condition references the first re-
turn value rÀ;2 or elements of the initial or intermediate abstract
states α(s) or α(sÀ;2), the system may need to save referenced
elements of these states so that it can evaluate the after condi-
tion after both operations execute.

In practice we expect developers to minimize references to ele-
ments of previously computed initial or intermediate abstract states
when they specify between and after conditions. One strategy re-
places clauses in commutativity conditions that reference elements
of the initial or intermediate abstract states with equivalent clauses
that reference return values from executed operations. Before con-
ditions for our set-based data structures, for example, often test
whether a parameter v of one of the operations is an element of
the set in the initial state s. The return value of the operation often
indicates whether the element was, in fact, an element of this ini-
tial set. The corresponding between and after conditions can then
replace the clause that tests membership in the initial set with an
equivalent clause that tests the return value. See Section 5 for spe-
cific occurrences of this pattern in the commutativity conditions for
our set of data structures.

For completeness, some of the between conditions cannot help
querying the initial state (the state before the first operation ex-
ecutes). For the same reason, some of the after conditions query
the initial and/or between states. In practice, there are two ways to



dynamically check such commutativity conditions: 1) perform the
query before the operation executes and record the result for the
commutativity condition to check after the operation executes, or 2)
drop the clause containing the query from the commutativity con-
dition and use the resulting simpler, conservative, but not complete
commutativity condition that does not reference the initial and/or
between states.

Because the commutativity conditions for our set of data struc-
tures are both sound and complete, the before, between, and after
conditions are equivalent even if they reference different return val-
ues or elements of different abstract states.

4.2 Inverse Operations
Conceptually, an operation is an inverse of an initial operation
if whenever the precondition of the initial operation is satisfied,
then 1) the precondition of the inverse is satisfied after the initial
operation executes and 2) executing the inverse after the initial
operation executes restores the abstract state (but not necessarily
the concrete state) back to what it was before the initial operation
executed. We formalize this concept as follows.

Given an operation m1(v1) with inverse operation m2(v2), the
verification of the inverse testing method for these two operations
establishes (by the construction of this method) the following prop-
erty:

Property 3 (inverse).
If α(s) |= pre(m1(v1))
then α(sÀ;2) |= pre(m2(v2)) and α(s) = α(s1;Á).

5. Experimental Results
We next discuss the commutativity conditions, inverse operations,
and verification process for our set of data structures. We first dis-
cuss the operations that each data structure exports. The source
code for all of the data structures (including both specification and
implementation) as well as the commutativity and inverse testing
methods (which contain all of the commutativity conditions and
Jahob proof constructs required to enable Jahob to verify the meth-
ods) is available in the technical report version of the paper [26].

The Accumulator implements a counter with two operations:

• increase(v): Adds the number v to the counter.
• read(): Returns the value in the counter.

HashSet and ListSet implement a set of elements with the fol-
lowing operations. Because they implement the same specification,
they have the same commutativity conditions.

• add(v): Adds the element v to the set of elements in the data
structure. Returns false if the element was already present and
true otherwise.

• contains(v): Returns true if the element v is in the set and
false otherwise.

• remove(v): Removes the element v from the set. Returns true
if v was included in the set and false otherwise.

• size(): Returns the number of elements in the set.

HashTable and AssociationList implement a map from keys to
values with the following operations. Because they implement the
same specification, they have the same commutativity conditions.

• containsKey(k): Returns true if there exists a value v for the
key k in the map.

• get(k): Returns the value v for the key k, or null if k is not
mapped.

• put(k, v): Maps the key k to the value v. Returns the previous
value for the key k, or null if k was not mapped.

• remove(k): Removes the mapping for the key k. Returns the
value that the key k was mapped to, or null if the the data
structure did not have a mapping for the key k.

• size(): Returns the number of key, value pairs in the data
structure.

ArrayList implements a map from the integers to objects with
the following operations:

• add at(i, v): Pushes all objects with indices greater than or
equal to i up one position to create an empty position at index i,
then inserts the object v into that position.

• get(i): Returns the object at index i.
• indexOf(v): Returns the index of the first occurrence of the

object v or -1 if the object v is not in the map.
• lastIndexOf(v): Returns the index of the last occurrence of

the object v or -1 if the object v is not in the map.
• remove at(i): Removes the element at the specified index i,

then slides all objects above i down one position to fill the
newly empty position at index i.

• set(i, v): Replaces the object at the index i with the ob-
ject v. Returns the replaced object previously at index i.

• size(): Returns the number of elements in the map.

5.1 Commutativity Conditions
Tables 1 through 7 present the commutativity conditions for se-
lected illustrative pairs of operations from our set of linked data
structures. For space reasons, we do not present all 765 commuta-
tivity conditions (the complete set of conditions is available in the
technical report version of the paper [26]).

The first and second columns in each table identify the pair of
operations. The third column presents the commutativity conditions
in terms of the arguments, return values, and abstract data structure
states. These commutativity conditions are suitable for static anal-
yses that reason about the commutativity conditions at the level of
the abstract states. The fourth column translates any abstract state
queries (typically set membership operations) into operations that
can be invoked on the concrete data structure. These commutativity
conditions are suitable for dynamically checking the commutativity
conditions when the program runs.

The commutativity conditions assume the operations operate on
the same data structure (operations on different data structures triv-
ially commute). s1 denotes the data structure state before the first
operation executes; s2 denotes the state of the same data structure
after the first operation executes but before the second operation
executes. Each commutativity condition in the table corresponds
to the execution order in which the operation in the first column
executes first followed by the operation in the second column.

The before condition tables are symmetric (for a given pair of
operations, the commutativity conditions are the same for both exe-
cution orders). The between condition tables may be asymmetric if
the commutativity condition references either the return value from
the first operation (which is not available in the other execution or-
der) or depends on the intermediate data structure state (which may
be different in the other execution order). Similarly, the after tables
may be asymmetric if the commutativity condition depends on the
intermediate or final data structure states.

In general, the commutativity conditions take the form of a dis-
junction of clauses. Dropping clauses produces conservative sound
commutativity conditions that may be easier (for static analyses)
or more efficient (for dynamic checkers) to work with. Such com-



Methods Before / Between / After Commutativity Condition

s1.increase(v1)
s2.increase(v2) true
r2 = s2.read() v1 = 0

r1 = s1.read()
s2.increase(v2) v2 = 0
r2 = s2.read() true

Table 1. Before / Between / After Commutativity Conditions on Accumulator

Methods Before Commutativity Condition

s1.add(v1)
s2.add(v2) true true
r2 = s2.contains(v2) v1 6= v2 ∨ v1 ∈ s1 v1 6= v2 ∨ s1.contains(v1) = true
s2.remove(v2) v1 6= v2 v1 6= v2

r1 = s1.contains(v1)
s2.add(v2) v1 6= v2 ∨ v1 ∈ s1 v1 6= v2 ∨ s1.contains(v1) = true
r2 = s2.contains(v2) true true
s2.remove(v2) v1 6= v2 ∨ v1 6∈ s1 v1 6= v2 ∨ s1.contains(v1) = false

s1.remove(v1)
s2.add(v2) v1 6= v2 v1 6= v2
r2 = s2.contains(v2) v1 6= v2 ∨ v1 6∈ s1 v1 6= v2 ∨ s1.contains(v1) = false
s2.remove(v2) true true

Table 2. Before Commutativity Conditions on ListSet and HashSet

Methods Between Commutativity Condition

s1.add(v1)
s2.add(v2) true true
r2 = s2.contains(v2) v1 6= v2 ∨ v1 ∈ s1 v1 6= v2 ∨ s1.contains(v1) = true
s2.remove(v2) v1 6= v2 v1 6= v2

r1 = s1.contains(v1)
s2.add(v2) v1 6= v2 ∨ r1 = true v1 6= v2 ∨ r1 = true
r2 = s2.contains(v2) true true
s2.remove(v2) v1 6= v2 ∨ r1 = false v1 6= v2 ∨ r1 = false

s1.remove(v1)
s2.add(v2) v1 6= v2 v1 6= v2
r2 = s2.contains(v2) v1 6= v2 ∨ v1 6∈ s1 v1 6= v2 ∨ s1.contains(v1) = false
s2.remove(v2) true true

Table 3. Between Commutativity Conditions on ListSet and HashSet

Methods Before Commutativity Condition

r1 = s1.get(k1)
r2 = s2.get(k2) true true
s2.put(k2,v2) k1 6= k2 ∨〈k1,v2〉 ∈ s1 k1 6= k2 ∨ s1.get(k1) = v2
s2.remove(k2) k1 6= k2 ∨〈k1, 〉 6∈ s1 k1 6= k2 ∨ s1.containsKey(k1) = false

s1.put(k1,v1)
r2 = s2.get(k2) k1 6= k2 ∨〈k1,v1〉 ∈ s1 k1 6= k2 ∨ s1.get(k1) = v1
s2.put(k2,v2) k1 6= k2 ∨ v1 = v2 k1 6= k2 ∨ v1 = v2
s2.remove(k2) k1 6= k2 k1 6= k2

s1.remove(k1)
r2 = s2.get(k2) k1 6= k2 ∨〈k1, 〉 6∈ s1 k1 6= k2 ∨ s1.containsKey(k1) = false
s2.put(k2,v2) k1 6= k2 k1 6= k2
s2.remove(k2) true true

Table 4. Before Commutativity Conditions on AssociationList and HashTable

Methods After Commutativity Condition

r1 = s1.get(k1)
r2 = s2.get(k2) true true
s2.put(k2,v2) k1 6= k2 ∨ r1 = v2 k1 6= k2 ∨ r1 = v2
s2.remove(k2) k1 6= k2 ∨ r1 = null k1 6= k2 ∨ r1 = null

s1.put(k1,v1)
r2 = s2.get(k2) k1 6= k2 ∨〈k1,v1〉 ∈ s1 k1 6= k2 ∨ s1.get(k1) = v1
s2.put(k2,v2) k1 6= k2 ∨ v1 = v2 k1 6= k2 ∨ v1 = v2
s2.remove(k2) k1 6= k2 k1 6= k2

s1.remove(k1)
r2 = s2.get(k2) k1 6= k2 ∨〈k1, 〉 6∈ s1 k1 6= k2 ∨ s1.containsKey(k1) = false
s2.put(k2,v2) k1 6= k2 k1 6= k2
s2.remove(k2) true true

Table 5. After Commutativity Conditions on AssociationList and HashTable



Methods Between Commutativity Condition

s1.add at(i1,v1)

s2.add at(i2,v2)
(i1 < i2 ≤ |s2|−1∧ s2[i2] = v2)∨ (i1 < i2 ≤ s2.size()−1∧ s2.get(i2) = v2)∨
(i1 = i2 ∧ v1 = v2)∨ (i1 = i2 ∧ v1 = v2)∨
(i1 > i2 ∧ s2[i1−1] = v1) (i1 > i2 ∧ s2.get(i1−1) = v1)

r2 = s2.indexOf(v2)

¬(∃i : s2[i] = v2)∨ s2.indexOf(v2)< 0∨
(∃i < i1 : s2[i] = v2)∨ 0≤ s2.indexOf(v2)< i1 ∨
(¬(∃i < i1 : s2[i] = v2)∧ s2[i1] = v2 ∧ (s2.indexOf(v2) = i1 ∧
s2[i1 +1] = v2) s2.get(i1 +1) = v2)

s2.remove at(i2)

(i1 < i2 < |s2|−1∧ (i1 < i2 < s2.size()−1∧
s2[i2] = s2[i2 +1])∨ s2.get(i2) = s2.get(i2 +1))∨
(|s2|−2≥ i1 = i2 ∧ s2[i1 +1] = v1)∨ (s2.size()−2≥ i1 = i2 ∧ s2.get(i1 +1) = v1)∨
(|s2|−2≥ i1 > i2 ∧ s2[i1 +1] = v1) (s2.size()−2≥ i1 > i2 ∧ s2.get(i1 +1) = v1)

r1 = s1.indexOf(v1)

s2.add at(i2,v2)
(r1 < 0∧ v1 6= v2)∨ (r1 < 0∧ v1 6= v2)∨
0≤ r1 < i2 ∨ 0≤ r1 < i2 ∨
(r1 = i2 ∧ v1 = v2) (r1 = i2 ∧ v1 = v2)

r2 = s2.indexOf(v2) true true

s2.remove at(i2)
r1 < 0∨ r1 < 0∨
0≤ r1 < i2 ∨ 0≤ r1 < i2 ∨
(r1 = i2 ∧ i2 < |s2|−1∧ s2[i2 +1] = v1) (r1 = i2 ∧ i2 < s2.size()−1∧ s2.get(i2 +1) = v1)

s1.remove at(i1)

s2.add at(i2,v2)
(i1 < i2 ∧ s2[i2−1] = v2)∨ (i1 < i2 ∧ s2.get(i2−1) = v2)∨
(i1 = i2 ∧ s1[i1] = v2)∨ (i1 = i2 ∧ s1.get(i1) = v2)∨
(i1 > i2 ∧ s2[i1−1] = s1[i1]) (i1 > i2 ∧ s2.get(i1−1) = s1.get(i1))

r2 = s2.indexOf(v2)

(¬(∃i : s2[i] = v2)∧ s1[i1] 6= v2)∨ (s2.indexOf(v2)< 0∧ s1.get(i1) 6= v2)∨
(∃i < i1 : s2[i] = v2)∨ 0≤ s2.indexOf(v2)< i1 ∨
(¬(∃i < i1 : s2[i] = v2)∧ s2[i1] = v2 ∧ (s2.indexOf(v2) = i1 ∧
s1[i1] = v2 ∧ i1 < |s2|) s1.get(i1) = v2 ∧ i1 < s2.size())

s2.remove at(i2)
(i1 < i2 ∧ s2[i2−1] = s2[i2])∨ (i1 < i2 ∧ s2.get(i2−1) = s2.get(i2))∨
i1 = i2 ∨ i1 = i2 ∨
(|s2|> i1 > i2 ∧ s1[i1] = s2[i1]) (s2.size()> i1 > i2 ∧ s1.get(i1) = s2.get(i1))

Table 6. Between Commutativity Conditions on ArrayList

Methods After Commutativity Condition

s1.add at(i1,v1)

s2.add at(i2,v2)
(i1 < i2 ≤ |s3|−2∧ s3[i2 +1] = v2)∨ (i1 < i2 ≤ s3.size()−2∧ s3.get(i2 +1) = v2)∨
(i1 = i2 ∧ v1 = v2)∨ (i1 = i2 ∧ v1 = v2)∨
(i1 > i2 ∧ s3[i1] = v1) (i1 > i2 ∧ s3.get(i1) = v1)

r2 = s2.indexOf(v2)
r2 < 0∨ r2 < 0∨
0≤ r2 < i1 ∨ 0≤ r2 < i1 ∨
(r2 = i1 ∧ s3[i+1] = v2) (r2 = i1 ∧ s3.get(i1 +1) = v2)

s2.remove at(i2)
(i1 < i2 < |s3|∧ s2[i2] = s3[i2])∨ (i1 < i2 < s3.size()∧ s2.get(i2) = s3.get(i2))∨
(|s3|−1≥ i1 = i2 ∧ s3[i1] = v1)∨ (s3.size()−1≥ i1 = i2 ∧ s3.get(i1) = v1)∨
(|s3|−1≥ i1 > i2 ∧ s3[i1] = v1) (s3.size()−1≥ i1 > i2 ∧ s3.get(i1) = v1)

r1 = s1.indexOf(v1)

s2.add at(i2,v2)
(r1 < 0∧ v1 6= v2)∨ (r1 < 0∧ v1 6= v2)∨
0≤ r1 < i2 ∨ 0≤ r1 < i2 ∨
(r1 = i2 ∧ v1 = v2) (r1 = i2 ∧ v1 = v2)

r2 = s2.indexOf(v2) true true

s2.remove at(i2)
r1 < 0∨ r1 < 0∨
0≤ r1 < i2 ∨ 0≤ r1 < i2 ∨
(r1 = i2 ∧ i2 < |s3|∧ s3[i2] = v1) (r1 = i2 ∧ i2 < s3.size()∧ s3.get(i2) = v1)

s1.remove at(i1)

s2.add at(i2,v2)
(i1 < i2 ∧ s3[i2−1] = v2)∨ (i1 < i2 ∧ s3.get(i2−1) = v2)∨
(i1 = i2 ∧ s1[i1] = v2)∨ (i1 = i2 ∧ s1.get(i1) = v2)∨
(i1 > i2 ∧ s3[i1] = s1[i1]) (i1 > i2 ∧ s3.get(i1) = s1.get(i1))

r2 = s2.indexOf(v2)
(r2 < 0∧ s1[i1] 6= v2)∨ (r2 < 0∧ s1.get(i1) 6= v2)∨
0≤ r2 < i1 ∨ 0≤ r2 < i1 ∨
(r2 = i1 ∧ s1[i1] = v2 ∧ i1 < |s3|) (r2 = i1 ∧ s1.get(i1) = v2 ∧ i1 < s3.size())

s2.remove at(i2)
(i1 < i2 ∧ s3[i2−1] = s2[i2])∨ (i1 < i2 ∧ s3.get(i2−1) = s2.get(i2))∨
i1 = i2 ∨ i1 = i2 ∨
(|s3|+1 > i1 > i2 ∧ s1[i1] = s3[i1−1]) (s3.size()+1 > i1 > i2 ∧ s1.get(i1) = s3.get(i1−1))

Table 7. After Commutativity Conditions on ArrayList



mutativity conditions are, of course, no longer complete. If the
dropped clauses usually have no effect on the value of the commu-
tativity condition, the gain in ease of reasoning or efficiency may
be worth the the loss of completeness.

One particularly useful special case is when the commutativity
condition is true — i.e., the operations commute regardless of the
data structure state. For example, add operations typically com-
mute with other add operations, contains operations typically
commute with other contains operations, and remove operations
typically commute with other remove operations. Such commuta-
tivity conditions are particularly easy to reason about at compile
time since the compiler does not need to reason about the parame-
ter values or state to find commuting operations.

In general, our data structures implement the update operations
that return values (add(v), remove(v), put(k, v), remove(k),
remove_at(i), and set(i, v)). For example, the add(v) oper-
ation from the ListSet and HashSet data structures returns true if
the elememt v was not already present in the abstract set, while
the remove(v) operation returns true if the element v was in the
abstract set.

We have verified commutativity conditions for two variants of
these operations — one in which the client records the return value
(typically by assigning the return value to a variable) and another in
which the client discards the return value. The tables in this paper
present the commutativity conditions only for the variants that dis-
card the return value; the complete tables available in the technical
report version of the paper [26] present commutativity conditions
for both variants. Because clients that record the return values ob-
serve more information about the data structure, the commutativity
conditions for these variants can be more complex. For example,
the between commutativity condition for the r1a = sa.add(v1),
r2a = sa.add(v2) pair is (v1 ~= v2 | ~r1a) (i.e., either v1
and v2 are different or v1 was already in the set before the first
operation executed), while the commutativity condition for the
s.add(v1), s.add(v2) pair is simply true.

For a data structure with n operations, there are 3n2 commu-
tativity conditions — a before, between, and after condition for
each pair of operations. For our data structures we consider two
versions of operations that update the data structure — one with a
return value and one that discards the return value. So there are
2 operations for Accumulator, 6 for HashSet and ListSet, 7 for
HashTable and AssociationList, and 9 for ArrayList, for a total of
(3∗22)+2∗ (3∗62)+2∗ (3∗72)+ (3∗92) = 765 commutativity
conditions and 1530 generated commutativity testing methods —
a soundness testing method and a completeness testing method for
each commutativity condition.

5.2 Verification of the Commutativity Conditions
For HashSet, ListSet, AssociationList, HashTable, and Accumula-
tor, all of the automatically generated commutativity testing meth-
ods verify as generated. Table 8 presents the time required to ver-
ify all of these automatically generated methods. The verification
times are all quite reasonable — less than four minutes for all data
structures except ArrayList.

For ArrayList, 429 of the 486 methods verify as generated. The
entry for ArrayList in Table 8 indicates that Jahob spent 12m 18s
attempting to verify all 486 automatically generated methods (with
the majority of this time spent waiting for the Jahob integrated
reasoning systems to time out as they try, but fail, to verify the 57
methods that require additional proof commands), 3m 04s verifying
the 429 methods that verify as generated, and 27s verifying the
remaining 57 methods after the addition of the required Jahob proof
commands.

In general, the commutativity conditions for ArrayList are sub-
stantially more complicated than for other the data structures. We

Data Structure Verification Time
Accumulator 0.8s
AssociationList 1m 35s
HashSet 44s
HashTable 3m 20s
ListSet 40s
ArrayList 12m 18s† (3m 04s, 27s)

Table 8. Commutativity Testing Method Verification Times

Proof Language Command Count
note 128
assuming 51
pickWitness 22
Total 201

Table 9. Additional Jahob Proof Language Commands for Re-
maining 57 ArrayList Commutativity Testing Methods

attribute this complexity in part to the use of integer indexing and in
part to the presence of operations (such as add_at and remove_at)
that shift the indexing relationships across large regions of the data
structure.

The verification of the remaining 57 ArrayList commutativity
testing methods required the addition of 128 note commands,
51 assuming commands, and 22 pickWitness commands (see
Table 9).

In general, the note command allows the developer to specify
an intermediate formula for Jahob to prove. Jahob can then use
this formula in subsequent proofs. In this way, the developer can
identify a lemma structure that helps Jahob find the proof.

The assuming command allows the developer to prove formu-
las of the form A =⇒ B (by assuming A, then using A to prove B).
We typically use the assuming command when Jahob is unable
to prove a goal B in one case A of the cases of the commutativity
condition (or, when proving completeness, the negation of the com-
mutativity condition). Providing a proof of A =⇒ B enables Jahob
to verify the commutativity condition.

The pickWitness command allows the developer to start with
an existentially quantified formula, name an element for which the
formula holds, then remove the quantifier and use the resulting for-
mula in a subsequent proof. We typically use this command when
the commutativity condition (or its negation) contains an existential
quantifier and we need to use the commutativity condition to prove
a goal.

5.3 Verifying the Remaining 57 Methods
The 57 remaining methods fall naturally into four categories. Each
requires the proof language commands to manipulate either an
existentially quantified formula or the negation of such a formula.

12 of the 57 methods are a soundness testing method for a com-
bination of either add at(i,v1) or remove at(i) with either
indexOf(v2) or lastIndexOf(v2). The commutativity condi-
tion is either a between or after condition. We discuss the between
condition for add_at(i,v1) with indexOf(v2). The other com-
binations are similar. One of the cases of the commutativity con-
dition states that v2 is not present in the intermediate state of the
map (so that indexOf(v2) returns -1). In this case Jahob must
prove that the element is also not present in the initial state before
add_at(i,v1) executes (so that the return value of indexOf(v2)
is -1 in both execution orders). In effect, Jahob must prove that if the
element is not present in the intermediate state, it is also not present
in the initial state — in other words, Jahob must prove that the

† The Z3 [10] and CVC3 [19] decision procedures were each given a 20-
second timeout.



negation of one existentially quantified formula implies the nega-
tion of another existentially quantified formula. To enable Jahob to
prove this fact, we use an assuming command, a pickWitness
command, and several note commands to prove the contraposi-
tion (i.e., that if the element is present in the initial state, then it is
also present in the intermediate state). A key step in the proof of
the contraposition involves the identification of the new position of
v2 in the array after the add_at(i,v1) shifts it over (Jahob can
automatically prove the cases when it is not shifted).

8 of the 57 methods are a soundness testing method for com-
binations of remove_at(i) with indexOf(v). In these methods
Jahob must prove that the return value of indexOf(v) is the same
in both execution orders. The proof involves a case analysis of the
initial state of the ArrayList. In one of the cases, the initial state
contains two adjacent copies of v: one at location i and the other at
location i+1. In this case, remove_at(i) removes the first occur-
rence of v, leaving the second occurrence of v in location i. In both
execution orders indexOf(v) returns i (but i references concep-
tually different versions of v in the two execution orders). Jahob is
unable to prove this fact without help. The addition of a note com-
mand that identifies the case and the new position of the second v
after the remove_at(v) operation executes enables Jahob to com-
plete the proof. The formula that identifies the case is the negation
of a complex existentially quantified formula.

20 of the 57 methods are a completeness testing method for
various combinations of add_at(i,v), remove_at(i,v), and
set(i,v). In these methods Jahob must prove that the two final
abstract states are different. In general, Jahob accomplishes such
a proof by finding an element that is present in one abstract state
but not the other. In some cases, however, Jahob is unable to find
such an element. The addition of an assuming command (which
identifies the case) and note commands that identify the element
and help Jahob prove which abstract state contains the element and
which does not enables Jahob to complete the case analysis. The
relevant formula identifying the case is existentially quantified.

17 of the 57 methods are a completeness testing method for
combinations of either add at(i,v1) or remove at(i) with ei-
ther indexOf(v2) or lastIndexOf(v2). Recall that the opera-
tion add_at(i,v1) shifts the region of the map above i up to
make space for v1 at index i. Similarly, remove_at(i) shifts the
region of the map above i down to fill the hole left by the removed
element. The verification of the completeness testing method in-
volves a case analysis of the relative positions of the inserted or
removed element and the element v2 (whose index is returned by
indexOf(v2) or lastIndexOf(v2)). In one of the cases Jahob is
unable to reason successfully about these relative positions. The ad-
dition of an assuming command (which identifies the case) and a
note command that identifies the precise position of v2 (this note
command follows from the formula which identifies the case) en-
ables Jahob to complete the case analysis. Once again, the formula
identifying the relevant case is existentially quantified.

5.4 Inverse Operations
Table 10 presents, for every operation that changes the data struc-
ture’s abstract state, the corresponding inverse operation that rolls
back the effect of the first operation to restore the original abstract
state. s1 and s2 denote the data structure states before and after the
first operation executes, respectively. Note that some of the inverse
operations use the return value from the first operation. Any system
that applies such inverse operations must therefore store the return
value from the first operation so that it can provide the return value
to the corresponding inverse operation. All of the eight inverse test-
ing methods verified as generated without the need for additional
Jahob proof commands.

Operation Inverse Operation
Accumulator s1.increase(v) s2.increase(−v)
ListSet r = s1.add(v) if r = true then s2.remove(v)
HashSet r = s1.remove(v) if r = true then s2.add(v)

AssociationList r = s1.put(k,v)
if r 6= null then s2.put(k,r)

else s2.remove(k)HashTable r = s1.remove(k) if r 6= null then s2.put(k,r)

ArrayList
s1.add at(i,v) s2.remove at(i)
r = s1.remove at(i) s2.add at(i,r)
r = s1.set(i,v) s2.set(i,r)

Table 10. Inverse Operations

6. Related Work
A general theme in this research is decoupling the verification of
data structure implementations from the analysis of data structure
clients. The immediate goal of the research presented in this paper
is to verify commutativity conditions and inverses for sophisticated
linked data structures. Other systems can then build on the avail-
ability of these verified conditions and inverses to more effectively
analyze and transform clients that use the data structures.

This approach is designed to encapsulate the complex reason-
ing required to verify sophisticated data structure properties (such
as commutativity and inverses) within a specialized analysis and
verification framework. This encapsulation then enables the devel-
opment of simpler but more scalable client analyses that can work
at the higher level of the verified properties rather than attempting
to directly analyze the data structure implementations along with
the client together in the same analysis framework.

Decoupling data structure and client analyses is appropriate
because data structure implementations and clients have different
analysis/verification needs. With current technology, the verifica-
tion of linked data structure implementations requires the use of
sophisticated but unscalable techniques. Such techniques are appro-
priate in this context because of the tractable size of data structure
implementations, the abstraction boundary between data structure
implementations and clients, and because the cost of the result-
ing ambitious data structure verification efforts can be effectively
amortized across many uses of the verified properties. Client anal-
yses, in contrast, face significant scalability requirements. Working
with verified data structure properties (instead of directly with data
structure implementations) can enable the development of simpler
but still precise client analyses that can acceptably scale to analyze
large client code bases.

In previous research we have found that aspect-oriented tech-
niques can help developers productively factor and modularize the
desired client correctness properties, enabling client analyses to
work within an appropriately focused analysis scope [35]. In partic-
ular, this approach supports the expression and verification of client
correctness properties that involve interactions among multiple data
structures and invariants over them. Other examples of projects
that are designed to exploit or enable decoupled data structure im-
plementation and client analyses include the Hob project [33, 35–
37, 50], the Jahob project [6, 51, 52], research on efficient imple-
mentations of multiple relations over objects [23], and research on
verifying properties of programs that use containers [13]. Typestate
analyses are designed to scalably verify simpler properties involv-
ing abstract object state changes [3, 11, 15, 16, 18, 32, 37, 47].

We recently became aware of a project that reduces the verifica-
tion of commutativity conditions and inverses to solving automat-
ically generated SAT problems [40]. The specification language is
an abstract imperative language (as opposed to logic specifications
as in our research). To enable the reduction to SAT, the specifica-
tion language does not include loops and recursion. It instead adds
additional constructs to provide an acceptably expressive specifica-
tion language.



We have already surveyed related work in detecting and exploit-
ing commuting operations (see Section 1). To use the commutativ-
ity conditions in practice, systems must typically deploy some syn-
chronization mechanism to ensure that operations execute atomi-
cally. The specific synchronization mechanisms are orthogonal to
the issues we address in this paper (our goal is to verify the cor-
rectness of commutativity conditions and inverses, not to design
mechanisms that ensure that operations execute atomically).

One synchronization approach is to simply use standard pes-
simistic (such as mutual exclusion locks [2, 4, 21] or their extension
to views of objects [12]) or optimistic (such as optimistic locks [21]
or software transactional memory [46]) concurrency control mech-
anisms. It is also possible to deploy customized nonblocking syn-
chronization algorithms that are tailored for the specific data struc-
ture at hand [25, 39].

It is often possible to exploit the structure of the commutativ-
ity conditions to develop optimized synchronization mechanisms.
For example, abstract locks, forward gatekeepers, and general
gatekeepers are successively more general synchronization mecha-
nisms, each of which is appropriate for a successively larger class of
commutativity conditions [30]. Our sound and complete commuta-
tivity conditions typically take the form of a disjunction of clauses.
Dropping clauses produces sound, simpler, but in general incom-
plete commutativity conditions. Simpler commutativity conditions
are typically more efficient to check but expose less concurrency. It
is possible to start with a sound and complete commutativity con-
dition and generate a lattice of sound commutativity conditions by
dropping clauses (here the least upper bound is disjunction [30]).
Which commutativity condition is most appropriate for a given
context depends on the interaction between the commutativity con-
dition checking overhead and the amount of concurrency that the
commutativity condition exposes in that context.

Commuting operations can also be used to simplify correctness
proofs of parallel programs [14]. The basic idea is to use commu-
tativity information to enable reduction — obtaining larger-grained
atomic blocks by showing that finer-grain statements adjacent in
one thread commute with statements in other threads. The specific
method uses a form of computation abstraction (replacing state-
ments with statements that have more behaviors) to enhance their
ability to obtain statements that commute with other statements.
While this may increase the possible behaviors of the program, the
idea is to prove assertions at the end of the program. If these asser-
tions are valid under the extended set of behaviors of the abstracted
program, they are also valid for the original program.

The research presented in this paper uses a different form of ab-
straction (data abstraction as opposed to computation abstraction)
for a different purpose (reasoning about the semantic equivalence
of commuting and inverse operations on linked data structures).
Our results may, however, enhance the effectiveness of techniques
that reason about explicitly parallel programs — they provide such
reasoning techniques with useful commutativity and inverse infor-
mation about operations that manipulate linked data structures.

Bridge predicates enable developers to specify equivalent states
in parallel programs with operations that are intended to execute
atomically but whose execution is, in practice, interleaved [8].
These predicates can then be used to recognize and discard false
positives in the interleaved execution. In the absence of bridge pred-
icates, such false positives occur when the interleaved execution
produces a concrete state that is unrealizable in the atomic exe-
cution but nevertheless semantically equivalent to some state that
an atomic execution produces. Bridge predicates enable the testing
system to recognize the state equivalence and therefore the accept-
ability of the interleaved execution.

7. Conclusion
Commuting operations, commutativity conditions, and inverse op-
erations play an important role in a broad range of current and envi-
sioned static reasoning systems and parallel programs, languages,
and systems. We have presented new techniques for verifying se-
mantic commutativity conditions and inverse operations for linked
data structures. Our results show that these techniques can effec-
tively verify inverse operations and sound and complete commuta-
tivity conditions for a collection of challenging linked data struc-
tures. Our results therefore provide a useful foundation that others
can build on as they develop static reasoning systems and parallel
programs, languages, and systems.

In the longer term we envision the integration of the commu-
tativity condition and inverse verification techniques presented in
this paper into mature software development kits. Deploying these
techniques in this way would promote their wider use by developers
within a familiar environment as well as their productive integration
with other software development tools.
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