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Abstract

We present the Sum-Product Probabilistic Language (Sppl),
a new probabilistic programming language that automati-
cally delivers exact solutions to a broad range of probabilis-
tic inference queries. Sppl translates probabilistic programs
into sum-product expressions, a new symbolic representation
and associated semantic domain that extends standard sum-
product networks to support mixed-type distributions, nu-
meric transformations, logical formulas, and pointwise and
set-valued constraints. We formalize Sppl via a novel trans-
lation strategy from probabilistic programs to sum-product
expressions and give sound exact algorithms for condition-
ing on and computing probabilities of events. Sppl imposes a
collection of restrictions on probabilistic programs to ensure
they can be translated into sum-product expressions, which
allow the system to leverage new techniques for improving
the scalability of translation and inference by automatically
exploiting probabilistic structure. We implement a proto-
type of Sppl with a modular architecture and evaluate it on
benchmarks the system targets, showing that it obtains up
to 3500x speedups over state-of-the-art symbolic systems on
tasks such as verifying the fairness of decision tree classifiers,
smoothing hiddenMarkovmodels, conditioning transformed
random variables, and computing rare event probabilities.

CCS Concepts: • Mathematics of computing → Proba-

bilistic representations; Probabilistic inference problems; • Soft-
ware and its engineering→ Formal language definitions.
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1 Introduction

Reasoning under uncertainty is a well-established theme
across diverse fields including robotics, cognitive science,
natural language processing, algorithmic fairness, amongst
many others [14, 21, 31, 60]. A common approach for mod-
eling uncertainty is to use probabilistic programming lan-
guages (PPLs [29]) to both represent complex probability
distributions and perform probabilistic inference within the
language. There is growing recognition of the utility of PPLs
for solving challenging tasks that involve probabilistic rea-
soning in various application domains [8, 27, 34, 35].

Probabilistic inference is central to reasoning about uncer-
tainty and is a central concern for both PPL implementors
and users. Several PPLs leverage approximate inference tech-
niques [28, 59, 67], which have been used effectively in a va-
riety of settings [11, 17, 55]. Drawbacks of approximate infer-
ence, however, include a lack of accuracy and/or soundness
guarantees [18, 38]; difficulties with programs that combine
continuous, discrete, or mixed-type distributions [11, 68];
challenges assessing the quality of iterative solvers [9]; and
the substantial expertise needed to write custom inference
programs that deliver acceptable performance [17, 39]. To
address the shortcomings of approximate inference, several
PPLs instead use exact symbolic techniques [6, 10, 23, 43, 69].
These languages can typically express a large class of models,
using general computer algebra to solve queries. However,
the generality of the symbolic computations causes them to
sometimes fail, even on problems with tractable solutions.

OurWork We introduce the Sum-Product Probabilistic Lan-
guage (Sppl), a system that occupies a new point in the
expressiveness vs. performance trade-off space for exact sym-
bolic inference. A key idea in Sppl is to incorporate certain
modeling restrictions that avoid the need for general com-
puter algebra, instead using a new, specialized class of łsum-
productž symbolic expressions to exactly represent proba-
bility distributions specified by Sppl programs. These new
symbolic expressions extend and generalize sum-product
networks [47], which are computational graphs that have
received widespread attention for their clear probabilistic se-
mantics and tractable properties for exact inferenceÐsee [64]
for a comprehensive and curated literature review. These
sum-product expressions are used to automatically obtain
exact solutions to probabilistic inference queries about Sppl
programs, which are fast and scalable in tractable regimes.
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Figure 1. Sppl system overview. Probabilistic programs are translated into symbolic sum-product expressions that represent
the joint distribution over all program variables and are used to deliver exact solutions to probabilistic inference queries.

SystemOverview Fig. 1 shows an overview of our approach.
Given a probabilistic program written in Sppl (Lst. 2) a trans-
lator (Lst. 3) produces a sum-product expression that repre-
sents the prior distribution over all program variables. Given
this expression and a query specified by the user, the Sppl
inference engine returns an exact answer, where:

1. simulate(Vars) returns random samples of program
variables from their joint probability distribution;

2. prob(Event) returns the probability of an event, which
is a predicate on program variables;

3. condition(Event) returns a new sum-product expres-
sion for the posterior distribution over program vari-
ables, given that the specified event is true.

A key aspect of the system design in Fig. 1 is modularity: mod-
eling, conditioning, and querying are factored into distinct
stages that reflect the essential components of a Bayesian
workflow. Moreover, the dashed back-edge in Fig. 1 indicates
that the new sum-product expression returned by condition
can be reused to interactively invoke additional queries on
the posterior distribution. This closure property enables sub-
stantial runtime gains across multiple datasets and queries.

Trade-offs Sppl imposes restrictions on probabilistic pro-
grams that specifically rule out the following constructs:
(i) unbounded loops; (ii) multivariate numeric transforma-
tions; and (iii) arbitrary prior distributions on continuous
parameters. As a result, Sppl is not designed to express model
classes such as regression with a prior on real coefficients;
neural networks; support-vector machines; spatial Poisson
processes; urn processes; and hidden Markov models with
unknown transition matrices. The aforesaid model classes
cannot be represented as sum-product expressions, and most
of them do not have tractable algorithms for exact inference.
We impose these restrictions to ensure that valid Sppl

programs can always be translated into finite sum-product
expressions, as opposed to general symbolic algebra expres-
sions. The resulting sum-product expressions delivered by
Sppl have a number of characteristics that make them a par-
ticularly useful translation target for probabilistic programs:

• Completeness and Decomposibility: By satisfying im-
portant completeness and decomposability conditions from
the literature [47, Defs. 4,5], sum-product expressions are
guaranteed to represent normalized probability distributions.
• Efficient Factorization: By specifying multivariate prob-
ability distributions compositionally in terms of sums and
products of simpler distributions, sum-product expressions
can be simplified by algebraic łfactorizationž (Fig. 3d, Fig. 6a).
• Efficient Deduplication:When an Sppl program speci-
fies a generative model with conditional independence struc-
ture, the translated sum-product expression typically con-
tains identical subexpressions that can be łdeduplicatedž into
a single logical node in memory (Fig. 3d, Fig. 6b).
• Efficient Caching: Inference algorithms for sum-product
expressions proceed from root to leaves to root, allowing
intermediate results to be cached and reused at deduplicated
internal subexpressions in a depth-first graph traversal.
• ClosureUnderConditioning: Sum-product expressions
are closed under probabilistic conditioning (Thm. 4.1), which
allows them to be reused across multiple datasets and infer-
ence queries about the same probabilistic program.
• Linear-Time Exact Inferences: For a well-defined class
of common queries, inference scales linearly in the expres-
sion size (Thm. 4.3); when Sppl delivers a łsmallž expression
after factorization and deduplication, inference is also fast.

It is well-known that a very large class of tractable models
can be cast as sum-product networks [47, Thm. 2]. Sppl auto-
matically constructs these representations from generative
probabilistic programs that use standard constructs such as
arrays, if/else branches, for-loops, and numeric and logical
operators. To enable this translation, Sppl introduces new
sum-product expressions and inference algorithms that ex-
tend standard sum-product networks by supporting (many-
to-one) univariate transformations, mixed-type base mea-
sures, and pointwise and set-valued constraints. These con-
structs make Sppl expressive enough to solve prominent
inference tasks in the PPL literature [2, 36, 46, 68] for which
standard sum-product networks have not been previously
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used. Examplemodel classes includemost finite discretemod-
els, latent variable models with discrete hidden states and
arbitrary observed states, and decision trees over discrete
and continuous variables. Taken together, these character-
istics make Sppl particularly effective for fast and scalable
inference on tractable problems, with low variance runtime
and complete, usable answers to users. Our experimental
evaluation (Sec. 6) indicates that Sppl delivers these benefits
on the problems it is designed to solve, whereas more gen-
eral and expressive techniques in previous solvers [2, 4, 23]
typically exhibit orders of magnitude worse performance on
these problems, runtime has higher variance, and/or results
may be unusable, i.e., with unsimplified symbolic integrals.

Key contributions We identify the following contributions:

• New semantic domain for sum-product expressions

(Sec. 3) that extends sum-product networks [47] by including
mixed-type distributions, numeric transforms, logical formu-
las, and events with pointwise and set-valued constraints.
• Provably sound exact symbolic inference algorithms

(Sec. 4) based on a proof that sum-product expressions are
closed under conditioning on any event that can be specified
in the domain. We use these algorithms to build an efficient
and multi-stage inference architecture that separates model
translation, conditioning, and querying into distinct stages,
enabling interactive workflows and computation reuse.
• The Sum-Product Probabilistic Language (Sec. 5), a
PPL built on a novel translation semantics from generative
code to sum-product expressions, which are used to deliver
exact inferences to queries. We present optimization tech-
niques to improve scalability of translation and inference by
exploiting conditional independences and repeated structure.
• Empirical measurements of efficacy (Sec. 6) on infer-
ence tasks from the literature that Sppl targets, which show
that it delivers substantial improvements over existing base-
lines, including up to 3500x speedup over state-of-the-art
fairness verifiers [2, 4] and symbolic integration [23], as well
as many orders of magnitude speedup over sampling-based
inference [40] for computing rare event probabilities.

2 Overview

We next describe two examples that illustrate the program-
ming style in Sppl and queries supported by the system.

2.1 Indian GPA Problem

The Indian GPA problem is a canonical example that has
been widely considered in the probabilistic programming
literature [44, 45, 48, 57, 68] for its use of a łmixed-typež ran-
dom variable that takes both continuous and discrete values,
depending on the random branch taken by the program.

Specifying the Prior Fig. 2a shows the generative process
for three variables (Nationality, Perfect and GPA) of a
student. The student’s nationality is either India or USA with

equal probability (line 1). Students from India (line 2) have
a 10% probability of a perfect 10 GPA (lines 3-4), otherwise
the GPA is uniform over [0, 10] (line 5). Students from USA
(line 6) have a 15% probability of a perfect 4 GPA (lines 6-7),
otherwise the GPA is uniform over [0, 4] (line 8).

Prior Sum-Product Expression The graph in Fig. 2d shows
the translated sum-product expression for this program,
which represents a sampler for the distribution over pro-
gram variables as follows: (i) if a node is a sum (+), visit a
random child with probability equal to the weight of the edge
pointing to the child; (ii) if a node is a product (×), visit each
child exactly once, in no specific order; (iii) if a node is a leaf,
sample a value from the distribution at the leaf and assign it
to the variable at the leaf. Similarly, the graph encodes the
joint distribution of the variables by treating (i) each sum
node as a probabilistic mixture; (ii) each product node as a
tuple of independent variables; and (iii) each leaf node as a
primitive random variable. Thus, the prior distribution is:

Pr[Nationality = n, Perfect = p, GPA ≤ д] (1)

= 0.5
[
δIndia(n) · (0.1[(δTrue(p) · 1 [10 ≤ д])]

+ 0.9[(δFalse(p) · (д/10 · 1 [0 ≤ д < 10] + 1 [10 ≤ д]))])
]

+ 0.5
[
δUSA(n) · (0.15[(δTrue(p) · 1 [4 ≤ д])]

+ 0.85[(δFalse(p) · (д/4 · 1 [0 ≤ д < 4] + 1 [4 ≤ д]))])
]
.

Fig. 2b shows Sppl queries for the prior marginal distribu-
tions of the three variables, plotted in Fig. 2e. The two jumps
in the cumulative distribution function (CDF1) of GPA at 4
and 10 correspond to the atoms that occur when Perfect

is true. The piecewise linear behavior on [0, 4] and [4, 10]
follows from the conditional uniform distributions of GPA.

Conditioning the Program Fig. 2f shows an example of the
condition query, which specifies an event e on which to
constrain executions of the program. An event is a predicate
on (possibly transformed) program variables that can be
used for both condition (Fig. 2f) and prob (Fig. 2c). Sppl is
the first system with inference algorithms for sum-product
expressions that handle predicates of this form. Given e , the
object of inference is the full posterior distribution:

Pr[Nationality=n, Perfect=p, GPA ≤д | e] (2)

≔ Pr[Nationality=n, Perfect=p, GPA ≤д, e]/Pr[e].

Posterior Sum-Product Expression Given the prior expres-
sion (Fig. 2d) and conditioning event e (Fig. 2f), Sppl produces
a new expression (Fig. 2g) that specifies a distribution which
is precisely equal to Eq. (2), From Thm. 4.1, conditioning an
Sppl program on any event that can be specified in the lan-
guage results in a posterior distribution that also admits an
exact sum-product expression. Conditioning on e performs
several transformations on the prior expression, which are:

1 For a real-valued random variable X , the cumulative distribution function

F :Real→[0, 1] is given by F (r ) ≔ Pr[X ≤ r ].
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1 Nationality ~ choice({'India': 0.5, 'USA': 0.5})

2 if (Nationality == 'India'):

3 Perfect ~ bernoulli(p=0.10)

4 if Perfect: GPA ~ atom(10)

5 else: GPA ~ uniform(0, 10)

6 else: # Nationality is 'USA'

7 Perfect ~ bernoulli(p=0.15)

8 if Perfect: GPA ~ atom(4)

9 else: GPA ~ uniform(0, 4)

(a) Probabilistic Program

prob (Nationality == 'USA');

prob (Perfect == 1);

prob (GPA <= x/10) # for x = 0, ..., 120

(b) Example Queries on Marginal Probabilities

prob ((Perfect == 1)

or (Nationality == 'India') and (GPA > 3))

(c) Example Query on Joint Probabilities

+
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(e) Prior Marginal Distributions

condition ((Nationality == 'USA') and (GPA > 3)) or (8 < GPA < 10)

(f) Conditioning the Program
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(h) Posterior Marginal Distributions

Figure 2. Analyzing the Indian GPA problem in Sppl.

1. Eliminating the subtree rooted at the parent of leaf δ10,
which is inconsistent with the conditioning event.

2. Rescaling the distributionU (0, 10) at the leaf node in
the India subtree toU (8, 10).

3. Rescaling the distribution U (0, 4) at the leaf node in
the USA subtree toU (3, 4).

4. Reweighting the branch probabilities of the sum node
in the USA subtree from [.15, .85] to [.41, .59], where
.41 = .15/(.15 + .2125) is the posterior probability of
(Perfect = 1, GPA = 4) given the condition e .

5. Reweighting the branch probabilities at the root from
[.5, .5] to [.33, .67] (same rules as in the previous item).

Fig. 2g shows the posterior expression obtained by apply-
ing these transformations. Using this expression, the right-
hand side of Eq. (2), which is the object of inference, is

Pr[Nationality = n, Perfect = p, GPA ≤ д | e] (3)

= .33
[
δIndia(n) · δFalse(p) · (д−82 · 1 [8 ≤д < 10] + 1 [10 ≤д])

]

+ .67
[
δUSA(n) · (.41[(δTrue(p) · 1 [4 ≤ д])]

+ .59[(δFalse(p) · (д4 · 1 [0 ≤д < 4] + 1 [4 ≤д]))])
]
.
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(Floats are shown to two decimal places.) We can now run
the prob queries in Fig. 2b on the conditioned program to
plot the posterior marginal distributions, which are shown
in Fig. 2h. The example in Fig. 2 illustrates a typical modular
workflow in Sppl (Fig. 1), where modeling (Fig. 2a), condi-
tioning (Fig. 2f) and querying (Figs. 2bś2c) are separated into
distinct and reusable stages that together express the main
components of Bayesian modeling and inference.

2.2 Scalable Inference in a Hierarchical HMM

The next example shows how to perform efficient smooth-
ing in a hierarchical hidden Markov model (HMM [42]) and
illustrates the optimization techniques used by the Sppl trans-
lator (Sec. 5.1), which exploit conditional independence to
ensure that the size of the sum-product expression grows
linearly in the number of timesteps. The code box in Fig. 3a
shows a hierarchical hidden Markov model with Bernoulli
hidden states Zt and NormalśPoisson observations (Xt ,Yt ).
The separated variable indicates whether the mean val-
ues of Xt and Yt at Zt = 0 and Zt = 1 are well-separated.
The p_transition vector specifies that the current state Zt
switches from the previous state Zt−1 with 20% probability.
This example leverages the Sppl array, for, and switch-
cases statements, where the latter is a macro that expands
to if-else statements (as in, e.g., the C language):

switch x cases (x ′in values) {C} (4)

desugar
⇝ if (x in values[0]) {C[x ′/values[0]]}

elif . . .

elif (x in values[n−1]) {C[x ′/values[n − 1]]},

wheren is the length of values andC[x/E] indicates syntactic
replacement of x with expression E in command C .
The top and middle plots in Fig. 3b show a realization

of X and Y that result from simulating the process for 100
time steps. The blue and orange regions along the x-axes
indicate whether the true hidden stateZ is 0 or 1, respectively
(these łground-truthž values of Z are not observed but need
to be inferred from X and Y ). The bottom plot in Fig. 3b
shows the exact posterior marginal probabilities Pr[Zt =
1 | x0:99,y0:99] for each t = 0, . . . , 99 as inferred by Sppl (an
inference known as łsmoothingž). These probabilities track
the true hidden state, i.e., the posterior probabilities that
Zt = 1 are low in the blue and high in the orange regions.

Fig. 3c shows a łnaivež sum-product expression for the
distribution of all program variables up to the first two time
steps. This expression is a sum-of-products, where the prod-
ucts in the second level are an enumeration of all possible re-
alizations of program variables, so that the number of terms
scales exponentially in the number of time steps. Fig. 3d
shows the expression constructed by Sppl, which is (concep-
tually) based on factoring and sharing common terms in the
two level sum-of-products in Fig. 3c. These factorizations

and deduplications exploit conditional independences and
repeated structure in the program (Sec. 5.1), which here deliv-
ers a expression whose size scales linearly in the number of
time points. Sppl can also efficiently solve variants of smooth-
ing, e.g., computing posterior marginals Pr[Zt | x0:t ,y0:t ]
(filtering) or the posterior joint Pr[Z0:t | x0:t ,y0:t ] for any t .

3 A Core Calculus for Sum-Product
Expressions

This section presents a semantic domain of sum-product ex-
pressions that generalizes sum-product networks [47] and en-
ables precise reasoning about them. This domain will be used
to (i) establish the closure of sum-product expressions under
conditioning on events expressible in the calculus (Thm. 4.1);
(ii) describe sound algorithms for exact Bayesian inference in
our system (Appx. D); and (iii) describe a procedure for trans-
lating a probabilistic program into a sum-product expression
in the core language (Sec. 5). Lst. 1 shows denotations of
the key syntactic elements (Lst. 9 in Appx. A) in the cal-
culus, which includes real and nominal outcomes (Lst. 1a);
real transforms (Lst. 1b); predicates with pointwise and set-
valued constraints (Lst. 1c); primitive distributions (Lst. 1e);
and multivariate distributions specified compositionally as
sums and products of primitive distributions (Lst. 1f).

Basic Outcomes Random variables in the calculus take val-
ues in the Outcome ≔ Real + String domain. The symbol +
here indicates a sum (disjoint-union) data type, whose ele-
ments are formed by the injection operation, e.g., ↓ Real

Outcome r

for r ∈ Real. This domain is used to model mixed-type ran-
dom variables, such as X in the following Sppl program:

Z ~ normal(0, 1)

if (Z <= 0): X ~ "negative" # string

elif (0 < Z < 4): X ~ 2*exp(Z) # continuous real

elif (4 <= Z): X ~ atomic(4) # discrete real

The Outcomes domain denotes a subset of Outcome as de-
fined by the valuation function V (Lst. 1a). For example,
((b1 r1) (r2 b2)) specifies a (open, closed, or clopen) real
interval and {s1 . . . sm}

b is a set of strings, where b = #t

indicates the complement (meta-variables such asm indicate
an arbitrary but finite number of repetitions of a domain vari-
able or subexpression). The operations union, intersection,
and complement operate on Outcomes in the usual way
(while preserving certain semantic invariants, see Appx. B)

A Sigma Algebra of Outcomes To speak precisely about
random variables and measures on Outcome, we define a
sigma-algebra B(Outcome) ⊂ P(Outcome) as follows:
1. Let τReal be the usual topology on Real.
2. Let τString be the discrete topology on String.
3. Let τOutcome ≔ τReal⊎τString be the disjoint-union topology
on Outcome, where U is open iff {r | (↓ Real

Outcome r ) ∈ U } is
open in Real and {s | (↓ String

Outcome
s) ∈ U } is open in String.

4. Let B(Outcome) be the Borel sigma-algebra of τOutcome.
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1 p_transition = [.2, .8]

2 mu_x = [[5, 7], [5, 15]]

3 mu_y = [[5, 8], [3, 8]]

4

5 n_step = 100

6 Z = array(n_step)

7 X = array(n_step)

8 Y = array(n_step)

9

10 separated ~ bernoulli(p=.4)

11 switch separated cases (s in [0,1]):

12 Z[0] ~ bernoulli(p=.5)

13 switch Z[0] cases (z in [0, 1]):

14 X[0] ~ normal(mu_x[s][z], 1)

15 Y[0] ~ poisson(mu_y[s][z])

16 for t in range(1, n_step):

17 switch Z[t-1] cases (z in [0, 1]):

18 Z[t] ~ bernoulli(p_transition[z])

19 switch Z[t] cases (z in [0, 1]):

20 X[t] ~ normal(mu_x[s][z], 1)

21 Y[t] ~ poisson(mu_y[s][z])

(a) Probabilistic Program
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(b) Observed Data X ,Y and Inferred Hidden States Z
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(c) Naive Sum-Product Expression (Scales Exponentially)
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(d) Optimized Sum-Product Expression (Scales Linearly)

Figure 3. Fast smoothing in a hierarchical hiddenMarkovmodel using Sppl by constructing an efficient sum-product expression
that exploits conditional independences in the generative process. Optimization techniques are discussed in Sec. 5.1.

Remark 3.1. As measures on Real are defined by their val-
ues on open intervals and measures on String on singletons,
we can speak of probability measures on B(Outcome) as
mappings from Outcomes to [0, 1].

Real Transformations Lst. 1b shows real transformations
that can be applied to variables in the calculus. The Identity
Transform, written Id(x), is a terminal subexpression of
any Transform t and contains a single variable name that
specifies the łdimensionž over which t is defined. The list of
all transforms is in Appx. C.1. The key operation involving

transforms is computing the preimage of Outcomes v under
t using preimg : Transform → Outcomes → Outcomes
which satisfies the following properties:

(↓ Real
Outcome r ) ∈ V Jpreimg t vK ⇐⇒ T JtK (r ) ∈ V JvK

(↓ String
Outcome

s) ∈ V Jpreimg t vK ⇐⇒ (t ∈ Identity) ∧ (s ∈ V JvK).

Appx. C.2 presents a symbolic solver that implements preimg

for each Transform, which is leveraged to enable exact prob-
abilistic inferences on transformed variables in Sppl. Fig. 4
and Appx. C.3 show example inferences with transforms.
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Outcome ≔ Real + String

V : Outcomes → P(Outcome)
V J�K ≔ � [Empty]
V

r
{s1 . . . sm}b

z
≔ if b then ∪mi=1 {(↓ String

Outcome
si )}

else {(↓ String
Outcome

s) | ∀i .s , si }
[FiniteStr]

V J{r1 . . . rm}K ≔ ∪mi=1 {(↓ Real
Outcome ri )} [FiniteReal]

V J((b1 r1) (r2 b2))K ≔ {(↓ Real
Outcome r ) | r1<b1r<b2r2 }

where <#t≔<; <#f≔≤; r1 < r2

[Interval]

V Jv1 ⨿ · · · ⨿ vmK ≔ ∪mi=1V Jvi K [Union]

(a) Outcomes

T : Transform → Real → Real

T JId(x)K ≔ λr ′.r ′; T JReciprocal(t)K ≔ λr ′.1/
(
T JtK (r ′)

)
;

T JAbs(t)K ≔ λr ′. |T JtK (r ′) |;T JRoot(t n)K ≔ λr ′. n
√
T JtK (r ′);

T JPoly(t r0 . . . rm)K ≔ λr ′.
∑m
i=0 ri (T JtK (r ′))i ; . . .

(b) Transformations (Lst. 17 in Appx. C.1)

E : Event → Var → Outcomes
E J(t inv)K x ≔ if (vars t ) = {x } then (preimg t v) else� [Contains]
E Je1 ⊓ · · · ⊓ emK x ≔ (intersectionE Je1K x . . . E JemK x ) [Conjunction]
E Je1 ⊔ · · · ⊔ emK x ≔ (union E Je1K x . . . E JemK x ) [Disjunction]

(c) Events

P0 JSK : SPE → Event → Natural × [0, ∞)
P0 JLeaf(x d σ)K (Id(x) in {rs}) ≔ matchd [Leaf]
▷ DistR(F r1 r2) ⇒ match rs
▷ r ⇒ (1, 1 [r1 ≤ r ≤ r2] F ′(r )/[F (r2) − F (r1)])
▷ s ⇒ (1, 0)
▷ else ⇒ letw beP JLeaf(x d σ)K (Id(x) in {rs}) in (1 [w = 0] , w )

P0 J(S1w1) ⊕ · · · ⊕ (Sm wm)K ⊓ℓ
i=1 (Id(xi) in {rsi}) ≔

let1≤i≤m (di , pi ) beP0 JSi K
(
⊓ℓ
i=1(Id(xi) in {rsi})

)

in if ∀1≤i≤m . pi = 0 then (1, 0)
else letd∗

be min{di | 1 ≤ i ≤ m, 0 < pi }
in (d∗

,
∑m
i=1 1 [di = d∗]wipi )

[Sum]

P0 JS1 ⊗ · · · ⊗ SmK ⊓ℓ
i=1 (Id(xi) in {rsi}) ≔ [Product]

let1≤i≤m (di , pi ) bematch {x1, . . . , xm } ∩ (scope Si )
▷ {n1, . . . , nk } ⇒ P0 JSi K ⊓kt=1 (Id(xnt ) in {rst})
▷ {} ⇒ (0, 1)

in (∑n
i=1 di ,

∏m
i=1 pi )

(d) Sum-Product Expressions (Density Semantics)

D : Distribution → Outcomes → [0, 1]
D

q
DistS((si wi)

m
i=1)

y
v ≔ [DistStr]

match (intersectionv {s1 . . . sm}#f)
▷ � | {r ′1 . . . r ′m} | ((b1 r1) (r2 b2)) ⇒ 0

▷ v1 ⨿ · · · ⨿ vm ⇒ ∑m
i=1 D

q
DistS((si wi)

m
i=1)

y
vi

▷ {s′1 . . . s′
k
}b ⇒ letw be

∑m
i=1(wi if si ∈ {s′j }kj=1 else 0)

in if b̄ thenw else 1 −w

D JDistR(F r1 r2)Kv ≔ match (intersection ((#f r1) (r2 #f))v) [DistReal]
▷ � | {r ′1 . . . r ′m} | {s′1 . . . s′

k
}b ⇒ 0

▷ v1 ⨿ · · · ⨿ vm ⇒ ∑m
i=1 D JDistR(F r1 r2)Kvi

▷ ((b′1 r
′
1) (r

′
2 b

′
2)) ⇒

F (r ′2) − F (r ′1)
F (r2) − F (r1)

D JDistI(F r1 r2)Kv ≔ match (intersection ((#f r1) (r2 #f))v) [DistInt]
▷ � | {s′1 . . . s′

k
}b ⇒ 0

▷ v1 ⨿ · · · ⨿ vm ⇒ ∑m
i=1 D JDistI(F r1 r2)Kvi

▷ {r ′1 . . . r
′
m} ⇒

m∑

i=1

[
if (r ′i = ⌊r ′i ⌋) ∧ (r1 ≤ r ′i ≤ r2)
then F (r ′) − F (r ′ − 1) else 0

]

F ( ⌊r2 ⌋) − F ( ⌈r1 ⌉ − 1)
▷ ((b′1 r

′
1) (r

′
2 b

′
2)) ⇒ let r̃1 be ⌊r ′1 ⌋ − 1

[
(r ′1 = ⌊r ′1 ⌋) ∧ b̄′1

]

in let r̃2 be ⌊r ′2 ⌋ − 1
[
(r ′2 = ⌊r ′2 ⌋) ∧ b̄′2

]

in
F (r̃2) − F (r̃1)

F ( ⌊r2 ⌋) − F ( ⌈r1 ⌉ − 1)

(e) Primitive Distributions

P : SPE → Event → [0, 1]
P JLeaf(x d σ)K e ≔ D JdK (E J(subsenv e σ )K x ) [Leaf]
P J(S1w1) ⊕ · · · ⊕ (Sm wm)K e ≔ letZ be

∑m
i=i wi

in
∑m
i=1(P JSi K e)wi /Z

[Sum]

P JS1 ⊗ · · · ⊗ SmK e ≔ match (dnf e) [Product]
▷ (t in v) ⇒ let n be min{1 ≤i ≤m | (vars e) ⊂ (scope Si )}

in P JSnK e
▷ (e1 ⊓ · · · ⊓ eℓ) ⇒

∏

1≤i≤m



match {1 ≤ j ≤ ℓ | (vars ej ) ⊂ (scope Si )}
▷ {n1, . . . , nk } ⇒ P JSi K (en1 ⊓ · · · ⊓ enk )
▷ {} ⇒ 1


▷ (e1 ⊔ · · · ⊔ eℓ) ⇒

∑

J ⊂[ℓ]

[
(−1)| J |−1 P JS1 ⊗ · · · ⊗ SmK (⊓i∈J ei )

]

(f) Sum-Product Expressions (Distribution Semantics)

Listing 1. Syntax and semantics of a core calculus for sum-product expressions and related domains.

Events Lst. 1c shows the Event domain, which specifies pred-
icates on variables. The valuation E JeK : Var → Outcomes

of an Event takes a variablex and returns the setv ∈ Outcomes

of elements that satisfy the predicate along dimension x ,
leveraging the properties of preimg. This domain specifies
measurable sets of ann-dimensional distribution on variables
{x1, . . . ,xn} as follows: let σgen({A1,A2, . . . }) be the sigma-
algebra generated by A1,A2, . . . , and define Bn(Outcome)
≔ σgen({

∏n
i=1Ui | ∀1≤i≤n . Ui ∈ B(Outcomes)}). In other

words, Bn(Outcome) is the n-fold product sigma-algebra
generated by open rectangles of Outcomes. Any e ∈ Event

specifies a measurable set U in Bn(Outcome), whose ith
coordinate Ui = E JeKxi if xi ∈ vars e , and Ui = Outcomes

otherwise. Any Transform in e is solved and any Var that
does not appear in e is marginalized, as in the next example.

Example 3.2. Let {X, Y, Z} be elements of Var. Then

e ≔ Reciprocal(Id(X)) in ((#f 1) (2 #f))

corresponds to the B3(Outcome)-measurable set

{
(
↓ Real

Outcome r
)
| 1/2 ≤ r ≤ 1} × Outcomes ×Outcomes.

As in Remark 3.1, we may speak about probability distri-
butions on Bn(Outcome) as mappings from Event to [0, 1].

Primitive Distributions Lst. 1e presents the primitive dis-
tributions out of which multivariate distributions are con-
structed. The CDF domain contains cumulative distribution
functions F , whose quantile function is denoted F−1 and
derivative F ′. CDF is in 1-1 correspondence with all distri-
butions and random variables on Real [7, Thms 12.4, 14.1].
The Distribution domain specifies continuous real, atomic
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X ~ normal(0, 2)

if X < 1:

Z ~ -X**3 + X**2 + 6*X

else:

Z ~ 5*sqrt(X) + 11

(a) Prior Program

+

X∼N (0, 2)

[1,∞)

5
√
X+11

Z

X∼N (0, 2)

(−∞, 1)

−X 3
+X 2
+6X

Z

.69 .31

(b) Prior Sum-Product Expression

condition

Z**2 <= 4

and Z >= 0

(c) Condition

+

X∼N (0, 2)

[3.2, 4.8]

5
√
X+11

Z

X∼N (0, 2)

[0, 0.32]

−X 3
+X 2
+6X

Z

X∼N (0, 2)

[−2.2,−2]

−X 3
+X 2
+6X

Z

.16 .49 .35

(d) Conditioned Sum-Product Expression
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Transformation z = t(x)

tif(x) = −x3 + x2 + 6x

telse(x) = −5
√
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z

Z ∼ t(X)

(e) Prior Marginal Distributions
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x

X | (0 < Z < 2)
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z

Transformation z = t(x)
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√
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x ∈ t−1([0, 2])
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z

Z | (0 < Z < 2)

(f) Conditioned Marginal Distributions

Figure 4. Inference on a stochastic many-to-one transformation of a real random variable in Sppl.

real (on the integers) and nominal distributions. The deno-
tation D JdK of a Distribution is a distribution on Outcomes

(recall Remark 3.1). For example, DistR(F r1 r2) is the restric-
tion of F to a positive measure interval [r1, r2]. The distribu-
tions specified by DistR and DistI can be simulated using
a variant of the integral probability transform (Prop. A.1 in
Appx. A), which also defines their sampling semantics.

Sum-Product Expressions Lsts. 1d and 1f show the proba-
bility density and distribution semantics of the SPE domain,
respectively, whose elements are probability measures. The
following conditions specify well-definedness for SPE:

(C1) ∀ Leaf(x d σ). x ∈ σ and σ (x) = Id(x).
(C2) ∀ Leaf(x d σ). If dom(σ ) = {x ,x1, . . . ,xm} for some

m > 0 then ∀1≤t ≤m . (vars σ (xt )) ⊂ {x ,x1, . . . ,xt−1}.
(C3) ∀(S1 ⊗ · · · ⊗ Sm). ∀i,j. (scope Si ) ∩ (scope S j ) = �.
(C4) ∀(S1w1) ⊕ · · · ⊕ (Sm wm). ∀i . (scope Si ) = (scope S1).
(C5) ∀(S1w1) ⊕ · · · ⊕ (Sm wm).w1 + · · · +wn > 0.

For Leaf, (C1) ensures that σ maps the leaf variable x to
the Identity Transform and (C2) ensures there are no cyclic
dependencies or undefined variables in Environment σ . Con-
dition (C3) ensures the scopes of all children of a Product
are disjoint and (C4) ensures the scopes of all children of a
Sum are identical, which together ensure completeness and
decomposability from sum-product networks [47, Defs. 4, 5].

In Lst. 1f, the denotation P JSK of S ∈ SPE is a map from e ∈
Event to its probability under the n-dimensional distribution
defined by S , where n ≔ |scope S | is the number of variables
in S . A terminal node Leaf(x d σ) is comprised of a Var x ,
Distributiond , and Environment σ that maps other variables
to a Transform of x , e.g., Z 7→ Poly(Root(Id(X) 2) [11, 5]).
When assessing the probability of e at a Leaf, subsenv

(Lst. 13 in Appx. A) rewrites e as an Event e ′ on one variable
x , so that the probability of Outcomes that satisfy e is ex-
actly D JdK (E Je ′Kx). The scope function (Lst. 12 in Appx. A)
returns the list of variables in S . For a Sum, the probability of

e is a weighted average of the probabilities under each subex-
pression. For a Product, the semantics are defined in terms of
(dnf e) (Lst. 15 in Appx. B), leveraging inclusion-exclusion.
In Lst. 1d, the denotation P0 JSK defines the density se-

mantics of SPE, used for measure zero events such as {X =
3,Y = π ,Z = "foo"} under a mixed-type base measure.
These semantics, which define the density as a pair, adapt
łlexicographic likelihood-weightingž, an approximate infer-
ence algorithm for discrete-continuous Bayes Nets [68], to
exact inference using łlexicographic enumerationž for SPE.

4 Conditioning Sum-Product Expressions

We next present the main theoretical result for exact infer-
ence on probability distributions defined by an expression
S ∈ SPE and describe the inference algorithm for condition-
ing on an Event (Lst. 1c) in the core calculus, which includes
transformations and predicates with set-valued constraints.

Theorem 4.1 (Closure under conditioning). Let S ∈ SPE and

e ∈ Event be given, where P JSK e > 0. There exists an algo-

rithm which, given S and e , returns S ′ ∈ SPE such that, for all

e ′ ∈ Event, the probability of e ′ according to S ′ is equal to the
conditional probability of e ′ given e according to S , i.e.,

P JS ′K e ′ ≡ P JSK (e ′ | e) ≔ P JSK (e ⊓ e ′)
P JSK e

. (5)

Thm. 4.1 is a structural conjugacy property [20] for the
family of probability distributions defined by the SPE domain,
where both the prior and posterior are identified by elements
of SPE. We establish Eq. (5) constructively, by describing
a new algorithm condition : SPE → Event → SPE that
satisfies

P J(condition S e)K e ′ = P JSK (e ′ | e) (6)

for all e, e ′ ∈ Eventwith P JSK e > 0. Refer to Appx. D for the
proof. Fig. 5 shows a conceptual example of how condition
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condition

(Lst. 6)

calls

disjoin (Lst. 5)

Appx. D

Conditioning Region Disjoined Region

×S

ZYX

+S ′

×
S5

ZYX

...×
S1

ZYX
Prior SPE Conditioned SPE

Figure 5. Conditioning a Product S on an Event e that de-
fines a union of hyperrectangles in Real3. The inference
algorithm partitions the region into a disjoint union, in this
case converting two overlapping regions into five disjoint
regions. The result is a Sum-of-Product, where each child is
the restriction of S to one of the disjoint hyperrectangles.

works, where the prior distribution is a Product S and the
conditioned distribution is a Sum-of-Product S ’. Fig. 4 shows
an example of the closure property when the expression has
transformed variables (details in Appx. C).

Remark 4.2. Thm. 4.1 refers to a positive probability Event
e . As with sum-product networks, SPE is also closed un-
der conditioning on a Conjunction of possibly measure zero
equality constraints on non-transformed variables, which ap-
pear in many PPL interfaces [17, 41, 51]. Appx. D.3 presents
the condition0 algorithm for inference on such events, lever-
aging the generalizedmixed-type density semantics in Lst. 1d.

The next result, Thm. 4.3, states a sufficient requirement
for inference using (condition S e) to scale linearly in the size
of S , which holds for both zero and positive measure events.

Theorem 4.3. The runtime of (condition S e) scales linearly
in the number of nodes in the graph representing S whenever

e is a single Conjunction (t1 inv1) ⊓ · · · ⊓ (tm invm) of

Containment constraints on non-transformed variables.

5 Translating Probabilistic Programs to
Sum-Product Expressions

We next present a probabilistic language called Sppl and
show how to translate each program in the language to an
element S ∈ SPE that symbolically represents (via P JSK) the
probability distribution specified by the program. As in Fig. 1,
S can then be used to answer queries about an Event e:

simulate: Samples from the distribution defined by P JSK;
prob: Computes the probability of e , using P JSK e (Lst. 1f);
condition: Conditions on e , using condition (Eq. (6)).

Lst. 2 shows the source syntax of Sppl, which contains stan-
dard constructs of an imperative language such as array
data structures, if-else statements, and bounded for loops.
The switch-case macro is defined in Eq. (4). Random vari-
ables are defined using łsamplež (~) and condition(E) can
be used to restrict executions to those for which E ∈ Expr

evaluates to #t as part of the prior definition. Lst. 3 de-
fines a relation ⟨C, S⟩ →SPE S

′, which translates a łcurrentž
S ∈ SPE and C ∈ Command into S ′ ∈ SPE, where the initial

x ∈ Var; y ∈ArrayVar; n ∈Natural; b ∈ Boolean; r ∈ Real; s ∈ String;
oarith ∈ {+, -, *, /, **}; obool ∈ {and, or}; oneg ∈ {not};
orel ∈ {<=, <, >, >=, ==, in}; D ∈ {normal, poisson, choice, . . . };
E ∈ Expr ≔ x | n | b | r | s | y[E] | D(E∗) | (E1, . . . , Em)

| E1 oarith E2 | oneg E | E1 obool E2 | E1 orel E2
C ∈ Command ≔ x = E | y[E1] = E2 | x ~ E | y[E1] ~ E2 | y = array(E)

| skip | C1;C2 | if E {C1} else {C2} | condition(E)
| for x in range(E1, E2) {C} | switch x1 cases (x2 in E) {C}

Listing 2. Source syntax of Sppl.

(Sample)

E ⇓ d ; where x < scope S

⟨x ~ E, S ⟩ →SPE S ⊗ (x d {x 7→ Id(x)})
(Transform-Leaf)

E ⇓ t ; where vars t ∈ dom(σ ), x < dom(σ )
⟨x = E, Leaf(x ′ d σ)⟩ →SPE Leaf(x ′ d (σ ∪ {x 7→ t }))

(Transform-Sum)

E ⇓ t, ∀1≤i≤m . ⟨x = E, Si ⟩ →SPE S
′
i

⟨x = E, ⊕mi=1(Si wi) →SPE ⊕mi=1(S ′i wi)

(Transform-Prod)

E ⇓ t, ⟨x = E, Sj ⟩ →SPE S
′
j ; where j ≔ min{i |(vars E) ∈ scope Si } > 0

⟨x = E, ⊗mi=1Si ⟩ →SPE ⊗mi=1,i,jSi ⊗ S ′j
(IfElse)

E ⇓ e, ⟨C1, condition S e ⟩ →SPE S1, ⟨C2, condition S (negate e)⟩ →SPE S2

⟨if E {C1} else {C2}, S ⟩ →SPE (S1 P JSK e) ⊕ (S2 (1 − P JSK e))
(For-Repeat)

E1 ⇓ n1, E2 ⇓ n2; where n1 < n2

⟨for x in range(E1, E2) {C}, S ⟩
→SPE ⟨C[x/n1]; for x in range(n1 + 1, E2) {C}, S ⟩

Listing 3. Example rules for translating an Sppl command
C (Lst. 2) to an element of SPE (Lst. 1f).

step operates on an łemptyž S . (Lst. 8 in Appx. E defines a
semantics-preserving inverse of→SPE). The ⇓ relation eval-
uates E ∈ Expr to other domains in the core calculus using
straightforward rules. We briefly describe key rules of→SPE:

(Transform-Leaf) updates the environment σ at each Leaf.
(Transform-Sum) delegates to all subexpressions.
(Transform-Prod) delegates to the subexpression whose

scope contains the transformed variable.
(For-Repeat) unrolls a for loop into a Command sequence.
(IfElse) returns a Sum with two subexpressions, where the

if branch is conditioned on the test Event and the else
branch is conditioned on the negation of the test Event.
This translation step involves running inference (using
condition, Eq. (6)) on the current S ∈ SPE translated so far.

The rule for condition(E) (not shown) calls (condition S e)
(Eq. 6) or (condition0 S e) (Remark 4.2), where E ⇓ e . To en-
sure Sppl programs translate to well-defined element of SPE,
per (C1)ś(C5)), each program must satisfy these restrictions:

(R1) Variables x in x ~E (Sample) and x =E (Transform-
Leaf) must be fresh (ensures conditions (C1), (C2) and (C3)).
(R2) The branches in an if-else statement must define iden-
tical variables (ensures conditions (C4) and (C5)).
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(a) Invalid program (translates to an infinite-sized SPE)

mu ~ beta(a=4, b=3, scale=7)

num_loops ~ poisson(mu) # invalid (real integral)

for i in range(0, num_loops): # invalid (infinite series)

[... commands ... ]

(b) Valid program (translates to a finite-sized SPE)

mu ~ beta(a=4, b=3, scale=7)

# binspace partitions [0,7] into 10 intervals

switch (mu) cases (m in binspace(0, 7, n=10)):

num_loops ~ poisson(m.mean()) # discretization

condition (num_loops < 50) # truncation

switch num_loops cases (n in range(50)):

for i in range(0, n):

[... commands ... ]

Listing 4. Examples of valid and invalid Sppl programs.

(R3) Derived random variables are obtained via (many-to-
one) univariate transformations (Lst. 1b).
(R4) Parameters of distributions D or range must be either
constants or random variables with finite support.

(R3) is required since the distribution of a multivariate
transform (e.g., Z = X/Y 2) is typically intractable and does
not factor into Sum and Product expressions. (R4) is required
to ensure a finite-size SPE: distributional parameters with
infinite support require integrals (uncountable support) or in-
finite series (countable support), which are not in SPE. Lst. 4
shows an example of using switch and condition to work
around these restrictions by discretization and truncation.

5.1 Building Compact Sum-Product Expressions

As discrete Bayesian networks can be encoded as Sppl pro-
grams, it is possible to write programs where exact inference
is NP-Hard [16], which corresponds to an element of SPE that
is exponentially large. It is well known that the complexity of
exact inference in Bayesian networks is worst case exponen-
tial in the treewidth, which is the only structural restriction
that can ensure tractability [12]. As computing treewidth is
NP-Complete [3], for fundamental theoretical reasons we
cannot generally check conditions needed for even simple
Sppl programs, such as those that only use if/else statements
on binary variables, to translate into a łsmallž expression.
However, many models of interest contain (conditional)

independence relationship [33] that induce a compact factor-
ization of themodel into tractable subparts, as in, e.g., Sec. 2.2.
Sppl uses several optimization techniques to improve scala-
bility of translation (Lst. 3) and inference (Eq. (6)) by auto-
matically exploiting independences and repeated structure,
when they exist, to build compact sum-product expressions.

Factorization Using standard algebraic manipulations, a
sum-product expression can be made smaller without chang-
ing its semantics (Lst. 1f) by łfactoring outž common terms
(Fig. 6a), provided that the new expression satisfies (C1)ś(C5).
Factorization plays a key role in the (IfElse) rule of →SPE:
since all statements before the if-else are shared by the
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Figure 6. Exploiting independences and repeated structure
during translation of Sppl programs to build compact sum-
product expressions. Blue subtrees are identical components.

Table 1. Measurements of SPE graph size with and without
the factorization and deduplication optimizations in Fig. 6.

Benchmark
No. of Nodes in Translated SPE Data Compression

Ratio (unopt/opt)Unoptimized Optimized

Hiring [2] 33 27 1.2x
Alarm [46] 58 45 1.3x
Grass [46] 130 59 2.2x
Noisy OR [46] 783 132 4.1x
Clinical Trial [46] 43761 4131 10.6x
Heart Disease [56] 1041235 6257 166.4x
Hierarchical HMM (Sec. 2.2) 29273397577908185 1787 16381308101795x

bodies of the if and else branches, statements outside the
branch that are independent of statements inside the branch
often produce subexpressions that can be factored out.

Deduplication When a sum-product expression contains
duplicate subexpressions that cannot be factored out without
violating the definedness conditions, we instead resolve du-
plicates into a single physical representative. Fig. 6b shows
an example where the left and right components of the origi-
nal expression contain an identical subexpression S (in blue),
but factorization would lead to an invalid sum-product ex-
pression. The optimizer represents the computation graph
of this expression using a single data structure S shared by
the left and right subtrees (see also Figs. 3cś3d).

Memoization While deduplication reduces memory over-
head, memoization is used to reduce runtime overhead. Con-
sider either SPE in Fig. 6b: calling condition on the Sum root
will dispatch the query to the left and right subexpressions
(Lst. 6b). We cache the results of (condition S e) or P JSK e
when S is visited in the left subtree to avoid recomputing the
result when S is visited again in the right subtree via a depth-
first traversal. Memoization delivers large runtime gains not
only for solving queries but also for detecting duplicates
returned by condition in the (IfElse) translation step.

Measurements Table 1 showsmeasurements of performance
gains delivered by the factorization and deduplication opti-
mizations on seven benchmarks. Compression ratios range
between 1.2x to 1.64×1013x and are highest in the presence of
independence or repeated structure. The deduplication and
memoization optimizations together enable fast detection of
duplicate subtrees by comparing logical memory addresses
of internal nodes in O(1) time, instead of computing hash
functions that require an expensive subtree traversal.
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Table 2. Runtime measurements and speedup for 15 fairness verification tasks using Sppl, FairSquare [2], and VeriFair [4].
Decision Population Lines Fairness Wall-Clock Runtime (seconds) Sppl Speedup Factor

Program Model of Code Judgment FairSquare VeriFair Sppl vs. FairSquare vs. VeriFair

Independent 15 Unfair 1.4 16.0 0.01 140x 1600x

DT4 Bayes Net. 1 25 Unfair 2.5 1.27 0.03 83x 42x

Bayes Net. 2 29 Unfair 6.2 0.91 0.03 206x 30x

Independent 32 Fair 2.7 105 0.03 90x 3500x

DT14 Bayes Net. 1 46 Fair 15.5 152 0.07 221x 2171x

Bayes Net. 2 50 Fair 70.1 151 0.08 876x 1887x

Independent 36 Fair 4.1 13.6 0.03 136x 453x

DT16 Bayes Net. 1 49 Unfair 12.3 1.58 0.08 153x 19x

Bayes Net. 2 53 Unfair 30.3 2.02 0.08 378x 25x

Independent 62 Fair 5.1 2.01 0.06 85x 33x

DTα16 Bayes Net. 1 58 Fair 15.4 21.6 0.12 128x 180x

Bayes Net. 2 45 Fair 53.8 24.5 0.12 448x 204x

Independent 93 Fair 15.6 23.1 0.05 312x 462x

DT44 Bayes Net. 1 109 Unfair 264.1 19.8 0.09 2934x 220x

Bayes Net. 2 113 Unfair t/o 20.1 0.09 Ð 223x

6 Evaluation

We implemented a prototype of Sppl2 and evaluated its
performance on benchmark problems from the literature.
Sec. 6.1 compares the runtime of verifying fairness prop-
erties of decision trees using Sppl to FairSquare [2] and
VeriFair [4], two state-of-the-art fairness verification tools.
Sec. 6.2 compares the runtime of conditioning and querying
probabilistic programs using Sppl to PSI [23], a state-of-the-
art tool for exact symbolic inference. Sec. 6.3 compares the
runtime of computing exact rare event probabilities in Sppl

to sampling-based estimation in BLOG [40]. Experiments
were run on Intel i7-8665U 1.9GHz CPU with 16GB RAM.

6.1 Fairness Benchmarks

Characterizing the fairness of classification algorithms is
a growing application area in machine learning [21]. Re-
cently, Albarghouthi et al. [2] precisely cast the problem of
verifying the fairness of a classifier in terms of computing
ratios of conditional probabilities in a probabilistic program
that specifies the data generating and classification processes.
Briefly, if (i) D is a decision program that classifies whether
applicant A should be hired; (ii) H is a population program
that generates random applicants; and (iii) ϕm (resp. ϕq) is a
predicate onA that is true if the applicant is a minority (resp.
qualified), then D is ϵ-fair on H (where ϵ > 0) if

PrA∼H
[
D(A) | ϕm(A) ∧ ϕq(A)

]

PrA∼H
[
D(A) | ¬ϕm(A) ∧ ϕq(A)

] > 1 − ϵ, (7)

i.e., the probability of hiring a qualified minority applicant is
ϵ-close to that of hiring a qualified non-minority applicant.

In this evaluation, we compare the runtime needed by Sppl
to obtain a fairness judgment (Eq. (7)) for machine-learned
decision and population programs against the FairSquare [2]
and VeriFair [4] solvers. We evaluate performance on the de-
cision tree benchmarks from Albarghouthi et al. [2, Sec. 6.1],

2Available in supplement and online at https://github.com/probcomp/sppl.

which are one-third of the full benchmark set. Sppl cannot
solve the neural network and support-vector machine bench-
marks, as they contain multivariate transforms which do not
have exact tractable solutions and are ruled out by the Sppl
restriction (R3). FairSquare and VeriFair can express these
benchmarks as they have approximate inference.
Table 2 shows the results. The first column shows the

decision making program (DTn means łdecision treež with
n conditionals); the second column shows the population
model used to generate data; the third column shows the
lines of code (in Sppl); and the fourth column shows the
result of the fairness analysis (FairSquare, VeriFair, and Sppl

produce the same judgment on all fifteen benchmarks). The
remaining columns show the runtime and speedup factors.
We note that Sppl, VeriFair, and FairSquare are all imple-
mented in Python, which allows for a fair comparison. The
measurements indicate that Sppl consistently obtains proba-
bility estimates in milliseconds, whereas the two baselines
can each require over 100 seconds. The Sppl speedup factors
are up to 3500x (vs. VeriFair) and 2934x (vs. FairSquare). We
further observe that the runtimes in FairSquare and VeriFair
vary significantly. For example, VeriFair uses rejection sam-
pling to estimate Eq. (7) with a stopping rule to determine
when the estimate is close enough, leading to unpredictable
runtime (e.g., >100 seconds for DT14 but <1 second for DT4,
Bayes Net. 2). FairSquare, which uses symbolic volume com-
putation and hyperrectangle sampling to approximate Eq. (7),
is faster than VeriFair in some cases (e.g., DT14), but times
out in others (DT44, Bayes Net. 2). In contrast, Sppl, com-
putes exact probabilities for Eq. (7) and its runtime does not
vary significantly across the various benchmark problems.
The performanceśexpressiveness trade-off here is that Sppl
computes exact probabilities and is substantially faster on
the decision tree problems that it can express. FairSquare
and VeriFair compute approximate probabilities that enable
them to express more fairness problems, at the cost by of a
higher and less predictable runtime on the decision trees.
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Figure 7. Comparison of multi-stage and single-stage in-
ference workflows. In Sppl, modeling, observing data, and
querying are separated into distinct stages, enabling substan-
tial efficiency gains from computation reuse across multiple
datasets and/or queries, as opposed to single-stage work-
flows such as in PSI which combine all these tasks into one
large symbolic computation (daggers/colors used in Table 4).

6.2 Comparison to Symbolic Integration

We next compare Sppl to PSI [23], a state-of-the-art sym-
bolic inference engine, on benchmark problems that include
discrete, continuous, and transformed random variables. PSI
can express more inference problems than Sppl, as it uses
general computer algebra without having restrictions (R3)
and (R4) in Sppl. As a result, Sppl can solve 14/21 bench-
marks listed in [23, Table 1]. We first discuss key architecture
novelties in Sppl that contribute to its performance gains.

Workflow Comparison In Sppl, the multi-stage modeling
and inference workflow (Fig. 7a) involves three steps that
reflect the key elements of a Bayesian inference problem:

(S1) Translating the model program into a prior SP S .
(S2) Conditioning S on data to obtain a posterior SP S ′.
(S3) Querying S ′, using, e.g., prob or simulate.

An advantage of this multi-stage workflow is that multiple
tasks can be run at a given stage without rerunning previ-
ous stages. For example, multiple datasets can be observed
in (S2) without translating the prior expression in (S1) once
per dataset; and, similarly, multiple queries can be run in (S3)
without conditioning on data in (S2) once per query. In con-
trast, PSI adopts a single-stage workflow (Fig. 7b), where a
single program contains the prior distribution over variables,
łobservež (i.e., łconditionž) statements for conditioning on a
dataset, and a łreturnž statement for the query. PSI converts
the program into a symbolic expression for the distribution
over the return value: if this expression is łcompletež (i.e.,
no unevaluated symbolic integrals) it can be used to obtain
interpretable answers (e.g., for plotting or tabulating); oth-
erwise, the result is łpartialž and is too complex to be used
for practical purposes. A consequence of the single-stage
workflow in a system like PSI is that the entire solution is
recomputed from scratch on a per-dataset or per-query basis.

Table 3. Distribution of end-to-end inference runtime for
four benchmarks from Table 4 using PSI [23] and Sppl.

Benchmark
Mean/Std Runtime (sec/sec)

PSI Sppl

Digit Recognition 26.5/1.3 15.9/0.5

Markov Switching 22.5/3.8 0.1/0.0

Student Interviews 539/663 7.8/0.2

Clinical Trial 107.3/153.2 12.7/0.3

Runtime Comparison Table 4 compares the runtime of
Sppl and PSI on seven benchmarks problems: Digit Recog-
nition [23]; TrueSkill [36]; Clinical Trial [23]; Gamma trans-
forms (described below); Student Interviews [36] (two vari-
ants); and Markov Switching (two variants, from Sec. 2.2);
The second column shows the distributions in each bench-
mark, which include continuous, discrete, and transformed
variables. The third column shows the number of datasets
on which to condition the program. The next three columns
show the time needed to translate the program (stage (S1)),
condition the program on a dataset (stage (S2)), and query
the posterior (stage (S3))Ðentries in the latter two columns
are written as n × t , where n is the number of datasets and t
the average time per dataset. For PSI: (i) modeling and ob-
serving data are a single stage, shown in the merged gray
cell; and (ii) querying the posterior times out whenever the
system returns a result with unsimplified integrals (⋉). The
last column shows the overall runtime for solving all n tasks.

For benchmarks that both systems solve completely, Sppl
realizes speedups between 3x (Digit Recognition) to 3600x
(Markov Switching3). In addition, the measurements show
the advantage of our multi-stage workflow; for example, in
TrueSkill, which uses a PoissonśBinomial distribution, Sppl
translation (3.4 seconds) is more expensive than both con-
ditioning on data (0.7 seconds) and querying (0.1 seconds),
which highlights the benefit of amortizing the translation
cost over several datasets or queries. In PSI, solving TrueSkill
takes 2×41.6 seconds, but the solution contains unsimplified
integrals and is thus unusable. The Markov Switching and
Student Interviews benchmarks show that PSI may not per-
form well in the presence of many discrete random variables.

The Gamma Transform benchmark tests the robustness of
many-to-one transforms of random variables (Lst. 1b), where
X ∼Gamma(3, 1); Y = 1/expX 2 if X < 1 and Y = 1/lnX oth-
erwise; and Z = − Y 3

+ Y 2
+ 6Y . Each of the n = 5 datasets

specifies a different constraint ϕ(Z ) and a query about the
posteriorY | ϕ(Z ), which needs to compute and integrate out
X | ϕ(Z ). PSI reports that there is an error in its answer for
all five datasets, whereas Sppl, using the symbolic transform
solver from Appx. C.2, solves all five problems effectively.

Table 3 compares the runtime variance using Sppl and PSI
for four of the benchmarks in Table 4, repeating one query
over 10 datasets. In all benchmarks, the Sppl variance is
lower than that of PSI, with a maximum standard deviation
σ = 0.5 sec. In contrast, the spread of PSI runtime is high
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Table 4. Runtime comparison of PSI [23] and Sppl.

Benchmark Distribution Datasets ⋄ System
Wall-Clock Runtime of Inference Stages Overall

TimeTranslation † Conditioning ‡ Querying ⋆

Digit
C×B784 10

Sppl 6.9 sec 10 × 7.7 sec 10 × (<0.01 sec) 84 sec
Recognition PSI 10 × 24.3 sec 10 × (<0.01 sec) 244 sec

TrueSkill P×Bi2 2
Sppl 3.4 sec 2 × 0.7 sec 2 × 0.1 sec 4.9 sec
PSI 2 × 41.60 sec ⋉ ⊘

Clinical B×U3

×B50×B50 10
Sppl 9.5 sec 10 × 2.2 sec 10 × (<0.01 sec) 31 sec

Trial PSI 10 × 107.3 sec 10 × (<0.01 sec) 1073 sec

Gamma G×T
×(T+T) 5

Sppl 0.02 sec 5 × 0.52 sec 5 × 0.03 sec 2.8 sec
Transforms PSI 5 × 0.68 sec; i/e ⋉ ⊘
Student P×B2×Bi4

×(A+Be)2 10
Sppl 4.0 sec 10 × 0.7 sec 10 × 0.2 sec 13.5 sec

Interviews2 PSI 10 × 540 sec; h/m (35GB) ⋉ ⊘
Student P×B10×Bi20

×(A+Be)10 10
Sppl 24.6 sec 10 × 3.9 sec 10 × 1.2 sec 75 sec

Interviews10 PSI o/m (64GB+) ⊘ ⊘
Markov B×B3

×N3×P3 10
Sppl 0.05 sec 10 × (<0.01 sec) 10 × (<0.01 sec) 0.5 sec

Switching3 PSI 10 × 182.9 sec 10 × (<0.01 sec) 1829 sec

Markov B×B100

×N100×P100 10
Sppl 4.1 sec 10 × 6.5 sec 10 × 0.5 sec 74 sec

Switching100 PSI o/m (64GB+) ⊘ ⊘

Legend

A: Atomic B: Bernoulli Be: Beta
Bi: Binomial C: Categorical
N: Normal G: Gamma P: Poisson
T: Transform U: Uniform

⋄ Number of distinct datasets on which to
condition the benchmark program.

†, ‡ Runtime of first two phases in Fig. 7;
PSI implements these phases in a single
computation.

⋆ Runtime of final phase in Fig. 7; same
query used for all datasets of a given bench-
mark program.

h/m High-Memory
o/m Out-of-Memory
i/e Integration Error
⋉ Unsimplified Symbolic Integrals
⊘ No Value

for Student Interviews (σ = 540 sec, range 64ś1890 sec) and
Clinical Trial (σ = 153 sec, range 2.75ś470 sec). In PSI, the
symbolic analyses are sensitive to the numeric values in the
dataset, leading to unpredictable runtime across different
datasets, even for a fixed query pattern. In Sppl, the runtime
depends only on the query pattern not the observed data
and therefore behaves predictably across different datasets.
As with the fairness benchmarks in Sec. 6.1, PSI trades

off expressiveness with efficacy on tractable problems, and
our measurements show that its runtime and memory do
not scale well or are unpredictable on benchmarks that Sppl
solves very efficiently. Moreover, the evaluations show that
PSI can return unusable inference results to the user and
that it needs to recompute entire symbolic solutions from
scratch for each new dataset or query, whereas Sppl is less
expressive than PSI but carries neither of these limitations.

6.3 Comparison to Sampling-Based Estimates

We next compare the runtime and accuracy of estimating
probabilities of rare events in a canonical Bayesian net-
work [33] using Sppl and BLOG [40]. As discussed by Koller
and Friedman [33, Sec 12.13], rare events are the rule, not
the exception, in many applications, as the probability of a
predicate ϕ(X ) decreases exponentially with the number of
observed variables inX . Small estimation errors can magnify
substantially when, e.g., taking ratios of probabilities.

In Fig. 8, each subplot shows the runtime and probability
estimates for a low-probability predicate ϕ. In BLOG, the
rejection sampler estimates the probability of ϕ by comput-
ing the fraction of times it holds in a size n i.i.d. random
sample from the prior. The horizontal red line shows the
łground truthž probability. The x marker shows the runtime
needed by Sppl to (exactly) compute the probability and the
dots show the estimates from BLOG with increasing run-
time (i.e., more samples n). Sppl consistently returns an exact
answer in less than 2ms. The accuracy of BLOG estimates
improve as the runtime increases: by the strong law of large
numbers, these estimates converge to the true value, but

the fluctuations for any single run can be large (the stan-
dard error decays as 1/

√
n). Each łjumpž corresponds to a

new sample X (j) that satisfies ϕ(X (j)), which increases the
estimate. Without ground truth, it is hard to predict how
much computation is needed for BLOG to obtain accurate
results: estimates for predicates with logp = −12.73 and
logp = −17.32 did not converge within the allotted time,
while those for logp = −14.48 converged after 180 seconds.

7 Related Work

Sppl is distinguished by being the first system to deliver exact
symbolic inference by translating probabilistic programs to
sum-product expressions, which extend and generalize sum-
product networks. We briefly discuss related approaches.
Symbolic Integration Several systems deliver exact infer-
ence by translating a probabilistic program and observed
dataset into a symbolic expression whose solution is the an-
swer to the query [6, 10, 23, 43, 69]. Our approach to exact
inference, which uses sum-product expressions instead of
general computer algebra, enables effective performance on
a range of models and queries, primarily at the expense of
the expressiveness of the language on continuous priors. The
state-of-the-art solver, PSI [23], can effectively solve many
inference problems that Sppl cannot express due to restric-
tions (R1)ś(R4), including higher-order programs [24]. How-
ever, comparisons on benchmarks that Sppl targets (Sec. 6.2)
find PSI has less scalable and higher variance runtime, and
can return partial results with unsimplified symbolic inte-
grals. In contrast, Sppl exploits conditional independences,
when they exist, to improve scalability (Sec. 5.1) and delivers
complete, usable answers to users. Moreover, Sppl’s multi-
stage workflow (Fig. 7) allows expensive computations such
as translation and conditioning to be amortized over multiple
datasets or queries, whereas PSI recomputes the symbolic
solution from scratch each time. Hakaru [43] is a symbolic
solver that delivers exact inference in a multi-stage work-
flow based on program transformations, and can disintegrate
against a variety of base measures [44]. This paper compares
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Figure 8. Runtime comparison for computing probabilities using exact inference in Sppl and rejection sampling in BLOG.

against PSI because the reference Hakaru implementation
crashes or delivers incorrect or partial results on several
benchmark problems [23, Table 1], and, as mentioned by
the developers, does not support constructs such as arrays
needed to support dozens or hundreds of observations.
Symbolic Execution and Volume Computation: Previ-
ous work has addressed the problem of computing the prob-
ability of a predicate by integrating a distribution defined
by a program [2, 25, 55, 61]. For example, Geldenhuys et al.
[25] present a probabilistic symbolic execution technique
that uses model counting to compute path probabilities, as-
suming that all program variables are discrete and uniformly
distributed. While Sppl can model a variety of distributions,
due to restriction (R3) it only supports predicates that specify
rectangular regions, whereas several of the aforementioned
systems can (approximately) handle non-rectangular regions.
More specifically, predicates in Sppl may include combina-
tions of nonlinear transforms, each of a single variable, which
are solved into linear expressions that specify unions of dis-
joint hyperrectangles (Appx. C.2). Table 2 shows that Sppl
delivers substantial speedup on the hyperrectangular regions
specified by the important class of decision trees, which are
widely used in interpretable machine learning applications.
Sum-Product Networks: The SPFlow library [41] is an
object-oriented łgraphical model toolkitž in Python for con-
structing and querying sum-product networks. Sppl lever-
ages a new and more general sum-product representation
(Lst. 1) and solves probability and conditioning queries that
are not supported by SPFlow (Thm. 4.1), which includemixed
random variables, numeric transforms, and logical predicates
with set-valued constraints. In addition, we introduce a novel
translation strategy (Sec. 5) that allows users to specify mod-
els as generative code in a PPL (using e.g., variables, arrays,
arithmetic and logical expressions, loops, branches) without
having to manually manipulate low-level data structures.
łFactored sum-product networksž [58] have been used as
intermediate representations for converting a probabilistic
program and any functional interpreter into a system of
equations whose solution is the marginal probability of the
program’s return value. These algorithms handle recursive
procedures and leverage dynamic programming, but only
apply to discrete variables, cannot handle transforms, and
require solving fixed-points. Moreover, they have not been
quantitatively evaluated on PPL benchmark problems.

Weighted Model Counting/Integration: A common ap-
proach to probabilistic inference is using algorithmic re-
ductions from probabilistic programs to weighted-model
counting (WMC) or integration (WMI) via knowledge com-
pilation [5, 15, 19, 22, 66]. For example, Symbo [70] leverages
WMI for exact inference in hybrid domains, using sentinel
decision diagrams as the representation and the PSI solver to
symbolically integrate over continuous variables. Dice [30]
leverages WMC for scaling exact inference in discrete prob-
abilistic programs and uses binary decision diagram repre-
sentations that automatically exploit program structure to
factorize inference. The representations in Dice enable sub-
stantial computation reuse for querying and/or conditioning,
such as computing łall-marginalž probabilities by reusing
the same compiled representation multiple times. Sppl also
leverages factorization and computation reuse, but uses a dif-
ferent representation based on sum-product expressions that
handle additional computations such as numeric transforms
and continuous and mixed-type random variables.
Probabilistic Program Synthesis: Existing PPL synthesis
systems for tabular data [13, 53] produce programs in lan-
guages that are subsets of Sppl, which enable automatic
synthesis of full Sppl programs from data. Sppl can also
unify and extend custom PPL query engines used in these
systems for tasks such as similarity search and dependence
detection [49, 50, 52]. It may also be fruitful to use struc-
ture discovery methods for time series [1, 54] or relational
data [32] to synthesize Sppl programs for these domains.

8 Conclusion

We have presented Sppl, a new system that automatically
delivers exact answers to a range of probabilistic inference
queries. A key insight in Sppl is to impose restrictions on
probabilistic programs that enable them to be translated to
sum-product expressions, which are highly effective rep-
resentations for inference. Our evaluation highlights the
efficacy of Sppl on inference tasks in the literature and un-
derscores the importance of key design decisions, including
the multi-stage inference workflow and techniques used to
build compact expressions by exploiting probabilistic struc-
ture. In addition to its efficacy as a standalone language, we
further anticipate that Sppl could be useful as an embed-
ded domain-specific language within more expressive PPLs,
combining the benefits of exact and approximate inference.
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