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Abstract

This paper presents a new analysis technique, commutativity
analysis, for automatically parallelizing computations that
manipulate dynamic, pointer-based data structures. Com-
mutativity analysis views the computation as composed of
operations on objects. It then analyzes the program at this
granularity to discover when operations commute (i.e. gen-
erate the same final result regardless of the order in which
they execute). If all of the operations required to perform a
given computation commute, the compiler can automatically
generate parallel code.

We have implemented a prototype compilation system that
uses commutativity analysis as its primary analysis frame-
work. We have used this system to automatically parallelize
two complete scientific computations: the Barnes-Hut N-
body solver and the Water code. This paper presents perfor-
mance results for the generated parallel code running on the
Stanford DASH machine. These results provide encouraging
evidence that commutativity analysis can serve as the basis
for a successful parallelizing compiler.

1 Introduction

Parallelizing compilers promise to dramatically reduce the
difficulty of developing software for parallel computing en-
vironments. Existing parallelizing compilers use data de-
pendence analysis to detect independent computations (two
computations are independent if neither accesses data that the
other writes), then generate code that executes these compu-
tations in parallel. In the right context this approach works
well — researchers have successfully used data dependence
analysis to parallelize computations that manipulate dense
arrays using affine access functions [1, 30, 12, 16]. But data
dependence analysis is, by itself, inadequate for computations
that manipulate dynamic, pointer-based data structures. Its
limitations include a need to perform complicated analysis to
extract global properties of the data structure topology and an
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inherent inability to parallelize computations that manipulate
graphs [2].

We believe the key to automatically parallelizing dynamic,
pointer-based computations is to recognize and exploit com-
muting operations, or operations that generate the same final
result regardless of the order in which they execute. Even
though traditional compilers have not exploited commuting
operations, these operations play an important role in other
areas of parallel computing. Explicitly parallel programs,
for example, often use locks, monitors and critical regions
to ensure that operations execute atomically [22]. For the
program to execute correctly, the programmer must ensure
that all of the atomic operations commute. Four of the six
parallel applications in the SPLASH benchmark suite [37]
and three of the four parallel applications described in [35]
rely on commuting operations to expose the concurrency and
generate correct parallel execution. This experience suggests
that compilers will be unable to parallelize a wide range of
computations unless they to recognize and exploit commut-
ing operations.

We have developed a new analysis framework called com-
mutativity analysis. This framework is designed to automati-
cally recognize and exploit commuting operations to generate
parallel code. It views the computation as composed of ar-
bitrary operations on arbitrary objects. It then analyzes the
computation at this granularity to determine if operations
commute. If all of the operations in a given computation
commute, the compiler can automatically generate parallel
code. Even though the code may violate the data depen-
dences of the original serial program, it is still guaranteed to
generate the same result.

We have built a complete prototype compilation system
based on commutativity analysis. This compilation system is
designed to automatically parallelize unannotated programs
written in a subset of C++. The dynamic nature of our tar-
get application set means that the compiler must rely on a
run-time system to provide basic task management function-
ality such as synchronization and dynamic load balancing.
We have implemented a run-time system that provides this
functionality. It currently runs on the Stanford DASH multi-
processor [25] and on multiprocessors from Silicon Graphics.

We have used the compilation system to automatically par-
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allelize two complete scientific applications: the Barnes-Hut
N-body solver [3] and the Water code [42]. The Barnes-Hut
is representative of our target class of dynamic computations:
it performs well because it uses a pointer-based data struc-
ture (a space subdivision tree) to organize the computation.
The Water code is a more traditional scientific computation
that organizes its data as arrays of objects representing wa-
ter molecules. We have collected performance results for
the generated parallel code running on the Stanford DASH
machine. These results indicate that commutativity analysis
may be able to serve as the basis for a successful parallelizing
compiler.

This paper makes the following contributions:

� It describes an new analysis framework, commutativity
analysis, that can automatically recognize and exploit
commuting operations to generate parallel code.

� It describes extensions to the basic commutativity anal-
ysis framework. These extensions significantly increase
the range of programs that commutativity analysis can
effectively parallelize.

� It presents several analysis algorithms that a compiler
can use to automatically recognize commuting opera-
tions, discover parallelizable computations and generate
parallel code.

� It presents performance results for automatically paral-
lelized versions of two scientific computations. These
results support the thesis that it is possible to use commu-
tativity analysis as the basis for a successful parallelizing
compiler.

Although we designed commutativity analysis to paral-
lelize serial programs, it may also benefit other areas of
computer science. For example, commuting operations al-
low computations on the persistent data in object-oriented
databases to execute in parallel. Transaction processing sys-
tems can exploit commuting operations to use more efficient
locking algorithms [40]. Commuting operations make proto-
cols from distributed systems easier to implement efficiently;
the corresponding reduction in the size of the associated state
space may make it easier to verify the correctness of the
protocol. In all of these cases the system relies on com-
muting operations for its correct operation. Automatically
recognizing or verifying that operations commute may there-
fore increase the efficiency, safety and/or reliability of these
systems.

The remainder of the paper is structured as follows. Sec-
tion 2 presents an example that shows how commuting op-
erations enable parallel execution. Section 3 presents an
overview of the commutativity analysis framework. Sec-
tion 4 presents the analysis algorithms that the compiler uses.
Section 5 describes how the compiler generates parallel code.
Section 6 presents the experimental performance results for
two automatically parallelized applications. Section 7 de-
scribes some directions for future research. We survey related
work in Section 8 and conclude in Section 9.

2 An Example

This section presents an example that shows how commuting
operations enable parallel execution. The visit operation
in Figure 1 serially traverses a graph. When the traversal
completes, each node’s sum instance variable contains the
sum of its original value and the values of the val instance
variables in all of the nodes that directly point to that node.
The example is written in C++.

class graph {
boolean mark;
int val, sum;
graph *left; graph *right;

};

graph::visit(int p) {
sum = sum + p;
if (!mark) {
mark = TRUE;
if (left != NULL)
left->visit(val);

if (right != NULL)
right->visit(val);

}
}

Figure 1: Serial Graph Traversal

The traversal generates onevisit operation for each edge
in the graph. Each operation traverses a graph node; this node
is called the receiver of the operation. Eachvisit operation
takes as a parameter p the value of the instance variable val
of the node that points to the receiver. The operation first adds
p into the running sum stored in the receiver’s sum instance
variable. It then checks the receiver’smark instance variable
to see if the traversal has already visited the receiver. If not,
the operation marks the receiver, then recursively invokes the
visit operation for all of the nodes that the receiver points
to.

The way to parallelize the traversal is to execute the two
recursive visit operations concurrently. But this paral-
lelization may violate the data dependences. The serial com-
putation executes all of the accesses generated by the left
traversal before all of the accesses generated by the right
traversal. If the two traversals visit the same node, in the
parallel execution the right traversal may visit the node be-
fore the left traversal, changing the order of reads and writes
to that node. This violation of the data dependences may
generate cascading changes in the overall execution of the
computation. Because of the marking algorithm, a node only
executes the recursive calls the first time it is visited. If the
right traversal reaches a node before the left traversal, the
parallel execution may also change the order in which the
overall traversal is generated.

In fact, none of these changes affects the overall result of
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the computation. It is possible to automatically parallelize
the computation even though the resulting parallel program
may generate computations that differ substantially from the
original serial computation. The key property that enables
the parallelization is that the parallel computation generates
the same set of visit operations as the serial computation
and the generatedvisit operations can execute in any order
without affecting the overall behavior of the traversal.

Given this commutativity information, the compiler can
automatically generate the parallel visit operation in
Figure 2. The top level visit operation first invokes
the parallel visit operation, then invokes the wait
construct, which blocks until all parallel tasks created by
the current task or its descendant tasks finishes. The
parallel visit operation executes the recursive calls
concurrently using the spawn construct, which creates a
new task for each operation. A straightforward application
of lazy task creation techniques [26] can increase the gran-
ularity of the resulting parallel computation. The compiler
also augments each graph node with a mutual exclusion
lock mutex. The generated parallel operations use this lock
to ensure that they execute atomically.

class graph {
lock mutex;
boolean mark;
int val, sum;
graph *left; graph *right;

};

graph::visit(int p) {
this->parallel_visit(p);
wait();

}

graph::parallel_visit(int p) {
mutex.acquire();
sum = sum + p;
if (!mark) {
mark = TRUE;
mutex.release();
if (left != NULL)
spawn(left->parallel_visit(val));

if (right != NULL)
spawn(right->parallel_visit(val));

} else {
mutex.release();

}
}

Figure 2: Parallel Graph Traversal

3 Basic Concepts

Commutativity analysis exploits the structure present in
object-based programs to guide the parallelization process.
In this section we present the basic concepts behind this ap-
proach.

3.1 Model of Computation

We explain the basic model of computation for commutativ-
ity analysis as applied to pure object-based programs. Such
programs structure the computation as a sequence of opera-
tions on objects. Each object implements its state using a set
of instance variables. Each instance variable can be either a
nested object, a primitive type from the underlying language
such as an integer, a pointer to an object or a double, or an
array of nested objects or primitive types. In the example in
Figure 2 each graph node is an object.

Programmers define operations by writing methods. Each
operation corresponds to a method invocation: to execute an
operation, the machine executes the code in the correspond-
ing method. Each operation has a receiver object and several
parameters that are passed by value to the operation. When
an operation executes it can access the parameters, invoke
other operations or access the instance variables of the re-
ceiver. There are several restrictions on instance variable
access. If the instance variable is an instance variable of a
nested object, the operation can not directly access the in-
stance variable — it can only access the variable indirectly
by invoking operations that have the nested object as the re-
ceiver. If the instance variable is declared in a parent class
from which the receiver’s class inherits, the operation can not
directly access the instance variable — it can only access the
variable indirectly by invoking operations whose receiver’s
class is the parent class.

Commutativity analysis is designed to work with sepa-
rable operations. An operation is separable if it can be
decomposed into an object section and an invocation sec-
tion. The object section performs all accesses to the receiver.
The invocation section invokes other operations and does not
access the receiver. It is of course possible for local vari-
ables to carry values computed in the object section into the
invocation section, and both sections can access the parame-
ters. The motivation for separability is that the commutativity
testing algorithm (which determines if operations commute)
requires that each operation’s accesses to the receiver exe-
cute atomically with respect to the operations that it invokes.
Separability ensures that the actual computation obeys this
constraint. Separability imposes no expressibility limitations
— it is possible to automatically decompose any method into
a collection of methods whose invocations are all separable
via the introduction of auxiliary methods.

3.2 Extents

A policy in the compiler must choose computations to attempt
to parallelize. The current policy is that the compiler analyzes
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one computation for each method; that computation consists
of all operations either directly or indirectly executed as a re-
sult of executing the given method. The compiler computes a
conservative approximation to the set of executed operations.
This approximation is called the extent of the method. If the
compiler can verify that all pairs of operations in an extent
commute, it marks the method that generated the extent as a
parallel method. If some of the pairs may not commute, it
marks the method as a serial method.

3.3 Commutativity Testing

The foundation of commutativity analysis is a set of condi-
tions that the compiler can use to test if two operations A and
B commute. These commutativity testing conditions must
consider two execution orders: the execution order A;B in
which A executes first then B executes, and the execution
order B;A in which B executes first then A executes. The
two operations commute if they meet the following commu-
tativity testing conditions:

� Instance Variables: The new value of each instance
variable of the receiver objects of A and B under the
execution order A;B must be the same as the new value
under the execution order B;A.

� Invoked Operations: The multiset of operations di-
rectly invoked by either A or B under the execution or-
der A;B must be the same as the multiset of operations
directly invoked by either A or B under the execution
order B;A.

Both commutativity testing conditions are trivially satisfied
if the two operations have different receivers or if neither
operation writes an instance variable that the other accesses
— in both of these cases the operations are independent. If
the operations may not be independent, the compiler reasons
about the values computed in the two execution orders. We
illustrate this concept by applying it to the sum instance vari-
able in the example in Figure 1. We assume two invocations
r->visit(p1) and r->visit(p2) of the visit opera-
tion. r->visit(p1) has parameter p1, r->visit(p2)
has parameter p2 and both operations have the same receiver
r.

Table 1 contains the two expressions denoting the new
values of sum under the two execution orders. In these ex-
pressions sum represents the old value of the sum instance
variable before either operation executes. It is possible to de-
termine by algebraic reasoning that both expressions denote
the same value.1 The compiler can use a similar approach to
discover that the values of the other instance variables are the
same in both execution orders and that together the operations
always directly invoke the same multiset of operations.

1We ignore here potential anomalies caused by the finite representation of
numbers. A compiler switch that disables the exploitation of commutativity
and associativity for operators such as+ will allow the programmer to prevent
the compiler from performing transformations that may change the order in
which the parallel program combines the summands.

Execution Order New Value of sum
r->visit(p1);r->visit(p2) (sum+p1)+p2
r->visit(p2);r->visit(p1) (sum+p2)+p1

Table 1: New Values of sum Under Different Execution
Orders

3.4 Symbolic Execution

The compiler uses symbolic execution [20] to extract the ex-
pressions that denote the new values of instance variables
and the multiset of invoked operations. Symbolic execution
simply executes the methods, computing with expressions
instead of values. It maintains a set of bindings that map
variables to the expressions that denote their values and up-
dates the bindings as it executes the methods.

In certain circumstances the compiler may be unable to
extract expressions that precisely represent the values that an
operation computes. In the current compiler this may hap-
pen, for example, if the method contains unstructured flow of
control constructs such as goto constructs. In this case the
compiler marks the method as unanalyzable; the commuta-
tivity testing phase conservatively assumes that invocations
of unanalyzable methods commute with no operation.

3.5 Extensions

We have found it useful to extend the analysis framework
to handle several situations that fall outside the basic model
of computation outlined in Section 3.1. These extensions
significantly increase the range of programs that the compiler
can successfully analyze.

3.5.1 Extent Constants

All of the conditions in the commutativity testing algorithm
check expressions for equality. In certain cases the compiler
may be able to prove that two values are equal without rep-
resenting the values precisely in closed form. Consider the
execution of an operation in the context of a given extent. If
the operation reads a variable that none of the operations in
the extent write, the variable will have the same value regard-
less of when the operation executes relative to all of the other
operations in the extent. We call such a variable an extent
constant variable.

If the operation computes a value that does not depend on
state modified by the other operations in the extent, the value
will be the same regardless of when the operation executes
relative to all of the other operations in the extent. In this case
the compiler can represent the value with an opaque constant
instead of attempting to derive a closed form expression. We
call such a value an extent constant value, the expression that
generated it an extent constant expression and the opaque
constant an extent constant. Extent constants improve the
analysis in several ways:
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� They support operations that directly access global vari-
ables and instance variables of objects other than the
receiver of the operation. The constraint is that such
variables must be extent constants.

� They improve the efficiency of the compiler by support-
ing compact representations of expressions. These rep-
resentations support efficient simplification and equality
testing algorithms.

� They extend the range of constructs that the compiler can
effectively analyze to include otherwise unanalyzable
constructs that only access extent constants.

The compiler relaxes the notion of separability to allow the
invocation section to compute extent constant values, even if
the invocation section must access instance variables to do
so.

3.5.2 Auxiliary Operations

For modularity purposes programmers often encapsulate the
computation of values inside an operation. The caller obtains
the computed values either as the return value of the operation
or via local variables passed by reference into the operation.
We call such operations auxiliary operations. Integrating
such operations into their callers for analysis purposes can
improve the effectiveness of the commutativity testing algo-
rithm. The integration coarsens the granularity of the anal-
ysis, reducing the number of pairs that the algorithm tests
for commutativity and increasing the ability of the compiler
to recognize parallelizable computations. Because auxiliary
operations are conceptually part of the operation that invokes
them, the compiler relaxes the notion of separability to allow
the object section to invoke auxiliary operations.

4 Analysis Algorithms

In this section we present analysis algorithms that a compiler
can use to realize the basic approach outlined in Section 3.
The algorithms use the type information to characterize how
method invocations access data. This data access information
is then used to identify extent constant variables,auxiliary op-
erations and independent operations. The basic assumption
behind this approach is that the program does not violate its
type declarations.

For presentation purposes we assume that no operation
returns a value (it can achieve the same functionality using
reference parameters); the algorithms generalize to handle
auxiliary operations with return values.

4.1 Overview

Given a method, the compiler first identifies the set of vari-
ables that the computation rooted at the method reads but
does not write. This set is called the set of extent constant
variables; the compiler uses this set to identify auxiliary op-
erations and extent constant expressions. The compiler then

performs a depth-first search of the call graph, identifying
call sites that always invoke auxiliary operations and com-
puting the extent of the method. The presented algorithms
represent the extent as a set of methods. When possible
the implemented compiler also extracts an expression for
each parameter of a potentially invoked method that denotes
that parameter’s value. These expressions improve the pre-
cision of the commutativity testing phase — they increase
the compiler’s ability to prove that expressions involving the
parameters denote identical values.

Once it has extracted the extent, the compiler verifies that
all of the operations in the extent are separable and do not
violate several reference parameter usage constraints. It also
checks that none of the operations perform any input or out-
put or create new objects. Finally, it tests that all pairs of
operations in the extent commute. If so, it is possible to par-
allelize the original method. Figure 3 presents the algorithm;
in the succeeding sections we discuss each of the routines
that it uses to perform the analysis.

isParallel(m)
ec = extentConstantVariables(m);
hext; auxi = extent(m; ec);
if (!checkReferenceParameters(m; ext)) return false;
ms = fmg [ map(method; ext);
for all m1 2 ms

if (!separable(m1; aux; ec)) return false;
if (mayPerformIO(m1)) return false;
if (mayCreateObject(m1)) return false;

for all hm1;m2i 2 ms� ms
if (!commute(m1;m2; aux; ec)) return false;

return true;

Figure 3: Algorithm to Recognize Parallel Methods

4.2 Basic Functionality

We first describe the basic functionality that provides the
foundation for the analysis algorithms. The program defines
a set of classes cl 2 CL, primitive instance variables v 2 V,
nested object instance variables n 2 N, local variables l 2 L,
methods m 2 M, call sites c 2 C, primitive types t 2 T and
formal reference parameters p 2 P. The compiler considers
any parameter whose declared type is a pointer to a primitive
type, an array of primitive types or a reference (in the C++
sense) to a primitive type to be a reference parameter. If a
parameter’s declared type is a pointer or reference to a class,
it is not considered to be a reference parameter.

The analysis represents memory locations using storage
descriptors s 2 S = P [ L [ T [ CL � V [ CL � Q � V,
where q 2 Q = seq(N) is the set of nonempty sequences
of nested object names. We write an element of Q in the
form n1:n2 : : : ni, an element of CL � Q � V in the form
cl:n1:n2 : : : ni:v and an element of CL � V in the form cl:v.
class : CL � Q ! CL gives the class of a nested object.
type : S ! T gives the type of a storage descriptor. lift :
S ! T [ CL � V [ CL � Q � V translates local variables
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and parameters to their primitive types. The definition is
lift(s) = type(s) when s 2 P [ L and s otherwise.

There is a partial order � on S. Conceptually s1 � s2 if
the set of memory locations that s1 represents is a subset of
the set of memory locations that s2 represents. cl1:v � cl2:v
if cl1 inherits from cl2 or cl1 = cl2. cl1:q1:v � cl2:v and
cl1:q1:q2:v � cl2:q2:v if class(cl1:q1) inherits from cl2 or
class(cl1:q1) = cl2. s1 � s2 if type(s1) = s2.

Given a method, callsites : M ! 2C returns its set
of call sites and referenceParameters : M ! 2P

returns its set of formal reference parameters. Given a
call site, method : C ! M returns the invoked method.
map(f;A) = ff(a):a 2 Ag.
I is the identity function on S. Bindings b : B = P ! S

represent bindings of formal reference parameters to storage
descriptors. Given a binding b, the extension b of b to S is
defined by b(s) = s when s 62 P and b(s) otherwise. Given
a call site and a binding, bind : C � B ! B represents the
binding of formal to actual parameters that takes place when
the method at the call site is invoked in the context of the
given binding.

The compiler performs some local analysis on each
method to extract several functions that describe the way
the method accesses memory. Given a method and a bind-
ing, read : M� B ! 2S returns a set of storage descriptors
that represent how the method reads data. For example,
hcl; vi 2 read(m; b) if the method m in the context of the
binding b reads the instance variable v in an object of class cl.
p 2 read(m; b) if m reads the reference parameter p in the
context of the binding b. Similarly, write : M � B ! 2S

represents how the method writes data. dep : C ! 2S rep-
resents the memory locations that the surrounding method
reads to compute the values in the reference parameters at
the given call site.

In the remainder of this section we will use the code in
Figure 4 as a running example to illustrate the application
of the analysis algorithms. We have numbered the method
invocation sites in this code to distinguish between different
invocations of the same method. The example is a simplified
version of the force computation phase of the Barnes-Hut
algorithm described in Section 6.2.2

4.3 Extent Constant Variables

The extentConstantVariables routine in Figure 5
computes the set of extent constant variables for a given
method. The transitiveEffects routine performs the
core computation, using abstract interpretation to compute
a read set and write set of storage descriptors that accu-
rately represent how the computation may read and write
data. filter prunes the read set so that it only contains
storage descriptors that represent memory locations that the
computation does not write.

2The example uses the type safe C++ dynamic cast construct. Because of
front end limitations the current compiler does not handle this construct. The
compiled code whose performance is described in Section 6.2.4 therefore
uses the standard C cast construct.

extentConstantVariables(m)
hrd; wri = transitiveEffects(m);
rd = map(lift; rd);
wr = map(lift; wr);
hrd; wri = filter(rd;wr);
return rd;

transitiveEffects(m)
rd = ;; wr = ;;
visited = ;;
current = fhm;Iig;
while (current 6= ;)
next = ;;
for all hm0; bi 2 current

for all c 2 callsites(m0)
next = next [ fhmethod(c);bind(c; b)ig;

rd = rd [ read(m0; b);
wr = wr [ write(m0; b);

visited = visited [ current;
current = next� visited;

rd = rd� L;
wr = wr � L;
return hrd; wri;

filter(rd;wr)
for all s 2 rd

for all s0 2 wr

if (s � s0)
rd = rd� fsg;
wr = wr [ fsg;

else if (s0 � s)
rd = rd� fsg;

return hrd; wri;

Figure 5: Extent Constant Variables Algorithm
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const int NDIM 3;
class vector f

double val[NDIM];
public:

void vecAdd(double v[NDIM])f
for(int i=0; i < NDIM; i++) val[i] += v[i];

g
g;

class node f
public:

double mass; // body’s mass of combined cell/leaf mass
vector pos; // body’s position or cell/leaf aggregate center of mass

g;

const int NSUB 8; // 2**NDIM for NDIM Dimension problems
class cell : public node f
public:

node *subp[NSUB];
g;
const int LEAFMAXBODIES 16;
class leaf : public node f
public:

int numbodies;
body *bodyp[LEAFMAXBODIES];

g;
class body : public node f

vector vel; // velocity
vector acc; // acceleration
double phi; // interaction potential

public:
double subdivp(node *p, double dsq);
void gravsub(node *n);
double computeInter(node *n, double *res);
void openCell(node *n, double dsq);
void openLeaf(node *n);
void walksub(node *n, double dsq);

g;
class nbody f
public:

int numbodies; // total number of bodies in simulation
body **bodies; // set of bodies in the simulation
node *BH root; // root of the Barnes-Hut tree
double size; // Space bounding box maximum side size
void computeForces();

g;
class parms f
public:

double tolSq; // square of numeric tolerance
double eps; // epsilon
double epsSq; // epsilon square

g;
// Global Variables
parms Parms;
nbody Nbody;

double body::subdivp(node *n, double dsq)f
double drsq, d;
drsq = Parms.epsSq;
for(int i=0; i < NDIM; i++)f

d = n->pos.val[i] - pos.val[i];
drsq += d * d;

g
return ((Parms.tolSq *drsq) < dsq);

g

double body::computeInter(node *n, double *res)f
double inc, r, drsq, d;
drsq = Parms.eps;
for(int i=0; i < NDIM; i++)f

d = n->pos.val[i] - pos.val[i];
drsq += d * d;

g
inc = n->mass / sqrt(drsq);
r = inc / drsq;
for (int i=0; i < NDIM; i++)

res[i] *= r;
return inc;

g

void body::gravsub(node *n)f
double d;
double tmpv[NDIM];

1:d = this->computeInter(n,tmpv);
phi -= d;

2:acc.vecAdd(tmpv);
g

void body::openCell(cell *c, double dsq)f
node *n;
for(int i=0; i < NSUB; i++)f

n = c->subp[i];
if(n != NULL)

3: this->walksub(n,(dsq/4.0));
g

g

void body::openLeaf(leaf *l)f
body *b;
for(int i=0; i < l->numbodies; i++)f

b = l->bodyp[i];
if(b != this)

4: this->gravsub(b);
g

g

void body::walksub(node *n, double dsq)f
cell *c;
leaf *l;

5: if(this->subdivp(n,dsq))f
c = dynamic cast<cell*>n;
if(c != NULL)f

6: this->openCell(c,dsq);
g else f

l = dynamic cast<leaf*>n;
if(l != NULL)

7: this->openLeaf(l);
g

g else f
8: this->gravsub(n);
g

g
void nbody::computeForces()f

body *b;
for(int i=0; i < numbodies; i++)f

b = bodies[i];
9: b->walksub(BH root,size*size);
g

g

Figure 4: Simplified Barnes-Hut Force Computation code
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Figure 6 presents the extracted read, write and dep
functions for the methods in the example. Figure 7 presents
the results of the extent constant variables computation for
all of the methods in the example. We show the intermediate
results of the computation for the method body::gravsub.

Method: vector::vecAdd
read(vector::vecAdd; b) = fthis.val; b(v)g
write(vector::vecAdd; b) = fthis.valg

Method: body::computeInter
read(body::computeInter; b) =

fnode.mass,node.pos.val,parms.epsg
write(body::computeInter; b) = fb(res)g

Method: body::subdivp
read(body::subdivp; b) =

fnode.pos.val,parms.epsSq,parms.tolSqg
write(body::subdivp; b) = ;

Method: body::gravsub
read(body::gravsub; b) = fbody.phig
write(body::gravsub; b) = fbody.phig
dep(1) = ;
dep(2) = fnode.mass,node.pos.val,parms.epsg

Method: body::openCell
read(body::openCell; b) = fcell.subpg
write(body::openCell; b) = ;
dep(3) = fcell.subpg

Method: body::openLeaf
read(body::openLeaf; b) = fleaf.numbodies,leaf.bodypg
write(body::openLeaf; b) = ;
dep(4) = fleaf.numbodies,leaf.bodypg

Method: body::walksub
read(body::walksub; b) = ;
write(body::walksub; b) = ;
dep(5) = ;
dep(6) = fnode.pos.val,parms.epsSq,parms.tolSqg
dep(7) = fnode.pos.val,parms.epsSq,parms.tolSqg
dep(8) = fnode.pos.val,parms.epsSq,parms.tolSqg

Method: nbody::computeForces
read(nbody::computeForces; b) =

fnbody.numbodies,nbody.bodiesg
write(nbody::computeForces; b) = ;
dep(9) = fnbody.numbodies,nbody.bodies,

nbody.BH root,nbody.sizeg

Figure 6: read, write and dep Functions for Barnes-Hut

4.4 Extents and Auxiliary Operations

Given a method and a set of extent constant variables, the
algorithm in Figure 8 computes the set of call sites that always
invoke auxiliary operations; each such call site is called an
auxiliary call site. The algorithm also computes the extent of

transitiveEffects(body::computeInter) = hrd0; wr0i
where
rd0 = fnode.mass,node.pos.val,parms.epsg
wr0 = ;

transitiveEffects(body::gravsub) = hrd1; wr1i where
rd1 = fnode.mass,node.pos.val,body.phi,body.acc.val,

parms.epsg
wr1 = fbody.phi,body.acc.valg

rd2 = map(lift; rd1) = fnode.mass,node.pos.val,
body.phi,body.acc.val,parms.epsg

wr2 = map(lift; wr1) = fbody.phi,body.acc.valg
filter(rd2; wr2) = hrd3; wr3i where
rd3 = fnode.mass,node.pos.val,parms.epsg
wr3 = fbody.phi,body.acc.valg

extentConstantVariables(body::gravsub) = rd3 where
rd3 = fnode.mass,node.pos.val,parms.epsg

transitiveEffects(body::openLeaf) = hrd4; wr4i where
rd4 = fnode.mass,node.pos.val,body.phi,body.acc.val,

parms.eps,leaf.numbodies,leaf.bodypg
wr4 = fbody.phi,body.acc.valg

extentConstantVariables(body::openLeaf) =
fnode.mass,node.pos.val,parms.eps,leaf.numbodies,
leaf.bodypg

transitiveEffects(body::openCell) = hrd5; wr5i where
rd5 = fnode.mass,node.pos.val,body.phi,body.acc.val,

leaf.numbodies,leaf.bodyp,cell.subp,
parms.eps,parms.epsSq,parms.tolSqg

wr5 = fbody.phi,body.acc.valg
extentConstantVariables(body::openCell) =

fnode.mass,node.pos.val,leaf.numbodies,
leaf.bodyp,cell.subp,parms.eps,parms.epsSq,parms.tolSqg

transitiveEffects(body::walksub) = hrd6; wr6i where
rd6 = fnode.mass,node.pos.val,body.phi,body.acc.val,

leaf.numbodies,leaf.bodyp,cell.subp,
parms.eps,parms.epsSq,parms.tolSqg

wr6 = fbody.phi,body.acc.valg
extentConstantVariables(body::walksub) =

fnode.mass,node.pos.val,leaf.numbodies,leaf.bodyp,
cell.subp,parms.eps,parms.epsSq,parms.tolSqg

transitiveEffects(nbody::computeForces) = hrd7; wr7i
where

rd7 = fnode.mass,node.pos.val,body.phi,body.acc.val,
leaf.numbodies,leaf.bodyp,cell.subp,
parms.eps,parms.epsSq,parms.tolSq,
nbody.numbodies,nbody.bodies,nbody.BH root,nbody.sizeg

wr7 = fbody.phi,body.acc.valg
extentConstantVariables(nbody::computeForces) =

fnode.mass,node.pos.val,leaf.numbodies,
leaf.bodyp,cell.subp,parms.eps,parms.epsSq,parms.tolSq,
nbody.numbodies,nbody.bodies,nbody.BH root,nbody.sizeg

Figure 7: Extent Constant Variables Computation
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the method. Note that auxiliary operations are not included
in the extent.

global visited = ;;
global ext = ;;
global aux = ;;
extent(m; ec)
visited = ;;
ext = ;;
aux = ;;
compute ext aux(m; ec);
return hext; auxi;

compute ext aux(m; ec)
if (m 62 visited)
visited = visited [ fmg;
for all c 2 callsites(m)
hrd;wri = transitiveEffects(method(c));
rd = map(bind(c; I); rd);
wr = map(bind(c; I); wr);
d = dep(c);
if (wr � L && rd � ec [ L && d � ec)

aux = aux [ fcg;
else

ext = ext [ fcg;
compute ext aux(method(c); ec);

Figure 8: Extent Algorithm

The algorithm performs a depth first search of the call
graph, terminating search paths when it encounters a call
site that always invokes an auxiliary operation. The need
to accurately represent the values that auxiliary operations
write into reference parameters partly determines the con-
ditions that they must satisfy. The current condition is that
auxiliary operations only compute extent constant values,
which allows the compiler to represent the values in refer-
ence parameters using extent constants. An interprocedural
symbolic execution algorithm would relax this condition by
allowing the compiler to extract a more precise representa-
tion for the values computed in auxiliary operations. The
compiler also checks that auxiliary operations write all of
their return values into local variables of the caller. The
compiler can therefore omit auxiliary operations from the
commutativity testing phase.

We now illustrate the applicaton of the extent compu-
tation algorithm in Figure 8 as it computes the extent of
nbody::computeForces. This computation uses the set of
extent constant variables from Figure 7.

4.5 Reference Parameter Checks

The compiler performs several checks to ensure that the sym-
bolic execution operates correctly. To preserve the property
that reference parameters always hold extent constant values,
the compiler enforces the constraint that none of the opera-
tions in the extent write their reference parameters. To help
ensure that the symbolic execution builds expressions that

extentConstantVariables(nbody::computeForces) =
ec1 = fnode.mass,node.pos.val,leaf.numbodies,
leaf.bodyp,cell.subp,parms.eps,parms.epsSq,parms.tolSq,
nbody.numbodies,nbody.bodies,nbody.BH root,nbody.sizeg

extent(body::gravsub; ec1) = haux1; ext1i where
aux1 = f1g
ext1 = f2g

extent(body::openCell; ec1) = haux2; ext2i where
aux2 = f1; 5g
ext2 = f2; 3; 4; 6; 7; 8g

extent(body::openLeaf; ec1) = haux3; ext3i where
aux3 = f1g
ext3 = f2; 4g

extent(body::walksub; ec1) = haux4; ext4i where
aux4 = f1; 5g
ext4 = f2; 3; 4; 6; 7; 8g

extent(nbody::computeForces; ec1) = haux5; ext5i where
aux5 = f1; 5g
ext5 = f2; 3; 4; 6; 7; 8; 9g

Figure 9: Extent Computation for body::gravsub and
nbody::computeForces

correctly denote the new values of instance variables, it also
enforces the constraint that none of the methods are invoked
with a reference parameter that points into the receiver. The
current policy requires that all reference parameters be local
variables of primitive types. Figure 10 presents the algorithm
that checks these two restrictions.

For example,
checkReferenceParameters(nbody::computeForces; ext5)
(where ext5 is the ext5 from Figure 9) returns true because
nbody::computeForces has no reference parameters and, at
all of the call sites in its extent, the call site’s reference pa-
rameters are local variables of the enclosing method.

checkReferenceParameters(m; ext)
if (referenceParameters(m) 6= ;) return false;
for all c 2 ext

m0 = method(c);
for all s 2 map(bind(c; I);referenceParameters(m0))

if (isBaseLocal(s)) return false;
hrd; wri = transitiveEffects(m0);
wr = map(bind(c; I); wr);
if (wr 6� CL� V) return false;

return true;

isBaseLocal(s)
return !(s 2 L && type(s) 2 T);

Figure 10: Check Reference Parameters Algorithm
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4.6 Separability

The compiler must also check that each operation in the ex-
tent is separable. It therefore scans each method to make sure
that it never accesses an instance variable after it executes a
call site that may invoke an operation in the extent. As part of
the separability test it also makes sure that the method only
writes local variables or instance variables of the receiver and
only reads parameters, local variables, instance variables of
the receiver or extent constant variables. The separability of
a method invocation may depend on the set of auxiliary call
sites and the set of extent constant variables. The separabil-
ity testing routine, separable(m; aux; ec), therefore takes
these two sets as parameters.

4.7 Commutativity Testing

The commutativity testing algorithm presented in Figure 11
determines if all invocations of two methods in the context of
a given set of auxiliary call sites and extent constant variables
commute. The algorithm first checks to see if the invocations
are always independent. The check can be performed using
the type system — if the classes of the receivers are dif-
ferent, the two methods are guaranteed to be independent.3

The compiler can also analyze the instance variable usage
to check that neither method writes an instance variable that
the other accesses. We generalize the notion of indepen-
dence to methods in the context of a given set of auxiliary
call sites and extent constant variables by defining that two
methods are independent if all invocations of the first method
are independent of all invocations of the second method.

The algorithm next checks if it can symbolically execute
each of the methods. If not, it conservatively assumes that
invocations of the two methods may not commute. If it can
symbolically execute the methods, it does so, then simpli-
fies the resulting expressions and compares corresponding
expressions for equality. If all of the expressions denote the
same value, the operations commute.

The compiler has two routines that deal with the symbolic
execution: analyzable(m; aux; ec), which determines if
it is possible to symbolically execute a method, and
symbolicallyExecute(m1;m2; aux; ec), which actu-
ally performs the execution. The result of the symbolic
execution is a pair hi; ni, where i(v) is the expression de-
noting the new value of the instance variable v and n is a
multiset of MX expressions denoting the multiset of directly
invoked operations. Because the symbolic execution depends
on the set of auxiliary call sites and the set of extent constant
variables, both routines take these two sets as parameters.

Consider the parallelization of nbody::computeForces.
The compiler must check that all pairs of operations
in its extent commute. Because nbody::computeForces,
body::walksub, body::openCell, and body::openLeaf only
compute extent constant values and write local variables,

3The two methods are independent even if one of the classes inherits
from the other. Recall that the model of computation imposes the constraint
that a method cannot access an instance variables declared in a class from
which its receiver’s class inherits.

commute(m1;m2; aux; ec)
if (independent(m1;m2)) return true;
if (!analyzable(m1; aux; ec)) return false;
if (!analyzable(m2; aux; ec)) return false;
hi1; n1i = symbolicallyExecute(m1;m2; aux; ec);
hi2; n2i = symbolicallyExecute(m2;m1; aux; ec);
for all v 2 instanceVariables(receiverClass(m1))

if (!compare(simplify(i1(v));simplify(i2(v))))
return false;

if (!compare(simplify(n1);simplify(n2)))
return false;

return true;

Figure 11: Commutativity Testing Algorithm

they commute with all methods in the extent. Because vector
does not inherit from body and vice-versa, body::gravsub and
vector::vecAdd can never be invoked with the same receiver
object. body::gravsub and vector::vecAdd are therefore in-
dependent.

The compiler is left to check that all pairs of invocations
of body::gravsub commute and that all pairs of invocations
of vector::vecAdd commute. The compiler uses symbolic
analysis to check that these pairs commute.

4.8 Symbolic Analysis

To test that method invocations commute, the compiler rep-
resents and reasons about the new values of the receiver’s
instance variables and the multiset of operations directly in-
voked when the two methods execute. The compiler repre-
sents the new values and multisets of invoked methods using
symbolic expressions. Figure 12 presents the symbolic ex-
pressions that the compiler uses. These expressions include
standard arithmetic and logical expressions, conditional ex-
pressions and expressions that represent values computed in
simple for loops.

The compiler uses extent constants e 2 E to represent
values computed in auxiliary operations. � represents an
arbitrary binary operator; 	 represents an arbitrary unary
operator. The compiler uses EX expressions to represent
instance variable values and multisets of MX expressions to
represent invoked methods.

ex 2 EX ::= EX�EXj	EXjif(EX;EX;EX)jvje
mx 2 MX ::= EX->op(EX)jif(EX;MX)j

for(l=EX;l<EX;l+= EX)MX

Figure 12: Expressions for Symbolic Analysis

4.8.1 Symbolic Execution

The symbolic execution algorithm can operate successfully
only on a subset of the constructs in the language. To ex-
ecute an assignment statement, the algorithm symbolically
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evaluates the expression on the right hand side using the cur-
rent set of bindings, then binds the computed expression to
the variable on the left hand side of the assignment. It ex-
ecutes conditional statements by symbolically executing the
two branches, then using conditional expressions to combine
the results. It executes auxiliary operations by internally gen-
erating a new extent constant for each reference parameter,
then binding each reference parameter to its constant.

The symbolic execution does not handle loops in a general
way. If the loop is in the following form, where ex1 is the
upper bound of the array v and ex2 is an extent constant
expression, the algorithm can represent the new value of v.

for(l = 0; l < ex1; l ++)
v[l] = v[l]� ex2;

If the loop is in the following form, where ex1; : : : ;exn are
all extent constant expressions, the algorithm can represent
the invoked set of methods.

for(l = ex1; l < ex2; l+ = ex3)
ex4->op(ex5; : : : ;exn);

The algorithm cannot currently represent expressions com-
puted in loops that are not in one of these two forms. We
expect to enhance the algorithm to recognize a wider range
of loops. For analysis purposes the compiler can also replace
unanalyzable loops with tail recursive methods that perform
the same computation.

In our example the compiler symbolically executes
two pairs of methods: hbody::gravsub,body::gravsubi and
hvector:vecAdd,vector:vecAddi. The symbolic execution
starts by generating one variable to represent the receiver and
different variables to represent the parameter values of the
two invoked methods. the two invoked methods.4 Figure 13
presents the results of the symbolic execution of the pair
hbody::gravsub,body::gravsubi. In this example the compiler
generated the variables n1 and n2 to represent the potentially
distinct parameter values of the invocations of body::gravsub.
The variable this represents the receiver. The compiler as-
sumes both invocations have the same receiver; if they have
different receivers they are independent and therefore triv-
ially commute. The symbolic execution also uses the inter-
nally generated extent constants const1; const2; const3 and
const4.

Figure 14 presents the results of the symbolic execution of
the pair hvector::vecAdd,vector::vecAddi. In this example
the compiler generated the variables n1 and n2 to represent
the potentially distinct parameter values of the invocations
of vector::vecAdd. The variable this represents the receiver.
The compiler assumes both invocations have the same re-
ceiver; if they have different receivers they are independent
and therefore trivially commute. Because the method vec-
tor::vecAdd uses a vector loop update the compiler is able to
represent the loop effects on the instance variable val by a

4The implemented compiler maintains information about the parameter
values of invoked methods. If a parameter of a given method always has the
same value, the compiler uses the same variable to represent the parameter’s
value in all symbolic executions of that method.

ec = extentConstantVariables(nbody::computeForces)
extent(nbody::computeForces; ec) = haux; exti where
aux = f1; 5g
ext = f2; 3; 4; 6; 7; 8; 9g

m1 = this->gravsub(n1)
m2 = this->gravsub(n2)

hi1; n1i = symbolicallyExecute(m1;m2; aux; ec) where
i1 = fphi 7! (phi�const1)� const2g
n1 = facc.vecAdd(const3);acc.vecAdd(const4)g

hi2; n2i = symbolicallyExecute(m2;m1; aux; ec) where
i2 = fphi 7! (phi�const2)� const1g
n2 = facc.vecAdd(const4);acc.vecAdd(const3)g

Figure 13: Symbolic Execution of Two Invocations of
body::gravsub

ec = extentConstantVariables(nbody::computeForces)
extent(nbody::computeForces; ec) = haux; exti where
aux = f1; 5g
ext = f2; 3; 4; 6; 7; 8; 9g

m1 = this->vecAdd(n1)
m2 = this->vecAdd(n2)

hi1; n1i = symbolicallyExecute(m1;m2; aux; ec) where
i1 = fval 7! (val+const1) + const2g
n1 = ;

hi2; n2i = symbolicallyExecute(m2;m1; aux; ec) where
i2 = fval 7! (val+const2) + const1g
n2 = ;

Figure 14: Symbolic Execution of Two Invocations of vec-
tor::vecAdd

scalar closed form expression. The symbolic execution also
uses the internally generated extent constants const1; const2.

4.8.2 Expression Simplification and Comparison

The expression simplifier is organized as a set of rewrite
rules designed to reduce expressions to a simplified form
for comparison. The comparison itself consists of a simple
isomorphism test.

The compiler currently applies simple arithmetic rewrite
rules such as ex1 � ex2 ) ex1 + (�ex2), --ex ) ex
and ex1 � (ex2 + ex3) ) ex1 � ex2 + ex1 � ex3. The
simplifier also applies rules such as ((ex1+ex2)+ex3) )
(ex1+ex2+ex3) that convert binary applications of commu-
tative and associative operators to n-ary applications. It then
sorts the operands according to an arbitrary order on expres-
sions. This sort facilitates the eventual expression compar-
ison by making it easier to identify isomorphic subexpres-
sions. We have also developed rules for conditional and
array expressions [33].

In the worst case the expression manipulation algorithms
may take exponential running time. Like other researchers
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m1 = this->gravsub(n1)
m2 = this->gravsub(n2)

hi1; n1i = symbolicallyExecute(m1;m2; aux; ec) where
i1 = fphi 7! (phi�const1)� const2g
n1 = facc.vecAdd(const3);acc.vecAdd(const4)g

Application of rule: ex1 � ex2 ) ex1 + (�ex2)
i1 = fphi 7! (phi+(�const2)) + (�const1)g
n1 = facc.vecAdd(const3);acc.vecAdd(const4)g

Conversion into n-ary application of + operator:
i1 = fphi 7!phi+(�const2) + (�const1)g
n1 = facc.vecAdd(const3);acc.vecAdd(const4)g

Sorting operands of + operator:
i1 = fphi 7!phi+(�const1) + (�const2)g
n1 = facc.vecAdd(const3);acc.vecAdd(const4)g

hi2; n2i = symbolicallyExecute(m2;m1; aux; ec) where
hi2; n2i = symbolicallyExecute(m2;m1; aux; ec) where

i2 = fphi 7! (phi�const2)� const1g
n2 = facc.vecAdd(const4);acc.vecAdd(const3)g

Application of rule: ex1 � ex2 ) ex1 + (�ex2)
i2 = fphi 7! (phi+(�const1)) + (�const2)g
n2 = facc.vecAdd(const4);acc.vecAdd(const3)g

Conversion into n-ary application of + operator:
i2 = fphi 7!phi+(�const1) + (�const2)g
n2 = facc.vecAdd(const4);acc.vecAdd(const3)g

Sorting operands of + operator:
i2 = fphi 7!phi+(�const1) + (�const2)g
n2 = facc.vecAdd(const3);acc.vecAdd(const4)g

Figure 15: Expression Simplification for Invocations of
body::gravsub

applying similar expression manipulation techniques in other
analysis contexts [6], we have not observed this behavior in
practice. Finally, it is undecidable in general to determine
if two expressions always denote the same value [19]. We
therefore focus on developing algorithms that work well for
the cases that occur in practice.

Figure 13 presents the results of the expression simplifi-
cation algorithm for the expressions generating during the
symbolic execution of the two invocations of body::gravsub.
Figure 16 presents the corresponding results for the two in-
vocations of vector::vecAdd. After the expression simpli-
fication, the compiler compares corresponding expressions
for equality. In these two cases the expressions denot-
ing the new values of the instance variables and the mul-
tisets of invoked operations are equivalent. The compiler
has determined that all of the operations in the computa-
tion rooted at nbody::computeForces commute. It therefore
marks nbody::computeForces as a parallel method.

4.9 Complexity

In this section we briefly discuss the complexity of the anal-
ysis algorithms.

m1 = this->vecAdd(n1)
m2 = this->vecAdd(n2)

hi1; n1i = symbolicallyExecute(m1;m2; aux; ec) where
i1 = fval 7! (val+const1) + const2g
n1 = ;

Convertion into n-ary application of + operator:
i1 = fval 7!val+const1 + const2g
n1 = ;

Sorting operands of + operator:
i1 = fval 7!val+const1 + const2g
n1 = ;

hi2; n2i = symbolicallyExecute(m2;m1; aux; ec) where
i2 = fval 7! (val+const2) + const1g
n2 = ;

Conversion into n-ary application of + operator:
i2 = fval 7!val+const2 + const1g
n2 = ;

Sorting operands of + operator:
i2 = fval 7!val+const1 + const2g
n2 = ;

Figure 16: Simplification of the Instance Variable Bindings
From Two Invocations of the Method vector::vecAdd

4.9.1 Extent Constant Computation

To compute the read and write functions, the compiler
linearly scans all of the methods in the program. For each
method the compiler simply records which instance variables
and reference parameters the method reads and writes. For
each method the running time of this step is proportional to
the length of the method.

The complexity of the transitiveEffects compu-
tation is determined by the number of distinct pairs of call
sites and bindings of formal reference parameters to storage
descriptors that the compiler generates during the abstract
interpretation. cs� jSjrp is an upper bound on this number
of pairs, where cs is the number of call sites in the program
and rp is the maximum number of reference parameters of
any method. In our experience the analysis generates very
few bindings for each call site.

One way to perform the dep analysis is to perform a
reaching definition analysis for all of the reference param-
eters at each call site in each method. Given the restricted
set of flow of control constructs that the current compiler
supports, it is possible to implement a simplified algorithm
that computes the dep function with a single pass over the
method. This pass uses the information computed in the
transitiveEffects phase.

4.9.2 Extent Computation

The complexity of the extent computation is determined by
the number of call sites that it visits. In the worst case the
program may visit each call site in the program once.
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4.9.3 Commutativity Analysis

To check if a given method is parallel the algorithm in Fig-
ure 3 tests that all operations in the extent of the method
commute. The given algorithm represents the extent using
a set of methods and performs O(n2) commutativity tests,
where n is the number of methods in the extent.

As mentioned above in Section 4.8.2, the expression sim-
plification algorithms may generate expressions that grow
exponentially with respect to the number of terms in original
expression.

5 Code Generation

If the analysis marks a method as parallel, the compiler gen-
erates two versions of the method: a serial version and a
parallel version. Methods marked as serial invoke the serial
version of any parallel method that they invoke. The gener-
ated code for the serial version of the parallel method simply
invokes the parallel version, then blocks until the generated
parallel computation terminates. It then returns back to the
caller.

To generate code for the parallel version, the compiler first
generates the object section of the method. The generated
code acquires the mutual exclusion lock in the receiver when
it enters the object section, then releases the lock when it ex-
its. The generated code for the invocation section invokes the
parallel version of each invoked method, using the spawn
construct to execute the operation in parallel. Auxiliary op-
erations are an exception to this code generation policy; they
execute serially with respect to the caller.

5.1 Parallel Loops

The compiler applies an optimization that exposes parallel
loops to the run-time system. If a for loop contains nothing
but invocations of parallel versions of methods, the com-
piler generates parallel loop code instead of code that serially
spawns each invoked operation. The generated code can then
apply standard parallel loop execution techniques; it currently
uses guided self-scheduling [29].

5.2 Suppressing Excess Concurrency

In practice parallel execution inevitably generates overhead in
the form of synchronization and task management overhead.
If the compiler exploits too much concurrency, the resulting
overhead may overwhelm the performance benefits of parallel
execution. The compiler uses a heuristic that attempts to
suppress the exploitation of unprofitable concurrency; this
heuristic suppresses the exploitation of nested concurrency
within parallel loops.

To apply the heuristic, the compiler generates a third ver-
sion of each parallel method, the mutex version. Like the
parallel version, the mutex version uses the mutual exclusion
lock in the receiver to make the object section execute atom-
ically. But the generated invocation section serially invokes

the mutex versions of all invoked methods. Any computation
that starts with the execution of a mutex version therefore exe-
cutes serially. The inserted synchronization constructs allow
the mutex versions of methods to safely execute concurrently
with parallel versions. The generated code for parallel loops
invokes the mutex versions of methods rather than the par-
allel versions. Each iteration of the loop therefore executes
serially.

The heuristic trades off parallelism for a reduction in the
concurrency exploitation overhead. While it works well for
our current application set, in some cases it may generate
excessively sequential code. In the future we expect to tune
the heuristic and explore efficient mechanisms for exploiting
the concurrency in nested parallel loops.

5.3 Local Variable Lifetimes

The compiler must ensure that the lifetime of an operation’s
activation record exceeds the lifetimes of all operations that
may access the activation record. The compiler currently uses
a conservative strategy: if a method may pass a local variable
by reference to an operation or create a pointer to a local
variable, the compiler serializes the computation rooted at
that method. At auxiliary call sites the generated code invokes
the original version of the invoked method; at other call sites
it invokes the mutex version. This code generation strategy
also ensures that operations observe the correct values of
local variables written by multiple auxiliary operations.

5.4 Lock Optimizations

Lock constructs are a significant potential source of overhead.
The code generator therefore applies several optimizations
designed to reduce the lock overhead.

5.4.1 Lock Elimination

If an operation’s object section only computes extent con-
stant values, the compiler generates no lock constructs — the
operation executes atomically even without synchronization.
If none of the parallel operations with receivers from a given
class uses the mutual exclusion lock, the compiler omits the
lock from the class declaration.

5.4.2 Lock Hoisting

The lock hoisting optimization eliminates lock constructs as-
sociated with nested objects and coarsens the lock granularity
by generating a single lock acquire/release pair for multiple
operations that access the same object. The optimization is
based on the following observation:

Assume that all operations with receiver r in a given
extent acquire r’s lock and transitively only invoke
operations that have either r or nested objects of r
as a receiver. Also assume that every operation in
the extent whose receiver may be a nested object
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of r is directly or indirectly invoked by an opera-
tion whose receiver is r. In this case the compiler
may eliminate locking constructs as follows. Each
operation in the extent with receiver r executes a
customized version of its method that holds r’s
lock for both the object and invocation sections. In
its invocation section, this customized version in-
vokes the original version (from the original serial
program) of each invoked method. This original
version executes serially with no lock operations.

In effect, the generated code uses the lock on the enclosing
object to ensure the atomicity of operations that access nested
objects. It also generates only one lock acquire/release pair
for computations rooted at outermost operations that meet
the condition in the observation.

Lock hoisting trades off concurrency for a reduction in the
lock overhead. In some cases the optimization may generate
code that performs poorly because of excessive serialization.
While we may refine the optimization in the future, it works
well for our current set of applications.

6 Experimental Results

We have developed a prototype compiler based on the anal-
ysis algorithms in Section 4. It uses an enhanced version
of the code generation algorithms in Section 5. We have
used this compiler to automatically parallelize two applica-
tions: the Barnes-Hut hierarchical N-body solver [3] and the
Water [37] code.5 Explicitly parallel versions of the applica-
tions are available in the SPLASH [37] and SPLASH-2 [42]
benchmark suites. This section presents performance results
for both the automatically parallelized and explicitly paral-
lel versions on a 32 processor Stanford DASH machine [25]
running a modified version of the IRIX 5.2 operating sys-
tem. The programs were compiled using the IRIX 5.3 CC
compiler at the -O2 optimization level.

6.1 The Compilation System

The compiler is structured as a source-to-source translator
that takes a serial program written in a subset of C++ and
generates an explicitly parallel C++ program that performs
the same computation. We use Sage++ [7] as a front end.
The analysis phase consists of approximately 14,000 lines of
C++ code, with approximately 1,800 devoted to interfacing
with Sage++. The generated code contains calls to a run-
time library that provides the basic concurrency management
and synchronization functionality. The library consists of
approximately 5,000 lines of C code.

The current version of the compiler imposes several re-
strictions on the dialect of C++ that it accepts. The goal of
these restrictions is to simplify the implementation of the pro-
totype while providing enough expressive power to allow the

5The sequential source codes and automatically generated parallel codes
can be found at http://www.cs.ucsb.edu/�pedro/CA/apps.

programmer to develop clean object-based programs. The
major restrictions include:

� The program has no virtual methods and does not use
operator or method overloading. The compiler imposes
this restriction to simplify the extent computation.

� The program uses neither multiple inheritance nor tem-
plates.

� The program contains no typedef, union, struct or enum
types.

� Global variables cannot be primitive data types; they
must be class types.

� The program does not use pointers to members or static
members.

� The program contains no casts between base types such
as int, float and double that are used to repre-
sent numbers. The program may contain casts between
pointer types; the compiler assumes that the casts do not
cause the program to violate its type declarations.

� The program contains no default arguments or methods
with variable numbers of arguments.

� No operation accesses an instance variable of a nested
object of the receiver or an instance variable declared in
a class from which the receiver’s class inherits.

In addition to these restrictions the compiler assumes that the
program has been type checked and does not violate its type
declarations.

6.2 Barnes-Hut

Barnes-Hut is representative of our target class of applica-
tions. It performs well in part because it employs a sophis-
ticated pointer-based data structure: a space subdivision tree
that dramatically improves the efficiency of a key phase in
the algorithm. Although it is considered to be an important,
widely studied computation, all previously existing parallel
versions were parallelized by hand using low-level, explicitly
parallel programming systems [34, 36]. We are aware of no
other compiler that is capable of automatically parallelizing
this computation.

The space subdivision tree organizes the data as follows.
The bodies are stored at the leaves of the tree; each internal
node represents the center of mass of all bodies below that
node in the tree. Each iteration of the computation first con-
structs a new space subdivision tree for the current positions
of the bodies. It then computes the center of mass for all of
the internal nodes in the new tree. The force computation
phase executes next; this phase uses the space subdivision
tree to compute the total force acting on each body. The final
phase uses the computed forces to update the positions of the
bodies.
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6.2.1 The Serial C++ Code

We obtained serial C++ code for this computation by ac-
quiring the explicitly parallel C version from the SPLASH-2
benchmark set, then removing the parallel constructs to ob-
tain a serial version written in C. We then translated the serial
C version into C++. The goal of the translation process was
to obtain a clean object-based program that conformed to the
model of computation presented in Section 3.

As part of the translation we eliminated several compu-
tations that dealt with parallel execution. For example, the
parallel version used costzones partitioning to schedule the
force computation phase [36]; the serial version eliminated
the costzones code and the associated data structures. We
also split a loop in the force computation phase into three
loops. This transformation exposed the concurrency in force
computation phase, enabling the compiler to recognize that
two of the resulting three loops could execute in parallel. As
part of this transformation we also introduced a new instance
variable into the body class. The new variable holds the force
acting on the body during the force computation phase.

When we ran the C++ version, we discovered that abstrac-
tions introduced during the translation process degraded the
serial performance. We therefore hand optimized the com-
putation by removing abstractions in the performance critical
parts of the code until we had restored the original perfor-
mance. These optimizations do not affect the parallelization;
they simply improve the base performance of the computa-
tion.

6.2.2 Application Statistics

The final C++ version consists of approximately 1500 lines
of code; the explicitly parallel version consists of approxi-
mately 1900 lines of code. The compiler detects five parallel
loops in the C++ code. Two of the loops are nested inside
other parallel loops, so the heuristic described in Section 5.2
suppresses the exploitation of concurrency in these loops.
The generated parallel version contains three parallel loops.
Table 2 presents several analysis statistics. For each parallel
extent it presents the number of auxiliary call sites in the
extent, the number of methods in the extent, the number of
independent pairs of methods in the extent and the number
of pairs that the compiler had to symbolically execute. All
of the parallel extents have a significant number of auxiliary
call sites; the compiler would be unable to parallelize any of
the extents if the commutativity testing phase included the
auxiliary operations. Most of the pairs of invoked methods
in the extent are always independent, which means that the
compiler has to symbolically execute relatively few pairs.

6.2.3 Compilation Time

The compiler starts by running the Sage++ parser to generate
a dep file. This file represents the program in the Sage++
intermediate format. The analysis phase of the compiler
reads in the dep file and converts the Sage++ intermediate
format into its own internal simplified format. It then runs the

Parallel Auxiliary Operation Extent Independent Symbolically
Extent Call Sites Size Pairs Executed Pairs

Velocity 5 3 5 1
Force 9 6 17 4

Position 8 3 5 1

Table 2: Analysis Statistics for Barnes-Hut

analysis to find parallel methods, then generates an annotation
file identifying the transformations to perform. A separate
code generation file reads the annotation file and the original
source code file, the generates the parallel code.

We report compilation times for the compiler running on
a Sun Microsystems SparcStation 5 with 32 megabytes of
memory. To compile the Barnes-Hut, it takes 0.133 seconds
to load in the data structures from the dep file, 2.497 sec-
onds to perform the analysis and 0.176 seconds to generate
the annotations. It is important to realize that these numbers
come from a compiler that is currently under development.
We expect that the numbers may change in the future as we
modify the analysis algorithms. In particular the compilation
times may get longer as the compiler uses more sophisticated
algorithms. We also believe that, given the current state
of the art in parallelizing compilers, the performance of the
compiler should be a secondary concern. While we believe
that compilation time will eventually become an important is-
sue for parallelizing compilers, at present the most important
questions deal with functionality (i.e. the raw ability of the
compiler to extract the concurrency) rather than compilation
times.

6.2.4 Performance Results and Analysis

Table 3 presents the execution times for Barnes-Hut. To elim-
inate cold start effects, the instrumented computation omits
the first two iterations. In practice the computation would
perform many iterations and the amortized overhead of the
first two iterations would be negligible. The column labeled
Serial contains the execution time for the serial C++ pro-
gram. This program contains only sequential C++ code and
executes with no parallelization or synchronization overhead.
The rest of the columns contain the execution times for the
automatically parallelized version. Figure 17 presents the
speedup for the computation. The computation scales rea-
sonably well, exhibiting speedups of between 11 and 12 out
of 16 processors and 17 and 18 out of 32 processors.

Number Processors
of Bodies Serial 1 2 4 8 16 32

8192 65.0 63.4 31.9 15.8 8.8 5.3 3.6
16384 146.9 151.8 79.9 39.0 21.9 13.2 8.7

Table 3: Execution Times for Barnes-Hut (seconds)

We start our analysis of the performance with the paral-
lelism coverage [16], which measures the amount of time
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Figure 17: Speedup for Barnes-Hut

that the serial computation spends in parallelized sections.
To obtain good parallel performance, the compiler must par-
allelize a substantial part of the computation. By Amdahl’s
law any remaining serial sections of the computation impose
an absolute limit on the parallel performance. For example,
even if the compiler parallelizes 90% of the computation, the
parallel computation can run at most 10 times faster than the
serial computation. Table 4 presents the parallelism coverage
for Barnes-Hut; these statistics show that the compiler is able
to parallelize almost all of the computation.

Number Serial Compute Time in Parallelized Parallelism
of Bodies Time (seconds) Sections (seconds) Coverage

8192 64.14 62.87 98.02%
16384 153.20 148.34 96.83%

Table 4: Parallelism Coverage for Barnes-Hut

Good parallelism coverage is by itself no guarantee of
good parallel performance. To exploit parallelism, the com-
piler inevitably introduces synchronization and concurrency
management overhead. If the granularity of the generated
parallel computation is too small to successfully amortize the
overhead, the parallel program will perform poorly even if
it has good parallelism coverage. A standard problem with
traditional parallelizing compilers, for example, has been the
difficulty of successfully amortizing the barrier synchroniza-
tion overhead at each parallel loop [39]. Our prototype com-
piler introduces four sources of overhead when it generates
parallel code:

� Loop Overhead: The overhead generated by the execu-
tion of a parallel loop. Sources of this overhead include
the communication at the beginning of the loop to in-
form all processors of the loop’s execution and barrier
synchronization at the end of the loop.

� Chunk Overhead: The overhead associated with ac-
quiring a chunk of parallel loop iterations. Sources of
this overhead include the computation that determines
how many iterations the processor will take, the update
of a centralized counter that records which iterations
have yet to be assigned to a specific processor for ex-
ecution and the lock constructs that make the chunk
acquisition atomic.

� Iteration Overhead: The overhead generated by the
execution of one iteration of a parallel loop. This in-
cludes function call and argument unpacking overhead.

� Lock Overhead: The overhead generated by the lock
constructs automatically inserted into methods to make
operations execute atomically.

We developed a benchmark program to measure the cost of
each source of overhead. Table 5 presents the results. The
loop overhead increases with the number of processors; the
table presents the loop overhead on 32 processors.

Loop Overhead Chunk Iteration Lock
On 32 Processors Overhead Overhead Overhead

211 30 0.38 5.1

Table 5: Parallel Construct Overhead (microseconds)

For each source of overhead the applications execute a
corresponding piece of useful work — the loop overhead is
amortized by the parallel loop, the chunk overhead is amor-
tized by the chunk of iterations, the iteration overhead is
amortized by the iteration and the lock overhead is amor-
tized by the computation between lock acquisitions. The
relative size of each piece of work determines if the overhead
will have a significant impact on the performance. Tables 6
and 11 present the mean sizes of the pieces of useful work.
The numbers in the tables are computed as follows:

� Loop Size: The time spent in parallelized sections di-
vided by the number of executed parallel loops. A
comparison with the Loop Overhead number in Table 5
shows that the amortized loop overhead is negligible.

� Chunk Size: The time spent in parallelized sections
divided by the total number of chunks. Because the
number of chunks tends to increase with the number of
processors, we report the chunk size at 32 processors. A
comparison with the Chunk Overhead in Table 5 shows
that the amortized chunk overhead is negligible.

� Iteration Size: The time spent in parallelized sections
divided by the total number of iterations in executed par-
allel loops. A comparison with the Iteration Overhead
in Table 5 shows that the amortized iteration overhead
is negligible.

� Task Size: The time spent in parallelized sections di-
vided by the number of times that operations acquire a
lock. A comparison with the Lock Overhead in Table 5
shows that the amortized lock overhead is negligible.

We instrumented the generated parallel code to measure
how much time each processor spends in different parts of
the parallel computation. The instrumentation breaks the
execution time down into the following categories:
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Number Loop Chunk Size Iteration Task
of Bodies Size 32 Processors Size Size

8192 10:5 � 106 68:7 � 103 1:28 � 103 1:28 � 103

16384 24:7 � 106 134 � 103 1:51 � 103 1:51 � 103

Table 6: Granularities for Barnes-Hut (microseconds)

� Parallel Idle: The amount of time the processor spends
idle while the computation is in a parallel section. In-
creases in the load imbalance show up as increases in
this component.

� Serial Idle: The amount of time the processor spends
idle when the computation is in a serial section. Cur-
rently every processor except the main processor is idle
during the serial sections. This component therefore
tends to increase linearly with the number of processors,
since the time the main processor spends in serial sec-
tions tends not to increase dramatically with the number
of processors.

� Blocked: The amount of time the processor spends
waiting to acquire a lock that an operation executing
on another processor has already acquired. Increases in
contention for objects are reflected in increases in this
component of the time breakdown.

� Parallel Compute: The amount of time the processor
spends performing useful computation during a parallel
section of the computation. This component also in-
cludes the lock overhead associated with an operation’s
first attempt to acquire a lock, but does not include the
time spent waiting for another processor to release the
lock if the lock is not available. Increases in the commu-
nication of application data during the parallel phases
show up as increases in this component.

� Serial Compute: The amount of time the processor
spends performing useful computation in a serial section
of the program. With the current parallelization strategy,
the main processor is the only processor that executes
any useful work in a serial part of the computation.

Given the execution time breakdown for each processor,
we compute the cumulative time breakdown by taking the
sum over all processors of the execution time breakdown at
that processor. Figure 18 presents the cumulative time break-
downs as a function of the number of processors executing
the computation. The height of each bar in the graph repre-
sents the total processing time required to execute the parallel
program; the different gray scale shades in each bar repre-
sent the different time breakdown categories. If a program
scales perfectly with the number of processors then the height
of the bar will remain constant as the number of processors
increases.

These graphs show that the limit on the performance is
the time spent in the serial phases of the computation — at
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Figure 18: Cumulative Time Breakdowns for Barnes-Hut

32 processors the serial idle time accounts for approximately
40% of the cumulative compute time for both applications.

6.2.5 Comparison with the Explicitly Parallel Version

Table 7 contains the execution times for the explicitly paral-
lel version of Barnes-Hut. For small numbers of processors
the automatically parallelized and explicitly parallel versions
exhibit roughly comparable performance. For larger num-
bers of processors the explicitly parallel version performs
significantly better — at 32 processors it runs 50% faster
for 8192 bodies and 70% faster for 16384 bodies than the
automatically parallelized version. The largest contribution
to the performance difference is that the explicitly parallel
version builds the space subdivision tree in parallel, while
the automatically parallelized version builds the tree seri-
ally. The explicitly parallel version also uses an application-
specific scheduling algorithm called costzones partitioning
in the force computation phase [36]. This algorithm provides
better locality than the guided self-scheduling algorithm in
the automatically parallelized version.

Number Processors
of Bodies 1 2 4 8 16 32

8192 73.1 35.2 16.8 8.4 4.4 2.4
16384 154.0 77.4 36.8 19.2 9.7 5.1

Table 7: Execution Times for Explicitly Parallel Barnes-Hut
(seconds)

6.3 Water

The main data structure in Water is an array of molecule
objects. Almost all of the compute time is spent in two
O(n2) phases. One phase computes the total force acting on
each molecule; the other phase computes the potential energy
of the collection of molecules.

6.3.1 The Serial C++ Code

The original source of Water is the Perfect Club benchmark
MDG, which is written in Fortran. Several students at Stan-
ford University translated this benchmark from Fortran to C
as part of a class project. We obtained the serial C++ version
by translating this existing serial C version to C++.
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As part of the translation process we converted the O(n2)
phases to use auxiliary objects tailored for the way each phase
accesses data. Before each phase the computation loads rel-
evant data into an auxiliary object; at the end of the phase
the computation unloads the computed values from the auxil-
iary object to update the molecule objects. This modification
increases the precision of the data usage analysis in the com-
piler, enabling the compiler to recognize the concurrency in
the phase.

6.3.2 Application Statistics

The final C++ version consists of approximately 1850 lines
of code, the serial C version consists of approximately
1220 lines of code and the explicitly parallel version in the
SPLASH benchmark suite consists of approximately 1600
lines of code. Much of the extra code in the C++ version
comes from the pervasive use of classes and encapsulation.
Instead of directly accessing many of the data structures (as
the C versions do), the C++ version encapsulates data in
classes and accesses the data via accessor methods. The
class declarations and accessor method definitions signifi-
cantly increase the size of the program. The use of a vector
class instead of arrays of doubles, for example, added ap-
proximately 230 lines of code.

The analysis finds a total of seven parallel loops. Two
of the loops are nested inside other parallel loops, so the
generated parallel version contains five parallel loops. Table
8 contains the analysis statistics; as for the Barnes-Hut all of
the extents contain auxiliary operation call sites and most of
the pairs in the extents are independent.

Parallel Auxiliary Operation Extent Independent Symbolically
Extent Call Sites Size Pairs Executed Pairs
Virtual 9 3 5 1
Energy 1 5 14 1
Loading 5 2 2 1
Forces 3 4 9 1

Momenta 2 2 2 1

Table 8: Analysis Statistics for Water

6.3.3 Compilation Time

For the Water code the compiler takes 0.215 seconds to load
the intermediate format, 6.653 seconds to perform the analy-
sis and 0.16 seconds to perform the annotation generation.

6.3.4 Performance Results and Analysis

Table 9 contains the execution times for Water. The mea-
sured computation omits initial and final I/O. In practice the
computation would execute many iterations and the amor-
tized overhead of the I/O would be negligible. Figure 19
presents the speedup curves. Water initially performs well

(the speedup over the sequential C++ version at 8 proces-
sors is approximately 4.5 for 343 molecules and 5 for 512
molecules), but it does not scale beyond 8 processors.

Number of Processors
Molecules Serial 1 2 4 8 16 32

343 73.3 77.1 41.0 21.3 16.2 13.8 17.7
512 158.1 167.5 90.4 46.7 31.5 29.9 37.8

Table 9: Execution Times for Water (seconds)
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Figure 19: Speedup for Water

Table 10, which presents the parallelism coverage for this
application, shows that the compiler parallelizes almost all
of the computation. Table 11 shows that all of the sources
of overhead are negligible except for the lock overhead. The
lock overhead by itself, however, does not explain the lack of
scalability.

Number of Serial Compute Time in Parallelized Parallelism
Molecules Time (seconds) Sections (seconds) Coverage

343 70.89 69.97 98.70%
512 154.29 152.85 99.07%

Table 10: Parallelism Coverage for Water

Number of Loop Chunk Size Iteration Task
Molecules Size 32 Processors Size Size

343 3:50 � 106 34:0 � 103 10:2 � 103 74:2
512 7:64 � 106 69:1 � 103 14:9 � 103 72:8

Table 11: Granularities for Water (microseconds)

Figure 20, which presents the cumulative time breakdowns
for Water, clearly shows why Water fails to scale beyond eight
processors. The fact that the blocked component grows dra-
matically while all other components either grow relatively
slowly or remain constant indicates that contention for ob-
jects is the primary source of the lack of scalability. It should,
in principle, be possible to automatically eliminate the con-
tention by replicating objects to enable conflict-free write
access. We expect that this optimization would dramatically
improve the scalability.
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Figure 20: Cumulative Time Breakdowns for Water

6.3.5 Comparison with the Explicitly Parallel Version

The SPLASH parallel benchmark set contains an explicitly
parallel version of Water; Table 12 contains the execution
times for this version. Unlike the automatically parallelized
version, the explicitly parallel version scales reasonably well
to 32 processors. We attribute this difference to the fact that
the explicitly parallel version replicates several data struc-
tures, eliminating the contention that limits the performance
of the automatically parallelized version.

Number of Processors
Molecules 1 2 4 8 16 32

343 75.68 41.93 20.13 10.35 5.39 3.39
512 166.54 81.98 40.33 21.22 11.46 6.76

Table 12: Execution Times for Explicitly Parallel Water (sec-
onds)

6.4 Caveats

The goal of our project is to enable programmers to exploit
both the performance advantages of parallel execution and
the substantial programming advantages of the sequential
programming paradigm. We view the compiler as a tool that
the programmer uses to obtain reliable parallel execution with
a minimum of effort. We expect that the programmer will
need a reasonable understanding of the compiler’s capabili-
ties to use it effectively. In particular, we do not expect to
develop a compiler capable of automatically parallelizing a
wide range of existing “dusty deck” programs.

Several aspects of our experimental methodology reflect
this perspective. As part of the translation process from
C to C++ we ensured that the C++ program conformed to
the model of computation that the compiler was designed to
analyze. We believe that this approach accurately reflects
how parallelizing compilers in general will be used in prac-
tice. We expect that programmers may have to tune their
programs to the capabilities of the compiler to get good per-
formance. The experience of other researchers supports this
hypothesis [4, 5].

For our two applications it was relatively straightforward
to produce code that the compiler could successfully analyze.
Almost all of the translation effort was devoted to expressing

the computation in a clean object-based style with classes,
objects and methods instead of structures and procedures.
The basic structure of both applications remains intact in
the final C++ versions, and the C++ versions have better
encapsulation and modularity properties than the C versions.

We selected Barnes-Hut and Water in part because other
researchers had developed explicitly parallel versions that
performed well. We therefore knew that it was possible in
principle to parallelize the applications. The question was
whether commutativity analysis would be able to automat-
ically discover and exploit the concurrency. In general we
expect programmers to use the compiler to parallelize appli-
cations that have enough inherent concurrency to keep the
machine busy.

7 Future Research

The ideas and results in this paper suggest many possible
directions for future research. In this sense we believe the
paper is only a start: the culmination and ultimate evaluation
of commutativity analysis still lie ahead of us. In this section
we briefly mention several future research directions.

7.1 Relative Commutativity

The current formulation of commutativity analysis is abso-
lute. During the execution of a parallelized section of code,
the data structures in the parallel and serial versions may di-
verge. But the compiler guarantees that by the end of the
parallel section the data structures in the two versions have
converged to become identical.

This formulation is obviously overly conservative. To pre-
serve the semantics of the serial program, it is sufficient to
preserve the property that the parallel and serial computations
generate data structures that are equivalent with respect to the
rest of the computation. For example, the output of the ex-
plicitly parallel tree construction algorithm in the Barnes-Hut
depends on the relative execution speed of the different pro-
cessors: different executions on the same input may generate
different data structures. But because all of these data struc-
tures are equivalent with respect to the rest of the program,
the program as a whole executes deterministically.

It may be possible to extend the commutativity analysis
framework to automatically generate parallel code for algo-
rithms such as the tree construction algorithm in Barnes-Hut.
The current formulation works well for data structure traver-
sal algorithms; the compiler may need to extend the frame-
work to recognize operations that commute relative to the
rest of the computation if it is to effectively parallelize data
structure construction algorithms.

7.2 Analysis Granularity

Our experience with auxiliary operations shows that the cor-
rect analysis granularity does not always correspond to the
granularity of methods in the source program. In both Water
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and Barnes-Hut the method granularity is too fine: for the
analysis to succeed it must coarsen the granularity by con-
ceptually integrating auxiliary operations into their callers.
We expect a generalized concept of auxiliary operations to
eventually emerge, with the compiler promoting the success
of the analysis by partitioning the program at an appropriate
granularity.

Several issues confront the designer of a partioning al-
gorithm. First, the analysis granularity interacts with the
locking algorithm. If the analysis is performed at the gran-
ularity of computations that manipulate multiple objects, the
generated code may need to hold multiple locks to make the
computation atomic. The need to acquire these locks with-
out deadlock may complicate the code generation algorithm.
This issue does not arise in the current compiler because it
analyzes the computation at the granularity of operations on
single objects and generates code that only holds a single
lock at a time.

There is tradeoff between increased granularity and an-
alyzability: increasing the analysis granularity may make it
difficult for the compiler to extract expressions that accurately
denote the computed values. In some cases, the compiler may
even need to analyze the program at a finer granularity than
the method granularity. This can happen, for example, if a
method contains an otherwise unanalyzable loop. Replacing
the loop with a tail-recursive method and analyzing the com-
putation at that finer granularity may enable the analysis to
succeed.

Finally, coarsening the granularity may waste concurrency.
The compiler must ensure that it analyzes the computation at
a granularity fine enough to expose a reasonable amount of
concurrency in the generated code.

7.3 A Message-Passing Implementation

The current compiler relies on the hardware to implement
the abstraction of shared memory. It is clearly feasible,
however, to generate code for message-passing machines.
The basic required functionality is a software layer that uses
message-passing primitives to implement the abstraction of a
single shared object store [31, 35]. The key question is how
well the generated code would perform on such a platform.
Message-passing machines have traditionally suffered from
much higher communication costs than shared-memory ma-
chines. Compilation research for message-passing machines
has therefore emphasized the development of data and com-
putation placement algorithms that minimize communica-
tion [18]. Given the dynamic nature of our target application
set, the compiler would have to rely on dynamic techniques
such as replication and task migration to optimize the locality
of the generated computation [9, 32].

7.4 Pointer Analysis

The algorithms in Section 4 perform a data usage analysis at
the granularity of the type system. An obvious alternative is
to use pointer analysis [13, 41, 23] to identify the regions of

memory that each operation may access. A major advantage
of this approach for non type-safe languages like C and C++
is that it would allow the compiler to analyze programs that
may violate their type declarations. It would also characterize
the accessed regions of memory at a finer granularity than the
type system, which would increase the precision of the data
usage analysis. One potential drawback is a complication of
the compiler. The use of pointer analysis would also increase
the amount of code that the compiler would have to analyze.
Before the compiler could parallelize a piece of code that
manipulated a given pointer-based data structure, it would
have to analyze the code that built the data structure.

8 Related Work

This section briefly surveys previous research in the area
of parallelizing compilers for computations that manipulate
irregular or pointer-based data structures. We also discuss
reduction analysis and commuting operations in the context
of parallel programming languages.

8.1 Data Dependence Analysis

Research on automatically parallelizing serial computations
that manipulate pointer-based data structures has focused on
techniques that precisely represent the run-time topology of
the heap [17, 24, 11, 28]. The idea is that the analysis can use
this precise representation to discover independent pieces of
code. To recognize independent pieces of code, the compiler
must understand the global topology of the manipulated data
structures [17, 24]. It must therefore analyze the code that
builds the data structures and propagate the results of this
analysis through the program to the section that uses the data.
A limitation of these techniques is an inherent inability to
parallelize computations that manipulate graphs. The aliases
present in these data structures preclude the static discovery of
independent pieces of code, forcing the compiler to generate
serial code.

Commutativity analysis differs substantially from data de-
pendence analysis in that it neither depends on nor takes
advantage of the global topology of the data structure. This
property enables commutativity analysis to parallelize com-
putations that manipulate graphs. It also eliminates the need
to analyze the data structure construction code. Commuta-
tivity analysis may therefore be appropriate for computations
that do not build the data structures that they manipulate. An
example of such a computation is a query that manipulates
persistent data stored in an object-oriented database. But
insensitivity to the data structure topology is not always an
advantage. Standard code generation schemes for commuta-
tivity analysis insert synchronization constructs to ensure that
operations execute atomically. These constructs impose un-
necessary overhead when the operations access disjoint sets
of objects. If a compiler can use data dependence analysis
to recognize that operations are independent, it can gener-
ate parallel code that contains no synchronization constructs.

20



In the long run we believe parallelizing compilers will in-
corporate both commutativity analysis and data dependence
analysis for pointer-based data structures, using each when it
is appropriate.

8.2 Reductions

Several existing compilers can recognize when a loop per-
forms a reduction of many values into a single value [15,
14, 27, 8]. These compilers recognize when the reduction
primitive (typically addition) is associative. They then ex-
ploit this algebraic property to eliminate the data dependence
associated with the serial accumulation of values into the
result. The generated program computes the reduction in
parallel. Researchers have recently generalized the basic
reduction recognition algorithms to recognize reductions of
arrays instead of scalars. The reported results indicate that
this optimization is crucial for obtaining good performance
for the measured set of applications [16].

There are interesting connections between reduction anal-
ysis and commutativity analysis. Many (but not all) of the
computations that commutativity analysis is designed to han-
dle can be viewed as performing multiple reductions con-
currently across a large data structure. The need to exploit
reductions in traditional data parallel computations suggests
that less structured computations will require generalized but
similar techniques.

8.3 Commuting Operations in Parallel Lan-
guages

Steele describes an explicitly parallel computing framework
that includes primitive commuting operations such as the ad-
dition of a number into an accumulator [38]. The motivation
is to deliver a flexible system for parallel computing that
guarantees deterministic execution. The paper describes an
enforcement mechanism that dynamically detects violations
of the deterministic paradigm and mentions the possibility
that a compiler could statically detect such violations.

There are two fundamental differences between Steele’s
framework and commutativity analysis: explicit parallelism
as opposed to automatic parallelization and dynamic check-
ing as opposed to static recognition of commuting operations.
Steele’s framework is designed to deliver an improved ex-
plicitly parallel programming environment by guaranteeing
deterministic execution. The goal of commutativity analysis
is to preserve the sequential programming paradigm while
using parallel execution to deliver increased performance.
While deterministic execution is one of the most important
advantages of the serial programming paradigm, there are
many others [31].

Commutativity analysis is also designed to recognize com-
plex commuting operations that may recursively invoke other
operations. Steele’s framework focuses on atomic operations
that only update memory. In a dynamically checked, explic-
itly parallel framework it is natural to view the computation

as a set of atomic operations on a mutable store. The concur-
rency generation is already explicit in the program and the
implementataion must only check that the generated primitive
operations commute. But because a parallelizing compiler
must statically extract the concurrency, it has to convert the
serial invocation of operations into parallel execution. In
this context it becomes clear that the compiler must reason
about how operations are invoked as well as how they access
memory.

The implicitly parallel programming language Jade ex-
plicitly supports the concept of commuting operations on
user-defined objects [21]. In this case the motivation is to ex-
tend the range of expressible computations while preserving
deterministic execution. It is the programmer’s responsibility
to ensure that operations that are declared to commute do in
fact commute.

Many concurrent object-oriented languages support the
notion of mutually exclusive operations on objects [10, 43].
Although the concept of commuting operations is never ex-
plicitly identified, the expectation is that all mutually exclu-
sive operations that may attempt to concurrently access the
same object commute.

Unlike implementations of Jade and concurrent object-
oriented programming languages, a parallelizing compiler
that uses commutativity analysis is responsible for verifying
that operations commute. The result is therefore guaran-
teed deterministic execution. If a Jade program declares
commuting operations or a program written in a concurrent
object-oriented programming language uses mutually exclu-
sive methods, it is the programmer’s responsibility to ensure
that the operations commute.

9 Conclusion

The difficulty of developing explicitly parallel software lim-
its the enormous potential of parallel computing. The prob-
lem is especially acute for irregular, dynamic computations
that manipulate pointer-based data structures such as graphs.
Commutativity analysis addresses this problem by promis-
ing to extend the reach of parallelizing compilers to include
pointer-based computations.

We have developed a parallelizing compiler that uses com-
mutativity analysis as its main analysis paradigm. We have
used this compiler to automatically parallelize two complete
scientific applications. The performance of the generated
code provides encouraging evidence that commutativity anal-
ysis can serve as the basis for a successful parallelizing com-
piler.
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