
In Proceedings of the 19th Annual SIGPLAN-SIGACT Symposium on Principles of Programming Languages

Semantic Foundations of Jade

Martin C. Rinard and Monica S. Lam
Computer Systems Laboratory
Stanford University, CA 94305

Abstract

Jade is a language designed to support coarse-grain
parallelism on both shared and distributed address-
space machines. Jade is data-oriented: a Jade pro-
grammer simply augments a sequential imperative
program with declarations specifying how the pro-
gram accesses data. A Jade implementation dynami-
cally interprets the access specification to execute the
program concurrently while enforcing the program’s
data dependence constraints, thus preserving the se-
quential semantics.

This paper describes the Jade constructs and de-
fines both a serial and a parallel formal operational
semantics for Jade. The paper proves that the two
semantics are equivalent.

1 Introduction

Over the last decade, research in parallel architec-
tures has led to many new parallel systems. These
systems range from multiprocessors with shared ad-
dress spaces, multi-computers with distributed ad-
dress spaces, to networks of high-performance work-
stations. Furthermore, the development of high-
speed interconnection networks makes it possible to
connect the systems together, forming a tremendous
computational resource. An effective way to use these
machines is to partition a computation into coarse-
grain tasks. The current language support for this
computing environment is, however, rather primitive:
programmers must explicitly manage the hardware
resources using low level communication and syn-
chronization primitives. This paper presents Jade,
a new language designed to simplify the expression of
coarse-grain parallelism.

This research was supported in part by DARPA contract
N00039-91-C-0138.

Instead of using explicitly parallel constructs to
create and synchronize concurrent tasks, Jade pro-
grammers use declarative constructs to specify how
parts of sequential program access data. The Jade
implementation dynamically interprets these access
specifications to determine which operations can exe-
cute concurrently without violating the program’s se-
quential semantics. This data-oriented approach sim-
plifies the programming process by preserving the fa-
miliar sequential, imperative programming paradigm.
Jade programmers need not struggle with phenom-
ena such as data races, deadlock and nondeterminis-
tic program behavior.

Jade is a set of extensions to existing sequen-
tial languages. Programmers can therefore parallelize
large existing applications simply by analyzing how
the program uses data and augmenting the source
code with Jade extensions. Because Jade hides the
low-level coordination of parallel activity from the
programmer, these applications are portable across
different parallel architectures.

We introduced the basic concepts of the data-
oriented approach to concurrency in a previous pa-
per [6]. The previous version of Jade was designed for
machines with shared address spaces. We have imple-
mented Jade as an extension to C, C++ and FOR-
TRAN on the Encore Multimax, the Silicon Graph-
ics IRIS 4D/240S, and Stanford DASH multiproces-
sor [7]. We have found it possible to parallelize se-
quential programs with a reasonable programming
effort. Implemented applications include a parallel
sparse Cholesky factorization algorithm due to Roth-
berg and Gupta [11], the Perfect Club benchmark
MDG [1], LocusRoute, a VLSI routing system due to
Rose [10], a parallel make program, and a program
simulating the flow of smog in the Los Angeles basin.

We have revised the definition of Jade so that it
can now be implemented on machines with separate
address spaces. The same Jade program could be ex-
ecuted, for example, on both a shared address space
multiprocessor and a network of workstations. This
revision also makes it possible for the Jade implemen-
tation to dynamically verify the correctness of the ac-
cess specifications. If the program does not correctly

1

declare how it will access data, the Jade implementa-
tion will signal an error. This verification guarantees
that the parallel and serial executions of a Jade pro-
gram compute the same result.

This paper presents the revised Jade language,
and establishes the semantic foundations for Jade.
We first informally present the Jade constructs, and
explain how a programmer uses the Jade access decla-
ration statements to specify how parts of the program
access data. As we present the Jade constructs, we
describe the concurrency patterns that the data us-
age information generates. We then formally present
both a sequential and a parallel operational semantics
for Jade. Because Jade is a declarative language, it
is not immediately obvious how the Jade implemen-
tation generates the parallel execution. The parallel
operational semantics therefore provides insight into
how to actually implement Jade. Finally, we prove
that the sequential and parallel semantics are equiv-
alent.

2 Jade Programming Paradigm

A Jade programmer provides the program knowledge
required for efficient parallelization; the implementa-
tion combines its machine knowledge with this infor-
mation to map the computation efficiently onto the
underlying hardware. Here are the Jade program-
mer’s responsibilities:

• Task Decomposition: The programmer starts
with a serial program and uses Jade constructs
to identify the program’s task decomposition.

• Data Decomposition: The programmer deter-
mines the granularity at which tasks will access
the data, and allocates data at that granularity.

• Access Specification: The programmer pro-
vides a dynamically determined specification of
the data each task accesses.

The Jade implementation performs the following
activities:

• Constraint Extraction: The implementation
uses the program’s serial execution order and
the tasks’ access specifications to extract the
dynamic inter-task dependence constraints that
the parallel execution must obey.

• Synchronized Parallel Execution: The imple-
mentation maps the tasks efficiently onto the
hardware while enforcing the extracted depen-
dence constraints.

• Data Distribution: On machines with multiple
address spaces, the implementation generates

the messages required to move data between
processors.

2.1 Jade Data Model

Each Jade program has a shared memory that all
tasks can access; objects (dynamically or statically)
allocated in this memory are called shared objects.
Each task also has a private memory consisting of
a stack for procedure parameters and local variables
and a heap for dynamically allocated objects accessed
only by that task. Objects allocated in private mem-
ory are called private objects.

The implementation enforces the restriction that
no shared object can contain a reference to a pri-
vate object. This, along with the restriction that no
task be directly given a reference to another task’s
private object, ensures that no task can access any
other task’s private objects.

Each task has an access specification which spec-
ifies how the task will access shared objects. The
programmer defines a task’s access specification us-
ing access declaration statements. For example, the
rd (read) statement declares that the task may read
the given object, while the wr (write) statement de-
clares that the task may write the given object.

Accesses conflict if, to preserve the serial seman-
tics, they must execute in the underlying sequential
execution order. Accesses to different objects do not
conflict. Writes to the same object conflict, while
reads do not conflict. A read and a write to the same
object also conflict. The Jade implementation ex-
ploits concurrency by relaxing the sequential execu-
tion order between tasks that declare no conflicting
accesses.

Since the parallelization is based on the access
specification, it is important that the access speci-
fication be accurate. An undeclared access could in-
troduce a data race and make a parallel execution of
the program compute an erroneous result. The Jade
implementation precludes this possibility by dynami-
cally checking each task’s accesses to shared objects.
If a task attempts to perform an undeclared access,
the implementation will generate a run-time error.

The implementation serializes tasks that declare
conflicting accesses to an object even though the tasks
may actually access disjoint regions of the object.
The programmer must therefore allocate objects at a
fine enough granularity to expose the desired amount
of concurrency in the program.

2.2 Basic Concurrency

Jade programmers use the withonly-do construct to
identify a task and to specify how that task will ac-
cess data. Here is the general syntactic form of the

construct:

withonly { access declaration } do
(parameters for task body) {

task body
}

The task body section contains the serial code
executed when the task runs. The parameters sec-
tion contains a list of variables from the enclosing en-
vironment. When the task is created, the implemen-
tation copies the values of these variables into a new
environment; the task will execute in this environ-
ment. To ensure that no task can reference another
task’s private objects, no variable in the parameters
section can refer to a private object.

When a task is created, the Jade implementation
executes the access declaration section to gener-
ate the task’s access specification. This section is an
arbitrary piece of code containing access declaration
statements. Each such statement declares how the
task will access a given shared object; the task’s ac-
cess specification is the union of all such declarations.
This section may contain dynamically resolved vari-
able references and control flow constructs such as
conditionals, loops and function calls. The program-
mer may therefore use information available only at
run time when generating a task’s access specifica-
tion.

The Jade implementation uses the access speci-
fication information to execute the program concur-
rently while preserving the program’s sequential se-
mantics. We illustrate this concept by tracing the
execution of the following Jade program.

x := sh(0);
y := sh(1);
if (g(0) > 0) {
x := y;

};
withonly { wr(x); } do (x) {
*x := f(1);

};
withonly { rd(y); wr(y); } do (y) {
*y := *y + f(2);

}

This program first uses the sh construct to al-
locate two objects in the shared heap. x and y re-
fer to these shared objects. The program then com-
putes g(0), making x and y refer to the same ob-
ject if g(0) > 0. The program then executes the two
withonly-do constructs. Each withonly-do con-
struct creates a task and generates that task’s access
specification. If x and y refer to the same object, then
the tasks’ accesses may conflict because both speci-
fications declare that the tasks will write the same

object. In this case the implementation preserves the
serial semantics by executing the first task before the
second task. The program therefore generates the
following sequential task graph:

*x := f(1)

¾
½

»
¼ *y := *y + f(2)

¾
½

»
¼

-

If x and y refer to different objects, the two tasks’
access specifications declare that the tasks will access
disjoint sets of objects. Therefore, the two tasks’ ac-
cesses do not conflict. The implementation can ex-
ecute the tasks concurrently without violating the
program’s serial semantics. In this case the program
generates the following parallel task graph:

*x := f(1)

¾
½

»
¼ *y := *y + f(2)

¾
½

»
¼

Conceptually, the Jade implementation dynami-
cally generates and executes a task graph. As the
implementation creates tasks, it inserts each new task
into the task graph. To preserve the serial semantics
the implementation inserts precedence arcs between
tasks whose accesses may conflict. Each such arc goes
from the earlier task in the underlying sequential ex-
ecution order to the later task. When a processor be-
comes idle it executes one of the initial tasks (a task
with no incoming precedence arcs) in the current task
graph. When the task completes it is removed from
the task graph. By building the task graph incre-
mentally at run time, the Jade implementation can
detect and exploit dynamic, data-dependent concur-
rency available only as the program runs.

The programmer controls the amount of exploited
concurrency by choosing the appropriate task gran-
ularity. Because the statements in a task execute
sequentially, two pieces of code can execute concur-
rently only if they are in different tasks. The pro-
grammer must therefore make the task decomposition
fine enough to expose the desired amount of concur-
rency.

2.3 Advanced Concurrency

In the model of parallel computation presented in sec-
tion 2.2, a task’s access specification is determined
once and for all when the task is created. Two tasks
may either execute concurrently (if none of their ac-
cesses conflict) or sequentially (if their accesses may
conflict). Therefore, all synchronization takes place
at task boundaries. The following example demon-
strates how synchronizing only at task boundaries can
waste concurrency.

x := sh(0);
y := sh(1);
withonly { wr(x); } do (x) {
*x := f(1);

};
withonly { rd(y);rd(x);wr(x); }
do (y,x) {
s := g(*y);
*x := h(*x, s);

};
withonly { wr(y); } do (y) {
*y := f(2);

}

This program generates three tasks. The tasks
must execute sequentially to preserve the serial se-
mantics. However, the second task does not access x
until it finishes the statement s := g(*y). There-
fore, the first task should be able to execute con-
currently with the statement s := g(*y) from the
second task. Similarly, the second task no longer
accesses y after the statement s := g(*y) finishes.
The statement *x := h(*x, s) from the second task
should be able to execute concurrently with the third
task. This example illustrates how information about
when tasks access shared objects can expose concur-
rency.

To allow programmers to express when a task
will access shared objects, Jade provides both a new
construct, with-cont, and new access declaration
statements df rd, df wr, no rd and no wr. The
with-cont construct allows the programmer to up-
date a task’s access specification as the task executes.
This construct, in combination with the new access
declaration statements, allows the programmer to ex-
ploit the kind of inter-task concurrency described
above.

Here is the general syntactic form of the
with-cont construct:

with { access declaration } cont;

As in the withonly-do construct, the access
declaration section is an arbitrary piece of code con-
taining access declaration statements. These state-
ments change the task’s access specification so that
it more precisely reflects how the rest (or continua-
tion, as the cont keyword suggests) of the task will
access shared objects.

The with-cont construct combines the current
access specification with the declarations in the access
declaration section to generate a new access specifi-
cation. Unless the access declaration explicitly de-
clares otherwise, the new access specification has the
same declarations as the old access specification. The
withonly-do construct, on the other hand, builds its
access specification from scratch. Unless it explicitly

declares an access, the access specification does not
contain that declaration. The keywords in the con-
structs (with vs. withonly) reflect this difference in
the treatment of undeclared accesses.

2.4 Deferred Accesses

The df rd and df wr statements declare a deferred
access to the shared object. That is, they specify that
the task may eventually read or write the object, but
that it will not do so immediately. Before the task
can access the object, it must execute a with-cont
construct that uses the rd or wr access declaration
statements to convert the deferred declaration to an
immediate declaration. Therefore, a task that ini-
tially declares a deferred access to a shared object
does not have the right to access that object. It does,
however, have the right to convert the deferred decla-
ration to an immediate declaration. This immediate
declaration then gives the task the right to access the
object.

Deferred declarations allow a task to defer its syn-
chronization for a shared object until just before it ac-
tually accesses the object. The following modification
to our example illustrates how deferred declarations
can increase the amount of exploitable concurrency
in a Jade program:

x := sh(0);
y := sh(1);
withonly { wr(x); } do (x) {

x := f(1);
};
withonly { rd(y); df_rd(x); df_wr(x); }

do (y,x) {
s := g(*y);
with { rd(x); wr(x); } cont;
*x := h(*x, s);

};
withonly { wr(y); } do (y) {

*y := f(2);
}

Because the second task declares a deferred read
and a deferred write access on x, it cannot access
x until it converts the deferred declarations to im-
mediate declarations. The second task can therefore
start to execute while the first task is still running.
The with-cont statement in the second task converts
the deferred declarations to immediate declarations.
Because the immediate declarations give the second
task the right to access x, it must wait until the first
task completes before it can proceed. This exam-
ple demonstrates how deferred declarations allow the
Jade implementation to execute an initial segment of
one task concurrently with another task even though

the second task may eventually carry out an access
that conflicts with one of the first task’s accesses.

2.5 Completed Accesses

Jade programmers use the no wr and no rd access
declaration statements to explicitly remove a decla-
ration from a task’s access specification. These state-
ments allow the programmer to indicate when a task
has completed a specified access. The following ex-
ample illustrates how the no wr and no rd statements
can increase the amount of exploitable concurrency:

x := sh(0);
y := sh(1);
withonly { wr(x); } do (x) {
*x := f(1);

};
withonly { rd(y); df_rd(x); df_wr(x); }
do (y,x) {
s := g(*y);
with { no_rd(y); rd(x); wr(x); } cont;
*x := h(*x, s);

};
withonly { wr(y); } do (y) {
*y := f(2);

}

After the second task executes the with-cont state-
ment, it no longer declares that it will read y. At
this point the two tasks cannot perform conflicting
accesses, so the rest of the second task can execute
concurrently with the third task.

This example illustrates how programmers can
use the with-cont construct and the no wr and no rd
access declaration statements to eliminate conflicts
between the enclosing task and tasks occurring later
in the underlying sequential execution order. This
conflict elimination may allow later tasks to execute
as soon as the enclosing task executes the with-cont
statement. In the absence of the with-cont state-
ment the tasks would have had to wait until the en-
closing task terminated.

2.6 Summary

Access specifications give the Jade implementation
all the information it needs to correctly execute a
program in parallel. Programmers generate a task’s
initial access specification when it is created, and can
update the specification as the task runs. At any
time, the current access specification must accurately
reflect how the rest of the task and its future sub-tasks
will access data. It is this a priori restriction - the
guarantee that neither the task nor any of its sub-
tasks will ever access certain shared objects - that al-

lows the Jade implementation to exploit concurrency
between tasks.

Each declaration enables a task and its sub-tasks
to access a shared object in a certain way. For exam-
ple, an immediate read declaration enables the task to
read the data; it also enables the task’s sub-tasks to
declare a read access and then read the data. Con-
versely, if a task has not declared a read access on
a given object, a sub-task cannot declare a read ac-
cess and thus cannot read the object. A declaration
therefore allows a sub-task to access certain data by
enabling the sub-task to declare certain accesses. Ta-
ble 1 summarizes the actions that read declarations
enable. The table for writes is similar.

Declaration Enabled Enabled
Access Declarations

rd
rd read df rd

no rd
rd

df rd none df rd
no rd

no rd none none

Table 1: Enabled Actions

When the implementation executes tasks, it must
ensure that the parallel execution performs conflict-
ing accesses in the same order as the serial execution.
Therefore, a task cannot execute if any of its enabled
accesses conflict with an immediate or deferred access
declared by an earlier task.

3 Operational Semantics

Section 2 informally described the Jade language and
the concurrent behavior of Jade programs. In this
section we develop both a serial and a parallel opera-
tional semantics for Jade, and show that the parallel
and serial semantics are equivalent.

Because Jade is a set of extensions to serial, im-
perative languages, we base our Jade semantics on a
semantics for such a language. In this section we use
the language Simple defined in Appendix A as our
base language. We made Simple simple for purposes
of exposition, but it is powerful enough to illustrate
the basic concepts behind the Jade semantics. Al-
though Simple only supports integers and references,
our semantic treatment trivially generalizes to lan-
guages with more elaborate data structures. Simple
also has no sophisticated flow of control constructs
such as first class continuations or closures. Again,
the semantic treatment presented in this section triv-

ially generalizes to languages with such constructs.
Because Jade only deals with a program’s dynamic
memory accesses, it does not matter what part of the
program happens to generate these accesses.

We first define an operational semantics for Sim-
ple. This semantics consists of the definition of ex-
pression evaluation and the definition of a transition
relation on Simple program states. This transition re-
lation is in effect an interpreter for Simple. We use the
transition relation for Simple to define a serial oper-
ational semantics for Jade programs. This semantics
executes Jade programs in the standard serial execu-
tion order and dynamically checks the correspondence
between each task’s declared and actual accesses to
shared objects.

We also use the transition relation for Simple to
define the parallel operational semantics for Jade.
The parallel and serial semantics use the same mech-
anism to check that tasks perform no undeclared ac-
cesses to shared objects. The parallel semantics, how-
ever, runs tasks concurrently if they can perform no
conflicting accesses. The parallel semantics main-
tains a set of active tasks and a set of suspended
tasks. Active tasks can execute concurrently; sus-
pended tasks wait for active tasks to complete con-
flicting accesses. This semantics uses the standard in-
terleaving approach to modelling concurrency in that
it models the parallel execution of tasks by interleav-
ing their atomic transitions.

The parallel semantics synchronizes tasks by
maintaining, for each shared object, a queue of the
declarations of tasks that may access that object.
When all of a task’s immediate declarations reach
the front of their queues, the task is activated and
can run. When a task terminates, it removes all of
its declarations from the queues, potentially activat-
ing other tasks.

When a task is created, the implementation in-
serts each of its declarations into the appropriate
queue just before its parent’s declarations. When a
task creates several sub-tasks, the sub-tasks’ declara-
tions will appear in the queue in their task creation
order. This task creation order is also the standard
serial execution order. Because a sub-task’s decla-
rations appear before its parent’s declarations, the
sub-task takes precedence over its parent. Therefore,
tasks with conflicting declarations will get activated
and execute in the standard serial execution order.

The main theoretical result of this paper is a the-
orem which establishes the correspondence between
the serial semantics and the parallel semantics. The
theorem states that a parallel execution of a Jade
program will successfully halt if and only if the serial
program successfully halts. Also, all such parallel and
serial executions generate the same result.

The Appendix contains the complete set of ax-

ioms that define the operational semantics. In the pa-
per we illustrate how the operational semantics work
by reproducing representative axioms from the Ap-
pendix.

3.1 Access Specifications

In this section we formally define the access speci-
fications that the semantics uses to check the cor-
respondence between a task’s declared and actual
accesses. Each access specification is a set s of
declarations. A declaration is a tuple of the form
〈di ∈ {df, im, no}, rw ∈ {rd, wr}, l〉. The first field of
the tuple determines whether the tuple represents a
deferred (df), an immediate (im) or no (no) access
declaration. The second field of the tuple determines
whether the tuple represents a read (rd) or a write
(wr) declaration, while the third field identifies the
shared object to which the declaration refers. We say
that a task with access specification s declares a de-
ferred write access on a shared object l if 〈df, wr, l〉 ∈
s, an immediate write access if 〈im, wr, l〉 ∈ s, etc.

A task with access specification s can read (or
write) a shared object l only if 〈im, rd, l〉 ∈ s (or
〈im, wr, l〉 ∈ s). A task can declare an access (or no
access) on an object in a withonly-do or with-cont
construct only if s declares either an immediate or
a deferred access on that object. We formalize the
second concept with the following definition:

Definition 1
s ` 〈di, rw, l〉 iff 〈df, rw, l〉 ∈ s or 〈im, rw, l〉 ∈ s.

The Jade implementation verifies that a task’s ac-
cess specification is accurate by dynamically checking
every access to a shared object that the task declares
or performs. If the task attempts to perform or de-
clare an access that its access specification does not
enable, the implementation detects the violation at
run time and signals an error.

3.2 Expression Evaluation

In this section we define how Jade programs evalu-
ate expressions. We assume an infinite set of shared
memory locations ShLoc and an infinite set of pri-
vate memory locations PrLoc. Each location holds a
shared or private object. In Simple, shared locations
can hold integers and references to shared objects.
Private locations can hold integers and references to
either shared or private objects. A memory is a par-
tial function from a finite number of active memory

locations to objects:

l ∈ Loc = ShLoc ∪ PrLoc
v ∈ ShObj = ShLoc ∪ Z
v ∈ PrObj = ShObj ∪ PrLoc

m ∈ ShMem = ShLoc
fin→ ShObj

n ∈ PrMem = PrLoc
fin→ PrObj

Programmers use identifiers (id ∈ Id) to refer to vari-
ables. An environment e (∈ Env = Id

fin→ PrObj) gives
the correspondence between variables and values.

Expressions are evaluated in a context contain-
ing an environment, a shared and a private memory,
and an access specification s. As described in sec-
tion 3.1, s determines which shared objects a task
has the right to read and/or write. The notation
exp in 〈e,m, n, s〉 = v should be read as: “expression
exp in context 〈e,m, n, s〉 evaluates to v”.

When a task evaluates an expression, it may read
a shared object. At each such read, the semantics
checks that the task declares an immediate read ac-
cess on that object. This check takes the form of
a precondition on the axiom that evaluates reads to
shared objects. This axiom (reproduced below from
Appendix B) requires that if a task reads a shared
object, it must declare the access:

exp in 〈e,m, n, s〉 = l ∈ Dom m, 〈im, rd, l〉 ∈ s

∗exp in 〈e,m, n, s〉 = m(l)

Appendix B contains the complete set of axioms that
define expression evaluation.

3.3 Simple Semantics

We now define the operational semantics for Simple
programs. This semantics takes the form of a tran-
sition relation →. Intuitively, each transition starts
with a sequence of statements and a statement evalu-
ation context and executes the first statement in the
sequence. The result is a new statement sequence and
a new context. Statement evaluations take place in
the same contexts as expression evaluations.

A Simple statement may write a shared object.
In this case the operational semantics must check
that the task declares an immediate write access on
that object. We reproduce that axiom here to show
how the semantics uses a precondition to perform the
check:

exp1 in 〈e,m, n, s〉 = l ∈ Dom m, 〈im, wr, l〉 ∈ s,
exp2 in 〈e,m, n, s〉 = v ∈ ShObj

∗exp1 := exp2;c in 〈e,m, n, s〉→
c in 〈e,m[l 7→ v], n, s〉

If the task that generates the write does not de-
clare the access, the Jade implementation must gen-
erate an error. Formally, the task takes a transition

to the special state error. The semantics uses the
following axiom to generate this transition:

exp1 in 〈e,m, n, s〉 = l ∈ Dom m, 〈im, wr, l〉 6∈ s

∗exp1 := exp2;c in 〈e,m, n, s〉→error

Finally, we demonstrate that when a task allo-
cates a shared object, it acquires a deferred read and
a deferred write declaration on the new object. The
following axiom executes a sh statement, which allo-
cates a new object:

l ∈ ShLoc \ Dom m, exp in 〈e,m, n, s〉 = v ∈ ShObj,
s′ = s ∪ {〈df, rd, l〉, 〈df, wr, l〉}
id := sh(exp);c in 〈e,m, n, s〉→
c in 〈e[id 7→ l],m[l 7→ v], n, s′〉

This axiom arbitrarily chooses a new location for
the allocated object. Therefore, different executions
of the serial program may differ in their choice of
which locations hold which objects. Such executions
represent equivalent computations, but the actual
program states are different. To capture this equiva-
lence we define what it means for two contexts to be
equivalent:

Definition 2 〈e1,m1, n1, s1〉 ≡b 〈e2,m2, n2, s2〉 iff
Dom e1 = Dom e2, and there exist bijections bn :
Dom n1 → Dom n2, bm : Dom m1 → Dom m2 and
bs : s1 → s2 such that b = bn ∪ bm ∪ I (where I is the
identity function on Z ∪ {error}) and

1. ∀l ∈ Dom n1.b(n1(l)) = n2(b(l)),

2. ∀l ∈ Dom m1.b(m1(l)) = m2(b(l)),

3. ∀id ∈ Dom e1.b(e1(id)) = e2(id),

4. ∀〈di, rw, l〉 ∈ s1.bs(〈di, rw, l〉) = 〈di, rw, b(l)〉.
Lemma 1 If 〈e1,m1, n1, s1〉 ≡b 〈e2,m2, n2, s2〉 then
∀exp ∈ Exp.
b(exp in 〈e1,m1, n1, s1〉) = exp in 〈e2,m2, n2, s2〉.

Appendix C contains the rest of the axioms that
define the operational semantics for Simple.

3.4 Jade Statement Semantics

This section defines the transition relation →j for
Jade statements. This transition relation extends →
to the access declaration sections of Jade constructs.
These transitions take place in Jade contexts; a Jade
context is a tuple 〈e,m, n, s, r〉. These contexts are
the same as statement evaluation contexts, except
that they contain an additional set of declarations r.
The axioms accumulate declarations from the access
declaration sections of Jade constructs into this set.
When the semantics has finished executing the access

declaration section of a withonly-do construct, r be-
comes the access specification of the new task. For a
with-cont construct, the semantics uses r to update
the current task’s access specification.

We first reproduce an axiom that demonstrates
how access declaration sections can contain arbitrary
code. The following axiom makes all of the Simple
transitions valid in the access declaration section of a
with-cont construct:

c1 in 〈e,m, n, s〉→c′1 in 〈e′,m′, n′, s′〉
with {c1}cont;c2 in 〈e,m, n, s, r〉→j

with {c′1}cont;c2 in 〈e′,m′, n′, s′, r〉
We next reproduce an axiom dealing with the ac-

cumulation of declarations into the access specifica-
tion set r. To legally declare that a new task will
access a given shared object, the parent task’s access
specification must enable the declaration. The se-
mantics enforces this constraint with a precondition
on the axiom which constructs the new task’s access
specification:

c = withonly {di rw(exp);c1}do(ids){c2};c3,
exp in 〈e,m, n, s〉 = l ∈ Dom m,
r′ = r ∪ {〈di, rw, l〉}, s ` 〈di, rw, l〉

c in 〈e,m, n, s, r〉→j

withonly {c1}do(ids){c2};c3 in 〈e,m, n, s, r′〉
Appendix D contains the rest of the axioms which

define the →j transition relation, and the definition
of the equivalence relation ≡b

j for Jade contexts.

3.5 Serial Jade Semantics

We now define the transition relation →s for serial
Jade program states. A serial Jade program state
〈m, ts〉 = st ∈ SerState = ShMem × (Task∗) is a pair
consisting of a shared store and a stack of tasks. Each
task is a tuple t = 〈c, e, n, s, r〉 ∈ Task containing the
code c for the task.

The following axiom defines the execution of
a withonly-do statement. The precondition first
checks that none of the task parameters refers to a
private object. The new task then becomes the first
task in the sequence, with the parent task second.
Therefore, the program’s statements execute in the
standard sequential, depth-first execution order:

Definition 3
s ↑ r = {〈di, rw, l〉 ∈ s | ¬∃〈di′, rw, l〉 ∈ r}∪

{〈im, rw, l〉 ∈ r} ∪ {〈df, rw, l〉 ∈ r}.
c = withonly {ε}do(id1, . . . , idn){c1};c2,
∀i ≤ n.idi ∈ Dom e and e(idi) 6∈ PrLoc,
e′ = [id1 7→ e(id1)] · · · [idn 7→ e(idn)],

〈m, 〈c, e, n, s, r〉 ◦ ts〉→s

〈m, 〈c1, e′, ∅, ∅ ↑ r, ∅〉 ◦ 〈c2, e, n, s, ∅〉 ◦ ts〉

When a task completes, the computation contin-
ues with the rest of its parent task. The next axiom
removes completed tasks from the top of the stack of
tasks. The completed task’s parent is the new first
task, so the program’s execution continues with the
parent task:

〈m, 〈ε, e, n, s, r〉 ◦ ts〉→s〈m, ts〉
When a program successfully halts, it takes a tran-

sition to the integer that is the program’s result:

c = result(exp), exp in 〈e,m, n, s〉 = v ∈ Z
〈m, 〈c, e, n, s, r〉〉→sv

The rest of the axioms that define →s appear in
Appendix E. In particular, there is an axiom that
takes the serial program state to error if there is an
error in the execution of one of the tasks.

We now define the notion of equivalence for serial
Jade program states, and state a theorem that al-
lows us to treat →s as a transition function between
equivalence classes of serial Jade program states.

Definition 4 b ↓ s is the restriction of b to s. That
is, Dom b ↓ s = Dom b ∩ s and b ↓ s(v) = b(v).

Definition 5 〈m, t1 ◦ · · · ◦ tn〉 ≡s 〈m′, t′1 ◦ · · · ◦ t′n〉
iff bm : Dom m → Dom m′ is a bijection and
∀i ≤ n. if ti = 〈c, e, n, s, r〉, t′i = 〈c′, e′, n′, s′, r′〉 then
c = c′ and ∃b.b ↓ Dom bm = bm, 〈e,m, n, s, r〉 ≡b

j

〈e′,m, n′, s′, r′〉.
Theorem 1 If st1 ≡s st2 then

1. st2 ≡s st1,

2. st1→sst
′
1 ⇒ ∃st′2.st2→sst

′
2,

3. st1→sst
′
1, st2→sst

′
2 ⇒ st′1 ≡s st′2 or st′1 = st′2.

We can now view →s as a program execution func-
tion. The value of →s is the unique equivalence class
of program states obtained by executing the next step
of the program. Our serial semantics is therefore de-
terministic.

We now define the notion of observation for the
serial execution of Jade programs. The basic idea is
that we start the program in a start state and run it
until it can progress no further. If the program halts
with an integer result, we observe the result. If the
program halts in error or could only partially exe-
cute we observe error. If the program runs forever
we observe ⊥:

Definition 6 sst(c) = 〈∅, 〈c, ∅, ∅, ∅, ∅〉〉.
SObs(c) =



v if sst(c)→s · · ·→sv ∈ Z
error if sst(c)→s · · ·→serror or

sst(c)→s · · ·→sst 6→s, st ∈ SerState
⊥ if sst(c)→s · · ·→s · · ·

3.6 Parallel Jade Semantics

We now define the transition relation →p for parallel
Jade program states. A parallel program state pt =
〈m,A,S,< 〉 ∈ ParState consists of a shared memory
m, a set A of active tasks, a set S of suspended tasks
and an ordering relation < on the declarations of the
parallel program state.

3.6.1 Object Queues

The following definitions impose some consistency re-
quirements on the structure of <:

Definition 7 Given a set T of tasks, decl(T) =⊎
〈c,e,n,s,r〉∈T

s.

Definition 8 We say that < is consistent for A ∪ S
iff

1. <⊆ decl(A ∪ S) × decl(A ∪ S),

2. d1 < d2 and d2 < d3 ⇒ d1 < d3.

3. 〈di, rw, l〉 < 〈di′, rw′, l′〉 ⇒ l = l′.

4. 〈di, rw, l〉 6< 〈di′, rw′, l〉 and 〈di′, rw′, l〉 6<
〈di, rw, l〉
⇔ ∃〈c, e, n, s, r〉 ∈ A ∪ S.

〈di, rw, l〉 ∈ s and 〈di′, rw′, l〉 ∈ s.

Given this definition, < represents a set of queues,
one for each shared object. Each declaration 〈di, rw, l〉
appears in the queue for l.

Declarations appear in a queue in their tasks’ un-
derlying sequential execution order. So, if task t1
would execute before task t2 if the program executed
sequentially, then t1’s declarations appear before the
declarations of t2. The operational semantics uses
these queues to determine when tasks can execute
concurrently. As soon as all of a task’s immediate
declarations reach the front of their queues, that task
can execute. Therefore, if the declarations of two
tasks are simultaneously at the front of their respec-
tive queues, the two tasks’ access specifications do
not conflict and the tasks can execute concurrently.
We formalize the notion of “front of a queue” with
the following definitions. f(〈di, rw, l〉,<) is true just
when 〈di, rw, l〉 is at the front of its queue.

Definition 9
succ(s,<) = {d′ | ∃d ∈ s.d < d′}.
pred(s,<) = {d′ | ∃d ∈ s.d′ < d}.
f(〈di, wr, l〉,<) iff pred({〈di, wr, l〉},<) = ∅.
f(〈di, rd, l〉,<) iff
∀〈di′, rw′, l′〉 ∈ pred({〈di, rd, l〉},<).rw′ = rd.

As the definition of f shows, a write declaration
is at the front of its queue when there are no decla-
rations before it in the queue; a read declaration is
at the front of its queue when there are only other
read declarations before it in the queue. This reflects
the fact that several tasks can concurrently read a
shared object because reads do not change the ob-
ject’s state. Writes, of course, must execute in the
underlying sequential execution order.

The definition of f demonstrates that a deferred
declaration can prevent an immediate declaration
from being at the front of its queue. In this case
the deferred declaration prevents the immediate dec-
laration’s task from executing. This reflects the fact
that a deferred declaration represents a potential ac-
cess. The immediate declaration’s task cannot pro-
ceed until there is no possibility that an earlier task
can perform an access that conflicts with any of its
accesses.

We now discuss the definition of →p, the tran-
sition relation for parallel Jade program states. We
model the parallel execution of a Jade program by
interleaving the atomic transitions of that program’s
parallel tasks. →p therefore arbitrarily picks one
of the active tasks and executes the next step of
that task’s computation. The tasks themselves may
change their specifications, create new tasks, or com-
plete their execution. Each of these events changes
the program state’s set of specifications. The transi-
tion relation must therefore modify < to reflect these
changes.

There is a function to perform each kind of mod-
ification to <. When the semantics executes a
withonly-do construct, it uses the ins function to in-
sert the new task’s declarations into the queues just
before its parent’s declarations. When the task com-
pletes, the semantics uses the rem function to remove
its declarations from the queues. When the seman-
tics executes a with-cont construct, it uses the upd
function to perform the queue modifications that cor-
respond to the changes in the task’s access specifica-
tion.

Definition 10
s@l = {〈di, rw, l〉 ∈ s}.
rpl(s, r,<) =
∪〈di, rw, l〉∈r(pred(s@l,<)×r@l)∪(r@l×succ(s@l,<)).

ins(r, s,<) =< ∪rpl(s, r,<)∪〈di, rw, l〉∈rr@l × s@l.

rem(s,<) =< \{〈d, d′〉 | d ∈ s or d′ ∈ s}.
upd(s, r,<) = rem(s,<) ∪ rpl(s, r,<).

3.6.2 Transition Relation

We now present the axioms that define →p. We first
present the axiom that executes a withonly-do state-
ment when it creates a new task. This axiom sus-

pends both the new task and its parent. The parent
task may be unable to run because its access specifi-
cation may conflict with the new task’s access speci-
fication. The new task may be unable to run because
its access specification may conflict with those of pre-
viously created tasks.

c = withonly {ε}do(id1, . . . , idn){c1};c2,
t = 〈c, e, n, s, r〉 ∈ A,

∀i ≤ n.idi ∈ Dom e and e(idi) 6∈ PrLoc
e′ = [id1 7→ e(id1)] · · · [idn 7→ e(idn)],

t′ = 〈c1, e
′, ∅, ∅ ↑ r, ∅〉, t′′ = 〈c2, e, n, s, ∅〉

〈m,A,S,< 〉→p

〈m,A \ {t},S] {t′, t′′}, ins(∅ ↑ r, s,<)〉
When all of a suspended task’s immediate decla-

rations reach the front of their respective queues, the
semantics must transfer the task to the set of active
tasks so that it can execute. The following axiom
activates such suspended tasks:

t = 〈c, e, n, s, r〉 ∈ S,
∀〈im, rw, l〉 ∈ s.f(〈im, rw, l〉,<)

〈m,A,S,< 〉→p〈m,A] {t},S \ {t},< 〉
When a task completes, it must remove its dec-

larations from the queues. The semantics can then
activate tasks whose accesses conflicted with the com-
pleted task’s accesses.

t = 〈ε, e, n, s, r〉 ∈ A,

〈m,A,S,< 〉→p〈m,A \ {t},S, rem(s,<)〉
The rest of the axioms that define →p are in Ap-

pendix F. In particular, there is an axiom that takes a
program to error if the program violates some of the
execution constraints, and an axiom that computes
the program’s result.

We next define how to observe the parallel exe-
cution of a Jade program. If the program success-
fully halts, we observe the result. If the program has
an error, or gets into a state from which it cannot
progress, or has one of its active tasks get into a state
from which it cannot progress, we observe error. If
the program runs forever, we observe ⊥. The paral-
lel observation function PObs observes every parallel
execution and takes the union of the resulting obser-
vations. In this definition, PObs makes no fairness
assumptions about the parallel execution.

Definition 11 pst(c) = 〈∅, {〈c, ∅, ∅, ∅, ∅〉}, ∅, ∅〉.
hung(〈m,A,S,< 〉) iff
〈m,A,S,< 〉6→p or ∃t ∈ A.〈m, {t}, ∅,< 〉6→p.

PObs(c) =
{v | pst(c)→p · · ·→pv ∈ Z}

∪ {error} if pst(c)→p · · ·→perror or
pst(c)→p · · ·→ppt, hung(pt)

∪ {⊥} if pst(c)→p · · ·→p · · ·

We next define a notion of consistency for parallel
program states, and prove that →p preserves con-
sistency. We use lemma 2 extensively in the proof
of correspondence between the serial and parallel se-
mantics.

Definition 12 A parallel program state 〈m,A,S,<
〉 is consistent iff < is consistent for A ∪ S and
∀〈c, e, n, s, r〉 ∈ A ∪ S

1. ∀〈di, rw, l〉 ∈ r.l ∈ Dom m, s ` 〈di, rw, l〉

2. ∀〈di, rw, l〉 ∈ s.l ∈ Dom m, di ∈ {df, im},

3. 〈c, e, n, s, r〉 ∈ A ⇒
∀〈im, rw, l〉 ∈ s.f(〈im, rw, l〉,<).

Lemma 2 If pt ∈ ParState is consistent, pt→ppt′

and pt′ ∈ ParState then pt′ is consistent.

Proof Sketch: The key aspect of the proof is to show
that →p preserves property 3 of definition 12. To
show this, we must show that the legal queue up-
dates and insertions do not cause the program state
to violate this property.

We first consider the queue insertions caused by a
parent task spawning a new task. For each queue, the
new task’s declarations appear just before the parent
task’s declarations. Both the parent task and the new
task are suspended in the new state. All active tasks
other than the parent task remain active in the new
state.

We now show that any immediate declaration of
an active task in the new state remains at the front
of its queue. If there is no declaration from the par-
ent task in the active task’s declaration’s queue, then
by property 1 of definition 12 there is no declaration
from the new task in that queue. Otherwise, the ac-
tive task’s declaration must have appeared either be-
fore or after the parent’s declarations in the old state.
If the declaration appeared before those of the par-
ent task, then it will appear before those of the new
task in the new state. If the declaration appeared
after those of the parent task, then all of the dec-
larations in question must be read declarations. By
property 1 of definition 12 the new task inserted no
write declarations in the queue, so the active task’s
read declaration is still at the front of the queue.

We next consider an update to the queue due to
the execution of a with-cont statement. In the new
state, the updating task’s declarations appear in the
same place in the queues as the task’s declarations
from the old state. We can use a case analysis similar
to that for the insertion case to determine that the
transition preserves property 3 of definition 12.

3.7 Semantic Correspondence

In this section we present the proof of correspondence
between the parallel and serial semantics. We first
set up an equivalence between serial program states
and parallel program states. We use this definition
to show that the serial execution of a Jade program
is also one of the legal parallel executions. This is
the first step towards proving the correspondence be-
tween the parallel and serial semantics.

Definition 13 〈m, ts〉≡sp〈m,A,S,< 〉 iff there exists
an ordering 〈c′1, e′1, n′1, s′1, r′1〉◦· · ·◦〈c′m, e′m, n′m, s′m, r′m〉
on A ∪ S such that if ts = 〈c1, e1, n1, s1, r1〉 ◦ · · · ◦
〈cn, en, nn, sn, rn〉 then m = n and ∀i ≤ n

1. ci = c′i, ei = e′i, ni = n′i, si = s′i, ri = r′i,

2. ∀〈di, rw, l〉 ∈ si.f(〈di, rw, l〉, rem(
⊎

j<i sj ,<)).

Lemma 3 If st≡sppt, pt is consistent and st→sst
′

then ∃pt′.pt→p · · ·→ppt′ and either st′≡sppt′ or st′ =
pt′.

Proof Sketch: We perform a case analysis of all
the transitions that a serial program state can take.
We then identify a corresponding transition that an
equivalent parallel program state can take, and show
that the new serial and parallel program states are
equivalent.

Theorem 2 SObs(c) ∈ PObs(c).

Proof Sketch: A simple induction using lemmas 2 and
3.

We next define the notion of equivalence for par-
allel program states. This definition is again intended
to capture precisely how two program states that
differ only in their choice of allocated locations are
equivalent.

Definition 14 〈m1,A1,S1,<1 〉 ≡p 〈m2,A2,S2,<2 〉
iff there exist bijections ba : A1 → A2, bs : S1 → S2,
bm : Dom m1 → Dom m2 and bd : decl(A1 ∪ S1) →
decl(A2 ∪ S2) such that if bas = ba ∪ bs then

d <1 d′ ⇔ bd(d) <2 bd(d′),

and for all t = 〈c1, e1, n1, s1, r1〉 ∈ A1 ∪ S1, if bas(t) =
〈c2, e2, n2, s2, r2〉 then

1. c1 = c2,

2.
∃b. 〈e1,m1, n1, s1, r1〉 ≡b

j 〈e2,m2, n2, s2, r2〉 and
b ↓ Dom bm = bm,

3. ∀〈di, rw, l〉 ∈ s1.
bd(〈di, rw, l〉) = 〈di, rw, bm(l)〉 ∈ s2.

We now examine the possibilities when two equiv-
alent program states take transitions. We first show
that if one state takes a transition, then so does the
other.

Lemma 4 If pt1 is consistent, pt2 is consistent,
pt1 ≡p pt2 and pt1→ppt′1 then ∃pt′2.pt2→ppt′2.

Proof Sketch: A case analysis of the axiom that gen-
erated pt1→ppt′1 reveals that pt2 can always take a
corresponding transition generated by the same ax-
iom.

We now characterize what can happen when
equivalent states both take a transition. They key
result is that two different transitions from equiva-
lent parallel program states commute.

Lemma 5 If pt1 is consistent, pt2 is consistent,
pt1 ≡p pt2, pt1→ppt′1 and pt2→ppt′2 then either

1. pt′1 ≡p pt′2 or

2. pt′1 = pt′2 or

3. pt′1 = error, pt′2→perror or

4. pt′2 = error, pt′1→perror or

5. ∃pt′′1 , pt′′2 .pt′1→ppt′′1 , pt′2→ppt′′2 and pt′′1 ≡p pt′′2 .

Proof Sketch: Equivalent states have isomorphic sets
of active tasks. If pt1 and pt2 took transitions from
isomorphic tasks, the two program states pt′1 and pt′2
are equivalent. If one of the tasks generated a tran-
sition to error, then the isomorphic task can also
generate that transition. If the two states both gen-
erated an integer result, then the definition of equiv-
alence ensures that the results are the same.

For case 5, the transitions came from non-
isomorphic tasks. An inspection of the axioms that
define →p reveals that all of the active tasks in pt1
and pt2 (with the possible exception of the tasks that
generated the transitions) are still active in pt′1 and
pt′2. Therefore, there is an active task in pt′1 that is
isomorphic to the task that generated pt2→ppt′2 and
vice-versa. These active tasks generate transitions
pt′1→ppt′′1 and pt′2→ppt′′2 .

We go through a case analysis of the possible pairs
of transitions to show that pt′′1 ≡p pt′′2 . In effect,
we must show that the two transitions pt1→ppt′1 and
pt′1→ppt′′1 commute. The proof of commutativity re-
lies on the definitions of consistency and equivalence
of parallel program states.

We first show that the accesses to shared objects
of any two active tasks do not conflict. For an active
task to write a shared object, it must declare an im-
mediate write on that shared object. By property 3
of definition 12 that declaration must be at the front
of its queue. Therefore, no other task’s read or write

declaration can be at the front of the queue, and again
by property 3 of definition 12 all other tasks that de-
clare an immediate access on that object must be
suspended. No other active task can access the ob-
ject. The effects of the two transitions on the shared
memory do not interfere, and therefore commute.

We must also verify that queue operations car-
ried out by two distinct tasks commute. Each task
changes some subset of the program state’s queues. If
the tasks change disjoint subsets, then their queue op-
erations obviously commute. If the tasks change some
of the same queues, then their aggregate queue oper-
ations commute if the operations commute for every
queue. We therefore show that for any one queue, the
two operations commute. If the two operations both
modify the same queue, then the two tasks both have
sets of declarations in the queue. By definition 8 the
sets are disjoint and one set comes before the other
with respect to <. Queue removes and updates affect
only each task’s declarations; because the two sets
of declarations are disjoint the operations commute.
Inserts put a new set of declarations into the queue
just before the parent task’s declaration set; again
because the two tasks’ declarations sets are disjoint
the operations commute.

We next show that if any parallel execution of
a Jade program terminates without an error, then
all parallel executions terminate and yield the same
result.

Theorem 3
If v ∈ PObs(c) and v ∈ Z, then PObs(c) = {v}.
Proof Sketch: An induction on the length of the re-
duction sequence using lemmas 2, 4 and 5.

Together theorems 2 and 3 establish the corre-
spondence between the serial and parallel semantics.
Theorem 2 says that if the serial execution of the
program successfully halts, then at least one of the
parallel executions successfully halts with the same
result. Theorem 3 says that if one of the parallel
executions successfully halts, then all of parallel ex-
ecutions successfully halt with the same result. So,
a parallel execution of a Jade program will success-
fully halt if and only if the serial program successfully
halts, and all such parallel and serial executions gen-
erate the same result.

The difference between the parallel semantics and
the serial semantics is that the parallel semantics may
terminate in the error state when the serial seman-
tics does not terminate, and vice-versa. This can hap-
pen if the program has two independent tasks t1 and
t2 such that t1 runs forever and t2 has an error. The
serial semantics will always execute one of the two
tasks before the other, and will therefore always get
the same result. The parallel semantics, however, can
execute the two tasks in parallel, producing either an

infinite loop or an error depending on how the tasks’
transitions interleave.

4 Comparison with Other
Work

Explicitly parallel programming languages such as
CSP [4], Ada [9], Linda [2], Occam [5] and Concur-
rentSmalltalk [12] force the programmer to manage
concurrency using low-level operations to synchronize
parallel tasks. This explicitly parallel approach of-
ten leads to complicated, nondeterministic programs
that are difficult to debug and maintain. Jade, on
the other hand, adopts an implicitly parallel approach
that maintains the programming advantages of serial
languages. In [6] we present a detailed analysis of the
differences between Jade and such explicitly parallel
languages.

FX-87 [8] is similar to Jade in that it contains
constructs that allow the programmer to express how
the program accesses data. In FX-87, memory lo-
cations are partitioned into a finite, statically deter-
mined set of regions. The programmer declares the
regions of memory that a function touches as part of
the function’s type. The FX-87 compiler can then
verify the correspondence between the declared and
actual data accesses, scheduling conflict-free pieces of
the program for concurrent execution.

Making regions a static concept severely limits
the amount of concurrency the implementation can
extract [3]. At run time, multiple dynamic objects
must be mapped to the same static region. Therefore,
the compiler cannot exploit concurrency available be-
tween parts of the program that access disjoint sets
of objects from the same region.

The other major difference between Jade and FX-
87 is that FX-87 has no constructs for identifying task
boundaries and synchronization points. It is the FX-
87 compiler’s responsibility to partition the program
into tasks. We are aware of no generally applicable
algorithm for successfully partitioning programs con-
taining side effects.

5 Conclusion

Jade programmers implicitly express parallelism by
specifying how a serial, imperative program uses data.
Such an approach simplifies parallel programming
and makes programs more portable across different
parallel architectures.

The access specification is the key interface be-
tween the Jade programmer and the Jade implemen-
tation. The programmer uses Jade constructs to gen-
erate an access specification for every task. It is the

programmer’s responsibility to ensure that the access
specification declares all of the task’s accesses. Access
specifications therefore restrict how parts of the pro-
gram can access data. Based on these restrictions, the
Jade implementation identifies tasks whose accesses
do not conflict and executes these tasks concurrently.
Finally, to detect data races caused by incorrect ac-
cess specifications, the Jade implementation dynam-
ically checks that each access specification is correct.

In this paper we present both a sequential and a
parallel operational semantics; these semantics for-
mally define the meaning of Jade programs. The
proof of correspondence between the sequential and
parallel operational semantics demonstrates that a
Jade programmer can reason about parallel programs
using a simple sequential programming model.

References

[1] M. Berry et al. The perfect club benchmarks:
Effective performance evaluation of supercom-
puters. International Journal of Supercomputer
Applications, 3(3):5–40, 1989.

[2] N. Carriero and D. Gelernter. How to Write Par-
allel Programs: A Guide to the Perplexed. ACM
Computing Surveys, 21(3):323–357, September
1989.

[3] R. T. Hammel and D. K. Gifford. FX-87 Per-
formance Measurements: Dataflow Implementa-
tion. Technical Report MIT/LCS/TR-421, MIT,
November 1988.

[4] C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, Englewood Cliffs, N.J.,
1985.

[5] Inmos Ltd. Occam Programming Manual.
Prentice-Hall, Englewood Cliffs, N.J., 1984.

[6] M. S. Lam and M. C. Rinard. Coarse-grain par-
allel programming in Jade. In Proceedings of the
Third ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 94–
105, April 1991.

[7] D. Lenoski, J. Laudon, K. Gharachorloo,
A. Gupta, and J. L. Hennessy. The directory-
based cache coherence protocol for the DASH
multiprocessor. In Proceedings of the 17th An-
nual International Symposium on Computer Ar-
chitecture, pages 94–105, May 1990.

[8] J. M. Lucassen. Types and Effects: Towards
the Integration of Functional and Imperative
Programming. Technical Report MIT/LCS/TR-
408, MIT, August 1987.

[9] United States Department of Defense. Ref-
erence Manual for the Ada programming lan-
guage. DoD, Washington, D.C., January 1983.
ANSI/MIL-STD-1815A.

[10] J. S. Rose. LocusRoute: A Parallel Global
Router for Standard Cells. In Proceedings of the
25th Design Automation Conference, pages 189–
195, June 1988.

[11] E. Rothberg and A. Gupta. Efficient sparse ma-
trix factorization on high-performance worksta-
tions - exploiting the memory hierarchy. To
appear in ACM Transactions on Mathematical
Software.

[12] Y. Yokote and M. Tokoro. Concurrent Program-
ming in ConcurrentSmalltalk. In A. Yonezawa
and M. Tokoro, editors, Object-Oriented Concur-
rent Programming, pages 129–158. MIT Press,
Cambridge, MA, 1987.

A Abstract Syntax

This section contains the abstract syntax for the sim-
ple sequential imperative language Simple. For pur-
poses of exposition we use the access specification
operations im rd and im wr instead of rd and wr.

i ∈ Z
id ∈ Id
c ∈ Prog ::= Code;result(Exp)
c ∈ Code ::= Stmt;Code | Jst;Code | ε
st ∈ Stmt ::= Spec(Exp) | Id := Exp |

Id := pr(Exp) | Id := sh(Exp) |
∗Exp := Exp | while (Exp) {Code} |
if (Exp) {Code} else {Code} |

jst ∈ Jst ::= with {Code}cont |
withonly {Code}do(Id, . . . , Id){Code}

sp ∈ Spec ::= im rd | im wr |
df rd | df wr | no rd | no wr

exp ∈ Exp ::= Z | Id | Exp Op Exp | ∗Exp |
is pr(Exp) | is sh(Exp)

op ∈ Op ::= + | − | × | = | < | >

B Expression Evaluation

We define expression evaluation with the following
axioms.

i ∈ Z
i in 〈e,m, n, s〉 = i

id ∈ Dom e
id in 〈e,m, n, s〉 = e(id)

exp in 〈e,m, n, s〉 = l ∈ Dom n

∗exp in 〈e,m, n, s〉 = n(l)

exp in 〈e,m, n, s〉 = l ∈ Dom m,
〈im, rd, l〉 ∈ s

∗exp in 〈e,m, n, s〉 = m(l)

exp1 in 〈e,m, n, s〉 = v1 ∈ Z,
exp2 in 〈e,m, n, s〉 = v2 ∈ Z

exp1 op exp2 in 〈e,m, n, s〉 = v1 op v2

exp in 〈e,m, n, s〉 = l ∈ Dom n

is pr(exp) in 〈e,m, n, s〉 = 1,
is sh(exp) in 〈e,m, n, s〉 = 0

exp in 〈e,m, n, s〉 = l ∈ Dom m

is pr(exp) in 〈e,m, n, s〉 = 0,
is sh(exp) in 〈e,m, n, s〉 = 1

exp in 〈e,m, n, s〉 = i ∈ Z
is pr(exp) in 〈e,m, n, s〉 = 0,
is sh(exp) in 〈e,m, n, s〉 = 0

These axioms may leave an expression’s value un-
defined if the expression or one of its subexpressions
fails to satisfy the preconditions of one of the axioms.
In this case the expression evaluates to the special
value error indicating an evaluation error.

C Simple Transition Relation

→ is defined to be the smallest relation satisfying the
following axioms.

exp in 〈e,m, n, s〉 = v ∈ PrObj

id := exp;c in 〈e,m, n, s〉→c in 〈e[id 7→ v],m, n, s〉

exp1 in 〈e,m, n, s〉 = l ∈ Dom n,
exp2 in 〈e,m, n, s〉 = v ∈ PrObj

∗exp1 := exp2;c in 〈e,m, n, s〉→c in 〈e,m, n[l 7→ v], s〉
exp1 in 〈e,m, n, s〉 = l ∈ Dom m, 〈im, wr, l〉 ∈ s,

exp2 in 〈e,m, n, s〉 = v ∈ ShObj

∗exp1 := exp2;c in 〈e,m, n, s〉→c in 〈e,m[l 7→ v], n, s〉
exp1 in 〈e,m, n, s〉 = l ∈ Dom m, 〈im, wr, l〉 6∈ s

∗exp1 := exp2;c in 〈e,m, n, s〉→error

l ∈ PrLoc \ Dom n, exp in 〈e,m, n, s〉 = v ∈ PrObj

id := pr(exp);c in 〈e,m, n, s〉→
c in 〈e[id 7→ l],m, n[l 7→ v], s〉

l ∈ ShLoc \ Dom m, exp in 〈e,m, n, s〉 = v ∈ ShObj,
s′ = s ∪ {〈df, rd, l〉, 〈df, wr, l〉}
id := sh(exp);c in 〈e,m, n, s〉→
c in 〈e[id 7→ l],m[l 7→ v], n, s′〉

exp in 〈e,m, n, s〉 = 1

if (exp) {c1} else {c2};c3 in 〈e,m, n, s〉→
c1;c3 in 〈e,m, n, s〉

exp in 〈e,m, n, s〉 = 0

if (exp) {c1} else {c2};c3 in 〈e,m, n, s〉→
c2;c3 in 〈e,m, n, s〉

exp in 〈e,m, n, s〉 = 1

while (exp) {c1};c2 in 〈e,m, n, s〉→
c1;while (exp) {c1};c2 in 〈e,m, n, s〉

exp in 〈e,m, n, s〉 = 0

while (exp) {c1};c2 in 〈e,m, n, s〉→c2 in 〈e,m, n, s〉

Definition 15 subexp(exp, st) is true if exp appears
in an expression of st.

exp in 〈e,m, n, s〉 = error, subexp(exp, st)
st;c2 in 〈e,m, n, s〉→error

D Jade Transition Relation

→j is defined to be the smallest relation satisfying
the following axioms.

c in 〈e,m, n, s〉→c′ in 〈e′,m′, n′, s′〉
c in 〈e,m, n, s, r〉→jc′ in 〈e′,m′, n′, s′, r〉

c in 〈e,m, n, s〉→error

c in 〈e,m, n, s, r〉→jerror

c1 in 〈e,m, n, s〉→c′1 in 〈e′,m′, n′, s′〉
withonly {c1}do(ids){c2};c3 in 〈e,m, n, s, r〉→j

withonly {c′1}do(ids){c2};c3 in 〈e′,m′, n′, s′, r〉

c1 in 〈e,m, n, s〉→c′1 in 〈e′,m′, n′, s′〉
with {c1}cont;c2 in 〈e,m, n, s, r〉→j

with {c′1}cont;c2 in 〈e′,m′, n′, s′, r〉

c = withonly {di rw(exp);c1}do(ids){c2};c3,
exp in 〈e,m, n, s〉 = l ∈ Dom m,
r′ = r ∪ {〈di, rw, l〉}, s ` 〈di, rw, l〉

c in 〈e,m, n, s, r〉→j

withonly {c1}do(ids){c2};c3 in 〈e,m, n, s, r′〉

exp in 〈e,m, n, s〉 = l ∈ Dom m, s ` 〈di, rw, l〉
with {di rw(exp);c1}cont;c2 in 〈e,m, n, s, r〉→j

with {c1}cont;c2 in 〈e,m, n, s, r ∪ {〈di, rw, l〉}〉

〈m, 〈di rw(exp);c, e, n, s, r〉 ◦ ts〉→jerror

Definition 16 〈e1,m1, n1, s1, r1〉 ≡b
j

〈e2,m2, n2, s2, r2〉 iff 〈e1,m1, n1, s1〉 ≡b 〈e2,m2, n2, s2〉
and 〈e1,m1, n1, r1〉 ≡b 〈e2,m2, n2, r2〉

E Serial Transition Relation

→s is defined to be the smallest relation satisfying
the following axioms.

c in 〈e,m, n, s, r〉→jc
′ in 〈e′,m′, n′, s′, r′〉

〈m, 〈c, e, n, s, r〉 ◦ ts〉→s〈m′, 〈c′, e′, n′, s′, r′〉 ◦ ts〉

c in 〈e,m, n, s, r〉→jerror

〈m, 〈c, e, n, s, r〉 ◦ ts〉→serror

c = with {ε}cont;c′
〈m, 〈c, e, n, s, r〉〉→s〈m, 〈c′, e, n, s ↑ r, ∅, 〉〉

c = withonly {ε}do(id1, . . . , idn){c1};c2,
∀i ≤ n.idi ∈ Dom e and e(idi) 6∈ PrLoc,

e′ = [id1 7→ e(id1)] · · · [idn 7→ e(idn)]
〈m, 〈c, e, n, s, r〉 ◦ ts〉→s

〈m, 〈c1, e′, ∅, ∅ ↑ r, ∅〉 ◦ 〈c2, e, n, s, ∅〉 ◦ ts〉

〈m, 〈ε, e, n, s, r〉 ◦ ts〉→s〈m, ts〉
c = result(exp), exp in 〈e,m, n, s〉 = v ∈ Z

〈m, 〈c, e, n, s, r〉〉→sv

F Parallel Transition Relation

→p is defined to be the smallest relation satisfying
the following axioms.

t = 〈c, e, n, s, r〉 ∈ A,
c in 〈e,m, n, s, r〉→jc

′ in 〈e′,m′, n′, s′, r′〉
〈m,A,S,< 〉→p

〈m′,A \ {t}] {〈c′, e′, n′, s′, r′〉},S,< 〉

t = 〈c, e, n, s, r〉 ∈ A, c in 〈e,m, n, s, r〉→jerror

〈m,A,S,< 〉→perror

t = 〈with {ε}cont;c, e, n, s, r〉 ∈ A,
t′ = 〈c, e, n, s ↑ r, ∅〉
〈m,A,S,< 〉→p

〈m,A \ {t},S] {t′}, upd(s, s ↑ r,<)〉
c = withonly {ε}do(id1, . . . , idn){c1};c2,

t = 〈c, e, n, s, r〉 ∈ A,
∀i ≤ n.idi ∈ Dom e and e(idi) 6∈ PrLoc
e′ = [id1 7→ e(id1)] · · · [idn 7→ e(idn)],

t′ = 〈c1, e
′, ∅, ∅ ↑ r, ∅〉, t′′ = 〈c2, e, n, s, ∅〉

〈m,A,S,< 〉→p

〈m,A \ {t},S] {t′, t′′}, ins(∅ ↑ r, s,<)〉
t = 〈ε, e, n, s, r〉 ∈ A,

〈m,A,S,< 〉→p〈m,A \ {t},S, rem(s,<)〉
t = 〈c, e, n, s, r〉 ∈ S,

∀〈im, rw, l〉 ∈ s.f(〈im, rw, l〉,<)
〈m,A,S,< 〉→p〈m,A] {t},S \ {t},< 〉

c = result(exp),
exp in 〈e,m, n, s〉 = v ∈ Z

〈m, {〈c, e, n, s, r〉}, ∅,< 〉→pv

