
Concurrent Constraint Programming

Vijay A. Saraswat
Xerox PARC

Martin Rinard

Stanford University

(Extended Abstract)

Abstract

This paper presents a new and very rich class of (con-
current) programming languages, based on the notion
of comput.ing with parhal information, and the con-
commitant notions of consistency and entailment.’ In
this framework, computation emerges from the inter-
action of concurrently executing agents that communi-
cate by placing, checking and instantiating constraints
on shared variables. Such a view of computation is in-
teresting in the context of programming languages be-
cause of the ability to represent and manipulate partial
information about the domain of discourse, in the con-
text of concurrency because of the use of constraints
for communication and control, and in the context of
AI because of the availability of simple yet powerful
mechanisms for controlling inference, and the promise
that very rich representational/programming languages,
sharing the same set of abstract properties, may be pos-
sible.

To reflect this view of computation, [Sar89] develops
the cc family of languages. We present here one mem-
ber of the family, CC(.L,+) (pronounced “cc with Ask
and Choose”) which provides the basic operations of
blocking Ask and atomic Tell and an algebra of be-
haviors closed under prefixing, indeterministic choice,
interleaving, and hiding, and provides a mutual recur-
sion operator. cc(.L ,-t) is (intentionally!) very similar
to Milner’s CCS, but for the radically different under-
lying concept of communication, which, in fact, pro-

’ The class is founded on the notion of “constraint logic pro-
gramming” [JL87,Mah87], fundamentally generalizes concurrent
logic programming, and is the subject of the first author’s disser-
tation [Sar89], on which this paper is substantially based.

Permission to copy without fee all or part of this matertial is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that the copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-343-4/90/0001/0232 $1 SO 232

vides a general-and elegant-alternative approach to
“value-passing” in CCS. At the same time it adequately
captures the framework of committed choice concurrent
logic programming languages. We present the rules of
behavior for cc agents, motivate a notion of “visible ac-
tion” for them, and develop the notion of c-trees and re-
active congruence analogous to Milner’s synchronization
trees and observational congruence. We also present an
equational characterization of reactive congruence for
Finitary cc(J. ,+).

1 Introduction

Almost since its inception, computing science has been
dominated by a view of computation based on the von
Neumann memory model. Following [Dij76] we may
say that in this view, the state of the system is spec-
ified by a store, which is a vector V of n variables of
interest, and a &v&ion assigning to each variable in V
a fully-formed (completely known) value in its domain.
Thus each store describes a point in the n-dimensional
sia2e space for the system, obtained by taking the prod-
uct of all possible values for the variables Xi. Let us
define a conslrainl to be a subset of the state space,
that is, a set of valuations. When designing a (possi-
bly non-deterministic) algorithm, we are concerned with
specifying a mechanism, such that when it is initiated
in a store that satisfies a given constraint (the “pre-
condition”) it terminates in a store that satisfies an-
other given constraint (the “post-condition”). Hence in
any formal notation (“programming language”) used to
describe such algorithms, some basic operations are nec-
essary to transform one store to another. In imperative
programming languages, the basic operations executed
by an agent are Read, which obtains the value of some
variable in the store, and W&e (or assignment) which
translates the store parallel to some axis by changing
the value of some variable (possibly based on applying
some functions to the values obtained from prior reads).

One way to describe the notion of consirainl program-

ming as presented here is to contrast it with the view
presented above. The fundamental difference is that in
constraint programming the store is itself a constraint,
a set of valuations which provides partial information
about the possible values for the given variables. The
basic operations an agent may execute are Ask (instead
of read), which checks whether or not the store entails a
given constraint (that is, whether every valuation per-
mitted by the store is permitted by the constraint), and
Tell (instead of write), which adds a given constraint to
the store, provided that the resultant store is consistent
(that is, permits at least one valuation-note that the
set of valuations corresponding to a conjunction of two
constraints is the intersection of the set of valuations of
each conjunct). Thus, a basic step does not change the
value of a variable, but may rule out certain values that
were previously possible; we say that the store is mono-
tonically refined, since at any step of the computation,
the set of possible values for the variable is contained in
the set of possible values at any prior step. As above, an
algorithm in this framework is designed in such a way
that when it is initiated in a store that satisfies (entails)
a given constraint, the precondition, it terminates in a
store that satisfies (entails) another given constraint,
the post-condition. In this way, the entire constraint
programming framework is based on extremely general
notions of partial information, with its concommitant
notions of consistency and entailment.

A fundamental consequence of this radically different
view of the store-which, incidentally, one may regard
as the essence of (definite clause) logic programming-
is that it enables a simple, elegant but very powerful
paradigm for concurrent computation. Briefly, one may
imagine multiple agents of the kind described above, ex-
ecuting concurrently in a shared store. Synchronization
is achieved through a blocking Ask: an agent may block
if it attempts to ask whether a constraint is entailed by
the given store, and it is not yet so; it remains blocked
until such time as (if ever) some other concurrently ex-
ecuting agents add constraints to the store such that
the resulting store is strong enough to either entail the
query or its negation.

The development of this notion of concurrent con-
straint programming is the subject of this paper, and the
disseration [Sar89] on which it is based. Conceptually,
the notion provides a theoretical footing for the intu-
itive, pre-theoretic visions about computing with con-
straints, evidenced in some of the work of such people
as Sutherland, Sussman, Steele, Borning and some of
their colleagues. Further, a coherent development of
this notion leads to a synthesis and extension of some
of the work on concurrent logic programming, which has
occupied a number of researchers for the better part of
this decade, and the more recent notion of constraint

logic programming due to [JL87,Mah87]. Their union
properly generalizes both: the former because its ba-
sic concepts of communication and synchronization are
now seen to be applicable in a far more general setting,
and the latter because it introduces a simple but power-
ful framework for control where earlier there was none.
More generally, a major promise of this approach is that
it will enable a very simple treatment of thorny issues
in the semantics of concurrent, non-deterministic pro-
gramming languages, and that, too, in the context of a
versatile and expressive computational framework.

The rest of this paper is as follows. We flesh out
the basic framework in more detail, and, introduce the
cc(J,-+) family of languages. We discuss a wide num-
ber of constraint systems with respect to which the lan-
guages in the cc family may be instantiated, and their
computational relevance. We discuss the notion of ob-
servation for the cc languages, and present characteri-
zations for reactive equality and reactive congruence for
these languages.

2 The basic framework

In general, we construe a constraint system to be any
system of partial information that supports the notions
of consistency and entailment. As such this notion is
very weak, and can be used to capture a very broad class
of interesting computational systems. For the present,
we shall be content with a very simple class of first-order
constraint systems:

Definition 2.1 A simple first-order constraint system
is a quadruple C = (C, A, Var, Cp) where C is a many-
sorted first-order vocabulary, with associated set of sorts
S and ranking function p, A is a C-structure, Var is an
S-sorted set of object-variables and @, the set of admis-
sible constraints, is some non-empty subset of (C, Var)-
formulas, closed under conjunction. 0

In order to execute programs in a concurrent con-
straint language, the implementation needs to ensure
only that Ask (entailment) and Tell (consistency) oper-
ations can be performed on admissible constraints, with
respect to a store which is itself a conjunction of admis-
sible constraints. However, when presenting the “re-
active” semantics for these languages in Section 4, we
will find it necessary to apply these operations (and the
operation that determines if a constraint is true for all
valuations) on an extended set of constraints which is
also closed under implication, and existential and uni-
versal quantification. Hence reasoning about programs
using this semantics may require a more sophisticated
constraint system than is necessary to implement these
programs.

233

The most popular constraint system in use in (con-
current) constraint/logic programming languages is the
system that we call Hcrbrand.2 It interpretes a given
vocabulary C over the free C-algebra. The constraints
permitted are possibly existentially quantified conjunc-
tions of equalities. Consistency in such a system can
be checked by executing the (first-order) unification al-
gorithm, and entailment by executing (a variation of)
the matching algorithm. 3 More examples of computa-
tionally interesting constraint systems will be given in
Section 3.

In the following, the many-sorted nature of a con-
straint system is not important, and we shall implic-
itly assume that various operations “preserve sorts”.
As usual, an A-valuation is a mapping from Var to
the domain of A. In what follows, we will ambigu-
ously regard a constraint c as denoting the possibly in-
ifinite set of valuations which realizes the constraint.
Thus two constraints will be deemed equal if they yield
the same set of valuations, even though their syntac-
tic presentations may be different. (For example, if
we interpret the operations and relations x, +, < in
the standard manner, over the integers, the constraints
XxX+YxY=25)\O<X<YandX=3AY=4will
be deemed identical.) In the following, for any syntac-
tic object x (e.g., constraint) we shall use the notation
var(x) to refer to the set of variables in x. Further,
if V is a finite subset of var(x), and var(;y) \ V = X,
we shall use the notation 6Vx to refer to the constraint
3X.c, which may be thought of as “projecting” out the
iuformation on the “hidden variables” X. Finally, we
use the notation (3)(c) t o refer to the existential closure
of c, that is, to 60.~.

2.1 The basic operations on store-as-
constraint

Given that the store is a pool of partial information
about the variables of interest, what sort of interesting
basic operations can be defined on it?

We have already mentioned Ask and Tell. An “Ask
c” operation succeeds if c is entailed by the store, fails
if it is not, and suspends until it can either succeed or
fail. A “Tell c” operation succeeds iff the conjunction of
the store and c is consistent, and the store is atomically
augmented with c if it is. (Note that both Ask and Tell
are are stable operations, in the following sense. If at
any stage in the past, the store successfully answered
c, then the current store will successfully answer c; and

‘Though per [Dav83] there may be some justification for calling
it Skolem.

3 In fact, [MahSS] shows that checking the consistency of arbi-
trary fist-order constraints in this setting is decidable.

if at some stage in the past some agent had succeeded
in (atomically) telling c to the store, then it is always
possible to tell c in the current store. Hence Ask-and-
Tell languages possess the following stable property: if
an agent executes an Ask or Tell at some stage of the
computation, then at all subsequent stages it will be
able to re-execute the same Ask or Tell.4)

We mention in passing that work on concurrent logic
programming [Ued85,CG86,Str89] has yielded some op-
erations which may be simplified and generalized in
this setting as refinements of atomic Tell. In order to
model distributed programming languages, it turns out
to be convenient to conceptualize not a single shared
store, but to imagine that multiple agents are execut-

ing concurrently at different sites, each with its own
local store. Atomic publication now corresponds to the
publication of a constraint simultaneously at all sites.
In general this operation can be rather expensive, and
the more “loosely coupled” notion of eventual publica-
tion has been found to be very useful [Ued85,Sar89]:5
namely, the constraint being published is added at the
local site, and will be communicated to other sites asyn-
chronously and over time. Computation will abort in
case during this propagation an inconsistency is discov-
ered. Hence eventual publication may be regarded as
an “unsafe” approximation to atomic publication, mo-
tivated from efficiency concerns. The nice surprise of
[Ued86] is th t a in many situations eventual publication
can be used safely and predictablye6

Drawing on an early version of Parlog [CG86],
[FTSSa] loosens the requirements of publication even
further, as not to require any consistency-checking at
run-time.7 Their “:=” operator is an instantiation, over
a given constraint system, of the following more basic
and more general operator. The Initialization opera-
tor takes a constraint c(X,Y) and a variable X, sus-

‘This property of the language was used with great effect in
[SWKSSS] to define the notion of a “live global snapshot” in this
setting, and to show that it could be obtained with a very simple
protocol. Such a snapshot can be used to determine whether a
network of such agents satisfies some stable property.

5[UedS6] discusses in detail the property of “antisubstitutabil-
ity” that unification in GHC satisfies. The notion of eventual
publication was extracted from this analysis in [Sar88,Sar89].

6 In retrospect, perhaps eventual and atomic publication should
have been called local and global publication. But the terminol-
ogy is now well-established, and we shall stick with it. The lo-
cal/global distinction also gives rise to two versions of Ask, with
different implementationcosts: one which checks whether the con-
straint is entailed from the local store and another which checks
if the constraint is entailed in every store.

7fn the case of Strand, which is defined over a slightly restricted
subset of the Herbrand constraint system, this implies that no
unification needs to be done at run-time.

234

pends until the store u entails 3X.c, and then succeeds
iff C /= 6X.a (ignoring c). On success, c is added to
the store, without checking for consistency, which is
guaranteed. In some settings [FT89a], these conditions
can be checked very efficiently. (However, it must be
kept in mind that if this operation is executed on the
local store-as opposed to being executed at all sites
simultaneously- it could still lead to computation being
aborted, because of the asynchronous nature of inter-
site communication.)

Some “unstable” basic operations (Check, Inform, In-
stantiate) of use in specialized situations are also dis-
cussed in [Sar$9]. However, by far the most fundamen-
tal operations are Ask and (various approximations to)
Tell, and it is on the Ask-and-Tell language cc(a.4)
that we shall focus in this paper.

2.2 Building up more complex pro-
grams from simpler ones

Hitherto, we have examined in some detail a novel view
of the store with two operations on it, Ask and Tell.
Turning a blind eye to the connection with logic pro-
gramming for a moment, it is interesting to speculate
on the question: in what ways may these basic “Read”
and “Write” operations be combined into more complex
behaviors? That is, what are the combinators on agents
one may wish to provide in order to obtain a reasonable
(concurrent) programming language?

At this level of generality, this question has been
asked and answered in earlier work by Milner [Mil83]:

In a definitive calculus there should be as
few operators or combinators as possible, each
of which embodies some distinct and intuitive
idea, and which together give completely gen-
eral expressive power.. . If we disregard the re-
cursion construction (some such construction
is essential for defining infinite behaviour) we
have reduced our combinators to the following
four, with manifestly distinct roles:

1.

2.

3.

4.

Product, for combining agents concur-
rently . . . ;

Action, a combinator representing the oc-
currence of a single indivisible event;

Summation, the disjunctive combination
of agents, allowing alternate courses of
action;

Restriction, for delimiting the interface
through which an agent interacts with oth-
ers.

Indeed the CC(J. ,-+) languages have precisely these
four combinators, though the definition of restriction

is quite different in flavor because of the different
underlying communication mechanism. (In fact, the
cc framework does define other combinators, for non-
deterministic choice, user-defined qtomic transactions,
reconciliation etc [Sar89]. However, most of these com-
binators are of use in the more general setting of (con-
current) indeterministic and non-deterministic (“back-
tracking”) languages, which Milner was quite definitely
not addressing. In this paper we confine our atten-
tion to cc(J. ,-), which d oes not allow non-deterministic
choice.)

In the following, we use the meta-variables A, AI,. . .
to range over the set of agents, b, bl, . . . to range over the
basic actions, X, Xl, . . . to range over object-variables,
PIPI,**+ to range over procedure names, and R to range
over parameter lists (lists of object-variables). In ad-
dition, we use the notation ji, for some meta-syntactic
variable x to stand for some finite, comma-separated
list of the form (xl,. . . , xn).

The set of agent expressions may be defined induc-
tively by the little grammar:”

A:: = nil 1 stop 1 c & -+ A 1 c* + A
IA+AIAIIAIZIX.A
1 pR I (fixjp%i)R

(1)

Programs must satisfy the syntactic condition that the
length of parameter lists for any procedure is identical
to the length of the list of actual arguments. (Finitary
cc(~,--r) is cc(L ,-) without recursion.)

Intuitively, an agent can execute the basic action c &
in a store a if 0 entails c; otherwise the agent is sus-
pended. An agent can execute the basic action c* in u
if B accepts c, that is, if d A c is consistent; otherwise it
cannot progress. The agent b 4 A (for b some basic ac-
tion) can behave like the agent A, provided that it can
do the basic action b first. A1 11 AZ behaves like A1 and
Aa executing in parallel, so that their basic actions are
interleaved. A1 -!-AZ is the agent that may behave either
like Al or like A*, but the choice must be made when
either Al or A2 executes its first step. (Thus the choice
may be influenced by the environment, unlike Hoare’s
“internal non-determinism” .) 3X.A (read: “A, with X
restricted”) behaves like A, except that the variable X
is “bound” in A and must be replaced at run-time with
a new variable “local” to A that is, “renamed apart”
from any other variable in the environment.g As a con-

sIn actual programming languages in the cc family, we also in-
troduce a binary sequential operator (‘I:“) which allows the gener-
ation of composite basic actions (to be executed atomically) from
other simple and composite atomic actions. However, at least
when the only basic operators allowed are Ask and Tell, the ad-
dition of such an operator does not increase the expressiveness of
the language, and we omit it from discussion here.

gSuch dynamic renaming can usually be implemented efFi-

235

sequence, X is also hidden in A, in the sense that the
environment cannot influence A through X, and A can-
not influence the environment by posting constraints on
X. This is the natural notion of hiding in cc languages
since variables serve as the conduit for communication
between concurrently executing agents. Next, pR is a
procedure call on p, with the argument list R (a list of
object-variables). (fixjfiRA)R’ is the agent Aj, with
its formal parameters Rj replaced by R’, and with oc-
currences of the procedure variables p “bound” by the
given declaration.

Finally, nil is the agent that has no behaviors. The
primitive stop agent is necessary because we would like
to distinguish successful termination of the system from
unsuccessful termination. Intuitively, a stop agent exe-
cutes a special visible action c’/ indicating termination,
where c is a projection of the current. store, and then be-
haves like nil. However, the rules of behaviors of other
agents are defined in such a way that agents (Al 11 AZ)
can so indicate successful termination only when both
Al and AZ have; similarly for other combinators.

Example 2.1 (nrev/2 in this syntax) The
“naive reverse” program may be written as:

usual

(fix1 (nrev, append)((Xl, X2)(x1, X2, X3))
((nuW1) J- - (Xl = x,)* - stop

+ conso &
+ 3X3.3Xq.((X4 = [car(X X

(null(Xi) L -f (X3 = X2)* + stop

$ cons(Q) A

-+ %4.3X5.(car(X3) = car(Xi),

= cdr(Xt), X5 = cdr(X$)+

+ apznd(Xq, X2, X5))))(& B).

In the above, the constraints null, cons etc are used
with their obvious interpretation. Intuitively, this agent
expects its environment to constrain its first argument
(A) to be a list, over time, and in return, it will constrain
its second argument (B) to be the reverse of its first
argument.

In reality such a program is written, with obvious
shorthand, as:

ciently in distributed systems, without the kind of global knowl-
edge that might seem necessary. Indeed, its effect is to provide
a distributed, uniform, virtual name-space across all sites partic-
ipating in the computation.

(fiq(nre*. wp)((Xlp X2)(X1, X2, X3))
((null(X1) 4. + (Xi = X2)* -+ Stop

+ cons(Xi) J -V 3Xb.(nrev(cdr(Xl), X5)

II append(Xs, br(Xl)l, Xz))h
(null(Xi) .l. + (X3 = X2)* * stop

+ cons(Xi) L -+(car(X$ = car(Xl))*
-+ append(cdr(Xi), X2, cdr(X3)))

))(A, '3).
.

And this, in turn, is not too far from the “Ask-tell”
clausal syntax-closer to conventional logic program-
ming syntax-employed in [Sar88]:

nrev(Xi, X2) + null(X1) : (Xi = X2) 1 atop.
nrev(Xi, X2) 4- cons(Xl) : true 1

nrev(cdr(Xih X5), append(Xs, b-(Xi)l, X2).
append(Xi, X2, X3) t null(X1) : (X2 = X3) 1 stop.

appendo(~, X2, X3) + cons(Xi) : car(Xi) = car(X$ 1

wend(cdr(X1), 9, cdr(Xg)).

Programs in the “algebraic” syntax introduced above
may readily be translated to programs in the usual
“clausal” syntax for logic programming languages, and
vice versa, (We take it to be a strength of Milner’s
analysis that it is applicable even to the seemingly un-
related context of (concurrent) constraint programming
languages.) Nevertheless we prefer to work in this pa-
per with the algebraic notation which is more convenient
for the task at hand, and it makes the connections with
CCS/CSP more obvious. Indeed the algebraic notation
presented above may well be regarded as abstract syntax
for the concrete “clausal” syntax of logic programming.

2.3 The behavior of CC(J.,-+) agents

To define the behaviors of agents in this language, we
employ an indexed Iabelled transition system, with set
of configurations (also called processes) (P, & . . . E)I? =
{(A, u) 1 d consistent} and the set of labels (X E)A
(defined below) and indexed by {V cr Var}, the set
of finite sets of variables. Formally, a store u consists
of a constraint and a set of variables; c : V represents
the store with constraint c and set of variables V. We
require that var(c) C V for all stores c : V, and extend
some operations on constraints to operations on stores

236

in the following manner: straightforward:

c:V*c’ s c * c’ : VU var(c')
c' * (c : V) G c' * c : v u vaP(C')
c:V*c':V' E c*c':VUV'
c:VAd G c A c’ : VU var(c')
c' A (c : V) E c' AC: Vuvar(c')
c:vAc’:v’ z c AC’ : VUV’
C/=c:V .E q=c
vx.c : v E vx.c
3x.c : v E 3x.c

(A~,c:V)d(nil,c:V)

(AZ, c : V’) I-% (nil, c : V’)

(AI 11 AZ) I-% (nil, c : VU V’)
eJ Al,u - nil,a

(Al .+ As, CT) &+ (nil,ci)

(AZ + AI, u) F% (nil, a)

Next we consider the behaviors of 3X.A.
The relation V t- P A & is to be read as: “P is

observed to take the action A, on the visible variables*”
V, and then behave like Q”. In this section we define
a transformational semantics, which is adequate to cap-
ture the behavior of the program executed in isolation
from its environment. (In Section 4, we will consider
which basic actions taken by an agent should be consid-
ered visible.) Hence the only observation allowed is the
observation of a constraint c on successful termination
of the store. This corresponds to the usual situation
in logic programming languages when a user interacts
with the system by executing an agent and waiting for
the “answer bindings” (here: constraints) to be printed
on the screen. Hence we set A = {T} U {cd, where we
take r to stand for the “silent” action, indicating that
the process has made internal progress.

The transition relation is defined inductively in the
usual SOS style. A basic action can be executed when
the relevant conditions are satisfied:

(A[Y/X], c : V’ u {Y}) A Q Y $ V’

VI-(3X.A,c:V++Q
(5)

The axiom for mutual recursion is the usual “stay
one step ahead of the execution” one, modified in the
obvious way to allow parameter transmission. As is con- --
ventional, we use the notation A[f ixpRA/jj to indicate
the agent obtained by simultaneously replacing all oc-
currences of pi in A by fix&A and renaming bound
(object and procedure) variables to avoid capture. In
the following rule, Rj is presumed to be some list of
variables X.

(Aj [Y/J?][f ixFRA/P], U) d-+ Q

((fixjfiRA)F,u) A Q

c b (3)(u A c)

VI- (c*+A,u) I& (A,uAc)
C+ u*c (2)

Vt-(CJ. -A,a)+A,a)

Finally, the single axiom for stop is evident-in store
u stop can make a single transition, publishing the con-
straint 6V.u (the store projected onto the visible vari-
ables):

V l- (stop, u) ‘v.oJ (nil, V)

nil has no behaviors.

(From now on, we shall write P I-& Q for the assertion

VI-P A& h w enever each assertion in a transition
rule uses the same index V.) The definition of inter-
leaving and choice are standard. Note that we use “Mil-
ner’s choice”, as opposed to Hoare’s internal and exter-
nal indeterministic choices [BHR84]. It turns out to be
much more convenient to implement, and all concurrent
logic programming languages implement this version of
choice:

The computations of a process are defined in the stan-
dard way, as sequences of transitions. Terminating com-
putations may yield answers. The set of unswers of a
process P, SS(P) is the set:

SS(P) = {c 1 var(P) I- P(A)* A Q, }
for some Q

where we use the notation PIRl’R2Q to indicate rela-
tional composition , “*” is the Kleene star.

(Al, n) d-t (A’, , d) (A # c’/ for some c)

(Al II A2, u) d+ (A’, II A2, u’)

(3)

(A2 II AI, u) A (A2 II A’, , a’)
x

2.4 Comparison with previous work

(AI + -4,~) - (&,a’)

(AZ + -41,~) - A (A:,4

The axioms for successful termination are equally

cc(J,-+), as we have sketched it above, is essentially
a “committed choice” concurrent logic programming
language, parameterized over the embedded constraint
system, and with the operations of blocking Ask and
atomic Tell. Indeed, all the major concurrent logic
programming languages neatly fit into the cc/Herbrand

(4

-- -

(6)

(7) .

237

framework. Flat Parlog [Gre87] and Flat GHC [Ued86]
are revealed as Eventual Herbrand, that is, as cc lan-
guages over the Herbrand constraint system, with Block-
ing Ask and Eventual Tell operations. FCP(I, 1) (Sar85]
(modulo a minor adjustment discussed in [Sar87a]) is re-
vealed as Atomic Herbrand, that is, the cc Language over
Herbrand, with Blocking Ask and Atomic Tell operation.
Strand, the first commercially available programming
language in this framework [Str89], is the cc language
with Blocking Ask and Initialize basic operations, over
a slightly simplified version of Herbrand.‘O

The treatment of the transformational semantics for
the cc languages is based on [Sar89]. It considerably
simplifies and generalizes the treatment of “flat” lan-
guages in [Sar87b], besides presenting it in an algebraic
setting. The reiationship of this work with some more
recent work on the semantics of concurrent logic pro-
gramming languages is discussed in Section 4.

[Mah87] first suggested, in the context of the design of
the language ALPS (which may be thought of as being
a cleaner “logical” variant of FGHC) how the synchro-
nization condition for FGHC could be modelled logi-
cally. This paper was very influential in our develop-
ment of the concurrent constraint programming frame-
work. [Sar88] first presented the Ask and Tell metaphor,
but it concentrated on showing how a number of syn-
chronization mechanisms in concurrent logic program-
ming languages could be expressed in this constraint-
based setting. [Sar89] developed the concurrent con-
straint programming framework as presented here. The
debts of this work to Milner’s development of CCS are
obvious.

More generally, from a concurrent programming point
of view, there are tantalizing connections with the
UNITY work [CM88]. cc languages are essentially non-
deterministic transition systems over partially defined
stores. The focus in this paper (and in [Sar89]), is to
show that very sophisticated and usable programming
languages emerge provided that the notion of commu-
nication and synchronization is suitably enriched,

3 Constraint systems

Concurrent logic programming languages, which have
been thoroughly studied in the last few years, are cur-
rently the most well-developed exemplars of the power

lo We remark in passing that Flat Concurrent Prolog is not cov-
ered by the cc framework. We are not concerned however (on the
contrary!) since that language was, in retrospect, a rather poorly
designed language, with a very obscure synchronization mecha-
nism. (The arcane details may be found in [SarSU].) Indeed,
Shapiro and his colleagues have now moved over to Atomic Her-
brand, essentially abandoning Flat Concurrent Prolog [KYSK88].

of constraint-based communication. Many program-
ming idioms for these languages have been discov-
ered, which deal, for example, with incomplete mes-
sages (messages whose responses can automatically-
and efficiently-be routed back to the receiver), recur-
sive doubling (technique for path-shortening), short cir-
cuits (used for the detection of stable properties of net-
works [SWKSSS]), p ro d ucer consumer synchronization,
many-to-one communication using bags, techniques for
modelling agents with mutable local state, etc. Note
that these languages already have the power to commu-
nicate embedded ports in messages, without having to
resort to infinite summations, as has variousIy been pro-
posed for CCS. Further, these idioms allow the natural
expression of fine-grained concurrency. Many of these
idioms are discussed in the literature in such places as
[Sha83], [Kah89], [FT89b],[Sar89], [Gre87],[Ued86] etc.

However, Herbrand is not the only kind of constraint
system based on trees which is useful in this setting.
For example [Sar89] shows that with a suitable choice
of vocabulary, it is possible to get fixed-width arrays,
extensible arrays, infinite arrays along two dimensions,
records, “feature-structures” [AK84,Smo88] etc. in very
natural ways.

More generally, constraint-based systems are endemic
in AI. They range from systems based on Boolean al-
gebras in use in knowledge representation systems with
sophisticated inheritance schemes,rl to systems arising
from the so-called “hybrid reasoning” approach in AI,
to explicitly tailored systems used in various vision algo-
rithms [MR88], to discrete constraint systems [DvH+88]
used in various search problems, to propositional cac-
ulus based constraint sytems used in conjunction with
various kinds of “truth maintenance systems” to control
problem-solvers, to constraint systems used in quabta-
tive reasoning about the physical world, and so on.

Of course the use of constraint systems in traditional
algebra and geometry settings is already well-known,
and has been exploited in the constraint programming
setting in [JLL].

We end with a few slogans which capture the flavor
of constraint-based communication. These slogans are
expanded on in much more depth in [Sar89].

Conshinls specify pariial informalion. Agents do not
synchronize only on the availability of complete in-
formation about objects (variables). Two or more
agents may simultaneously produce non-redundant
pieces of information about the same variable.

Communication is additive. Only constraints that are
consistent with previously placed constraints can

“Indeed, [SarSS] borrowed the Ask and Tell terminology from
[BFL85]!

23%

be added to the system. Once a constraint is added
to the system, it stays forever. This leads to the
stability of the Ask and Tell operations.

Constraints are types. The types-as-sets view makes
types monadic constraints. More sophisticated
type systems allow inheritance (implicational hi-
erarchies), type specialization (conjunctions) and
classification (exclusive disjunctions). The con-
straints view provides a coherent conceptual frame-
work for a much richer space of type specifications,
including multiadic types.

Communication channels may be embeddable.
In the Herbrand constraint system, variables may
be communicated in messages between agents with
the same ease as data.

Communication is open. Whenever an agent places a
constraint on a variable, any agent with access to
that variable is affected. There is no a priori dis-
tinction betwen producers and consumers. In order
to be affected by the environment, an agent does
not need to know how the communication occurred:
who generated it, when was it generated, etc.

4 Abstract semantics for CC(.L,+)
languages

In Section 2 we gave an operational semantics for
cc(J. ,-+), which associates with each agent the set of
“answers” obtained by running the agent. However,
such a semantics is obviously not compositional, since
not enough information is stored with the semantic ob-
jects. In this section we take the first steps towards
identifying the basic ideas that must be used in the
semantic modelling of the cc(&,-+) languages. We in-
troduce the notion of “visible variables” of an agent--
the set of variables that form the interface between the
agent and its “environment’‘-and analyze the notion of
“visible actions” for a CC(I,+) agent, axiomatize it in
the standard SOS style, define c-trees to be the deriva-
tion trees obtained by “unrolling” the one-step transi-
tion relation, introduce two “bisimulation” equivalences
on c-trees from which we derive two congruences (with
respect to cc(&,+) combinators), axiomatize these con-
gruences for Finite cc(-L ,+), and argue that one of them
is the “finest reasonable” congruence on cc(J. ,-) agents.

4.1 Visible actions and reactive seman-
tics

Let the “environment” in which an agent is executed be
an abstraction of the rest of the computational system-

including concurrently executing agents-with which
the agent must interact to complete its computation. In
order to interact, an agent must have certain variables-
the visible variables-in common with its environment.
A basic action is said to be a visible action if the agent’s
capability to engage in that action may be influenced by
the environment. Thus a visible Tell action is an action
that imposes “new” constraints (i.e., constraints which
are not yet known to have been imposed) on the visible
variables, and a visible Ask action is one which checks
whether some new constraints have been imposed on
the visible variables. Note that a visible action is not
something that is “directly seen” by another agent-
rather it is a step in the agent’s own computation which
could have been influenced by the action of some other
agent. Such circumspection is necessary in understand-
ing this concept because communication in cc languages
is very indirect, and hence the concepts developed in the
CCS/CSP framework-in which an event is observable
if the environment can synchronously engage in it-may
not be directly relevant.

In the following, we analyze this problem in de-
tail. We define the (indexed) reactive fransilion
system, over the set of configurations Fr = F =
{(A,(r) 1 u consistent} (indexed as before by {V EJ
Var}) and the set of labels Ar = AU {c J. , c*} extended
to include the basic actions. The interpretation of the
transition V I- P -% Q is that the process P may in one
step add the new information c (in the visible variables
V) to the store, and then behave like Q. Similarly, the

interpretation of V l- P * Q is: in order to progress,
P must assume that the environment supplies a con-
straint at least as strong as c (in the visible variables),
where c is information new to the store.

Let us now consider the axioms for -, Suppose
an agent engages in the basic action c* in the store u.
Clearly, this action is invisible to the environment if
c t= (I * c5V.(u A c), where V is the set of visible vari-
ables. For, any action that the environment can engage
in before the agent executes this action, it can engage in
after the agent executes this action. (Note that c may
add information on “non-visible” variabIes, but this can
never be detected directly by the environment.) Even
though the agent has made progress, the ability of the
environment to progress has not been affected in any
way; hence the agent has made silent progress. We thus
have the axiom:

c k (3)(u A c) c k (u =B bV.(u A c))

VI- (c*--+ A,u)~(A,uAc)
(8)

Otherwise, if the constraint can in fact be published
(that is, is consistent with the store) then progress by
the agent has resulted in new information being added
to the store. The information added is the same as that

239

added by any other agent engaging in a basic action c’*
which is identical to C* (as’far as the set of visible vari-
ables V is concerned) in the context of Q, i.e., is such
that 6V.(a A c) +=+ 6V.(a A c’). Subsequent to this ac-
tion, the environment is prohibited from engaging in any
action inconsistent with bV.(a A c); hence we say that
the agent has engaged in the visible action 6V.(a A c)*:

c t= (3)(u AC) c k u * 6V.(a A c)
(9)

V I- (c-k-+ A,u) ‘“(ahc)* (A, u A c)

Similar considerations apply if an agent engages in the
action c 4 . If the store u is such that C + u =+ c, then
the agent has made silent progress; for, no (consistent)
action taken by the environment can either influence
this progress or be influenced by it. Assume now that
C 1 (d =+ c). Let X be the set of variables in the store
less the visible variables V. Now it is possible for the
agent to progress iff it is possible for the environment
to supply some new constraint cb on V such that when
conjoined with u, it entails c. Hence cb must satisfy the
properties:

1. C l= (3)(uAcb), and,

2. c + CL * (u =+ c).

If there is a constraint cb on the variables V which
satisfies these properties, then the weakest such con-
straint is: CO E VX.(u 3 c). l2 Hence we say that if
C b u s c, and C b (3)(uAco), an agent c + A may, in
store u, engage in the new visible action 6V.(u A cc) J. .
The resulting store, u A co is exactly strong enough to
entail c. Thus we have the axioms:

c + (3)(u A c) c + u * c
VI-((CA -A,(T) A(A,u)

(10)

Cku=kc
c’ : v u x s u co E VX.(u 3 c)
c I= P)(u A co)

6V.(OACO) J. (11) vt-(cs -+A,u) - (A,uAco)
The axioms for stop, choice, interleaving, the restric-

tion operation and recursion (Rules 3,4, 5, 6 and 7)
remain unchanged. This rounds up the list of axioms
that - satisfies.

4.2 Derivation trees

The above rules implicitly define the tree of actions that
a cc agent engages in (obtained by “unrolling” the one

12There may be no such constraint because it may not be pos-
sible to answer c from u given that only a V-constraint can be
added to o. For example, if u is true, c is Pi, and V is any set
of variables which does not contain Y.

step “XX relation, indexed by V, the set of free vari-
ables of the agent). Such trees, which we shall call c-
frees, play the same fundamental role for cc that syn-
chronization trees play for CCS. In brief, c-trees are
trees whose arcs are labelled with elements of A’ and
which satisfy the conditions:

l if an arc is not labelled with 7 then the constraint
labelling it is consistent and strictly stronger than
any constraint labelling an ancestor arc, and,

l if the arc entering a node is labelled with CJ then
the node has no outgoing arcs.

If two agents have the same c-tree, then they have
the same success set; in fact the success set can be ob-
tained in an obvious way by considering the “ask-free”
branches of the c-tree.

Next we consider when two agents may be said to
have c-trees that are “similar”:

Definition 4.1 A relation - on processes is a rigid V-
bisimulation iff for all processes P and Q such that
P - Q, if V t- P A P’ then V I- Q x Q’ and
P’ - Q’, and vice versa. cl

Definition 4.2 (Reactive equality) Two agents A
and A’ in free variables V and V’ respectively are said
to be reactively equal (written A N A’) iff there exists a
rigid (Vu V’)-bisimulation - such that (A, 0 : VU V’) N
(A’,!f?:VUV’). T wo p recesses P and Q are reactively
equal on V (written V I- P N Q) iff there exists a rigid
V-bisimulation N such that P N Q. 0

The theory of bisimulation has been explored in a
number of places e.g. [Mi184] and is mathematically
very attractive.

Theorem 4.1 Reactive Equality is a congruence for
Finitary CC(J.,-+). That is, if A1 N A; and A2 N A/2
then:

b-+Alcb-+A; AI II AZ 2: A; 11 A:
AI + A2 N A; + A; 3X.A1 E 3X.A;

The congruence proofs for the various cases consist
of constructing a relation containing the appropriate
processes, and then using several key lemmas (some of
which are given below), to show that this relation is a
bisimulation.13

First we need some definitions. Say that two con-
straint c,c’ are V-identical iff C b 6V.c c 6V.c’.
(From now on we shall abuse notation and write cl = c?

13Detailed proofs of this result and others in this paper may be
found in [SRng].

240

to mean that C k cl e ~2.) For a constraint c and
store (T, say that c ezfends o on V iff C b (3)(u h c)
and if X is the set of variables occurring in u less V,
then C i= c +=+ 3X.c. Thus c may constrain variables
other than the non-visible ones of cr.

Let PET/l- (A,u) -%Qand P’E VI- (A,u’) k
Q’ be two transitions. We say they correspond iff each
is generated from the same subterm of A. This notion
can be generalized in the obvious way if the agents in P
and P’ are not identical but are variants of each other.

Lemma 4.2 (Anti-augmentation lemma)

Zf VI- (A,ur\d) -k (Al, u1) and d extends u on
V, then there exists a corresponding transition

V I- (A, u) k (Al, U-J), where u1 = u2 A d.

Lemma 4.3 Le2 V I- (A, u A d) -% (Al, ul) be a trun-
sition, where d extends u on V. Let

V I- (A, a) -k (Al, Q) be a corresponding transition.
Then, for any agent A’, store u’ V-identical to (I,
and constraint d’ V-identical to d and extending u’

on V, if V I- (A’,u’) X1 - (A:, CT:) then we must have

V k (A’, u’ A d’) -% (A’,,u;r\d’).

Lemma 4.4 (Augmentation lemma for 2)
Let V I- (A, u) 21 (A’, u’), where u, u’ are V-identical.
Let d, d’ be two constraints such that d extends u on V,
d’ extends u’ on V, and d is V-identical to d’. Then
VI- (A,uAd)? (A’,u’Ad’).

We give an equational characterization of reactive
equality for Finitary cc(-L ,--t)in Table 1.

Theorem 4.5 The laws (Al)-(A8’) and (Bl)-(BS)
are complete for reactive equality for Finitary cc(L,+).

We prove the theorem by defining a normal form,
showing that each agent is related to its normal form by
equational reasoning using the given laws, and showing
that, bisimilar agents have identical normal forms. The
normal form of an agent differs from its c-tree only in
that some branches of the normal form may terminate
in stop, whereas corresponding branches of the c-tree
terminate in a label of the form cd.

Each agent can be converted to its normal form by

using (A8’) and (Bl) to “push down” 11 constructs, and
(B5)-(B8) to push down constructs of the form 3X.
(82) and (83) propagate constraints down the tree,
ensuring that each branch of the tree has the correct
labels, while (B4) trims inconsistent branches and con-
verts each Ask and Tell that adds no new information
to the visible variables into a 7.

Law (B6b) deserves futher explanation. Because ap-
plying this law hides any information about X in c from

Generic laws for reactive equality are given below. They
are applicable when the index set I = 0, since we take
nil to be the zero for disjunction. All the laws num-
bered An are from [Mi184]. We use the notation [b] to
refer to b’s constraint.

(Al) 2 + (Y + 2) = (x + y). + z
(A2) x+y=y+z
(A3) x+x=x
(A4) x + nil = 2
(A8’) u]I v = C;EIbi + (Ai I] v)

+CjcJb(i * (U 11 AS)
where u = Cic,(bi -+ Ai)
and II = CjeJ(bi + A$)

The following laws are specific to cc(L ,-). The term T
is to be thought of as shorthand for the basic operation
true*.

(Bl) stop II A = A = stop II A
(B2) b - ((c L --* A’) + A) =

b - (([b] A c) J. --t A’) + A)
6 + ((a -+ A’) + A) =
b + (([b] A c)* --$ A’) + A)

(B3) b -+ ((c J. - A’) + A) =
b 4 (([b] =S c) J + A’) + A)
b -+ ((c* --+ A’) + A) =
b + (([b] 3 c)* --) A’) + A)

C /= [b]
(b-+A=r-+A)

(B5) 3X.CieI(bi --* Ai) = CiEISX.(bi -+ Ai)

(B6a) 3X.(c+ + stop) = (3X.c)* --t 3X.stop
Vi E I.C f= Ci * C
vj E J.C + c v c;
Vj E J. 3X.((c r\VX.ci)* -+ A:) =

ww (((3X-c) A VX-.c;)* + -3X.A;)

3X.(c* -+ A) = (3X.c)* -3X.A
where A = (CicIci* -+ Ai+

CjEJci A * AI)

(B7) 3X.stop = stop

(B8) 3X.(c J. ---) A) = (VX.c) & - 3X.A

Table 1: Axiomatization of Reactive Equality

241

A, we must ensure that this information has been prop-
agated to A before applying the law. The first clause
of the law’s antecedent makes sure that each ci can be
written as c A c’ for some I?, which guarantees that the
information can be propagated through Ai. The second
clause ensures that each c: can be written as c 3 c’ for
some c’, which guarantees that (B8) will produce the
correct Ask when the 3X is pushed down. Note, how-
ever, that c[i does not contain the information in prop-
agatable form. Therefore, the third clause makes sure
that this information has been propagated to Ai by ver-
ifying that (B8) can be legally applied to 3X.c; & + AS
in the given context. Think of (B6b) as a one step rule
with lookahead.

4.3 Identifying c-trees

Reactive equality can be coarsened further-exactly as
in CCS- by taking into consideration the interpretation
of “T” as indicative of silent, internal progress.

Definition 4.3 If X # r and

V I- (A,&+)*(&,uI) A (Am)(+*(AW)

then V t- (A, 6) &- (A’, 6’).

If V t (A,u)(L)*(A’, u’) then V I- (A,a)==+(A’,a’).
0

Definition 4.4 A relation - on processes is a V-
bisimulation iff for all processes P and Q such that

P w Q, if V I- P =& P’ then V I- Q =% Q’ and
P’ - Q’, and vice versa, and if V I- P ==P P’ then
V I- Q _ Q’ and P’ % Q’, and vice versa. 0

Definition 4.5 (Reactive equivalence) Two agents
A and A’ in free variables V and V’ respectively are said
to be reactively equivalent (written A x A’) iff there
exists a (V U V’)-bisimulation - such that
(A, 0 : V u V’) - (A’, 0 : V u V’).

Two processes P and Q are V-bisimilar (written
V I- P e Q) iff there exists a V-bisimulation- such that
P -Q. 0

Reactive equivalence for cc is the counterpart for ob-
servational equivalence for cc, under the assumption
that. the interactions of the agent with the store are
observed. Since this is not the usual notion of observa-
tion for cc processes (see, e.g. the discussion of “visible”
actions in Section 4.1), we have avoided the use of the
phrase “observational equivalence”. However, as was
the case in CCS, reactive equivalence is not a congru-
ence for cc and for precisely the same reason: it is not
respected by ‘l-t” contexts. We have:

Theorem 4.6 Reactive equivalence is preserved by the
prefixing, hiding and inlerleaving operations.

The laws characterizing reactive congruence for Finitary
cc are the laws in Table 1 and:

(A5) A+r+A=7-A
(A6) b --+ (Al + T -+ AZ) =

b + (AI + T - AZ) + b - AZ
(A7) b-+r+A=b+A

Table 2: Laws characterizing reactive congruence for
Finitary cc

The proof of this theorem is similar to the proof of
Theorem 4.1 with the exception that the lemmas must

be applied to the multiple “ 2” transitions that make

up a single “+, instead of only a single “-5” transi-

tion.
Define reactive congruence for cc to be the largest

congruence contained in reactive equivalance. For Fini-
tary cc(&,-+), t i can be characterized merely by adding
the appropriate “r-laws” from CCS. (See Table 2.)

Theorem 4.7 ‘The laws (Al)-(A#) and (Bl)-(B8)
are complete for reactive congruence for Finitary
cc(J.,+).

The key idea here is to use the laws (Bl)-(B8) and
(A8’) to convert agents to labelled trees. Once this is
done, Milner’s proofs [Mi184] go through essentially un-
changed.

Reactive congruence-the largest congruence con-
tained in reactive equivalence-seems the finest inter-
esting congruence for cc(J. ,-) agents. Certainly two
agents that are bisimilar have the final set of observ-
ables. Bisimulation has elegant mathematical proper-
ties, and is similar to ideas on “corresponding deriva-
tions” used in logic programming [Llo84].

It is known that bisimulation congruence is too fine a
congruence for CCS for “reasonable” notions of testing
[BIM88]. Research by many people in the last several
years has established a number of coarser congruences-
such as simulation, ready simulation, refusal congru-
ence, failures congruence etc.-and has succeeded in ty-
ing these notions to reasonable notions of testing. We
believe that it will be possible to coarsen reactive con-
gruence for cc in a fashion similar to that done for CCS.
Similarly, we believe that it will be possible to extend
the notions of testing for cc to take account of the richer
scenarios suggested for example in [Abr89]. However we
believe it will be considerably harder to tie such testing
notions to the corresponding congruences in cc because
of the contextual nature of communication. We look
forward to considerable work in this area in the near
future.

242

4.4 Comparisons with other work

Recently [GMS89] h ave proposed a notion of “reac-
tive behaviors”. A reactive behavior is just the no-
tion of input-output record which one of us introduced
in [Sar85], generalize to our setting of concurrent con-
straint languages: it corresponds to a “trace” of visible
actions, with all information about silent transitions and
hidden branches removed. They present a rather limited
“full abstraction” result for cc(&,-+) that ignores the
subtleties associated with hidden branching. [dBK88]
explores a denotational semantics based on metric do-
mains for the Herbrand instantiation of cc@,+). (In
fact they consider “deep guards” as well, and also point
out connections with the semantics of imperative con-
current languages.) Connections with some of the other
work on the semantics of concurrent logic programming
languages are made in [Sar89].

5 Future work, and conclusions

Within the context of concurrent logic programming
research, the notion of concurrent constraint program-
ming and the cc languages, as developed in [Sar89] and
summarized here, promise to have a fundamental im-
pact. The realization that the synchronization mech-
anisms which had earlier been defined in very ad hoc,
messy ways had nothing to do with unification, substi-
tutions, idempotence etc.-those were mere implemen-
tation details-has cleared the way for the definition
and implementation of simpler, conceptually cleaner
and more powerful languages. At the semantic end,
it is now obvious how the technically very convoluted
results in [Sar85], [GCLS88] and [UF88] can be dramat-
ically simplified and generalized. Indeed, we are con-
fident that the concurrent logic programming field will
be subsumed by, and merge into, the more fundamental
and general concurrent constraint programming field.

With the connection between cc and CCS/CSP intu-
itively clear, we foresee an explosion of work in this field
in the future. Perhaps the best tack would be to pro-
ceed in the “specification-oriented” framework set up by
[OH861 for relating various models with each other. We
look forward to the presentation of such models for cc
and the clarification of their relationships in the near
future. However, it seems that a prime target has to
be the development of a denotational semantics which
is fully abstract with respect to the standard notion
of observation for logic programs (that is, observe the
“success set”, possibly with deadlock and divergence).
This was attempted in [GCLS88] but for an artificially
powerful language, which does not lie in the cc(&,+)
framework.

We conclude with a quotation from [IIen88]:

As this avenue of research is developed to include
languages with more sophisticated features we will
require a more sophisticated mathematical frame-
work, and it is urdikely that this will be found
in the existing literature. I give two examples
to illustrate the point. . . . As a second example,
we could take the language in Hoare 1978 or the
full version of CCS in Milner 1980. Here values
are passed along the channels so that the actions
are no longer uninterpreted. Rather, the port
names now act as variable binders in the same
way as X-abstraction in the X-calculus. An ade-
quate semantic treatment of these languages would
therefore require a mathematical framework of C-
domains which supports equational theories, vari-
able binders, and, presumably, equational theories
incorporating these binders.

Concurrent constraint programming may well provide
an alternate simple, elegant, and practical framework
for the development of these ideas. The framework we
have presented above already caters for a very sophis

ticated and useful form of communication and synchro-
nization. Indeed, the promise of the present approach
is that it will enable the construction of concrete, im-
plemented, practical languages which provide very rich
facilities for communication and which seem destined to
be widely used in the future, and which are at the same
time theoretically simple and admit elegant semantic
treatment.

Acknowledgements. There are too many debts that
the first author owes to too many-people for him to even
think of acknowledging them here, He has tried to make
amends in the preface to [Sar89].

References

[Abr89]

[AK841

[BFL85]

[BHR84]

S. Abramsky. Tutorial on concurrency. Presented
at 1989 POPL, January 1989.

Hassan Ait-Kaci. A lattice theoretic approach
to computation based on a calculus of partially
ordered type structures. PhD thesis, University
of Pennsylvania, Computer and Information Sci-
ence Department, 1984.

Ronald J. Brachman, Richard E. Fikes, and Hec-
tor J. Levesque. Readings in Knowledge Repre-
senation, chapter KRYPTON: A functional ap-
proach to Knowledge Representation, pages 411
- 429. Morgan Kaufmann Publishers, 1985.

S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe.
A Theory of Communicating Sequential Pro-
cesses. Journal of the Association for Computing
Machinery, 31(3):560-599, July 1984.

243

[BlM88]

[CG86]

[CM881

[Dav83]

[dBK88]

[Dij76]

[DvH+88]

[FTSSa]

[FTSSb]

[GCLS88]

[GMS89]

[Gre87]

[Hen881

lJL873

[JLLI

Bard Bloom, Soren Istrail, and Albert R. Meyer.
Bisimulation can’t be traced: Preliminary re-
port. In Proceedings of the ACM Symposium
on Principles of Programming Languages, pages
229-239, 1988.

K. L. Clark and S. Gregory. Parlog: parallel pro-
gramming in logic. TOPLAS, 8(1):1-49, January
1986.

Mani Chandy and Jay Misra. Parallel Program
Resign-A foundation. Addison Wesley, 1988.

Martin Davis. Automation of Reasoning: Clas-
sical papers on computational logic, chapter The
prehistory and early history of automated deduc-
tion. Springer Verlag, 1983.

J.W. de Bakker and J.N. Kok. Uniform abstrac-
tion, atomicity and contractions in the compara-
tive semantics of Concurrent Prolog. In Proceed-
ings of the Fifth Generation Computer Systems

Conference, December 1988.

E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, 1976.

M. Dincbas, P. van Hentenryck, H. Simonis
F. Berthier. The constraint logic programming
language CHIP. In Proceedings of the FGCS
Conference, November 1988.

Ian Foster and Steve Taylor. Strand: A prac-
tical parallel programming language. In North
American Logic Programming Conference, 1989.

Ian Foster and Steve Taylor. Strand: New con-
cepts in parallel programming. Prentice Hall,
1989.

Rob Gerth, Mike Codish, Yossi Lichtenstein, and
Ehud Shapiro. A fully abstract denotational se-
mantics for Flat Concurrent Prolog. In LICS 88,
1988.

Haim Gaifman, Michael J. Maher, and Ehud
Shapiro. Reactive behavior semantics for con-
current constraint logic programs. In North
American Logic Programming Conference, Octo-
ber 1989. To appear.

S. Gregory. Parallel Logic Programming in Par-
log. International Series in Logic Programming.
Addison-Wesley, 1987.

Matthew Hennessy. Algebraic theory of pro-
cesses. MIT Press, 1988.

Joxan Jaffar and Jean-Louis Lassez. Con-
straint logic programming. In Proceedings of the
SIGACT-SIGPLA N Symposium on Principles of
Programming Languages, pages 111-l 19. ACM,
January 1987.

J. Jaffar, J-.L. Lassez, and C. Lassez. Constraint
logic programming: Tutorial. IEEE SLP 87 Tu-
torial.

[Kah89] Kenneth Kahn. Objects - a fresh look. In Pro-
ceedings of the European Conference on Object-
Oriented Programming, pages 207 -224. Cam-
bridge University Press, July 1989.

[KYSK88] S. Kl g i er, E. Yardeni, E. Shapiro, and K. Kahn.

[LIo84]

The language FCP(:,?). In Conference on Fifih
Generation Computer Systems, December 1988.

J.W. Lloyd. Foundations of Logic Programming.
Symbolic Computation series. Springer Verlag,
1984.

[Mah87]

[Mah88]

[Mi183]

[Mi184]

[MR88]

[OH861

[Sar85]

[Sar87a]

[Sar87b]

[Sar88]

[Sar89]

[Sha83]

Michael Maher. Logic semantics for a class of
committed-choice programs. In 4th international
Conference on Logic Programming. MIT Press,
May 1987.

Michael Maher. Complete axiomatizations of
the algebras of finite, rational and infinite trees.
Technical report, IBM T.J. Watson Research
Center, 1988.

Robin Milner. Calculi for synchrony and asyn-
chrony. Theoretical Computer Science, 25:267 -
310, 1983.

Robin Milner. Lectures on a calculus for commu-
nicating systems. In S. Brookes, A. Roscoe, and

G. Winskell, editors, Seminar on Concurrency,
LNCS 197, 1984.

Alan Mackworth and Ray Reiter. The logic of
depiction. Technical report, University of British
Columbia, October 1988.

E.-R. Olderog and C.A.R. Hoare. Specification-
oriented semantics for communicating processes.
Acta Informatico, 23:9-66, 1986.

Vijay A. Saraswat. Partial correctness seman-
tics for cp(.l.,I, t). In Proceedingn of the
FSTTCS Conference, number 206, pages 347-
368. Springer-Verlag, December 1985.

Vijay A. Saraswat. Compiling CP(1, 1 , &)
on top of Prolog. Technical Report CMU-CS-
87-174, Computer Science Department, Carnegie
Mellon University, October 1987.

Vijay A. Saraswat. The concurrent logic pro-
gramming language CP: definition and opera-
tional semantics. In Proceedings of the SIGACT-
SIGPLAN Symposium on Principles of Program-
ming Languages, pages 49-62. ACM, January
1987.

Vijay A. Saraswat. A somewhat logical formula-
tion of CLP synchronization primitives. In Pro-
ceedings of LP 88. MIT Press, August 1988.

Vijay A. Saraswat. Concurrent Constraint Pro-
gramming Languages. PhD thesis, Carnegie-
Mellon University, January 1989. Also to be pub-
lished by MIT Press, 1989.

Ehud Shapiro. A subset of Concurrent Prolog
and its interpreter. Technical Report CS83-06,
Weizmann Institute, 1983.

244

[Smo88] Gert Smolka. A feature logic with subsorts. Tech-
nical Report Lilog Report 33, II3M Deutschland,
May 1988.

PRwl Vijay A. Saraswat and Martin Rinard. Concur-
rent constraint programming. Technical report,
Xerox PARC, forthcoming.

[Str89] Strand Software Technologies Inc. Strand 88
Users Manual, June 1989.

[SWKS88] Vijay A. Saraswat, David Weinbaum, Ken Kahn,
and Ehud Shapiro. Detecting stable properties of
networks in concurrent logic programming lan-
guages. In Proceedings of the Seventh Annual
ACM Symposium on Principles of Distributed
Computing (PODC 88) pages 210-222, August
1988.

[Ued85]

[Ued86]

[UF88]

K Ueda. Guarded horn clauses. Technical Report
TR-103, ICOT Technical report, June 1985.

K. Ueda. Guarded Horn Clauses. PhD thesis,
University of Tokyo, 1986.

K. Ueda and K. Furukawa. Tranformation rules
for GHC programs. In Sd International Con-
ference on Fifth Genemtion Computer Systems,
1988.

245

