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Abstract
Programmable analog devices have emerged as a powerful
computing substrate for performing complex neuromorphic
and cytomorphic computations. We present Arco, a new
solver that, given a dynamical system specification in the
form of a set of differential equations, generates physically
realizable configurations for programmable analog devices
that are algebraically equivalent to the specified system.
On a set of benchmarks from the biological domain, Arco
generates configurations with 35 to 534 connections and 28
to 326 components in 1 to 54 minutes.
Categories and Subject Descriptors D.3.4 [Processors]:
Compilers; C.1.3 [Processor Styles]: Analog Computers
Keywords Compilers, Analog Computing, Languages

1. Introduction
Programmable analog devices have emerged as a powerful
computing substrate for performing complex neuromorphic
and cytomorphic computations [5, 7, 8, 31, 33, 34, 36, 37,
41]. These systems directly map state variables, transient
variables, and parameters in the underlying scientific model
to physical aspects of the circuit such as voltage and current.

Programmable analog devices target large biological dy-
namical systems such as gene–protein and neuron networks.
Computations involving these networks are often used for
medical dosage optimization, disease prediction, and under-
standing biological phenomena [23, 35]. The dynamics of
biological systems are often oversimplified to make the com-
putations tractable on digital systems, which reduces the ac-
curacy of the model in relation to the corresponding physical
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system [6, 15, 40]. Studying the modeled dynamics on digi-
tal hardware is challenging since these systems are often stiff
and therefore prone to numerical instability [13, 29]. In this
context, a stiff system is a system that is prone to numerical
instability unless the time steps taken are extremely small.
Examples of stiff systems include biological systems with
both fast and slow dynamics. Analog devices are excellent
candidates for these computations:
• Continuous Time Domain: Analog devices operate in

the continuous time domain, circumventing the time
scale issues that often plague stiff dynamical system com-
putations implemented with discretized time steps. Time
does not “tick” in intervals as in standard clocked digital
systems, but runs continuously and asynchronously.
• Stochastic Behavior: The noise present in these ana-

log devices is directly analogous to the noise present in
biological systems as they are mapped onto the hard-
ware [33, 37]. This property promotes analog compu-
tations that accurately model the underlying biological
phenomena.
• Direct Mapping: Since the dynamical system is directly

mapped to components on the analog device, the max-
imum dynamical system size is directly proportional to
the scale of the analog device.
Currently, there is no compiler support for these devices,

so they are programmed manually. The result is a configura-
tion that specifies which analog components to connect and
which dynamical system variables and constants to assign
to input and output components. The following properties
complicate the automatic generation of these configurations:
• Complex Analog Components: The components in

many analog devices implement complex dynamics and
nontrivial relations such as transcendental functions [19,
28, 41]. Because the components are typically engineered
for analog efficiency and generality rather than ease of
use, there may be a substantial semantic gap between the
dynamical system and the analog hardware.
• Relation Entanglement: The complex multifunctional

components in our target analog hardware devices imple-
ment multiple interdependent relations. Mapping a differ-
ential equation onto even one such component can there-
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fore activate a cascading sequence of interactions be-
tween the component and the remaining dynamical sys-
tem variables.
• Resource Constraints: Analog devices typically provide

a finite set of only partially connected components. Any
successful mapping of the dynamical system onto the
device must live within these constraints.

We present Arco, a solver which, given an analog device
specification and dynamical system, synthesizes an alge-
braically equivalent configuration of the analog device:

• Algebraic Unification: Arco fully exploits complex ana-
log components by using algebraic unification to find
compact and efficient isomorphisms between the rela-
tions in the dynamical system and the provided hardware
primitives.
• Materialized Constants: The Arco solver materializes

new constants that configure and specialize general ana-
log components so that they effectively implement the re-
lations in the specified dynamical system.
• Relation Entanglement: Arco successfully manages

cascaded relation entanglements by detecting and harmo-
nizing otherwise potentially conflicting dynamical sys-
tem and hardware variable implementations.
• Resource Constraints: Arco effectively works within

the hardware resource constraints by tracking and ex-
ploiting (potentially partially) used hardware compo-
nents and using an SMT solver to solve component inter-
connection problems.

Because Arco works with a hardware specification language
that defines the capabilities of the underlying analog device,
it can work with the full range of analog devices, including
devices that provide powerful new analog primitives. The
resulting analog hardware configurations are algebraically
equivalent to the specified dynamical systems.

1.1 Contributions
We claim the following contributions:

• Basic Approach: We present a new approach for map-
ping dynamical systems that model complex biological
phenomena onto programmable analog devices. Starting
with a specification of the dynamical system, our ap-
proach automatically synthesizes an algebraically equiv-
alent configuration of the programmable analog device.
• Analog Circuit Solver: We present a new analog circuit

solver that uses a deductive algebraic approach to solve
the analog circuit synthesis problem. Algebraic unifica-
tion enables Arco to fully exploit the powerful but com-
plex analog components that modern programmable ana-
log devices offer. Arco successfully manages cascading
relation entanglements, materializes constants that appro-
priately configure general analog components, and works
within the resource constraints of the programmable ana-
log device.

• Evaluation: We evaluate Arco on five biological dynam-
ical systems extracted from an artifact repository for bi-
ological models that have been accepted into computa-
tional biology conferences [1]. Given a programmable
analog hardware description, Arco synthesizes configu-
rations for the models with from 28 to 326 components
and 35 to 534 connections in 1 to 54 minutes.

To enable these contributions, Arco (1) works with analog
device descriptions written in a novel hardware specifica-
tion language and (2) accepts dynamical systems written in
a novel high level dynamical system specification language.
To the best of our knowledge, Arco is the first system to
automatically synthesize programmable analog device con-
figurations from dynamical system specifications.

2. Example
We next present an example that demonstrates (1) how to
express a dynamical system in the dynamical system speci-
fication language, (2) how to define a programmable analog
device in the hardware specification language, and (3) the
resulting solution generated by the solver.

2.1 Dynamical System: Enzyme-Substrate Reaction
Consider a chemical reaction where an enzyme (E) reacts
with a substrate (S) to produce a compound (ES), where
the forward reaction rate is catalyzed by catalyst (Q). The
formation rate of ES (k f ) is the sum of some nominal rate
(k0) and the amount of the catalyst present multiplied by
its efficiency constant kq, which we assume to be one. We
therefore express the reaction rate for producing ES as k0+Q.
The reverse reaction rate is kr.

E + S →k0+Q ES ES →kr E + S

We may express this reaction as a dynamical system com-
prised of differential equations, where Etot and S tot are the
total amounts of E and S, respectively. The following set of
equations specifies the behavior of the dynamical system:

E = Etot − ES S = S tot − ES

∂ES /∂t = (Q + k0) · E · S − kr · ES

Figure 1 presents the differential equations written in the
Arco dynamical system specification language (DSSL). The
specification defines two units, seconds (s, unit of time)
and molarity (M, unit of concentration). The compound Q is
expressed as an input quantity with unit of measure M (the
quantity is measured as a concentration). The compounds E
and S are expressed as intermediate (local) variables also
measured in molarity M. The reaction parameters k0 and kr

are assigned appropriate values and units. The time variable
is t measured in seconds (s).

The relation statements (rel) describe the dynamics of
each local and output variable. These statements imple-
ment the set of equations outlined above. The init clause
in the definition of ES sets the initial value of ES to 0.423.
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2.2 Hardware Specification
Figure 2 presents the hardware specification for a simple
programmable analog device. The specification is inspired
by existing and envisioned programmable analog chips that
Arco is designed to target [8, 37, 41]. The specification
defines microseconds (us), milliamps (mA), and millivolts (V)
as units then maps time (t) to microseconds, the current
property (I) to milliamps, and the voltage property (V) to
millivolts.

The specification defines three components, a current
adder (iadd), a current multiplier (igain) and a Michaelis-
Menten component (mm) [37]. The current adder has two
input ports (W and U) and one output port (Y). The current at
the output port is the sum of the currents of the two input
ports. The Michaelis-Menten component has five input ports
A0, B0, Kf, Kr, and C0 and three output ports A, B, and C. The
component simulates a basic enzyme-substrate reaction of
the form A + B↔ C:

AV = B0V − CV BV = B0V − CV

∂CV/∂t = KfI · AV · BV − KrI · CV init C0V

inst statements define how many instances of each compo-
nent are available — for example, there are two instances of
the Michaelis-Menten (mm) component. input V and input
I components contain a digital to analog converter (DAC)
that converts a digital input to voltage or current, respec-
tively, for import into the analog circuit. output V compo-
nents contain an analog to digital converter (ADC) that sam-
ples an analog property, in this case voltage, to produce a
sequence of digital values for export to the surrounding dig-
ital computing environment.

The specification also defines available connections. The
conn iadd->mm statement, for example, states that output
ports of iadd components can be connected to input ports
of mm components. A * specifies either all output (* ->) or
input (-> *) ports of all components.

2.3 Arco Solver
The Arco solver works with a set of goals. Initially the goals
are simply the relations in the dynamical system. As the
solver operates it maps computations within the relations
onto the hardware components, with the dynamical system
variables and expressions mapped to properties (voltage,
current) of the component ports. In our example the solver
starts with the following goal table:

S = S tot − ES E = Etot − ES

∂ES /∂t = (k0 + Q) · S tot − ES init 0.423

The solver first chooses to map the S = S tot − ES com-
putation onto one of the Michaelis-Menten (mm) hardware
components. The initial step is to map the dynamical system
variable S onto the hardware variable AV. Each hardware
variable is the combination of a port (here A) and a property

type s ; type M
input Q : 1/(s*M)
local E : M; local S : M; output ES : M
param ETOT : M = 0.15; param STOT : M = 0.11
param k0 : 1/(s*M) = 0.36; param kr : 1/s = 0.2
time t : s
rel S = STOT - ES
rel E = ETOT - ES
rel deriv(ES,t)=((k0 + Q)*E*S)-kr*ES init 0.423

Figure 1. Enzyme Substrate Reaction Dynamical System

type us; type mA; type V
prop I : mA; prop V : mV; time t: us
comp input I
input X; output Z; rel I(Z) = D(X)

end
comp output V
input X; output Z; rel D(Z) = V(X)

end
comp input V
input X; output Z; rel V(Z) = D(X)

end
comp iadd
input W; input U; output Y; rel I(Y) = I(W)+I(U)

end
comp mm
input A0; input B0; input C0;input Kf; input Kr
output A; output B; output C
rel V(A) = V(A0) - V(C)
rel V(B) = V(B0) - V(C)
rel deriv(V(C),t)=I(Kf)*V(A)*V(B)-I(Kr)*V(C)
init V(C0)

end
schematic
inst mm : 2; inst iadd : 4
inst input I : 5; inst output I : 3;
inst input V : 5; inst output V : 3
conn iadd -> mm; conn * -> output(V)
conn input(I) -> *; conn input(V) -> *
end

Figure 2. Analog Hardware Specification

such as voltage (V) or current (I). So AV is the voltage V
property (in black) of the output port A:

mm

C BA

C0 B0A0

Kf Kr

S

The next step is to map the dynamical system expression
S tot − ES onto the mm component. Arco retrieves the hard-
ware relation that defines AV and the dynamical system re-
lation that defines S :

AV = A0V − CV S = Stot − ES

Arco then algebraically unifies the two relations to ob-
tain the following assignments from hardware variables to
dynamical system variables and expressions:

AV = S A0V = Stot CV = ES
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In effect, the unification maps variables and expressions
from the dynamical system onto the hardware variables of
the mm component. In this case, the unification maps Stot

onto A0V (the voltage property of port A0) and ES onto CV
(the voltage property of port C):

mm

C BA

C0 B0A0

Kf Kr

S

Stot

ES

Arco now encounters relation entanglement. Because of a
cyclic dependence between AV and CV, it has mapped ES to
an output hardware variable of the mm component (specifi-
cally CV). The result is that Arco now has two definitions of
ES : one from the mm component (because CV = ES ):

∂CV/∂t = KfI · AV · BV − KrI · CV init C0V

and one from the dynamical system:

∂ES/∂t = (k0 + Q) · E · S − ES init 0.423

It is the responsibility of the Arco solver to harmonize
these two definitions so that the hardware dynamics of CV

correctly implement the dynamics of ES as defined in the
dynamical system (Figure 1). Because Arco has already par-
tially consumed the mm component, it applies the assign-
ments from the unification of A0V−CV with Stot−ES. The re-
sult is the following mixed-variable relation (a relation with
variables from both the dynamical system specification and
the analog hardware specification) that defines how the hard-
ware computes ES :

∂ES/∂t = KfI · S · BV − KrI · ES init C0V

Now relation entanglement manifests itself as two poten-
tially conflicting definitions of ∂ES/∂t: one from the above
mixed-variable relation and one from the original relation
in the dynamical system. Arco harmonizes these two defini-
tions by algebraically unifying these two relations. The uni-
fication maps dynamical system variables and expressions to
the mm component as follows:

mm

C BA

C0 B0A0

Kf Kr

S

Stot

ES

1

E

0.423

Q + k0

to deliver the following hardware variable assignments:
KfI = Q + k0, BV = E, KrI = 1, and C0V = 0.423. Note that
KfI and KrI are current properties (not voltage properties)
and are therefore colored blue (not black). Note also that
the unification created the materialized constant KrI = 1, in
effect specializing the mm component for this specific use.

At this point Arco again encounters relation entangle-
ment: it has mapped E to an output port property, specifi-
cally BV. It has two potentially conflicting definitions of E,
one from the hardware and one from the dynamical system.
It applies the current set of assignments to the hardware re-
lation that defines BV (BV = B0V−CV) to obtain the follow-
ing mixed-variable relation that the hardware implements to
compute E:

E = B0V − ES

Arco retrieves the definition of E from the dynamical
system (E = Etot − ES) and harmonizes the two relations
with another algebraic unification. The unification maps Etot

to B0V as follows:

mm

C BA

C0 B0A0

Kf Kr

S

Stot

ES

1

E

0.423

Q + k0

Etot

Arco has now successfully mapped the original goal (S =

S tot − ES ) onto the mm component, including performing
any cascaded mappings required to harmonize any generated
potential conflicts. Because of these cascaded mappings,
Arco has partially mapped all of the following dynamical
system relations onto the hardware:

S = S tot − ES E = Etot − ES

∂ES /∂t = (k0 + Q) · S tot − ES init 0.423

The partial mapping generated a set of subgoals, which
consist mostly of assignments of dynamical system variables
to (analog) hardware variables. Arco therefore removes the
partially mapped original goals and adds the generated sub-
goals to obtain the following goal table:

KfI = Q + k0 KrI = 1 B0V = Etot

C0V = 0.423 A0V = Stot CV = ES

With the exception of the KfI goal, the new goal table
contains only assignments of dynamical system variables
to hardware variables. Arco assumes that the analog hard-
ware device will be embedded within a larger digital com-
puting framework that will supply dynamical system input
variables and values as digital numbers. The framework will
receive dynamical system output variables as a sequence of
digital values derived by sampling the analog representation
of these variables at a specific frequency. The analog hard-
ware device therefore contains input components, which use
a digital to analog converter to import a digital input value
into the analog computation, and output components, which
use an analog to digital converter to produce the sampled
digital sequence of output variable values.
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Arco solves all of the goals that assign dynamical system
input or output variables or values to analog hardware vari-
ables by inserting appropriate input or output components to
import or export the relevant values to or from the analog
computation:

mm

C BA

C0 B0A0

Kf Kr

S

Stot

E

0.423

Q + k0

in
X

Z
in
X

Z
in
X

Z
in
X

Z

1

Etot

out XZES

At this point the goal table contains only one goal:

KfI = Q + k0

Arco solves this goal by mapping the Q + k0 computation
onto an iadd hardware component, then connecting the iadd
output port to the Kf input port of the mm component. It then
uses appropriate input components to solve the remaining
goals, which assign the Q and k0 variables to iadd hardware
input variables. Unlike the previous collection of inputs,
the iadd requires current, not voltage, analog inputs. Arco
therefore selects input components that produce current, not
voltage, values.

At this point Arco has successfully solved all of the goals
in the goal table. The result is an analog hardware configura-
tion that correctly implements the specified dynamical sys-
tem. The configuration specifies the generated inputs, out-
puts, and analog hardware connections:

Q k0

in
X

Z
in
X

Z

iadd
W

Y

U

mm

C BA

C0 B0A0

Kf Kr

S

Stot

E

0.423

in
X

Z
in
X

Z
in
X

Z
in
X

Z

1

Etot

out XZES

ES 7→ outV0.XD mm0.C � outV0.X
0.423 7→ inV0.XD inV0.Z � mm0.C0
S tot 7→ inV1.XD inV1.Z � mm0.A0
Etot 7→ inV2.XD inV2.Z � mm0.B0
1 7→ inI0.XD inI0.Z � mm0.Kr
Q 7→ inI1.XD inI1.Z � iadd0.W
k0 7→ inI2.XD inI2.Z � iadd0.U

iadd0.Y � mm0.K f

2.4 Arco Search Space and Tableau Configurations
In practice, the Arco solver typically has many potential op-
tions at each step as it maps the dynamical system onto the
hardware. Not all of these options lead to a successful hard-
ware configuration. Arco therefore deploys a search algo-
rithm to explore a search space of partial hardware config-
urations. The algorithm uses a variety of optimizations and
heuristics to make the search tractable (Section 4.3).

Arco organizes the search with a tableau (Section 4.1).
This data structure tracks the goals, partially used hardware,
and generated partial hardware configurations. The search
starts with a tableau configuration containing the analog
hardware and the dynamical system. It generates a space of
tableau configurations by mapping dynamical system vari-
ables, expressions, and relations onto the analog hardware
components. The search of the generated tableau space ter-
minates when Arco finds a solved tableau configuration with
an empty goal table (Section 4.2).

3. Languages
Arco works with (1) a dynamical system specification that
describes the dynamical system to model and (2) a hardware
specification that describes the target programmable analog
device.

3.1 Dynamical System Specification Language
The dynamical system specification language (DSSL) al-
lows the programmer to describe the dynamical system to
simulate. Figure 3 presents the syntax for the DSSL.
Unit: A unit (type x) is a named unit of measurement that
may be composed into unit expressions. Inputs, outputs, and
parameters are all declared with unit expressions that define
the units in which they are measured.
Time: The time (time x : x′) is a named time variable x
with a unit expression x′ in which time is measured.
Variables: A variable (input|output|local x : U) is a
named quantity x with an attached unit expression U.
Parameter: A parameter (param x : U = f ) is set to a fixed
floating point value f that does not change over time.
Relations: A relation (rel x=E, rel deriv(x,x′)=E init f )
defines the relationship between a local or output variable
and the other variables in the dynamical system.
Type Checking Rules: Appendix A presents type checking
rules for the dynamical system specification language.

3.2 Analog Hardware Specification Language
Figure 4 presents the syntax of the hardware specification
language. Specifications contain named component defini-
tions, which specify the computational primitives of the pro-
grammable analog device. These primitives are defined as a
set of relations over properties (such as current and voltage)
of the input and output ports of the component.
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f ∈ F n ∈ N x ∈ Ident

U ∈ Unit ::= U * U | U / U | x | none
E ∈ Expr ::= E+E′ | E-E′ | -E | E * E′ | E / E′

exp(E) | E ˆ E | n | x | f
S ∈ Stmt ::= type | time x : x′ | input x : U

output x : U | local x : U
param x : U = x | rel x = E
rel deriv(x,x′) = E init f

P ∈ Prog ::= S ∗

Figure 3. Dynamical System Specification Language

Units: A unit (type x) is a named unit of measurement for
a specific property of the circuit or time. Units relate circuit
properties to computational properties.
Time: The time (time x:x′) is a named time variable x and
the associated units x′ in which it is measured.
Properties: A property (prop x:x′), is a named circuit prop-
erty x, such as current or voltage, and the associated unit x′

in which it is measured. The combination of a property x and
a port x′′, written x(x′′), is a hardware variable.
Components: Components (comp x ...end block) are the
basic computational primitives of the circuit. Components
have input ports (input x), output ports (output x), and
parameters (param x:u= f ). Stateless relations rel Q=E de-
fine the value of an output port property Q as an expression
E. Stateful relations rel deriv(Q,x)=E init Q′, define the
value of output port property Q with a differential equation.
Q′ provides the initial value.

Arco also supports input components, which provide a
digital interface for importing dynamical system values into
the analog circuit, and digital output components, which
provide a digital interface for exporting dynamical system
values from the analog circuit to the surrounding digital
computing environment.
Schematic: A schematic..end description block specifies
resources R, including the number of instances of each com-
ponent inst x : n and the potential connections between
components inst x : n (at the granularity of components,
instances of components, or individual component ports).
Type Checking Rules: Appendix B presents the type check-
ing rules for the hardware specification language.

4. Arco Solver
Dynamical System: The Arco solver works with a dynami-
cal system with input variables î ∈ Î, output variables ô ∈ Ô,
and local variables l̂ ∈ L̂. Together these variables are the
dynamical system variables v̂ ∈ V̂ = Î ∪ Ô∪ L̂. It also works
with sets of dynamical system relations r̂ ∈ R̂, where each
relation r̂ is of the form r̂ : v̂ = Ê or r̂ : ∂̂v/∂t = Ê init x,
v̂ ∈ L̂ ∪ Ô, x ∈ R, and Ê is an expression over V̂ so that
vars(Ê) ⊆ V̂ .
Hardware: The hardware has digital to analog (DAC) in-
put components ic ∈ IC, analog to digital (ADC) output

f ∈ F n ∈ N x ∈ Ident

Q ∈ Port-Prop ::= x ( x′ )
U ∈ Unit ::= U * U | U / U | x | none
E ∈ Expr ::= E +E | E-E | -E | E*E | E / E

exp(E) | E ˆ E | Q | f | n | x
D ∈ Defn ::= input x | output x | param x : U = f

rel deriv(Q,x) = E init Q′

rel Q = E
W ∈ Wire ::= * | x | W . x | W [n : n′]
R ∈ Res ::= inst x : n | conn W -> W′

Y ∈ Comp ::= D∗

Z ∈ Schem ::= R∗

S ∈ Stmt ::= type x | time x : x′ | prop x : x′

comp x : Y end | schematic : Z end
P ∈ Program ::= S ∗

Figure 4. Hardware Specification Language

components oc ∈ OC, and analog computation components
cc ∈ CC. Together these components are the hardware com-
ponents c ∈ C. The hardware specification language enables
the designer to specify multiple instances of declared com-
ponents. Each such instance is a separate component c ∈ C.

Components have input ports i ∈ IP and output ports
o ∈ OP. Together these ports are the ports p ∈ P = IP ∪ OP.
Each port p belongs to a component c, denoted p@ c. Each
port p has properties q ∈ Q, denoted pq. Common properties
q include current and voltage.

The combination of a port and a property is a hardware
variable. There are input variables iq ∈ I = IP × Q and
output variables oq ∈ O = OP × Q. Together these variables
are the hardware variables v ∈ V = I∪O. Each variable v ∈ V
is a property q of a port p, denoted v : pq.

Each component c ∈ C has a set of variables vars(c) ⊆ V.
Components have disjoint variables so that c1 , c2 implies
vars(c1) ∩ vars(c2) = ∅. Input components ic ∈ IC have
a single digital input variable id (the input port i with the
digital property d). Output components oc ∈ OC have a
single digital output variable od (the output port o with the
digital property d).

The hardware implements a set of hardware relations
r ∈ R, where each relation r is of the form r : v = E or
r : ∂v/∂t = E init v′, where v ∈ O and E is an expression
over V so that vars(E) ⊆ V.

The hardware also has a set of wires W ⊆ OP × IP. Each
wire is a configurable connection between an output port and
an input port.
Goals: As the solver operates, it maps the dynamical system
relations onto the hardware (by mapping variables and ex-
pressions from the dynamical system to properties of hard-
ware ports). The solver works with a set of goals r̃ ∈ R̃, each
of which is derived from an original dynamical system re-
lation r̂ ∈ R̂ and each of which captures some remaining
unmapped part of r̂. The solver terminates when all of the
relations in the dynamical system have been fully mapped
onto the hardware and the set of goals is empty.
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solve(R,W, R̂) = {Z | 〈R, ∅,W, R̂, ∅〉 → ∗ 〈R
′
, Ṙ′,W′, ∅, Z〉}

unify

r ∈ R ∪ Ṙ r̃ ∈ R̃ unify(r, r̃,R, Ṙ, R̃) = 〈R
′
, Ṙ′, R̃

′
〉

〈R, Ṙ,W, R̃,Z〉 → 〈R
′
, Ṙ′,W, R̃

′
,Z〉

connect
r̃ : iq = oq ∈ R̃ w : 〈o, i〉 ∈W

〈R, Ṙ,W, R̃,Z〉 → 〈R, Ṙ,W − {w}, R̃ − {̃r},Z ∪ {o� i}〉

input-var-map
r̃ : id = î ∈ R̃ î ∈ Î i@ c c ∈ IC

〈R, Ṙ,W, R̃,Z〉 → 〈R, Ṙ,W, R̃ − {̃r},Z ∪ {̂i 7→ id}〉

input-val-map
r : id = x ∈ R̃ i ∈ I x ∈ R i@ c c ∈ IC

〈R, Ṙ,W, R̃,Z〉 → 〈R, Ṙ,W, R̃ − {̃r},Z ∪ {x 7→ id}〉

local-var-map
r̃ : l̂ 7→ oq ∈ R̃ l̂ ∈ L̂

〈R, Ṙ,W, R̃,Z〉 → 〈R, Ṙ ∪ {oq = l̂},W, R̃ − {̃r},Z ∪ {̂l 7→ oq}〉

output-var-map
r̃ : ô 7→ o′q ∈ R̃ ô ∈ Ô r : od = iq ∈ R o@ c c ∈ OC

〈R, Ṙ,W, R̃,Z〉 → 〈R − {r}, Ṙ ∪ {o′q = ô},W, (R̃ − {̃r}) ∪ {iq = o
′
q},Z ∪ {̂o 7→ od}〉

Figure 5. Definition of the Tableau Transition Relation→

Each goal r̃ ∈ R̃ is a relation r̃ of the form r̃ : v̂ = Ê,
r̃ : ∂̂v/∂t = Ê init x (relations from the dynamical system),
r̃ : iq = E (a mixed-variable derived relation that may
include both dynamical system and hardware variables), or
r̃ : v̂ 7→ oq (mapping a dynamical system local or output
variable to a hardware output variable), where v̂ ∈ L̂ ∪ Ô,
x ∈ R, Ê is an expression over V̂ so that vars(Ê) ⊆ V̂ , and E
is an expression over V = V∪ V̂ so that vars(E) ⊆ V = V∪ V̂ ,
iq ∈ I, and oq ∈ O.

Note that the solver may generate partially solved mixed-
variable goals that include both dynamical system and hard-
ware variables.
Partially Used Hardware: As the solver operates, it con-
sumes the starting hardware R to produce partially used
hardware ṙ ∈ Ṙ. Each relation ṙ ∈ Ṙ is of the form ṙ : oq = E
or ṙ : ∂oq/∂t = E init iq′ , where vars(E) ⊆ V =

V∪ V̂ . Each ṙ ∈ Ṙ is therefore a partially instantiated mixed-
variable relation derived from an original hardware relation.
Hardware Configuration: As it operates, the solver gener-
ates a hardware configuration Z. Each z ∈ Z is of the form:

• o� i: Connect a wire from hardware output port o to
hardware input port i.
• x 7→ id: Set a digital input id ∈ I to a value x ∈ R.
• î 7→ id: Map a dynamical system input variable î ∈ Î to a

digital input id ∈ I
• v̂ 7→ oq: Map a dynamical system output or local variable

v̂ ∈ L̂ ∪ Ô to a hardware output port property oq ∈ O.

4.1 The Tableau Transition Relation→
We formalize the operation of the solver as a transition rela-
tion 〈R, Ṙ,W, R̃,Z〉 → 〈R

′
, Ṙ′,W′, R̃

′
,Z′〉 on tableau config-

urations 〈R, Ṙ,W, R̃,Z〉, where each transition corresponds
to a solver step on the tableau. The solver implements the
solve(R,W, R̂) function, which returns a set of solutions
Z, where each solution is reachable by applying → transi-
tion rules to the starting tableau configuration 〈R, ∅,W, R̂, ∅〉,

which contains the initial unused hardware environment R,
wires W, and dynamical system relations R̂ as goals.

Figure 5 presents the rules that define the solver steps.
Rule unify maps a (potentially already partially mapped)
relation r̃ ∈ R̃ onto a hardware relation r ∈ R ∪ Ṙ. Rules
connect through output-var-map solve goals that directly
configure the hardware:

• connect: The connect rule solves a goal of the form
iq = oq by adding a wire o � i to the configuration
Z. The wire connects the output port o to the input port i.
• input-var-map or input-val-map: The input port mapping

rules solve goals of the form iq = x or iq = î. The rules
add the mapping x 7→ iq or î 7→ iq to the configuration
Z. The mapping binds the value x or dynamical system
input î to the hardware variable iq.
• local-var-map: The local variable mapping rule solves

goals of the form l̂ 7→ oq. It adds the mapping to the
configuration Z and adds oq = l̂ to Ṙ. Arco solves result-
ing future subgoals of the form iq = l̂ through unification,
provided iq = oq holds.
• output-var-map: The output variable mapping rule solves

goals of the form ô 7→ o′q. The rule uses a digital output
component c : od = iq. It also adds the mapping ô 7→ od

to X, the relation o′q = ô to Ṙ, and the goal iq = oq to R̃.

The unify rule uses the unify(r, r̃,R, Ṙ, R̃) function, which
unifies r with r̃ and resolves any entangled and affected
relations. Figure 6 presents the transition rules that define
the unify function. Each rule first unifies r and r̃ to obtain a
set of assignments A. It then applies the assignments A to Ṙ
(if r ∈ Ṙ) or to R if (r ∈ R).

The solver steps unify relations r. But the basic Arco
unification algorithm A ∈ unifyExpr(E, E′,V) operates on
expressions E and E′. It produces sets of assignments A
that unify E and E′ so that sub(E, A) = sub(E′, A), where
sub(E, A) applies the assignments A to the expression E.
The rules in Figure 7 lift the unification algorithm from
expressions E to relations r.
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unify(r, r̃, R, Ṙ, R̃) = {〈R
′
, Ṙ′ .̃R

′
〉 | 〈r, r̃, R, Ṙ, R̃〉 →u 〈R

′
, Ṙ′, R̃

′
〉}

unify-partial
r ∈ Ṙ 〈A, a, r′, r̃′〉 ∈ unifyRelation(r, r̃,V)
〈Ṙ′, R̃

′′
,D〉 ∈ apply(Ṙ − {r}, (R̃ ∪ {̃r′}) − {̃r}, A, a)

〈r, r̃,R, Ṙ, R̃〉 →u 〈R, Ṙ
′
∪ D ∪ {r′}, R̃

′′
〉

unify-unused
r ∈ R 〈A, a, r′, r̃′〉 ∈ unifyRelation(r, r̃,V)
〈R
′
, R̃
′′
,D〉 ∈ apply(Ṙ − {r}, (R̃ ∪ {̃r′}) − {̃r}, A, a)

〈r, r̃,R, Ṙ, R̃〉 →u 〈R
′
, Ṙ ∪ D ∪ {r′}, R̃

′′
〉

Figure 6. Definition of the Unify Relation→u

unifyRelation(r, r′, r̃,V) = {〈A, a, r′, r̃′〉 | 〈r, r̃,V〉 → f 〈A, a, r′, r̃′〉}

unify-hw-rel
oq ∈ O iq′ ∈ I o@ c V = vars(c) A ∈ unifyExpr(E,E′,V)

〈oq = E, iq′ = E′,V〉 → f 〈A, oq = iq′ , oq = E′, iq′ = oq〉

unify-ds-rel
oq ∈ O v̂ ∈ V̂ o@ c V = vars(c) A ∈ unifyExpr(E, Ê

′
,V)

〈oq = E, v̂ = Ê
′
,V〉 → f 〈A, oq = v̂, oq = Ê

′
, v̂ 7→ oq〉

unify-ds-deriv
oq ∈ O iq′ ∈ I v̂ ∈ V̂ x ∈ R o@ c V = vars(c) A ∈ unifyExpr(E, Ê

′
,V)

〈∂oq/∂t = E init iq′ , ∂̂v/∂t = Ê
′
init x,V〉 → f 〈A ∪ {iq′ = x}, oq = v̂, oq = v̂, v̂ 7→ oq〉

Figure 7. Definition of the Relation Unification Relation→ f

apply(R, R̃, A, a) = {〈R′, R̃
′
,D′〉 | 〈R, R̃, A ∪ {a}, A, ∅〉 →∗d→c→

∗
x 〈R

′, R̃
′
, ∅,D′〉}

apply-inp-assign
a : iq = E ∈ Ã iq ∈ I

〈R, R̃, A, Ã,D〉 →d 〈R, R̃ ∪ {a}, A, Ã − {a},D〉

apply-out-assign
a : oq = E ∈ Ã oq ∈ O r : oq = E′ ∈ R A′ ∈ unifyExpr(sub(E′, A), E,V)

〈R, R̃, A, Ã,D〉 →d 〈R − {r}, R̃, A ∪ A′, (Ã ∪ A′) − {a},D ∪ {a}〉

apply-out-assign2
a : oq = v̂ ∈ Ã oq ∈ O v̂ ∈ V̂ r : oq = E′ ∈ R r̃ : v̂ = Ê ∈ R̃ oq @ c V = vars(c) A′ ∈ unifyExpr(sub(E′, A), Ê,V)

〈R, R̃, A, Ã,D〉 →d 〈R − {r}, R̃ − {̃r}, A ∪ A′, (Ã ∪ A′) − {a},D ∪ {a, oq = Ê}〉

conv
Ã = ∅

〈R, R̃, A, Ã,D〉 →c 〈R, R̃, A,D〉

xform-unused-rel
r : oq = E ∈ R vars(E) ∩ dom(A) , ∅

〈R, R̃, A,D〉 →r 〈R − {r}, R̃, A,D ∪ {oq = sub(E, A)}〉

apply-unused-deriv
r : ∂oq/∂t = E init iq ∈ R vars(E) ∩ dom(A) , ∅ iq < dom(A)

〈R, R̃, A,D〉 →r 〈R − {r}, R̃, A,D ∪ {∂oq/∂t = sub(E, A) init iq}〉

apply-unused-done
{r | r ∈ R ∧ vars(r) ∩ dom(A) , ∅} = ∅

〈R, R̃, A,D〉 →r 〈R, R̃, ∅,D〉

Figure 8. Definition of the Detangling Relation→d and the Resolving Relation→r

Relation Entanglement: Unifying a partially used (r ∈ Ṙ)
or unused (r ∈ R) hardware relation with some goal r̃ ∈ R̃
(where the variables v ∈ V are the hardware variables in c :
r @ c) may produce assignments which are entangled with
other relations that belong to c in R. A hardware relation
is entangled with an assignment a : oq = E if the relation
defines oq (for example, oq = E′). A hardware relation is
affected by a if oq is used (but not defined) by the relation
(for example, oq = E where oq ∈ vars(E)).
Detangling Relations: Figure 8 presents the transition rela-
tions that apply a set of assignments A to the tableau. The
rules (1) detangle any relations entangled with A (→d) and
(2) move any relations affected by A out of R (→r). Har-
monization detangles entangled relations. Given an assign-
ment oq = E and a relation oq = E′, Arco first applies

the assignments A to E′ to create the specialized expression
E′′ = sub(E′, A). It unifies expressions E and E′′ (assign-
ing only variables V), then incorporates the resulting set of
assignments A′ (chosen from the space of possible assign-
ments) into A.

The→d relation detangles r ∈ R from A by incrementally
applying assignments a ∈ Ã to the tableau and detangling
any entangled relations as needed, where Ã are the remain-
ing assignments. The rules move detangled relations into D:

• apply-inp-assign: Assignments of the form iq = E create
no entanglements. The rule therefore moves such assign-
ments directly into the goal set R̃.
• apply-out-assign: The rule harmonizes entangled assign-

ments of the form a : oq = E where r : oq = E′ ∈ R.
It then adds the resulting set of assignments A′ to Ã and
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adds the fully specialized relation oq = sub(E′, A∪A′) =

E to D. Because the harmonization satisfies assignment
a, the rule does not add a to the goal set R̃.
• apply-out2-assign: The rule harmonizes entangled as-

signments of the form a : oq = v̂ where there is an
entangled r : oq = E′ ∈ R, and a definition of v̂ of the
form r̃ : v̂ = Ê ∈ R̃. The rule harmonizes Ê and E′ (with
V). The rule makes the same changes to Ã, A, and D
as apply-out-assign, but also removes the now–mapped
relation r̃ from the goal set R̃.

Resolving Affected Relations: The →r relation resolves
any affected relations r ∈ R after all potentially entangled
relations have been resolved (when Ã = ∅). Each →r rule
finds a relation r ∈ R affected by the assignments A. It then
applies the assignments A to r to create a specialized relation
which it adds to D. It then removes r from R. It applies these
transitions until no affected relations are left.
4.2 The Search Algorithm
Figure 9 presents the Arco search algorithm. The algorithm
explores the search space defined by the tableau configu-
ration transition relation →. It maintains a set of tableau
configurations F at the frontier of the explored space. At
each step, the algorithm chooses a tableau configuration
t : 〈R

′
, Ṙ,W

′
, R̃
′
,Z〉 ∈ F to explore. If all of the goals in

t have been solved (i.e., R̃ = ∅), the algorithm returns the
generated configuration Z. Otherwise, it selects a subset T
of the set of tableau configurations directly reachable from
t under → and replaces t in F with T . The decisions that
Arco makes when it chooses a tableau configuration t (line
3) and selects a subset T to explore (line 5) have a significant
impact on the effectiveness of the search algorithm.
Choosing t: At line 3, Arco applies a heuristic designed to
find the tableau configuration t that is closest to being solved.
This heuristic scores each tableau configuration based on the
number and complexity of the remaining nontrivial goals
(goals solved only by rule unify in Figure 5). It chooses
the configuration t with the smallest score (i.e., fewest and
simplest remaining nontrivial goals).
Selecting T : Arco first selects a goal r̃ ∈ R̃, prioritizing
trivial goals (solved by rules connect through output-var-
map in Figure 5) over nontrivial goals (solved by rule unify in
Figure 5). It then computes the set of tableau configurations
generated by applying the appropriate rule from Figure 5 to
r̃ to obtain T . If any of the trivial goals are unsolvable, Arco
sets T = ∅, effectively pruning the entire search subspace
rooted at t. The rationale is that the unsolvable trivial goal
ensures that the pruned subspace contains no solved tableau
configurations.

The unify rule from Figure 5 may generate a large number
of tableau configurations. To maintain the tractability of the
search algorithm, the current Arco implementation discards
generated tableau configurations so that T contains at most
five tableau configurations from each combination of r and r̃
in the unify rule.

1 search(R̂0,R0,W0)

2 F = {〈R0, ∅,W0, R̃0, ∅〉}

3 while choose t : 〈R, Ṙ,W, R̃,Z〉 ∈ F
4 if R̃ = ∅ return Z
5 select T ⊆ {t′ | t → t′ }
6 F = (F − {t}) ∪ T
7 end

8 return no solution

Figure 9. Arco Search Algorithm

4.3 Search Optimizations
We next describe several optimizations that significantly im-
prove the performance of the Arco search algorithm.
Component Aggregation: Our target programmable analog
hardware platforms typically contain multiple instances of
a given component. Arco reduces the size of the search
space by materializing component instances on demand to
unify the chosen goal against at most one unused component
instance (as opposed to unifying against all available unused
component instances).
Abstract and Concrete Hardware Configurations: Be-
cause of component aggregation, the Arco tableau search
algorithm does not distinguish between different instances
of the same component. But the hardware may enforce
instance-specific wiring constraints so that different compo-
nent instances are not interchangable. Arco therefore imple-
ments a staged synthesis algorithm. The tableau solver first
synthesizes an abstract hardware configuration that treats all
component instances uniformly. A concretization algorithm
then maps each abstract component instance to a concrete
component instance. The result is a concrete hardware con-
figuration. Arco formulates the concretization problem as
an SMT problem whose solution maps each abstract com-
ponent instance to a corresponding concrete component in-
stance. The SMT problem has two kinds of clauses:

• Instance Assignment Clauses: These clauses ensure
that exactly one abstract component maps to exactly one
physical component.
• Connection Clauses: These clauses ensure that all of the

connections in the abstract hardware configuration map
to realizable hardware connections.

If the generated SMT problem is unsatisfiable, then there is
no physical configuration of the analog hardware that imple-
ments the abstract hardware configuration. In this case the
Arco search algorithm removes the corresponding tableau
configuration from the tableau frontier. The tableau explo-
ration algorithm continues on to find new abstract hardware
configurations.
Partial Configuration Caching: Arco caches generated
partial configurations for the different dynamical system re-
lations r̂ ∈ R̂. It reuses the cached partial configurations
whenever it subsequently encounters the relation again in
another region of the search space.
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Benchmark Parameters Functions Differential Equations Description
menten 3 0 4 Michaelis-Menten equation reaction[30]

gentoggle 9 3 2 genetic toggle switch in E.coli [18]
repri 7 3 6 synthetic oscillatory network of transcriptional regulators [11]
osc 16 16 9 circadian oscillation utilizing activator / repressor [39]

apop 87 48 27 protein stress response [14]

Table 1. Benchmark Characteristics

Search Tree Data Structure: Instead of fully storing each
tableau configuration in the frontier F, Arco maintains (1)
a full representation of the current tableau configuration
and (2) a delta-based representation of the explored tableau
search space. Arco navigates the space by applying and un-
applying deltas to the current tableau configuration. This op-
timization significantly reduces the space required to explore
the search space.

4.4 Implementation Details
Arco is implemented in OCaml. Arco includes a collection
of utility libraries, including OCaml bindings for sympy [22],
a python library for algebraic simplification, and OCaml
bindings for the Z3 SMT solver [9]. It also includes im-
plementations of several custom data structures and conve-
nience routines.

4.5 Design Decisions
We decided to use algebraic unification rather than pattern-
based unification because the analog circuit synthesis prob-
lem requires more sophisticated reasoning than pattern-
based unification systems can deliver. We found that syn-
thesizing configurations for programmable analog devices
often hinges on the solver’s ability to apply algebraic rea-
soning to rewrite algebraic expressions during unification.

We found algebraic reasoning to be particularly effective
at materializing the new constants required to appropriately
configure general analog components and at algebraically
transforming dynamical system computations to exploit effi-
cient analog components with complex interfaces. This kind
of algebraic reasoning is beyond the capabilities of pattern-
based unification and other methods that pattern match ex-
pression trees. For this reason, we used a computer algebra
system that came with a corpus of axioms and was already
able to reason effectively about algebraic expressions.

We chose to build a deductive solver instead of encod-
ing the synthesis problem as an SMT problem because SMT
techniques are not well suited for reasoning about continu-
ous, transcendental, and nonlinear functions. We found that
attempting to encode algebraic reasoning directly in SMT
quickly became intractable. Utilizing a deductive technique
allowed the solver to synthesize solutions in a more focused
manner than an exhaustive search over valid configurations.
We use an SMT solver for more appropriate subproblems
such as the concretization of abstract configurations.

We implemented a specialized procedure that performs
relation detanglement and affected relation resolution after
observing that the initial relation unification often produced
potential conflicts between the definitions of dynamical sys-
tem variables and corresponding entangled analog hardware
computations. Immediate harmonization reduces the size of
the search space and allows Arco to use simpler tableau tran-
sitions.

5. Experimental Results
We present experimental results for Arco on a set of bench-
marks of varying size and complexity, given a hardware
model with components commonly found in programmable
analog devices that target biological computations. The
benchmarks are a selection of published artifacts from well-
cited computational biology papers [1]. The benchmarks
were automatically converted into the dynamical system
specification language from the provided Octave files. We
use the following benchmarks (Table 1):

• Michaelis-Menten: The Michaelis-Menten system mod-
els a reaction of the form: E + S → ES → P [30]. The
corresponding dynamical system has 9 parameters, 2 in-
puts, 3 functions, and 2 differential equations.
• Genetic Toggle Switch for E. coli: The genetic toggle

switch is a bistable gene-regulatory network found in
E. coli. It consists of two repressible promoters [18].
The corresponding dynamical system has 3 parameters,
1 input, and 4 differential equations.
• Transcriptional Reprissilator: The LacI-tetR-Cl tran-

scriptional reprissilator system is an oscillating network
composed of genes that are not involved in maintaining a
biological clock [11]. The corresponding dynamical sys-
tem has 7 parameters, 3 functions, and 2 differential equa-
tions.
• Circadian Oscillator: The circadian oscillator system

is a minimal model for circadian oscillations based on
a mutually interacting activator and repressor [39]. The
corresponding dynamical system has 16 parameters, 16
functions, and 9 differential equations.
• Cell Apoptosis Pathway: The cell apoptosis pathway

models the mechanism by which unfolded protein stress
response controls the decision mechanism for recovery,
adaptation, and apoptosis [14]. The corresponding dy-
namical system has 87 parameters, 48 functions, and 27
differential equations.
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Component Quantity Description Hardware Relation
iin 25 current input digital to analog converter ZI = XD
vin 125 voltage input digital to analog converter ZV = XD
iout 10 current output analog to digital converter ZD = XI
vout 75 voltage output analog to digital converter ZD = XV
vgain 40 voltage gain summing amplifier OV = (XV · ZV · 0.04)/YV
iadd 30 current adder wire join OI = AI + BI + CI + DI
vadd 35 voltage adder summing amplifier and capacitor ∂O2V/∂t = 0.1(AV + BV − CV − DV · O2V)

O1V = 0.1(AV + BV − CV − DV)
vtoi 30 voltage to current converter operational amplifier OI = XV/KV
itov 30 current to voltage converter operational amplifier OI = KV · XI
ihill 8 hill function for activation/repression logic circuit SI = MV(SI/KI)nV/((SI/KI)nV + 1)

RI = MV/((SI/KI)nV + 1)
igenebind 8 gene binding logic circuit OI = MI/(1 + KI · TI)

switch 15 genetic switch logic circuit OI = MI/(SI/KI + 1)nV

mm 2 Michaelis-Menten dynamics logic circuit XV = X0V − XYV
YV = Y0V − XYV
∂XYV/∂t = KI · XV · YV − RI · XYV

Table 2. Utilized Analog Hardware Components and Relations [7, 8, 33, 37, 41].

Source Component Target Components
vgain outv vadd vtoi mm itov vgain
iadd iadd igenebind iout ihill switch genebind itov
vin vtoi itov ihill vadd vgain switch mm

vadd outv vtoi vgain vadd
vtoi iadd ihill switch iout
itov outv vadd vgain switch
iin itov ihill igenebind switch iadd mm

ihill iout itov iadd igenebind
igenebind iout itov ihill iadd

switch itov iadd iout itov
mm outv itov iadd vgain mm

Table 3. Analog Component Connections

5.1 Programmable Analog Device
The specified analog device utilizes mixed voltage and cur-
rent analog building blocks commonly used for biologi-
cal network computations [7, 8, 33, 37, 41]. Table 2 de-
scribes the input-output relations of the circuit components,
the physical analog circuits that implement these relations,
and the specified quantity of each kind of component. Table
3 presents the hardware connections that the device supports.

5.2 Quantitative Analysis of Generated Circuits
Table 4 presents, for each benchmark, statistics about the
synthesized hardware configuration and the components that
the solver uses. Overall, the configurations make good use of
the more complex, specialized components. The complexity
of the generated circuit generally increases with the com-
plexity of the dynamical system. All of the circuits would be
difficult to manually generate.

The number of utilized output components typically
matches the number of dynamical system output variables.
But because the input components import constants as well
as dynamical system input variables into the analog com-
putation, the number of utilized input components is less

predictable. The Arco algebraic unification can easily gen-
erate new constants, either by (1) evaluating constant subex-
pressions that arise as the unification maps the dynamical
system onto the analog components (we call such constants
derived constants), (2) performing unifications that split a
single dynamical system constant into multiple constants
via algebraic reasoning (we also call these constants derived
constants), or (3) materializing new constants as necessary
during expression unification to specialize general analog
components so that they correctly implement mapped rela-
tions from the dynamical system.

Derived constants often adapt dynamical system con-
stants to complex analog component interfaces. Material-
ized constants often configure general analog components
for more specialized use in the synthesized circuit by setting
some of their inputs to constant values. All of our bench-
marks have both derived and materialized constants. For the
larger benchmarks, there are many more derived and mate-
rialized constants than constants that appear directly in the
dynamical system. We attribute the presence of these derived
and materialized constants to (1) the ability of the Arco al-
gebraic unification algorithm to generate these constants as
necessary and (2) the fact that many efficient analog build-
ing blocks provide complex interfaces that require nontrivial
derived and materialized constants for their successful use.

5.3 Materialized and Derived Constants
We next present several examples of materialized (blue) and
derived (red) constants in the analog circuits that Arco syn-
thesizes. Black constants are fixed values that are built into
the dynamics of the hardware components. These examples
highlight how Arco uses algebraic unification to effectively
bridge the semantic gap between the dynamical system and
the optimized analog hardware components. All of the ex-
amples are beyond the reach of standard pattern-based unifi-
cation systems.
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Benchmark Connections Inputs Outputs vgain vadd mm vtoi itov iadd switch ihill igenebind Components
menten 35 15 4 2 4 0 0 3 0 0 0 0 9
gtoggle 33 20 5 2 2 0 0 0 0 1 2 0 7

repri 78 29 9 3 6 0 0 3 3 0 3 0 18
osc 146 60 25 16 8 2 1 10 1 2 0 0 40

apop 534 140 39 28 27 2 13 30 27 15 4 1 147

Table 4. Utilized Component Statistics

repri: 3.01029995664 · ES with vgain: For the repri bench-
mark, Arco wires the output of a vgain component into a
voltage adder vadd to implement 3.01029995664 · LacL as:

0.1 ·
1 · 0.04

0.00132877123795
· LacL

where 0.1 comes from the vadd relation and 0.04 comes
from the vgain relation (Table 2). The Arco solver mate-
rializes 1 and derives 0.00132877123795 to configure the
components to perform the correct multiplication.
apop: PERK−4 with switch: For the apop benchmark, Arco
wires the output of an iadd component into a switch com-
ponent to implement PERK−4 as:

1
[(PERK + 0 − 1 − 0)/1 + 1]4

where 0 and 1 are materialized constants and 4 is a derived
constant. Together, these constants specialize the iadd and
switch components to perform the proper exponentiation.
The iadd component implements the PERK + 0− 1− 0 sub-
term. Here Arco synthesizes a multicomponent implementa-
tion of a single exponentiation operation.
apop: 0.05 · ATF with switch: Arco wires the output of a
switch component into a current adder iadd to implement
0.05 · ATF as:

1
(1/−1.05263157895 + 1)−1 · ATF

To compute the term with these components, Arco decom-
poses the parameter 0.05 into the materialized constants 1
and −1 and the derived constant −1.05263157895.
osc: 0.1 ·MA with switch: For the osc benchmark, Arco
wires the output of a switch component into an output
component to implement 0.1 ·MA as:

1
(9/1 + 1)−1 ·MA

Here Arco decomposes the parameter 0.1 into the material-
ized constants 1 and −1 and the derived constant 9.
mmrxn: 0.21 · ES with vgain: For the mmrxn benchmark,
Arco wires the output of a vgain component into a vadd
component to implement 0.21 · ES as:

1 · 0.04 · 0.1
0.0190476190476

· ES

Here Arco materializes 1 and derives 0.0190476190476.

Benchmark Number of Equations Synthesis Time
menten 4 0m58.216s
gtoggle 5 1m11.002s

repri 9 3m34.984s
osc 25 13m13.876s

apop 75 53m41.902s

Table 5. Circuit Synthesis Times

osc: ∂MA/∂t = −MA with mm: Arco uses a Michaelis-
Menten (mm) component (Table 2) with materialized con-
stants KI = 0 and RI = 1. These constants eliminate the
term KI · XV · YV in the mm component. Arco leaves XV and
YV unassigned since the term disappears when KI = 0. The
resulting analog circuit implements ∂MA/∂t as:

∂MA/∂t = 0 ∗ XV ∗ YV − 1 ∗ MA

This specialized configuration enables Arco to use the mul-
tifunctional Michaelis-Menten component without relation
entanglement.

5.4 Circuit Synthesis Times
Table 5 presents the time required to synthesize configura-
tions for the five benchmarks. We performed a linear re-
gression on these times and found that the running time (in
minutes) = 0.753 × the number of relations in the dynam-
ical system + 3.62. The R squared value for the regression
is 0.996573, indicating that, with high confidence, the time
varies linearly with the number of equations.

Table 5 presents the running times for synthesizing con-
figurations for the five benchmarks. We performed a linear
regression on these runtimes and found that the running time
(in minutes) = 0.753 × the number of relations in the dynam-
ical system + 3.62. The R squared value for the regression
is 0.996573, indicating with high confidence the time varies
linearly with the number of equations.

6. Related Work
Much early work in analog computing focused on manually
building analog circuits from simple components with the
goal of performing numerical computations for simple dy-
namical systems [10, 27, 32, 38]. This work was based on
manual development of the mapping between the problem
and the analog circuit. The research presented in this paper,
in contrast, focuses on automatic synthesis of analog circuits
that use complex components to implement dynamical sys-
tems specified in our specification language.
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Analog computation has been experiencing a renaissance
in the hardware community — modern day programmable
analog devices provide complex, domain specific primi-
tives whose behavior is analogous to their physical counter-
parts [5, 7, 8, 31, 33, 34, 37, 41]. These systems accurately
model the dynamical systems they target and minimize dis-
cretization errors. The hardware is typically programmed
directly at a low level with little or no automation. The tech-
niques presented in this paper, in contrast, automatically
synthesize analog circuits from a dynamical system specifi-
cation.

Recent work in synthesis for analog computing has fo-
cused on transistor-level techniques to aid designers in de-
signing specialized analog logic circuits [4, 20, 26]. Our syn-
thesis techniques, in contrast, use the complex multifunc-
tional analog building blocks that these techniques provide
to synthesize analog implementations of specified dynamical
systems.

Researchers have developed techniques that use analog
neural network accelerators to improve the performance of
applications written in standard imperative programming
languages [16, 36]. These techniques approximately map
subcomputations onto trained analog neural network ac-
celerators. Arco, in contrast, maps complete computations
onto analog hardware without approximation — the result-
ing analog configurations are algebraically identical to the
specified dynamical system. The goal is not to accelerate an
approximable subcomputation expressed in a standard dig-
ital programming language — the goal is instead to obtain
an algebraically equivalent implementation of the specified
dynamical system. To this end, Arco works with a dynami-
cal system specification language (and not a standard digital
programming language). The target hardware platform con-
tains specialized components optimized for implementing
dynamical systems (and not analog neural networks). There
is no training step — Arco synthesizes an exact analog im-
plementation of the dynamical system without training. Any
inaccuracy in the solution comes from the inherent analog
noise, not from the translation of the computation onto the
analog hardware platform. And for our target class of bio-
logical dynamical systems, the analog noise is directly anal-
ogous to the noise present in the biological system.

The Arco synthesis algorithms use a tableau to organize
a search for a configuration of the target analog hardware
platform that is algebraically equivalent to the specified dy-
namical system. The broad concept of a tableau has been
widely used in theorem proving [2] and for the synthesis
of functional programs [24, 25]. In this context logical de-
duction rules transform a set of assertions and goals into a
proof, potentially with output entries that make it possible
to extract a program from the proof. Unlike these previous
approaches, Arco works with complex multifunctional ana-
log components, not standard programming language primi-
tives. To correctly utilize these components, Arco uses alge-

braic unification and must deal successfully with the cascad-
ing relation entanglement inherent in the use of such power-
ful but complex analog components.

Also unlike these previous approaches, the Arco syn-
thesis algorithms operate in the presence of resource con-
straints — they synthesize the dynamical system onto a hard-
ware platform with finite resources. The Arco synthesis al-
gorithms therefore must track the resources that have been
consumed in the synthesis (including complex partially con-
sumed components), with the synthesis failing if it consumes
too many resources.

Code generators use tree pattern matching to translate
code trees into sequences of machine instructions [3, 12, 17].
Arco, in contrast, works with dynamical systems that may
contain feedback loops and circular dependencies. The De-
nali superoptimizer [21] combines mathematical and ma-
chine rewrite rules to generate search spaces of instruc-
tion sequences that implement a given computation. It then
searches this space to find efficient instruction sequences.
Arco, in contrast, produces inherently parallel analog hard-
ware configurations with no concept of sequencing. As noted
above, the target components include a finite set of com-
plex, potentially partially utilized analog building blocks op-
timized for analog efficiency, not digital machine instruc-
tions. And the relevant reasoning involves continuous, non-
linear, potentially entangled transcendental functions, not
digital logic.

7. Conclusion
Programmable analog devices have emerged as a powerful
new computing substrate for scientific computations such as
neuromorphic and cytomorphic computations[5, 7, 8, 31, 33,
34, 37, 41]. Arco provides the sophisticated compiler sup-
port required to effectively exploit this class of new, power-
ful, but complex computational platforms.
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variable-type
γ(x) = U σ(x) < {time, unit}

σ, γ ` x : U

add-type
σ, γ ` E : U σ, γ ` E′ : U′ equ(U,U′)

σ, γ ` E + E′ : U

sub-type
σ, γ ` E1 : U σ, γ ` E2 : U′ equ(U,U′)

σ, γ ` E1 − E2 : U

mult-type
σ, γ ` E1 : U σ, γ ` E2 : u′

σ, γ ` E1 × E2 : U × U′

div-type
σ, γ ` E1 : U σ, γ ` E2 : U′

σ, γ ` E1/E2 : U/U′

pow-type-1
σ, γ ` E1 : U U , none σ, γ ` n : none

σ, γ ` En
1 : Un

pow-type-2
σ, γ ` E1 : none σ, γ ` E2 : none

σ, γ ` EE2
1 : none

exp-type
σ, γ ` E : none

σ, γ ` exp(E) : none

float-type
γ ` f : none

natural-type
γ ` n : none

unit-var
σ(x) = unit

σ ` x

unit-mult
σ ` U1 σ ` U2

σ ` U1 · U2

unit-div
σ ` U1 σ ` U2

σ ` U1/U2

unit-nounit
σ ` none

Figure 10. Type Checking Rules for DSSL Expressions E and Unit Expressions U.

wf-unit
x < dom(σ) σ[x 7→ unit], γ ` P

σ, γ ` type x; P

wf-input-var
x < dom(σ) σ ` U σ[x 7→ input], γ[x 7→ U] ` P

σ, γ ` input x: U; P

wf-output-var
x < dom(σ) σ ` U σ[x 7→ output], γ[x 7→ U] ` P

σ, γ ` output x: U; P

wf-param
x < dom(σ) σ ` U σ[x 7→ param], γ[x 7→ U] ` P

σ, γ ` param x: U = f ; P

wf-fxn
σ(x) = {output, local} σ, γ ` E : U
γ(x) = U′ equ(U′,U) σ, γ ` P

σ, γ ` rel x= E; P

wf-fxn
σ(x) = {output, local} σ(x′) = time σ, γ ` E : U

γ(x) = U′ γ(x′) = U′′ equ(U′/U′′,U) σ, γ ` P

σ, γ ` rel deriv(x,x′)= E init f ; P

Figure 11. Type Checking Rules for DSSL Programs P.

A. DSSL Type Checker
A type judgment σ, γ ` P states that the DSSL program P
type checks in variable environment σ and unit environment
γ.

• The variable environment σ: The variable environment
σ : Ident → Type = {input, output, local, param, unit,
time} tracks the binding of variables to types.
• The unit environment γ: The unit environment γ :

Ident → Unit tracks the binding of variables to unit ex-
pressions.

Expressions: Figure 10 presents the type checking rules for
expressions E. A type judgment σ, γ ` E : U states that,
with variable environment σ and unit environment γ, E type
checks to produce a value measured in units U.

The type checking rules ensure only like units are added
together and infer new unit expressions for products and
quotients. The Add-Type and Sub-Type rules ensure that
summands have like units and produce a value measured in
the same units. The Mult-Type and Div-Type rules construct
a unit expression that is the product or quotient of the unit
expressions of the operands of the product or quotient.

Arco supports non-integer exponents only for unitless
expressions. The Pow-Type1 rule ensures that if the base
expression is not unitless, then the exponent expression must
be a unitless integer constant n. The Pow-Type2 rule ensures
that if the base expression E1 is unitless, then the exponent
expression E2 must be a unitless integer.
Unit Expressions: Figure 10 also presents type checking
rules for unit expressions U. A type judgment γ ` U states
that the unit expression U type checks in unit environment
γ. The Unit-Var, Unit-Mult, Unit-Div, and Unit-None rules
check that all of the variables x in the unit expression U are
units.
Statements: Figure 11 presents the type checking rules for
statements. These rules check that all variable declarations
use defined units U, there are no variable redeclarations, that
relation definitions rel only define values for output or local
variables, and that the units of the defined variables x and the
relevant expressions E are consistent. The equ(U,U′) func-
tion tests the equivalence of two or more unit expressions U
and U′. It algebraically simplifies the unit expressions, inter-
preting none (no unit) as 1, and determines if the simplified
expressions are equivalent.
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conn-comp
x ∈ dom(φ)

σ, γ, φ ` x : 〈x, any〉

conn-port
σ, γ, φ ` C : 〈x, k′〉 x′ , any

φ(x′) = 〈 , , β〉 β(x) = k k = k′ ∨ k′ = any

σ, γ, φ ` C.x : 〈x, k〉

conn-range
σ, γ, φ, ` C : 〈x, k〉 x , any

φ(x) = 〈n, , 〉 0 ≤ n′ ≤ n n′ ≤ n′′ ≤ n

σ, γ, φ ` C[n′:n′′] : 〈x, k〉

conn-all
σ, γ, φ ` * : 〈any, any〉

Figure 12. Type Checking Rules for Port Collections C.

port-prop-type
x ∈ dom(β) γ(x′) = U σ(x′) = prop

σ, γ, α, β ` x′(x) : U

param-type
α(x) = U

σ, γ, α, β ` x : U

Figure 13. Type Checking Rules for Hardware Expressions E.

wf-unit
x < dom(σ) σ[x 7→ unit], γ, φ ` P

σ, γ, φ ` type x; P

wf-prop
x < dom(σ) σ(x′) = unit σ[x 7→ prop], γ[x 7→ x′], φ ` P

σ, γ, φ ` prop x: x′; P

wf-time
x < dom(σ) σ(x′) = unit σ[x 7→ time], γ[x 7→ x′], φ ` P

σ, γ, φ ` time x: x′; P

wf-comp
σ, γ, α, β ` Y σ, γ, φ[x 7→ 〈0, α, β〉] ` P

σ, γ, φ ` comp x Y end; P

wf-comp-param
x < dom(α) σ, γ ` U σ, γ, α[x 7→ U], β ` Y

σ, γ, α, β ` param x:U= f ; Y

wf-comp-input-port
x < dom(β) σ, γ, α, β[x 7→ input] ` Y

σ, γ, α, β ` input x; Y

wf-comp-output-port
x < dom(β) σ, γ, α, β[x 7→ output] ` Y

σ, γ, α, β ` output x; Y

wf-comp-rel
σ, γ, α, β ` x′(x) : U σ, γ, α, β ` E : U′

equ(U,U′) β(x) = output σ, γ, α, β ` Y

σ, γ, α, β ` rel x′(x)=E; Y

wf-comp-deriv
σ, γ, α, β ` x′(x) : U σ, γ, α, β ` x′′ : U′′ σ, γ, α, β ` E : U′

equ(U/U′′,U′) β(x) = output β(y) = input iσ, γ, α, β ` y′(y) : U′′′ σ, γ, α, β ` Y

σ, γ, α, β ` rel deriv(x’(x),x’’)=E init y’(y); Y

wf-schem
σ, γ, φ ` Z σ, γ, φ ` P

σ, γ, φ ` schematic Z end; P

wf-inst
φ(x) = 〈n′, α, β〉 n > 0
σ, γ, φ[x 7→ 〈n, α, β〉] ` Z

σ, γ, φ, ` inst x : n; Z

wf-conn
σ, γ, φ ` C : 〈 , k〉 k = output ∨ k = any σ, γφ ` C′ : 〈 , k′〉

k′ = input ∨ k′ = any σ, γ, φ ` Z

σ, γ, φ ` conn C->C′; Z

Figure 14. Type Checking Rules for Analog Hardware Specifications P.

B. Analog Hardware Type Checker
A type judgment σ, γ, φ ` P states that the hardware speci-
fication P type checks in variable environment σ, unit envi-
ronment γ, and component environment φ.

• variable environment σ: The variable environment σ :
Ident → Type maps variable identifiers to types, where
Type = {time, prop, unit, comp}.
• unit environment γ: The unit environment σ : Ident →

Unit maps variable identifiers to unit expressions.
• component environment φ: The component environ-

ment σ = {〈n, α, β〉 ∈ σ(x) | x ∈ Ident} maps the
component identifier to the component definition infor-
mation. The parameter environment α : Ident → Unit
maps parameter identifiers to units. The port environment
β : Ident → PType maps the port identifier to the port
types k ∈ PType, where PType = {input, output}. The in-

stance count of the component n ∈ N specifies the num-
ber of component instances.

Port Collection Type Checking Rules: Thewf-conn rule in
Figure 12 and the rules in Figure 12 check port collections
C. A conn C− > C′ statement specifies that all of the output
ports identified by C can be connected to any of the input
ports identified by C′. The hardware specification language
supports several kinds of port collections:

• x[l:u].x′: Port x′ of instances l to u of component x.
• x[l:u]: All ports of instances l to u of component x.
• x.x′: Port x′ of all instances of component x.
• x: All ports of all instances of component x.
• *: All ports of all instances of all components.

The rules check that for a statement conn C− > C′, C
identifies at least one output port and C′ identifies at least
one input port. The rules also check that C and C′ are well
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formed, identified component instances are within the maxi-
mum number of instances, and all ports and components are
defined.
Expression Type Checking Rules: Figure 13 presents the
port-prop-type and param-type type checking rules for ex-
pressions E. The remaining rules include all of the DSSL
expression type checking rules from Figure 10 except the
variable-type rule. The type judgments areσ, γ, α, β ` E : U
instead of σ, γ ` E : U. A type judgment σ, γ, α, β ` E : U
states that E type checks to produce a value measured in
units U.
Statement Type Checking Rules: Figure 14 presents the
type checking rules for programs P. Each rule implements
the type checks for a different kind of statement S .
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