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We present a new approach to the design and implementation of probabilistic programming languages (PPLs),
based on the idea of stochastically estimating the probability density ratios necessary for probabilistic inference.
By relaxing the usual PPL design constraint that these densities be computed exactly, we are able to eliminate
many common restrictions in current PPLs, to deliver a language that, for the �rst time, simultaneously
supports �rst-class constructs for marginalization and nested inference, unrestricted stochastic control �ow,
continuous and discrete sampling, and programmable inference with custom proposals. At the heart of our
approach is a new technique for compiling these expressive probabilistic programs into randomized algorithms
for unbiasedly estimating their densities and density reciprocals. We employ these stochastic probability
estimators within modi�ed Monte Carlo inference algorithms that are guaranteed to be sound despite their
reliance on inexact estimates of density ratios. We establish the correctness of our compiler using logical
relations over the semantics of _(% , a new core calculus for modeling and inference with stochastic probabilities.
We also implement our approach in an open-source extension to Gen, called GenSP, and evaluate it on six
challenging inference problems adapted from the modeling and inference literature. We �nd that: (1)GenSP can
automate fast density estimators for programs with very expensive exact densities; (2) convergence of inference
is mostly una�ected by the noise from these estimators; and (3) our sound-by-construction estimators are
competitive with hand-coded density estimators, incurring only a small constant-factor overhead.
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1 INTRODUCTION

Probabilistic programming systems have recently emerged as important tools for modeling and
inference. They provide practitioners with formal languages for constructing probability distri-
butions, and automated machinery for implementing sound and e�cient inference algorithms.
These capabilities have helped researchers invent and apply sophisticated modeling and inference
techniques, achieving state-of-the-art results in a range of �elds, including 3D scene understand-
ing [Gothoskar et al. 2021], time series prediction [Saad et al. 2019], data cleaning [Lew et al. 2021],
Bayesian phylogeny [Ronquist et al. 2021], and large-scale scienti�c simulation [Baydin et al. 2019].
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Generative 
Model Code

Inference Code

Typical 
Probabilistic 
Programming 

System

exact importance weights 

exact MH accept probabilities

exact SMC incremental weights

Generative 
Model Code

Inference Code

Our Approach

stochastic importance weights 

stochastic MH accept probabilities

stochastic SMC incremental weights

Most PPLs restrict the probabilistic models or inference processes that users can express, 
to ensure that exact densities and density ratios are available during inference.

We propose to work with stochastic estimates of the necessary densities and density 
ratios, enabling us to eliminate these restrictions.

Feature / Approach 1 2 3 ★

Marginalization ✗ ✓ ✗ ✓

Nested inference ✗ ✓ ✗ ✓

Continuous latents ✓ ✗ ✓ ✓

Custom proposals ✓ - ✗ ✓

Automated density ✓ ✓ ✓ ✓

Recursion / loops ✓ ✗ ✓ ✓

1) Trace-based & programmable inference 
(Gen, Pyro, ProbTorch, etc.)
2) Probabilistic circuits for exact inference 
(SPPL, Dice, etc.)
3) Approximate inference with default 
proposals (Anglican, Monad-Bayes, Turing)
★ Stochastic probabilities (our approach)

Common Restrictions in PPLs

Fig. 1. Many PPLs place restrictions on the models or inference algorithms users can encode, so exact densities

can be e�iciently automated. We eliminate these restrictions by using only stochastic estimates.

But the automation that PPLs provide currently comes with a trade-o�. To ensure that the
probability density ratios needed during inference can be automatically and exacty computed,
essentially all PPLs place restrictions on the models or inference processes that users can express.

Common restrictions in existing probabilistic programming languages. Di�erent languages
omit di�erent features, to ensure the tractability of exact densities in inference:

• Marginalization. In Gen [Cusumano-Towner et al. 2019], Pyro [Bingham et al. 2019], and
ProbTorch [Stites et al. 2021], users’ models and proposals must be joint probability distributions
over many primitive random choices; there is no construct for marginalizing variables, because
in general, marginal densities would require in�nite sums or integrals to compute exactly.
• Normalization (i.e., nested inference). With few exceptions, PPLs do not support models and
proposals that are themselves de�ned using the posteriors of other probabilistic programs [Rain-
forth 2018; Zhang and Amin 2022]. Evaluating their densities would require computing normal-
izing constants for the inner models, which are generally not available exactly.
• In�nite-support latents. Languages with exact inference, such as Dice [Cheng et al. 2021;
Holtzen et al. 2020] and SPPL [Saad et al. 2021], support marginalization and normalization, but
forbid or highly restrict the use of continuous and other in�nite-support probability distributions.
These restrictions ensure that programs can be compiled to probabilistic circuits with densities
that can be computed exactly, as �nite sums.1

• Custom proposals. In Monad-Bayes [Ścibior et al. 2018], Anglican [Wood et al. 2014], and
Turing [Ge et al. 2018], the proposal distributions used during inference are restricted to match
the prior. When combined with another restriction—that observed variables must be modeled
using primitive distributions as likelihoods—this ensures that the density ratios between models
and proposals can be computed exactly, even if their individual densities cannot.
• Automation for densities. Some languages, such as Stan [Carpenter et al. 2017], require users
to directly encode their models as e�ective procedures for evaluating exact log densities, over a
�xed number of continuous random variables.2

1Some languages with exact inference (e.g., _PSI [Gehr et al. 2020] and Hakaru [Shan and Ramsey 2017]) rely on sound
but incomplete computer algebra to simplify some integrals and in�nite sums; their modeling languages are not explicitly
restricted, but implicit restrictions arise because on many programs, these symbolic techniques fail to produce densities that
can be evaluated. These languages also lack general recursion.
2Stan has syntactic sugar that more closely resembles the syntax of other PPLs, and desugaring could be viewed as density
automation. But this modeling sub-language has many of the restrictions already mentioned, e.g. no marginalization.
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This work.We present a new approach to probabilistic programming, based on stochastic probabil-
ity estimates instead of exact densities. This approach lets us support marginal and normalize as
�rst-class constructs, in the context of a “universal” probabilistic language with discrete and con-
tinuous sampling, higher-order functions, and programmable inference. That is, by switching exact
densities for stochastic estimates, we can eliminate the restrictions discussed above, simultaneously
supporting marginalization, normalization, in�nite-support latents, and custom proposals.
Our approach works by compiling these expressive probabilistic programs into randomized

algorithms for estimating their probability density functions and density reciprocals. We formalize
our compiler as a program transformation on _(% , a new core calculus for probabilistic programming
with stochastic probabilities. We establish the correctness of our approach in two key theorems,
showing that our compiler produces unbiased estimators of densities and density reciprocals
(Thm. 5.2), and that these unbiased estimators can be soundly employed within customMonte Carlo
inference algorithms (Thm. C.1).We implemented our approach in an open-source tool calledGenSP,
which extends Gen [Cusumano-Towner et al. 2019] with support for our new constructs. We use
GenSP to evaluate our approach on six challenging inference problems, measuring the runtime
overhead of our automation (compared to hand-coded versions of the same algorithms), and the
impact on convergence of using stochastic probability estimates. In sum, this paper contributes:

(1) The stochastic probability interface (Sec. 3), which gives a precise speci�cation for the
stochastic density estimation that we propose to automate. The interface is permissive enough
to admit a wide range of fast density estimation techniques, but strict enough to ensure that
estimates can be used soundly within Monte Carlo algorithms (Thm. C.1).3

(2) _(% , an expressive core calculus for probabilisticmodeling and programmable inference

with discrete and continuous sampling, conditioning, branching, and higher-order functions,
plus �rst-class constructs formarginalization and approximate normalization (Sec. 4).

(3) Novel program transformations (Sec. 5) for compiling _(% programs into implementations
of the SPI, and theoretical validation of their correctness via semantic logical relations.

(4) GenSP, a practical open-source implementation of _(% , which modi�es and extends the Gen
probabilistic programming system [Cusumano-Towner 2020] to support _(% ’s new constructs
for more expressive modeling and inference (https://github.com/probcomp/GenSP.jl).

(5) An evaluation of the performance of our approach (Section 6). In six case studies, we
establish that: (1) stochastic probability density estimators automated by GenSP are competitive
with hand-coded implementations of the same estimators, and (2) when used within higher-level
inference algorithms, the impact of estimator variance on convergence is negligible.

2 EXAMPLE

To introduce our approach, we tour a simpli�ed version of Sec. 6’s inverse graphics case study.

Prior over scene descriptions. Fig. 2 shows _(% code for a generative model of simple visual
scenes. It �rst de�nes a prior distribution over scene descriptions, by sampling a string-valued
object identity o uniformly from the list ["mug", "bowl", "banana"], and then a 2D position p

from a Gaussian distribution centered at the origin. Each random choice is made using the sample

command, which takes as input: (1) a distribution to sample, of type � f (where f is the type of
the sampled value), and (2) a string argument, naming the sample.
Probabilistic programs like prior, which interleave deterministic computation with named

sample commands, have type % g : they represent traced probabilistic computations returning val-
ues of type g . The fact that these computations are traced means that they encode joint probability

3Full paper with appendices available at alexlew.net/papers/stochastic-probabilities.pdf.
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Prior over Scenes

1 -- Prior over symbolic scene

2 -- description (object + position)

3 prior : P (Str × R2)
4 prior = P.do

5 let objs = ["mug", "bowl", "banana"]

6 o ← sample (uniform objs) "obj"

7 p ← sample (normal2d (0,0) 1) "pos"

8 return (o, p)

{"obj": "mug", "pos" : (1.1, -.4)}

{"obj": "banana", "pos" : (-1.3, .6)}

Marginalized Likelihood over Depth Images

1 -- Distribution over points in an

2 -- observed point cloud, given latent cloud

3 noisy_point_from : [R3] → D R3

4 noisy_point_from = _ cloud.

5 marginal

6 (P.do pt ← sample (uniform cloud) "p"

7 return (normal3d pt 0.1))

8 (alg cloud)

9

10 -- Model the observed point cloud as iid

11 -- samples from the noisy point distribution

12 noisy_render : (Str × R2) → N → D [R3]

13 noisy_render = _ scene. _ n.

14 iid n (noisy_point_from

15 (render_point_cloud scene))

16

17 -- Algorithm for marginalization

18 alg cloud _ = smc (importance (sample (uniform cloud) "p") 10)

Unnormalized Posterior

1 -- Unnormalized posterior over scenes,

2 -- given an observed point cloud

3 model : [R3] → M (Str × R2)
4 model = _ observed_cloud. M.do

5 let n = length observed_cloud

6 scene ← prior

7 observe (noisy_render scene n) observed_cloud

8 return scene

estimate_density 
  (model observed_cloud) 
  {"obj": "bowl", 
   "pos": (-0.6, 0)}
=> -2210

Normalized Posterior

1 -- Metropolis-Hastings proposals

2 objs = ["mug", "bowl", "banana"]

3 switch_obj t = sample (uniform objs) "obj"

4 drift_pos t = sample (normal2d t["pos"] 0.1) "pos"

5 kernel = sequence (mh switch_obj) (mh drift_pos)

6 -- Inference: MCMC to infer scene, given point cloud

7 infer_scene : [R3] → P (Str × R3)
8 infer_scene = _ observed_cloud.

9 normalize (model observed_cloud)

10 (mcmc prior kernel 50)

simulate (infer_scene bowl_image)

0 sec 50 sec 2 min

5 min4 min3 min

0 iters 10 iters 20 iters

30 iters 40 iters 50 iters

Fig. 2. Overview example: inferring the identity and pose of an object, given a point cloud
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distributions over traces that record every named sample they make. These traces are �nite dictionar-
ies, mapping the names of samples to the values they take on in a particular execution. For example,
{"obj": "mug", "pos": (2.1, 1.1)} is a possible trace of the program prior. The joint density
function that prior encodes over the variables in its trace can easily be evaluated exactly, as a prod-
uct of the densities of the primitives used to make each choice: ?prior (obj, pos) =

1
3
· N (pos; 0, � ).

Likelihood over rendered depth images. Given a scene description, what distribution over
depth images should we expect to see? Following Gothoskar et al. [2021], we model observed depth
images as arising in two steps: �rst, a clean rendered image is produced using the deterministic
render_point_cloud method. This returns a list of rendered points in 3D space, based on the
scene description. Then, to generate a noisy point cloud from a ground-truth, latent rendered
cloud, the likelihood distribution samples the observed points iid (independently and identically
distributed) from a helper program, noisy_point_from. The goal of noisy_point_from is to
encode the marginal distribution that arises when a random point is chosen from the latent cloud,
and then perturbed with Gaussian noise. The marginal construct allows users to specify such
distributions: the user provides a program of type % (� f) (a probabilistic program that may make
many random choices before returning a distribution), andmarginal produces a new “primitive
distribution” � f that marginalizes out all the randomness in the probabilistic program.
Computing this likelihood exactly would require an expensive sum: ?noisy_point_from (y | - ) =

1
|- |

∑

x∈- N(y; x, 0.1� ). But a key idea in this paper is that exact densities are unnecessary. Distribu-
tions instead satisfy a less demanding interface (Sec. 3), requiring only unbiased density estimates.
These estimates are themselves generated using inference: any inference algorithm that can be
constructed in our DSL can be used to estimate the sums and integrals that arise whenmarginalizing.
As such, as the second argument tomarginal, users may provide any choice of inference algorithm
to estimate the necessary densities. We could, for example, use enumeration to perform exact
marginalization, at the cost of likelihood evaluation that scales quadratically in the size of the latent
and observed point clouds (?noisy_render (. | >, p) =

∏

y∈. ?noisy_point_from (y | render(>, p))). To
reduce cost, here we de�ne a cheaper algorithm (alg), enabling linear-time likelihood estimation.
If the variance of the estimator is too high, the convergence of our inference will su�er. In this
example, a simple importance sampling estimator su�ced, but in the full 3DP3 model [Gothoskar
et al. 2021] (Sec. 6), we found we needed a more sophisticated estimator, based on a custom proposal.

Conditioning on data. To combine our prior with our likelihood, we use the observe construct,
which takes in a likelihood distribution and an observed value. The type % - that we saw earlier is
reserved for generative processes, which encode normalized probability distributions; programs
that use observe are of type" - , where" is a monad of unnormalized distributions. The program
model in Fig. 2 implements the unnormalized posterior for our model, generating a scene from the
prior and then conditioning on an observed point cloud. Its joint density over traces is

?model(obs) (obj, pos) = ?prior (obj, pos) · ?noisy_render (obs | obj, pos).

This density does not integrate to 1, and (like other programs of type" g) it does not represent a
probabilistic computation that can be directly run. However, we can still ask for the (estimated)
density of a trace. In Fig. 2, note how this allows us to distinguish between good explanations of
our observations (which have higher density) and poor explanations (which have lower density).

Inference. To generate plausible explanations for our data, we need to perform posterior inference,
by normalizing our unnormalized model. The infer_scene function in Fig. 2 implements a simple
inference algorithm that usesmcmc to run a 50-step Metropolis-Hastings chain, initialized from
the prior. Note that the proposal kernels for MH are themselves speci�ed as programs. The result
of normalize is a program of type % (Str × R2), which can be simulated to generate samples from
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the approximate posterior. Likemarginal, normalize is a �rst-class construct, and as such, the
approximate posterior’s density can also be estimated unbiasedly and automatically. Importantly,
the density we estimate is not that of the exact posterior, but rather of the MCMC approximation:

?infer_scene(obs) (obj, pos) =
∑

>0:49∈objs
50

ˆ

R2
50
?prior (>0, ?0 )

(

49
∏

C=1

: (>C , ?C | >C−1, ?C−1 )

)

: (obj, pos | >49, ?49 )3?0:49,

where : composes two MH moves for ?model(obs), with proposals ?switch_obs and ?drift_pos.

3 THE STOCHASTIC PROBABILITY INTERFACE

In this section, we give precise speci�cations for two core probability estimation operations, which
form the stochastic probability interface. In our design, primitive distributions must be manually
equipped with implementations of the SPI; Sec. 5 then shows how to automate the SPI for compound
programs. The SPI is designed to be as general as possible, admitting many fast density estimation
strategies, while still ensuring soundness of inference algorithms that use estimated densities, e.g.
to compute sequential Monte Carlo weights or Metropolis-Hastings acceptance probabilities. The
SPI is based on positive unbiased density estimation:

Definition 3.1 (positive unbiased density estimator). Let ` and a be measures on - . A

positive unbiased density estimator for ` w.r.t. a is a probability kernel b : - → R≥0 such that:

• the map _G.EF∼b (G,· )[F] is a density (i.e., Radon-Nikodym derivative) of ` w.r.t. a ; and
• for `-almost-all G ∈ - , PF∼b (G,· ) [F > 0] = 1.

Although unbiasedness is a very nice property, unbiased density estimators alone are not su�cient
to soundly implement many inference algorithms. For example, consider importance sampling with
a proposal & (3G) for a target % (3G). The algorithm requires that we sample G ∼ & and then
compute the importance weightF = ? (G)/@(G), where ? and @ are densities of % and& respectively.
If we can estimateF unbiasedly, it is still a valid importance weight [Chopin et al. 2020, Chapter 8].
However, separately estimating ? and @ unbiasedly does not let us estimate their ratio: the ratio of
two unbiased estimators is not in general an unbiased estimator for the ratio. This issue also arises
in other methods that divide by proposal densities, e.g. Metropolis-Hastings and sequential Monte
Carlo. To address this problem, we introduce a second type of density computation:

Definition 3.2 (unbiased density sampler). Let ` be a probability measure on a measurable

space - , and a a reference measure. Further suppose the probability kernel b : - → R≥0 is a positive
unbiased density estimator for ` with respect to a . Then the unbiased density sampler corresponding to

b is the measure j (3G, 3F) on - × R≥0 with density _(G,F).F with respect to a (3G)b (G, 3F).

We call j a sampler because it is always a probability measure, and sampling a pair (G,F) from
j is equivalent to sampling G ∼ ` and then producing a particular estimate of `’s density that can
safely be used in the denominators of density ratios, as the following proposition establishes:

Proposition 3.1. Suppose ` is a probability measure on a measurable space - , and a a reference
measure. Further suppose b is a positive unbiased density estimator of ` w.r.t. a and that j is its
corresponding unbiased density sampler. Then j is a probability measure whose �rst marginal, c1∗j ,
is equal to `. Further, for any measurable 5 : - → R≥0, E(G,F )∼j

[

1
F
· 5 (G)

]

=
´

- 5 (G)a (3G).

This implies that dividing by the weight F returned from j successfully divides out `’s density,
i.e., that Ej

[

1
F
| G

]

=
1

3`
3a (G )

. Indeed, we will use unbiased density samplers to correct the biases of

proposal distributions in importance sampling, Metropolis-Hastings, and sequential Monte Carlo, a
task typically accomplished by dividing out proposal densities. We now give a couple examples.
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Example 3.1 (unbiased density sampler for a coin). Let ` = bern(0.5) model a fair coin
with outcomes {t, f}. Then b (G, 3F) = 1

2
· X0.25 +

1
2
· X0.75 is a positive unbiased density estimator. Its

corresponding unbiased density sampler is j (3G, 3F) = 1
8
·X (t,0.25) +

3
8
·X (t,0.75) +

1
8
·X (f,0.25) +

3
8
·X (f,0.75) .

Example 3.2 (unbiased densities from importance sampling). Let - and / be measurable
spaces, and suppose ` is the �rst marginal of a joint distribution `joint over - ×/ . We can then estimate
the density of ` (w.r.t. a reference measure a on - ) using importance sampling. Let & (G, 3I) be a
proposal distribution for importance sampling, with `joint ≪ ` (3G) ·& (G, 3I). Then the importance

sampling estimator b (G, 3F) =
´

/ & (G, 3I) · X 3`joint
3 (a⊗& )

(G,I )
(3F) is an unbiased density estimator for `

w.r.t. a . If additionally ` (3G) ·& (G, 3I) ≪ `joint, then b is a positive unbiased density estimator, and

its corresponding unbiased density sampler is j (3G, 3F) =
´

/ `joint (3G, 3I) · X 3`joint
3 (a⊗& )

(G,I )
(3F).

Interface. Our stochastic probability interface comprises two methods, for a measure `:

• estimate_density: Given G , returnF ∼ b (G, 3F) for some unbiased density estimator b for `.
• simulate: Return (G,F) ∼ j , the unbiased density sampler corresponding to b .

The speci�cation for simulate only makes sense when ` is a probability measure. In this case we
say that the full stochastic probability interface is implemented by b and j . In the case where ` is
not a probability measure, we implement only the restricted stochastic probability interface, which
includes just the estimate_density method. Appx. C shows how these operations can be used
soundly within popular Monte Carlo algorithm templates.

4 SYNTAX AND SEMANTICS

We formalize our approach on _(% , a new core calculus for modeling and inference (Fig. 3).
Ground types: As ground types, _(% features a unit type 1, Booleans B, non-negative extended

reals R≥0 (used to represent importance weights and densities), natural numbers N, real vectors R= ,
strings Str, and a type Trace of traces, which are �nite dictionaries mapping string-valued names to
(heterogeneous) values of ground type. The term {} represents the empty trace, and the syntax {C1 ↦→
C2} builds a singleton trace mapping the name C1 to the value C2. In Fig. 3, 2 ranges over constants
of all types, including ground-type constants like true and 3.2, as well as primitive functions. We
assume primitive functions for manipulating traces, including concat : Trace → Trace → Trace
(which returns {} if names overlap in the two input traces) and lookupf : Str→ Trace→ f (which
returns a default value if the name does not correspond to a value of type f in the trace). As sugar
for concatenation and lookups, we write C1 ++ C2 and C1 [C2] respectively.
Probabilistic types: For each ground type f , there is a type � f of distributions over f . For

example, the expression normal C1 C2 has type � R and represents a Gaussian distribution with a
user-speci�ed mean and standard deviation. For every type g (including at higher-order), there are
types % g and" g of traced probabilistic programs and traced measure programs, respectively. %
and" are monads: the types % g and" g represent a certain kind of e�ectful computation returning
values of type g . One intuition, which we will make more precise in our semantics, is that these
monadic programs interleave arbitrary deterministic computation with named random samples
from distributions � f over ground types. As such, each term of type % g or" g encodes (1) a joint
distribution over traces, whichmap the names of sampling statements to ground-type values sampled
in a particular execution, as well as (2) a deterministic map from traces to values of type g , encoding
the program’s output as a function of the random choices it makes. These traced programs can be
constructed using the terms: return C (which makes no samples and deterministically computes
the expression C ); sample C3 C (which samples a single random variable with a user-provided
name C : Str from a distribution C3 : � f); and do{G ← C ;<} (which �rst runs C to stochastically
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Deterministic Core

Ground types f ::= 1 | B | R≥0 | R
= | N | Str | Trace

Types g ::=f | g1 → g2 | g1 × g2

Terms C ::= ( ) | 2 | G | _G.C | C1 C2 | (C1, C2 ) | c1 C | c2 C | if C then C1 else C2 | { } | {C1 ↦→ C2} | C1 ++ C2 | C1 [C2 ]

{ } : Trace
C1 : Str C2 : f

{C1 ↦→ C2} : Trace
C1 : Trace C2 : Trace

C1 ++ C2 : Trace
C1 : Trace C2 : Str

C1 [C2 ] : f

let G = C1 in C2 is sugar for (_G.C2 ) C1

Probabilistic Programming with Named Samples

Types g? ::=� f (distributions) | % g (probabilistic programs) | " g (unnormalized programs)

Distribution terms C3 ::=normal C1 C2 | bernoulli C | uniform C1 C2 | . . .

Probabilistic program terms C? ::= return C | sample C3 C | observe C3 C | %.do{<} | ".do{<}

do notation< ::= C? | G ← C? ;<

C : g

return C : % g

C3 : � f C : Str
sample C3 C : % f

C3 : � f C : f

observe C3 C : " 1

C? : % g

C? : " g

C? : % g

% .do{C? } : % g

C? : " g

".do{C? } : " g

C? : % g1 G : g1 ⊢ %.do {<} : % g2
%.do{G ← C? ;<} : % g2

C? : " g1 G : g1 ⊢ ".do {<} : " g2
".do{G ← C? ;<} : " g2

let G = C ;< is sugar for G ← return C ;<

C? ;< is sugar for _← C? ;<

Monte Carlo Programmable Inference

Types g8 ::=Alg | SMC | MCMC

Exact algorithms C8 ::= enumeration

SMC algorithms C8 ::= importance C? C | step C8 C1 C2 C3 | resample C8 C1 C2 | rejuvenate C8 C8 | smc C8

MCMC algorithms C8 ::=mh C | sequence C8 C8 | mcmc C? C8 C

Applying inference C? ::=marginal C? C8 | normalize C? C8

C? : " g C8 : Alg
normalize C? C8 : % g

C1 : % (� f ) C2 : f → Alg
marginal C1 C2 : � f

C : SMC
smc C : Alg

C? : % g C8 : MCMC C : N

mcmc C? C8 C : Alg

C? : % g C : N

importance C? C : SMC
C8 : SMC C1 : R≥0 C2 : N

resample C8 C1 C2 : SMC
C1 : SMC C2 : MCMC
rejuvenate C1 C2 : SMC

C8 : SMC C1 : Trace→ % g C2 : Trace→ % g C3 : " g

step C8 C1 C2 C3 : SMC
C : Trace→ % g

mh C : MCMC

C1 : MCMC C2 : MCMC
sequence C1 C2 : MCMC enumeration : Alg

Fig. 3. Syntax of the _(% calculus.

generate a value G , and then runs the remainder of the computation do{<}). Terms of type " g

may also include observe C3 C statements that condition the program on the observation that C
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Semantics of Ground Types as Measure Spaces (-, Σ- , a- )

JBK= ({true, false}, P({true, false}), #) JR≥0K= (R≥0 ∪ {∞}, B(R≥0 ),Λ) JR=K = (R=, B(R= ),Λ= )

JNK= (N, P(N), #) JStrK = (Str, P(Str), #) JTraceK= (T, ΣT, aT )

For all ground types f , JfK< = JfK3 = (c1 (JfK), "c2 (JfK) ) , the canonical QBS for JfK’s measurable space.

Semantics of Probabilistic and Higher-Order Types as Quasi-Borel Spaces

J·K< : measure semantics J·K3 : density estimator semantics (J·K3 = J3 { ·}KC )
J� fK< = Prob≪af JfK< J� fK3 = (JfK< ⇒ Prob R≥0 ) × Prob (JfK< × R≥0 )

J% gK< = Prob≪aT T × (T⇒ JgK< ) J% gK3 = (T⇒ Prob (R≥0 × T) ) × Prob (T × R≥0 ) × (T⇒ JgK3 )

J" gK< = Meas≪aT T × (T⇒ JgK< ) J" gK3 = (T⇒ Prob (R≥0 × T) ) × (T⇒ JgK3 )

Jg1 → g2K<= Jg1K< × Jg1K3 ⇒ Jg2K< Jg1 → g2K3= Jg1K3 ⇒ Jg2K3
JAlgK< = (T⇒ ProbR≥0 ) ⇒ Prob≪aT T JAlgK3 = (T⇒ ProbR≥0 ) ⇒ J� TraceK3
JSMCK< = Prob (List (T × R≥0 × R≥0 ) ) JSMCK3 = JSMCK< × (T⇒ JSMCK< × N) × (T⇒ R≥0 )

JMCMCK< = (T⇒ ProbR≥0 ) ⇒
(T × R≥0 ) ⇒ Prob (T × R≥0 )

JMCMCK3 = (T⇒ ProbR≥0 ) ⇒ ( (T × R≥0 ) ⇒ Prob (T × R≥0 ) )2

Semantics of Terms

The measure semantics J·K< interprets Γ ⊢ C : g as a map JΓK< × JΓK3 → JgK< .
The density estimator semantics J·K3 yields a map JΓK3 → JgK3 . It arises as the composition of Section 5’s program

transformation 3 { ·} with the semantics of the translation’s target language (J·K3 = J3 { ·}KC ).

Deterministic Core (Selected Examples)

J2K< (W )= 2 JGK< (W )= W< (G ) JC1 C2K< (W )= JC1K< (W ) (JC2K< (W ), JC2K3 (W3 ) )

Primitive Distributions (Selected Examples)

Jnormal C1 C2K< (W,3G )= N(G ; JC1K< (W ), JC2K< (W ) ) · Λ(3G )
Jbernoulli CK< (W,3G ) = JCK< (W ) · Xtrue (3G ) + (1 − JCK< (W ) ) · Xfalse (3G )

Traced Programs

Jreturn CK< (W ) = (_3D.X{}(3D ), _D.JCK< (W ) )
Jsample C3 CK< (W ) = (_3D.

´

JfK<
JC3 K< (W,3G )X{JCK< (W ) ↦→G }(3D ), _D.D [JCK< (W ) ] )

Jobserve C3 CK< (W ) = (_3D.
3JC3 K< (W )

3af
(JCK< (W ) ) · X{}(3D ), _D.( ) )

Jdo{G ← C? ;<}K< (W ) = (_3D.
˜

T×T (c1 ◦ JC?K< ) (W,3D1 )

(c1 ◦ Jdo{<}K< )

( [

W< [G ↦→ (c2 ◦ JC?K< ) (W ) (D1 ) ]
W3 [G ↦→ (c3 ◦ JC?K3 ) (W3 ) (D1 ) ]

]

, 3D2

)

[disj(D1,D2 ) ] · XD1++D2
(3D ),

_D.(c2 ◦ Jdo{<}K< )

( [

W< [G ↦→ (c2 ◦ JC?K< ) (W ) (D ) ]
W3 [G ↦→ (c3 ◦ JC?K3 ) (W3 ) (D ) ]

] )

(D ) )

Inference Programming (Selected Examples)

Jmarginal C? CK< (W,3G ) =
´

T
(c1 ◦ JC?K< ) (W,3D ) (c2 ◦ JC?K< ) (W,D,3G )

Jnormalize C? C8K< (W ) = (JC8K< (W ) (_D._3F.
˜

R≥0×T
c1 (JC?K3 (W3 ) ) (D,3E,3D

′ )XE · [D′={}] (3F ) ), c2 (JC?K< (W ) ) )

Jmcmc C? C8 CK< (W ) (d,3D )=
˜

T×R≥0
(c1 (JC?K< (W ) ) ) (3D1 )d (D1, 3F1 )c1∗ (JC8K< (W ) (d )

JCK< (W ) (D1, F1 ) ) (3D )

Jsmc CK< (W ) (d,3D ) =
´

JCK< (W,3u, 3w, 3v)
´

R
|u|
≥0

(
∏|u|

9=1 d (D 9 , 3? 9 ) )
∑|u|

:=1

F: ·?: /E:
∑

; F; ·?; /E;
XD: (3D )

Jimportance C? CK< (W ) = _ (3u, 3w, 3v) .
∏JCK< (W )

9=1 (c2 ◦ JC?K3 ) (W,3D 9 , 3E9 ) X1 (3F9 )

Fig. 4. Semantics of the _(% calculus.
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was generated from the distribution C3 ; as such, they do not describe straightforward generative
processes (probability measures), but rather unnormalized measures, to which Bayesian inference
must be applied to yield posterior probability distributions. (Any % g can trivially be regarded as an
" g , but to go in the other direction, the user must apply the normalize construct to the measure,
which renormalizes the measure to a probability distribution by performing approximate Bayesian
inference.) We call programs of type % g or" g traced because they encode distributions over traces
mapping the names of the random variables they sample to values. For example, the program
% .do{G ← sample (normal 0 1) "x"; sample (normal G 1) "y"}, of type % R, generates traces
of the form {"x" ↦→ G, "y" ↦→ ~}, where G and ~ are real numbers.

Semantics of ground types. Our semantics assigns to each ground type f a measure space
JfK = (-f , Σ-f

, af ) (Fig. 4, top). The �rst two components (-f , Σ-f
) de�ne a measurable space of

values of type f ; the third component af is a reference measure on this space, with respect to which
all density functions will be computed. Our choices are largely standard: for discrete types 1, B, Str,
and N, we choose the discrete f-algebra, and the counting reference measure #. For R= , we choose
the Borel f-algebra and the Lebesgue reference measure Λ. The type R≥0 denotes the non-negative
reals extended with a point at∞; a set is measurable if its intersection with R is Borel-measurable.
The reference measure Λ assigns measure Λ(� ∩R) to any measurable set �. We must be a bit more
careful when de�ning the measure space (T, ΣT, aTrace) of traces, which may store other traces as
values—we defer the de�nition of this measure space to Appendix A.

Semantics of probabilistic and higher-order types. To reason about higher-order probabilistic
programs, we use not measurable spaces but quasi-Borel spaces [Heunen et al. 2017], a drop-in
replacement for measurable spaces suitable for carrying out measure theory, but with well-behaved
function spaces. We refer the reader to Ścibior et al. [2018] for an overview of the use of quasi-Borel
spaces to reason about probabilistic programming, or to Appendix B for a brief introduction.
The semantic function J·K< in Fig. 3 gives the measure semantics of _(% . It interprets ground

types f as quasi-Borel spaces (-f , "Σf
) and distributions � f as quasi-Borel probability measures

on JfK< (absolutely continuous w.r.t. the reference measure af ). To interpret traced programs
% g and " g , we de�ne monads % and " on the category of quasi-Borel spaces. For any quasi-
Borel space - , % - is the product space Prob≪aTraceT × (T ⇒ - ), and " - is the product space
Meas≪aTraceT× (T⇒ - ). That is, we interpret traced probabilistic computations as pairs, combining
a measure on traces (absolutely continuous with respect to aTrace) with a “value function” from
traces to the quasi-Borel space - . To lift a pure computation G : - into the monad % or " , we
construct the Dirac measure X{} on empty traces, and pair it with the value function __.G . The
multiplication of the monad is somewhat more involved, and is de�ned in Fig. 4’s semantics of do.

Because distributions of type � f denote measures absolutely continuous with respect to af , and
traced programs denote measures absolutely continuous with respect to aTrace, we can talk about the
densities of our probabilistic terms. In Section 5, we will develop a program transformation 3{·}
that translates programs into new programs that implement unbiased density estimators for the
measures that the original programs denote. Ideally, we would avoid discussing densities and their
estimators until Section 5, focusing in this section only on the speci�cation of the _(% ’s semantics.
But _(% makes it possible to observe the density estimator that 3{·} produces, inside the language:
we can write a _(% program, e.g., that runs importance sampling using automatically estimated
target or proposal densities. In order to de�ne the semantics of such a program, we need to know
precisely what density estimator the importance sampler uses.

In order to address this di�culty, we de�ne an auxiliary semantic function J·K3 , with the property
that JgK3 = J3{g}K< . We call J·K3 the density estimator semantics: it gives the mathematical object
denoted by the translation of a program into a density estimator for the program. With J·K3 in
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hand, we can give a compositional measure semantics of terms: for a term C of type g in context Γ,
JΓ ⊢ C : gK< is a function JΓK< × JΓK3 → JgK< , mapping pairs of environments—the �rst giving
values of free variables, and the second giving density estimators for them—to values in JgK< . This
re�ects the fact that if the environment contains a variable G : � f , e.g., the term C ’s semantics
might depend on the particular density estimator compiled for G . This dependence on J·K3 also
appears in the measure semantics of function types: we have Jg1 → g2K< = Jg1K< × Jg1K3 ⇒ Jg2K< .

The bottom part of Fig. 4 gives the measure semantics of terms, where we write W = (W<, W3 ) for
a pair of environments. To help readers parse the de�nitions, which are largely standard for traced
probabilistic programming (see, e.g., Lew et al. [2020]), we consider an illustrative example, the
semantics of % .do{G ← C? ;<}, where C? : % g1 and G : g ⊢ % .do{<} : % g2. Given W , the semantics
outputs a pair, where the �rst component is a measure over traces and the second is a function from
traces to Jg2K< . For the measure, we �rst draw D1 from (c1 ◦ JC?K<) (W), the measure on traces that
C? denotes. We then draw D2 from the trace measure denoted by do{<}, but in an extended W . The
extended environment is obtained by adding a binding for G to each of W< and W3 . These bindings
should have type Jg1K< and Jg1K3 , respectively; the value for G in each case comes from the return
value function that C? denotes (c2 ◦ JC?K< , or c3 ◦ JC?K3 ), applied to D1. Finally, we concatenate the
traces D1 and D2 to return the output trace D. The second output of the interpretation, the value
function, is simpler: given an input trace D, it applies JC?K<’s value function to D, then applies
Jdo{<}K<’s value function (in an extended environment, as above) to D.4

Syntax and semantics of inference. Finally, Figs. 3 and 4 give syntax and semantics for _(% ’s
inference constructs, which build inference algorithms of type Alg. These can be used in two ways:

• Approximate normalization: Given an unnormalized program ? : " g , and an algorithm 0 : Alg,
normalize ? 0 has type % g . It is the program that runs the inference algorithm to generate a
trace from the normalized posterior of ? , and then returns the value of ? on that trace.
• Marginalization: Consider a program ? : % (� f). Themarginal distribution of ? is the distribution
over JfK< that arises by �rst generating a trace D of ? , computing the value 3 of ? on D, and
then generating and returning G ∼ 3 . The marginal construct accepts ? as input and outputs
a value of type � f , representing its marginal distribution. It also accepts a value-dependent
choice of inference algorithm 0 : f → Alg. This does not a�ect the term’s measure semantics,
but will a�ect the density estimator that the resulting � f uses. The goal of 0 is to, given a value
G ∈ JfK< , infer a trace D of ? that makes G likely. In Section 5, we will see how having such an
inference algorithm helps us estimate the marginal density of G ; furthermore, the better that 0 is
at inferring D given G , the lower the variance of the resulting density estimator.

In our semantics, JAlgK< is the space of functions that take in a target density estimator, and output
a distribution over traces; intuitively, the output distribution should approximate the normalized
version of the target measure. An Alg can be created usingmcmc or smc, or enumeration. The
mcmc construct accepts an initial distribution, a description of an MH algorithm (constructed
using sequence andmh), and a number of steps, and returns an Alg that initializes a trace from the
initial proposal, runs the MH algorithm for a given number of steps, and returns the resulting trace.
The smc construct accepts a description of an SMC algorithm (constructed using importance to
initialize a particle collection, step to take SMC steps, rejuvenate to perform MCMC rejuvenation,
and resample to do a resampling step), and returns an Alg that runs the SMC algorithm, samples
a trace from the resulting weighted particle collection, and returns that trace.

4It may seem incorrect to pass the full trace D (which concatenates traces from each subterm) to the value functions for
each subterm. But this is OK, thanks to a feature of the value functions in our semantics: when D ∼ (c1 ◦ JC?K< ) (W ) , with
probability 1, (c2 ◦ JC?K< ) (W ) (D ++D

′ ) = (c2 ◦ JC?K< ) (W ) (D ) for all D′ with names disjoint from those in D. That is, if D
is a valid trace of C? , then we can concatenate extra values to D without changing the value of C? ’s value function on D.
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Types: JfKC = JfK< Jg1 × g2KC = Jg1KC × Jg2KC Jg1 → g2KC = Jg1KC ⇒ Jg2KC J) gK = Prob JgKC

Deterministic terms (selected examples): J2KC (W ) = 2 JGKC (W ) = W (G ) JC1 C2KC (W ) = JC1KC (W ) (JC2KC (W ) )

Jreturn CKC (W,3E) = XJCKC (W ) (3E)

Jdo{G ← C ;<}K< (W,3E) =
´

JCKC (W,3I )Jdo{<}KC (W [G ↦→ I ], 3E)

Jnormal C1 C2KC (W,3E) = N(E; JC1KC (W ), JC2KC (W ) ) · Λ(3E)
Jbernoulli CKC (W,3E) = JCKC (W ) · Xtrue (3E) + (1 − JCKC (W ) ) · Xfalse (3E)

Fig. 5. Semantics of the target language for the 3{·} translation.

5 PROGRAM TRANSFORMATIONS FOR DENSITY ESTIMATION

In Section 4, we saw that _(% terms of type � f , % g , and " g can all be understood as denoting
measures over particular spaces. Indeed, the semantics interprets these types using restricted spaces
of well-behaved measures: measures that are absolutely continuous with respect to the reference
measures af (for � f) or aT (for % g and" g ). This implies that all GenSP programs of these types
denote measures that have densities with respect to their reference measures.

Computing these densities, however, may be intractable.5 In this section, we present a program
transformation 3{·} (Fig. 6) that translates a _(% program into a new program that estimates the
original program’s density (or more speci�cally, that implements the stochastic probability interface
described in Section 3, for the measure denoted by the original program).

Target language of the transformation. Our compiler translates terms from _(% ’s rich source
language into a standard higher-order functional language, with random sampling, butwithout _(% ’s
constructs for inference programming, observe, marginalization, or normalization. As such, the
syntax of the target language inherits the deterministic core from Fig. 3, but features a much simpler
probabilistic syntax and semantics (Fig. 5). The types ) g represent target-language probabilistic
computations returning g ; semantically, ) is the quasi-Borel subprobability monad.

The 3{·} transformation on types. The top of Fig. 6 gives the action of 3{·} on _(% types. A
source-language term Γ ⊢ C : g is always translated into a target-language term 3{Γ} ⊢ 3{C} : 3{g},
where3{Γ} is the target-language context obtained by applying3{·} to the types of all free variables
in the source-language context Γ. In other words, 3{·} translates terms of type g into terms of type
3{g}, assuming all the free variables also have translated types.6

Intuitively, 3{g} is the type of an stochastic probability interface implementation for a term of
type g . For ground types f , 3{·} is the identity: there is no special interface to implement for a
non-probabilistic term. For products and functions, the 3{·} translation is just pushed inward:
3{g1 ×g2} = 3{g1} ×3{g2} and 3{g1 → g2} = 3{g1} → 3{g2}. An interface implementation of a pair
of programs is a pair of interface implementations; an interface implementation of a function is a
function taking an implementation for its argument and returning an implementation for its result.
The �rst interesting type is � f , for which we have 3{� f} = (f → ) R≥0) ×) (f × R≥0). The

�rst component of the translation is a positive unbiased density estimator for the distribution
(Def. 3.1), and the second is a corresponding unbiased density sampler (Def. 3.2). The translations
of % g and " g are slightly more involved. Our goal is to derive unbiased density estimators and
samplers for the trace distributions they denote, but in order to do so compositionally, the program

5The intractability arises as a result of the marginal and normalize constructs. The density of marginal ? 0 is an
integral over all traces of ? , and the density of normalize ? 0 is an integral over the auxiliary variables sampled by the
inference algorithm 0. Without these constructs, exact densities are generally tractable; however, they are densities over
high-dimensional trace spaces that many inference algorithms struggle to explore.
6This presentation is inspired by Huot et al. [2020]’s study of AD as a source-to-source “macro,” much like our 3 { ·}.
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Translating Types: if Γ ⊢ C : g , then 3 {Γ} ⊢ 3 {C } : 3 {g }

3 {f } = f 3 {� f }= (f → ) R≥0 ) × ) (f × R≥0 )

3 {g1 → g2}= 3 {g1} → 3 {g2} 3 {% g } = (Trace→ ) (R≥0 × Trace) ) × ) (Trace × R≥0 ) × (Trace→ 3 {g })

3 {g1 × g2} = 3 {g1} × 3 {g2} 3 {" g }= (Trace→ ) (R≥0 × Trace) ) × (Trace→ 3 {g })

3 {Alg} = (Trace→ ) R≥0 ) → 3 {� Trace}

) f is a type representing target-language probabilistic computations whose densities need not be estimated.

Translating Terms

Core Calculus

3 {2 }= 23 3 {G }= G 3 {C1 C2}= 3 {C1} 3 {C2} 3 {_G : g .C }= _G : 3 {g } .3 {C } 3 { (C1, C2 ) }= (3 {C1}, 3 {C2})

3 {if C then C1 else C2} = if C then 3 {C1} else 3 {C2} | 3 {c8 C } = c83 {C } | 3 {{C1 ↦→ C2}} = {3 {C1} ↦→ 3 {C2}}

Primitive Distributions (Selected Examples)

3 {normal C1 C2}= (_G.return(N(G ; C1, C2 ) ), do{G ← normal C1 C2; return(G,N(G ; C1, C2 ) ) } )

3 {bernoulli C } = (_1.return(if 1 then C else 1 − C ),

do{1 ← bernoulli C ; return(1, if 1 then C else 1 − C ) } )

Traced Programs

3 {return C } = (_D.return(1,D ), return({ }, 1), _D.3 {C })

3 {sample C3 C } = (_D.do{F ← (c1 3 {C3 }) (D [C ] ) ; return(hasf (D, C ) · F,D \ C ) },

do{ (G, F ) ← c2 (3 {C3 }) ; return({C ↦→ G }, F ) }, _D.D [C ] )

3 {observe C3 C } = (_D.do{F ← (c1 3 {C3 }) C ; return(F,D ) }, _D.( ) )

3 {do{G ← C ;<}}= (_D.do{ (F,D′ ) ← (c1 3 {C }) (D ) ; let G = (c3 3 {C }) (D ) ;

(E,D′′ ) ← (c1 3 {do{<}}) (D
′ ) ; return (F · E,D′′ ) },

do{ (D1, F1 ) ← c23 {C }; let G = (c3 3 {C }) (D1 ) ;

(D2, F2 ) ← c23 {do{<}}; if disj(D1,D2 ) then return (D1 ++D2, F1 · F2 ) else fail},

_D.let G = (c3 3 {C }) (D ) in (c3 3 {do{<}}) (D ) )

3 {do{C }} = 3 {C }

Inference Programming (Selected Examples)

3 {marginal C? C } = (_G.let ? = _D.do{ (F, _) ← (c1 3 {".do{` ← C? ; observe ` G }}) (D ) ; return F} in

do{ (D, F ) ← c2 ( (3 {C } G ) ? ) ; E ← ? (D ) ; return (E ÷ F ) },

do{ (D, F1 ) ← c23 {C? }; let ` = (c33 {C? }) (D ) ; (G, F2 ) ← c2 (` ) ;

let ? = _D.do{ (F, _) ← (c1 3 {".do{` ← C? ; observe ` G }}) (D ) ; return F};

E ← (c1 ( (3 {C } G ) ? ) (D ) ; return(G, F1 · F2 ÷ E) } )

3 {normalize C? C8 }= let 0 = 3 {C8 } (_D.do{ (F,D
′ ) ← (c1 3 {C? }) D; return (isempty(D′ ) · F ) } ) in

(_D.do{ (_,D′ ) ← (c1 3 {C? }) D;F ← c1 (0) (D \D
′ ) ; return (F,D′ ) }, c2 (0), c2 3 {C? })

3 {mcmc C? C8 C= } = _?.(_D′ .do{F′ ← ? (D′ ) ; (D0, F0 ) ← iterate) (c2 (3 {C8 } (? ) ) ) C= (D
′, F′ ) ;

(@,D@ ) ← (c1 3 {C? }) (D0 ) ; return(isempty(D@ ) · @ · F
′ ÷ F0 ) },

do{ (D0, @) ← (c2 3 {C? }) ;F0 ← ? (D0 ) ;

(D′, F′ ) ← iterate) (c1 (3 {C8 } (? ) ) ) C= (D0, F0 ) ; return(@ · F
′ ÷ F0 ) } )

3 {smc C8 } = _?.(_D.do{E ← ? (D ) ; (x, 9 ) ← (c2 3 {C8 }) (D, E) ;

w− 9 ← map) (_ (D8 , F8 , E8 ) .do{E
′
8 ← ? (D8 ) ; return(F8 · E

′
8 ÷ E8 ) } ) x− 9 ;

return(mean(w− 9 ++ [c2 x9 ] ) ÷ E},

do{x← c1 3 {C8 };

w← map) (_ (D8 , F8 , E8 ) .do{E
′
8 ← ? (D8 ) ; return(F8 · E

′
8 ÷ E8 , E

′
8 ) } ) x;

let F̂ = sum(map c1 w) ; 8 ← categorical(map (_ (F, E) .F ÷ F̂ ) ) ;

return (c1 (nth x 8 ), F̂ ÷ (length(w) · c2 (nth w 8 ) ) ) } )

Fig. 6. Stochastic Probability Interface compiler as a program transformation on _(% .
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transformation must also track additional information. For % g , we have

3{% g} = (Trace→ ) (R≥0 × Trace)) ×) (Trace × R≥0) × (Trace→ 3{g}).

The �rst component accepts as input a trace, and probabilistically outputs two values, a weight and
another trace. If D is in the support of the distribution in question, the weight should be an unbiased
density estimate of D. If D = E ++ E ′ for E in the support of the distribution, the second return value
should be E ′, the trace of “left-over” values that the original program did not attempt to sample.
The second component of the translation is the unbiased density sampler for the trace distribution,
the one corresponding to the unbiased density estimator encoded by the �rst component. The third
component is the (translation under 3{·} of the) return-value function for the program. The case for
" g is similar, but because terms of type" g denote unnormalized (and not probability) measures,
we implement only unbiased density estimators for them, omitting the second component.

Translating primitives. We assume every primitive 2 : g in _(% comes equipped with a valid
implementation 23 : 3{g} of the SPI. For deterministic primitives, 23 = 2 , but for (e.g.) primitive
distributions, like 2 = categorical= : R= → � N, we must equip a non-trivial 23 : R= → ((N →

)R≥0) ×) (N × R≥0)), implementing some unbiased density estimator and sampler for the Cate-
gorical distribution. Our translation replaces 2 with its built-in SPI implementation 23 .

Translating sample and observe. For C3 : � f and C : Str, the program sample C3 C is of type % f .
It encodes a distribution over singleton traces of the form {C ↦→ G}, where G is drawn from the
distribution encoded by C3 ; the density of a trace {C ↦→ G} under the program is just the density
of G under C3 . Because of this, the translation 3{sample C3 C}, which is a tuple of three method
implementations (see discussion of 3{% g} above), relies heavily on the translation of C3 , which
implements the stochastic probability interface for C3 . The �rst method extracts the value at name C
from the input trace D, uses c13{C3 } to estimate its density under C3 , and returns the density and the
left over trace D′ = D \ C ( the trace D with name C deleted). The second method uses C3 ’s unbiased
density sampler, c23{C3 }, to generate a pair (G,F), then wraps G in a trace D = {C ↦→ G} before
returning the pair (D,F). Finally, the third method implements the return-value function for the
program, which given a trace {C ↦→ G} returns G .
The program observe C3 C (for C3 : � f and C : f) is of type " 1, and represents a scaled Dirac

measure on the empty trace {}, with total mass equal to the density of C under C3 . The translation
3{observe C3 C} is a tuple of two method implementations (see discussion of 3{" g} above). The
�rst method uses c13{C3 } to estimate the density of C under C3 , and returns the estimate and the
input trace D, unchanged (since observe statements do not use any names in the trace). The second
method is the return value function that maps any trace to () (observe statements are of unit type).

Translating do. If C? : % g1 and G : g1 ⊢ do{<} : % g2, then do{G ← C? ;<} has type % g2 and
represents a distribution over traces of the form D1 ++ D2, where D1 is a trace of the �rst part C? of
the computation, and D2 is a trace of do{<}. The density of this distribution is the product of the
densities of D1 and D2, and since the unbiased density estimates produced by 3{C? } and 3{do{<}}
are independent (conditioned on D1 and D2), their product unbiasedly estimates the density of the
overall program. The translation of do{G ← C? ;<} implements the required methods according to
this logic, calling the corresponding methods for 3{C? } and 3{do{<}} and multiplying the results.7

Translating inference algorithms. Terms of type Alg represent inference algorithms that can be
applied to generate approximate posterior samples, given unnormalized target measures. When we
translate a term of type Alg, our goal is to produce an implementation of the stochastic probability

7Fig. 6 shows how to translate do statements in the case where % is the monad in question; for" , the translation is the
same, except that only the �rst and last components of the output tuple are generated.
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interface for the algorithm itself, i.e., for the probability measure that the algorithm induces over
approximate posterior traces. For enumeration (where applicable), this is the exact posterior; for
mcmc C? C = it is the marginal distribution of the =Cℎ state in the MCMC chain with transition kernel
C , initialized with a sample from C? ; and for smc C it is the marginal distribution of a particle chosen
from the �nal weighted particle collection generated by the SMC algorithm described by C . Formally,
our translation produces a term of type 3{Alg} = (Trace → ) R≥0) → 3{� Trace}, where the
input is the density estimator for a target measure, and the output is the stochastic probability
interface implementation for the marginal distribution on output traces from the algorithm in
question, applied to the given target.

These marginal distributions do have densities, but they can be very di�cult to compute, arising
as integrals over all of the randomnumbers generated during the course of the algorithm. Thankfully,
techniques from the literature [Andrieu et al. 2010; Cusumano-Towner and Mansinghka 2017; Lew
et al. 2022] can be adapted to derive estimators of these marginal densities. For example, to estimate
the marginal density of an MCMC chain, we use the following result:

Proposition 5.1. Let  (G, 3~) be a probability kernel that leaves a target measure c invariant,
and let !(~,3G) be its time reversal (so that c (3~)!(~,3G) = c (3G) (G, 3~)). Suppose & (3G) is
a probability measure with & ≪ c and c ≪ & ≪ a for a reference measure a . Then % (3G) =
´

-= & (3G0)
∏=
8=1  (G8−1, 3G8 )XG= (3G) is absolutely continuous with respect to a , and the following

yields an unbiased estimate of its density at a point G : let G= = G , generate G8−1 ∼ !(G8 , 3G8−1) for

8 = 1, . . . , =, and then compute
3&
3a
(G0)

3c
3a
(G=)/

3c
3a
(G0).

When translating mcmc C? C =, the term C? plays the role of the initial distribution & , and its
translation 3{C? } lets us estimate its density unbiasedly. The term C , of type"�"� (representing
MCMC kernels) plays the role of  , and its translation lets us run the time-reversal kernel !.8 The
translation of smc is based on a similar result, allowing the density of a point G to be estimated
by combining an estimate of c (G) (the target density) with the average weight computed by the
conditional version of the SMC algorithm with retained particle G [Andrieu et al. 2010].9

Translating marginalization and normalization. For C? : % (� f), the term marginal C? 0

represents the marginal distribution that arises by generating a trace of C? , computing the return
value 3 : � f of the program on that trace, and sampling a value G ∼ 3 . The density of this
distribution is the integral of the density of 3 , over all traces of C? . Our translation estimates this
integral with importance sampling, with the inference algorithm 0 as the proposal distribution.

More precisely, suppose we wish to estimate the density of a point G ∈ JfK< . Our algorithm �rst
de�nes ? : Trace→ ) R≥0, a density estimator for a target measure (over traces) whose normalizing
constant is precisely the density we wish to estimate. To de�ne ? , our algorithm translates the
term".do{3 ← C? ; observe 3 G} and uses the resulting density estimator on the input trace D. We
then instantiate the (translated) user’s inference algorithm 3{0} on the value G and the density
estimator ? , to obtain an approximate posterior for the target. We use this approximate posterior
as a proposal, calling its unbiased density sampler to generate a pair (D,F) of a proposed trace
D and an estimateF of its density, then running ? (D) to obtain the numerator of the importance
weight. Because this density estimator is based on importance sampling, we are able to automate
the corresponding unbiased density sampler according to the logic in Example 3.2.

The term normalize C? 0 denotes the approximate posterior of C? under the inference algorithm
0. But the density of this measure is already estimated by the translation of 0, applied to the target

8This is because 3 {"�"� } is a product type giving implementations of both the kernel  and its time reversal !. The
time reversal of an MH kernel is itself; the time reversal of sequence C1 C2 is the reversed sequence.
9Just as 3 {"�"� } compositionally constructs time reversals, 3 {("� } constructs conditional SMC algorithms.
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Logical Relations 'g ⊆ JgK< × JgK3

(G, ~) ∈ 'f ⇐⇒ G = ~

( (G1, G2 ), (~1, ~2 ) ) ∈ 'g1×g2 ⇐⇒ (G1, ~1 ) ∈ 'g1 ∧ (G2, ~2 ) ∈ 'g2
(5 , 6) ∈ 'g1→g2 ⇐⇒ ∀(G, ~) ∈ 'g1 .(5 (G, ~), 6 (~) ) ∈ 'g2

(`, (b, j ) ) ∈ '� f ⇐⇒ ��� f (b, j ) =⇒ (%�� f (`, (b, j ) )

( (`, 5 ), (b, j, 6) ) ∈ '% g ⇐⇒ ∀D ∈ T.(5 (D ), 6 (D ) ) ∈ 'g ∧�( (` ) ∧ (��% (b, j ) =⇒ (%�% (`, (b, j ) ) )

( (`, 5 ), (b, 6) ) ∈ '" g ⇐⇒ ∀D ∈ T.(5 (D ), 6 (D ) ) ∈ 'g ∧�( (` ) ∧ (��" (b ) =⇒ (%�" (`, b ) )

(U, V ) ∈ 'Alg ⇐⇒ ∀b ∈ T⇒ Prob R≥0 .∀`.*�Trace (`, b ) =⇒ (%�Alg (U (b ), V (b ), ` )

(A, (A′,A†, b ) ) ∈ '("� ⇐⇒ A = A′ ∧��("� (A,A
† ) =⇒ �("� (A,A†, b )

(:, : ′ ) ∈ '"�"� ⇐⇒ : = c1 ◦ :
′ ∧ ∀(`, b ) .(*�Trace (`, b ) ∧��"�"� (:

′ (b ), b ) ) =⇒ )' (: ′ (b ), b )

Auxiliary De�nitions

The notation “ ¤∀`G ∈ - ” means “for `-almost-all G ∈ - ”, where if - = JfK< and ` is omitted, it is understood to be af .

|` | is the total mass of `; T` = {D ∈ T | ∃D′ .
3`

3aTrace
(D ++D′ ) > 0}; and T` (D ) is the largest subtrace of D in T` .

��� f (b, j ) ⇐⇒ ¤∀G ∈ JfK< . |b (G ) | = |j | = 1

��" (b ) ⇐⇒ ¤∀G ∈ T. |b (G ) | = 1

��% (b, j ) ⇐⇒ ¤∀G ∈ T. |b (G ) | = |j | = 1

��("� (A,A
† ) ⇐⇒ ¤∀A (G8 , F8 , E8 )8∈� ∈ List (T × R≥0 × R≥0 ) .∀8 ∈ � .F8 ≠ 0 =⇒ |A† ( (G8 , E8 ) ) | = |A | = 1

��"�"� ( (:, ; ), b ) ⇐⇒ ¤∀c2⊙(aTrace⊗b ) (G, F ) ∈ T × R≥0 . |: (G, F ) | = |; (G, F ) | = 1

�( (` ) ⇐⇒ ¤∀`⊗` (C1, C2 ) ∈ T × T.C1 ≠ C2 =⇒ ∃B ∈ JStrK< .B ∈ C1 ∧ B ∈ C2 ∧ C1 [B ] ≠ C2 [B ]

*�f (`, b ) ⇐⇒ ¤∀G ∈ JfK< .EF∼b (G ) [F ] =
3`
3af
(G ) ∧ ¤∀`G ∈ JfK< .PF∼b (G ) [F > 0] = 1

(%�� f (`, (b, j ) ) ⇐⇒ *�f (`, b ) ∧ j = (_ (G, F ) .F ) ⊙ (af ⊗ b )

(%�% (`, (b, j ) ) ⇐⇒ (%�� Trace (`, (c1∗b |T` , j ) ) ∧
¤∀`D ∈ T.∀D

′ ∈ T.38B 9 (D,D′ ) =⇒ c2∗b (D ++D
′ ) = XD′

∧∀D ∉ T` , c1∗b (D ) = c1∗b (T` (D ) )

(%�" (`, b ) ⇐⇒ *�Trace (`, c1∗b |T` ) ∧
¤∀`D ∈ T.∀D

′ ∈ T.38B 9 (D,D′ ) =⇒ c2∗b (D ++D
′ ) = XD′

∧∀D ∉ T` , c1∗b (D ) = c1∗b (T` (D ) )

(%�Alg (U, V, ` ) ⇐⇒ ���Trace (V ) =⇒ (` ≪ U ∧ U ≪ ` ∧ (%�� Trace (U, V ) )

�("� (A,A†, b ) ⇐⇒ ∃`.*�Trace (`, b ) ∧ ¤∀`⊗b (D, E) ∈ T × R≥0 .P(s, 9 )∼A† (D,E) [c1,2 (s9 ) = (D, E) ] = 1

∧ ¤∀As ∈ List (T × R≥0 × R≥0 ) .∀ 9 ≤ |s | .
3 ( (c2⊙(aTrace⊗b ) )A

† )

3 (A⊗Φ)
(s, 9 ) = 1

|s|

∑|s|
8=1 c3 (s8 )

)' ( (:, ; ), b ) ⇐⇒ (c2 ⊙ (aTrace ⊗ b ) ) = :∗ (c2 ⊙ (aTrace ⊗ b ) )

∧(c2 ⊙ (aTrace ⊗ b ) ) ⊗ : = swap∗ ( (c2 ⊙ (aTrace ⊗ b ) ) ⊗ ; )

Fig. 7. Our logical relations (top) can be read as specifications for the 3{·} translation: a term C of type g is

correctly translated if (JCK< (W<, W3 ), J3{C}KC (W3 )) ∈ 'g when (W<, W3 ) ∈ 'Γ . In these specs, we employ several

auxiliary definitions, for absolute continuity (AC), discrete structure (DS), unbiasedness (UB), satisfaction of

the stochastic probability interface (SPI), conditional sequential Monte Carlo (CSMC), and time-reversal (TR).

density estimator given by translating C? . Our translation of normalize C? 0, then, applies 3{0}
to 3{C? } (and performs some projections and bookkeeping to make the types work out, since
normalize C? 0 has type % g , whereas 3{0} yields an estimator for a 3{� Trace}).

Correctness. Our translation is correct—in the sense that it implements correct unbiased density
estimators for the measures denoted by user programs—under an absolute continuity condition
on the user’s program. Informally, the condition states that every time the user chooses a custom
proposal distribution for an inference algorithm, the custom proposal has the right support. We
note that users of Gen, Pyro, and similar languages must also hand-verify this condition to ensure
that their inference algorithms are correct; it is not a new requirement of our translation. In fact,
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researchers have developed a number of techniques for statically checking the requirement in
restricted languages [Lee et al. 2020; Lew et al. 2020; Li et al. 2023; Wang et al. 2021].

To encode this requirement, we can augment our translation with absolute continuity assertions
assert≪ ? @ : ) 1, which probabilistically test absolute continuity of ? with respect to @. The
assertions are not just theoretical: they can be implemented, and serve as probabilistic tests that
the absolute continuity condition holds, passing with probability 1 if and only if it does (Appx. D).
In our semantics, the assertion denotes a subprobability measure that assigns to the unit value ()
mass equal to the probability of the test’s passing. We can then de�ne what it means for a term C

to satisfy the absolute continuity condition, based on the fact that if the assertion ever fails, the
failure will “shave o� probability mass” from 3{C}, and as a result, the translation will denote a
subprobability kernel or measure, rather than a probability kernel or measure.

Definition 5.1. We say a closed term C satis�es the absolute continuity condition if it meets the
following criterion depending on its type:

• For C : � f , c1J3{C}KC must be a probability kernel, and c2J3{C}KC must be a probability measure.
• For C : % g or ⊢ C : " g , c1J3{C}KC must be a probability kernel.
• For C : % g , c2J3{C}KC must additionally be a probability measure.

Using this de�nition, we can state the following theorem:

Theorem 5.2. The translation 3{·} is sound, in the following sense:

(1) If ⊢ C : � f is a closed term satisfying the absolute continuity condition, then J3{C}KC is an
implementation of the full stochastic probability interface for JCK< (cf. Sec. 3).

(2) If ⊢ C : % g or ⊢ C : " g , and C satis�es the absolute continuity condition, then

J_D.do{(F,D′) ← (c13{C}) D; if isempty D′ then returnF else return 0}KC

is an unbiased density estimator for c1JCK< .
(3) If ⊢ C : % g satis�es the absolute continuity condition, then c2J3{C}KC is the corresponding

unbiased density sampler for the density estimator in (2).

Our proof (Appx. E) uses logical relations: in Fig. 7, we de�ne relations 'g ⊆ JgK<×JgK3 that encode
correctness speci�cations for 3{·} at types g . We prove by induction that each term constructor in
our language preserves correctness of the translation: on pairs of environments W where each entry
G8 : g8 is such that (W< (G8 ), W3 (G8 )) ∈ 'g8 , we have (JΓ ⊢ C : gK< (W), JΓ ⊢ C : gK3 (W3 )) ∈ 'g . The �nal
result follows by instantiating correctness preservation for closed terms of type � f , % g , and" g .

6 EVALUATION

We evaluate the performance of our approach using GenSP, a version of the Gen.jl probabilistic
programming library for Julia [Cusumano-Towner 2020], extended to support our novel constructs.
Benchmarks. Our evaluation is based on a selection of inference problems from the literature; for
each, we implement a model and inference algorithm in GenSP.

• 3DP3: We implement Gothoskar et al. [2021]’s model of multi-object 3D scenes, based on a
prior over scene graphs [Johnson et al. 2018, 2015], whose nodes are 3D objects from the YCB
database [Calli et al. 2015], and whose edges encode contact relationships and relative poses. The
inference task is to infer the scene graph from a point cloud captured by a depth camera. We use
the same custom MCMC proposals as in Gothoskar et al. [2021], but we use a GenSP density
estimator for the likelihood, which is implemented as the marginal of a process that repeatedly
generates noisy points from a latent cloud. As a result, the algorithm becomes a pseudomarginal
MCMC algorithm [Andrieu and Roberts 2009; Beaumont 2003; Doucet et al. 2015].
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Table 1. Microbenchmarks for GenSP density estimators. Runtime of each density implementation for seven

distributions from our case studies. For each distribution, runtime is reported for several typical density

queries, with inputs of varying size. The mark ✗ indicates that no exact density evaluator is available.

benchmark runtime speedup vs. overhead vs.
Exact1 Handcoded2 GenSP.jl3 exact handcoded

3DP3 [Gothoskar et al. 2021]
5 objects, 2.1k points, 1.7k observed 984 ± 9 ms 57 ± 7 ms 40 ± 6 ms 17x 1.4x
2D cloud, 18.2k points, 34.9k observed 47 ± 2 s 0.87 ± 0.05 s 1.04 ± 0.02 s 45x 1.2x

Context-Correct [Mays et al. 1991]
6 letters, edit distance 2 ✗ 14 ± 3 µs 47 ± 204 µs ∞ 3.6x
6 letters, edit distance 5 ✗ 90 ± 477 µs 220 ± 484 µs ∞ 2.4x
10 letters, edit distance 2 ✗ 19 ± 6 µs 65 ± 500 µs ∞ 3.4x

Context-Correct (trunc.) [Mays et al. 1991]
6 letters, edit distance 2, max typos 2 1.06 ± 0.003 s 13 ± 1 µs 45 ± 153 µs 23,555x 3.4x
6 letters, edit distance 5, max typos 2 1.10 ± 0.01 s 52 ± 379 µs 130 ± 803 µs 2,068x 2.5x
10 letters, edit distance 2, max typos 2 3.89 ± 0.13 s 19 ± 6 µs 59 ± 212 µs 204,736x 3.1x
4 letters, edit distance 3, max typos 3 145 ± 1 s 9 ± 102 µs 40 ± 335 µs 3,625,000x 4.4x

RAVI-DPMM [Lew et al. 2022]
10 datapoints, 7 merges (good clustering) 2.51 ± 0.01 s 2.7 ± 1.6 ms 4.9 ± 2.3 ms 512x 1.8x
40 datapoints, 37 merges (good clustering) > 10 min 168 ± 4 ms 243 ± 6 ms >2,500x 1.4x
40 datapoints, 39 merges (bad clustering) > 10 min 235 ± 7 ms 297 ± 7 ms >2,020x 1.3x

RSA [Goodman and Frank 2016]
depth 1 13 ± 4 ms 131 ± 422 µs 171 ± 480 µs 76x 1.3x
depth 2 11 ± 0.1 s 1.3 ± 1.4 ms 1.7 ± 1.5 ms 6,470x 1.3x

RANSAC-Regress [Fischler and Bolles 1981]
10 points, subset of 3 0.94 ± 1.3 ms 6 ± 24 µs 29 ± 182 µs 32x 4.8x
10 points, subset of 5 1.7 ± 1.3 ms 9 ± 52 µs 28 ± 137 µs 60x 3.1x
100 points, subset of 3 805 ± 233 ms 8 ± 43 µs 28 ± 153 µs 28,750x 3.5x
100 points, subset of 5 > 10 min 7 ± 29 µs 31 ± 207 µs >19,000,000x 4.4x

Goal-Infer [Cusumano-Towner et al. 2017]
300 RRT iters, 3500 re�nements, likely dest. ✗ 959 ± 252 µs 5.2 ± 1.5 ms ∞ 5.4x
300 RRT iters, 3500 re�nements, unlikely dest. ✗ 334 ± 237 µs 4.0 ± 1.5 ms ∞ 11.9x

1 : exact density evaluators hand-coded in Julia, against the Gen.jl distribution interface, to expose as Gen primitives
2 : density estimators hand-coded in Julia, against the GenSP.jl distribution interface, to expose as GenSP primitives
3 : density estimators implemented within GenSP’s unbiased-by-construction estimator DSL, exploiting automation

• Context-Correct: A context-sensitive spelling correction task [Mays et al. 1991], applied to
retyped sentences from telenovela screenplays. In our model of typos, each word is corrupted by a
sequence of zero or more insertions, deletions, and substitutions;marginal is used to marginalize
out the sequence of edits. We implement both MCMC inference and SMC inference that �xes
one word at a time. Due to the estimated likelihood, these are instances of pseudomarginal
MCMC [Andrieu and Roberts 2009] and random-weight particle �ltering [Fearnhead et al. 2010].
• RSA: We implement a model of pragmatic language understanding, based on the Rational
Speech Acts framework [Goodman and Frank 2016]. Unlike in typical formulations of RSA, in
our GenSP model, agents reason about one another using approximate inference, encoded via
normalize. As such it can be seen as a boundedly rational version of the model [Zhi-Xuan et al.
2020]. GenSP automatically estimates the densities of the approximate inference routines used
by the agents. The resulting inference algorithm is an instance of IS2 [Tran et al. 2013], because
it nests an importance sampling estimator of the likelihood within importance sampling.
• RANSAC-Regress: A standard Bayesian regression model, but with inference based on the
RANSAC algorithm [Cusumano-Towner andMansinghka 2018; Fischler and Bolles 1981]. RANSAC
chooses a small subset of the data, �ts model parameters to it, and proposes nearby parameters
from a Gaussian; we use marginal to marginalize out the choice of data subset. As a result, the
proposal density is estimated by GenSP, and the overall algorithm is an instance of random-
weight [Chopin et al. 2020, Chapter 8] or RAVI [Lew et al. 2022] importance sampling.
• Goal-Infer: A model of an agent planning a path in a room, where the goal of inference is to
infer the agent’s destination from observations of their movements [Cusumano-Towner 2020,
Chapter 6]. The model is a GenSP program that usesmarginal to marginalize out the agent’s
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path-planning choices, which the agent makes using a randomized path planner [Zucker et al.
2007]. The resulting algorithm is an instance of IS2 [Tran et al. 2013].
• RAVI-DPMM: A Bayesian agglomerative clustering algorithm from Lew et al. [2022], applied
to astronomy data. The model is a standard Dirichlet process mixture model [Neal 2000], but
importance sampling inference is performed using an involved proposal that runs a randomized
agglomerative clustering algorithm on the data to propose a partition. As in Lew et al. [2022], we
use a GenSP density estimator for the proposal, whose exact marginal density is an intractable
sum over all possible sequences of merges that the agglomerative clustering algorithm makes.
Our GenSP estimator uses smc withinmarginal to estimate the proposal’s marginal density.

Experiments. Our evaluation is designed to answer two questions:

• How do our sound-by-construction inference algorithms, with automated density estimators, perform,
compared to hand-coded versions of the same algorithms? Without GenSP, if practitioners wish to
use fast density estimators within their inference algorithm implementation, they must hand-
code the density estimators and ensure that they are unbiased. This can be time-consuming and
error-prone, especially since there is no easy way to unit-test the unbiasedness of hand-coded
estimators. GenSP provides a language for exploring the space of unbiased density estimation
strategies, and convenient, correct automation. However, it also introduces overhead. Our �rst
experiment measures the overhead of GenSP’s density estimators compared to hand-

coded versions. We used Julia to implement hand-coded versions of each density estimator
automated by GenSP. We manually derived expressions for the density estimates, and wrote
code to compute them, performing several manual optimizations (e.g., avoiding the computation
of a density factor if it appeared both in the numerator and denominator of a density ratio, and
using local variables to store random samples instead of heap-allocated traces). We measure both
the overhead of each density query, and the overhead of the entire inference algorithm.
• How does the noise introduced by stochastic probability estimators impact the accuracy of inference,
compared to an idealized algorithm using exact inference? GenSP’s fast unbiased density estimation
makes it possible to run inference using models and proposals for which it would be impossible, or
impossibly slow, to evaluate exact densities. Thm. C.1 proves inference is still sound, i.e., accurate
in the limit of in�nite MCMC iterations or SMC particles. But a natural question is whether
inference accuracy with �nite computation su�ers as a result of using these stochastic estimators.
Our second experiment measures the convergence rates of MCMC and SMC using exact

vs. stochastic densities, in terms of number of iterations or particles.When exact densities
are available but slow, we use them; when they are unavailable, we approximate them using
estimates with very high particle counts, which we chose to ensure negligible variance. We also
report wall-clock times for the GenSP and exact variants of each density and inference algorithm;
these help illustrate that even when GenSP’s convergence may be slightly slower as a function
of iteration or particle count, it is signi�cantly faster in wall-clock time.

Results: Overhead. Table 1 shows microbenchmarks from our �rst experiment. The overhead of
our automation is generally 1-5x for individual density queries, but end-to-end overhead is lower:
in Figs. 8 and 9, the righthand plots show that in wall-clock time, the GenSP inference algorithms
are only 1-2x slower than the hand-coded versions. This is because our fast unbiased estimators
account for relatively little of the inference runtime in these benchmarks. For example, in the
Context-Correct benchmark, one iteration of MCMC takes about 3ms, of which 500µs (16%)
is density evaluation. Using a hand-coded density cuts this to about 150µs, but an iteration still
takes about 2.65ms; thus, inference with GenSP is only 1.13x slower than hand-coded. Pro�ling
suggests future engineering could mitigate the sources of overhead, which include the construction
of trace data structures, and the failure to automatically ‘cancel’ (and thus avoid computing) terms
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log unnormalized probability over time
Exact GenSP

Context-Correct 41.1% 37.6%
3DP3 25.0% 18.5%

MH acceptance rates. Each iteration
of Context-Correct performs 6
Metropolis-Hastings moves, and each
iteration of 3DP3 performs 45. We report
the percentage of iterations on which
at least one proposal was accepted,
across 10 runs of 300 iterations each. On
average, using estimated densities led to
a 10-25% reduction in acceptance rate,
due to noise in the computation of the
acceptance probability. Margin of error
is about ±3% in all four measurements.

Fig. 8. Impact of GenSP density estimators on convergence of MCMC inference. Left: We plot exact log

probability vs. # of iterations, for MCMC algorithms for context-sensitive spelling correction and 3D scene

understanding. Right: For each algorithm, we report the average acceptance probability across its run.

Goal-Infer (expensive,
low-variance estimator
used in lieu of intractable
exact density)

RANSAC-LinReg

Context-Correct (trun-
cated exact density)

Exact GenSP

Context-Correct 16.8 22.1
RAVI-DPMM 6.3 6.4
Goal-Infer 49.8 64.9

RANSAC-LinReg 1521 2402

Relative variance of particle

weights. The number of particles
required for accurate inference
depends on the variance of the
importance weights. Two factors
contribute to variance [Lew et al.
2022]: the quality of the proposal
distribution (equal across settings),
and the noise in the computation of
densities (higher for GenSP).

Fig. 9. Impact of GenSP density estimators on convergence of SMC and IS inference. Left:We plot average log

marginal likelihood estimate vs. # of particles, for SMC algorithms for context-sensitive spelling correction,

goal inference, and robust regression. Right: We report the estimated variance of particle weights when exact

densities vs. GenSP density estimators are used. Both:When exact densities were unavailable or timed out,

we instead used estimated densities with enough replicates to eliminate non-negligible variance.

that match in the numerators and denominators of density ratios. For example, one optimization
might fuse the bodies of proposal and model programs, eliminating common sub-expressions, and
removing the need to construct traces to communicate between the two programs; local variables
could be used directly to remember the proposed variables and score them under the model.
Results: Speed and convergence. The use of GenSP’s unbiased density estimates does reduce
the acceptance probability (in Metropolis-Hastings) and increases the variance of particle weights
(in SMC), but these e�ects appear small and do not signi�cantly a�ect the number of iterations
or particles necessary for convergence, as shown in the plots in Figures 8 and 9. In the righthand
plots, it can be seen that in wall-clock time the GenSP algorithms converge signi�cantly faster than
their exact-density counterparts. This is also re�ected in Table 1, which shows orders-of-magnitude
speedups over exact densities when they are available. We also see that our unbiased estimators
scale favorably with problem size, whereas exact densities scale poorly.
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7 RELATED WORK

Programmable inference.We build on a long line of work in probabilistic programming that aims
to make inference programmable [Bingham et al. 2019; Cusumano-Towner 2020; Cusumano-Towner
et al. 2019; Ge et al. 2018; Lew et al. 2021; Mansinghka et al. 2014, 2018; Narayanan and Shan 2020;
Shan and Ramsey 2017; Stites et al. 2021; Wang et al. 2021; Zinkov and Shan 2016]. Our core calculus
_(% is closest to languages like Gen [Cusumano-Towner et al. 2019], Pyro [Bingham et al. 2019],
and ProbTorch [Stites et al. 2021]. Unlike these languages, we support models and proposals with
estimated densities, letting us expose new normalize and marginal operations. As we discuss in
Sec. 8, we believe that each of these systems could be extended to support our Stochastic Probability
Interface, and versions of ourmarginal and normalize features; indeed, we have already extended
Gen in this way, in GenSP. Many existing systems for programmable inference handle variational
inference, whereas this paper has focused on Monte Carlo. To support variational inference, we
could apply ADEV [Lew et al. 2023] to the stochastic density estimators we automate, to yield
unbiased gradient estimates of lower bounds on the ELBO [Lew et al. 2022, Theorem 4].

We also take inspiration from inference combinators [Stites et al. 2021], and compositional infer-
ence frameworks like monad-bayes [Ścibior et al. 2018], which explicitly build sound samplers by
transforming existing samplers, via combinators or monad transformers. Indeed, the _(% constructs
for building terms of type SMC are very similar to Stites et al. [2021]’s combinators for soundly com-
posing properly weighted population samplers. But unlike in that work, our transformation 3{·}
operates on terms of type SMC to automatically derive corresponding conditional SMC algorithms,
which enables us to unbiasedly estimate the density of the user’s SMC algorithm itself.

Some instances of algorithms that we have highlighted, e.g. pseudomarginal MH, can also be
expressed compositionally in other languages. For example, monad-bayes [Ścibior et al. 2018] can
implement particle-marginal MH by composing SMC and MCMC monad transformers. However,
monad-bayes does not permit customization of the SMC proposals or the MH proposals used in the
algorithm, and so could not express many of our case studies. As another example, by introducing
auxiliary variables into models or proposals in the inference combinators framework, users can
implement certain random-weight particle �lters [Fearnhead et al. 2010]. However, that work
supports only one strategy for approximately marginalizing the auxiliary variables, which often
leads to high-variance weights. By contrast, ourmarginal construct allows users to specify any
inference algorithm for marginalization, enabling signi�cant variance reduction.
Automating density computations. The problem of automating exact marginal density evalua-
tion for probabilistic programs is well-studied. The Hakaru system [Narayanan and Shan 2020; Shan
and Ramsey 2017] is an interesting example, because it outputs densities as probabilistic programs
of type" 1, and such terms can be read either as exact integral expressions or as unbiased density
estimators. Hakaru does not produce unbiased density samplers and thus cannot be used to, e.g.,
estimate proposal densities within importance sampling or Metropolis-Hastings. Hakaru also does
not provide users with levers for controlling the variance of the resulting density estimators, which
can be high. It would be interesting to investigate further whether the Hakaru approach can be
extended with these features. Hakaru already has some features that would be intriguing to bring
to GenSP, including support for automating certain change-of-variable corrections.
Nested inference. First-class inference within models was a key feature of Church [Goodman et al.
2008], which used rejection sampling to implement exact inference at both the outer and inner levels.
Researchers have since proposed dynamic programming for faster nested inference [Stuhlmüller and
Goodman 2012], approximate inference methods for certain forms of nested inference [Rainforth
2018], and semantic analyses [Zhang and Amin 2022]. We also study normalize as a �rst-class
construct, but for us, it denotes approximate inference, and we use it in both models and proposals.
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8 CONCLUSION

This paper proposes a key change to standard PPL architectures: replace exact density evaluators
with the stochastic probability interface (Sec. 3). Although our presentation is compiler-based (Sec. 5),
the SPI is also compatible with PPLs based on e�ect handlers, monad transformers, or macros.
For example, consider Python PPLs such as Pyro [Bingham et al. 2019] or ProbTorch [Stites

et al. 2021], which typically feature distribution classes with methods for simulation and exact
density evaluation. A �rst step toward adopting the SPI is to replace these methods with those
we introduce in Sec. 3 for estimating densities and their reciprocals. Then, using non-standard
execution of user probabilistic code (e.g., Pyro’s “Poutine” library), existing density accumulation
passes could be changed to accumulate density estimates, following the logic of Sec. 5’s compiler
on the constructs sample, observe, return, and do. Appx. C then gives the necessary changes to
inference algorithms to make them work soundly with these stochastic density estimators.

Constructs for marginalization and approximate normalization can then be added as new classes
implementing the SPI, with constructors that take as input the program to be marginalized or
normalized. These classes could use any sound strategy for estimating the necessary densities. Our
approach is to give the user a choice of inference method at eachmarginal and normalize.
Indeed, by selecting di�erent estimation strategies at di�erent points in the program, users

can explore a vast array of unbiased-by-construction density estimation strategies, each striking
di�erent runtime-variance tradeo�s. We are interested to explore this design space; the fact that
every application of marginal and normalize introduces approximation (and therefore variance)
means that the usual advice about the value of these operations may not always apply in our
setting. For example, the Rao-Blackwell theorem often implies that marginalizing variables from a
model should reduce variance of the overall sampler; but to what extent does that logic apply if the
marginal densities in question are only approximate? It would be interesting to extend recent results
characterizing the variance of pseudomarginal importance samplers [Lew et al. 2022] to the more
general setting we explore here. In any case, there is ample evidence from the machine learning and
statistics literatures that various points along the spectrum—from exact but expensive marginal
densities, to cheap but higher-variance estimates—are worth exploring. In a recent book on Monte
Carlo inference, Chopin et al. [2020] called the technique of stochastically estimating densities
within inference “arguably one of the most productive ideas in stochastic simulation, [resulting]
in a multitude of practically useful algorithms.” We hope this research will bring welcome PPL
automation to practitioners who rely on these techniques—and conversely, open up this broad class
of practically useful models and inference algorithms to probabilistic programmers.

Beyond expressiveness, our approach may also open up new opportunities for �ne-grained paral-
lelism in inference, because each call to marginal or normalize de�nes an inference subproblem.
If we can build optimizing compilers that generate fast unbiased density estimators for modern
parallel hardware, we are excited to see what new inference problems might then be in reach.
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