
Dancing with Uncertainty

Sasa Misailovic Stelios Sidiroglou Martin C. Rinard
MIT CSAIL

{misailo, stelios, rinard}@csail.mit.edu

Abstract
We present Dubstep, a novel system that uses the find-
transform-navigate approach to automatically explore new
parallelization opportunities in already parallelized (fully-
synchronized) programs by opportunistically relaxing syn-
chronization primitives. This set of transformations gener-
ates a space of alternative, possibly non-deterministic, paral-
lel programs with varying performance and accuracy charac-
teristics. The freedom to generate parallel programs whose
output may differ (within statistical accuracy bounds) from
the output of the original program enables a significantly
larger optimization space. Dubstep then searches this space
to find a parallel program that will, with high likelihood,
produce outputs that are acceptably close to the outputs that
the original, fully synchronized parallel program would have
produced.

Initial results from our benchmarked application show
that Dubstep can generate acceptably accurate and efficient
versions of a parallel program that occupy different positions
in performance/accuracy trade off space.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming – Parallel Program-
ming; D.3.4 [Programming Languages]: Processors – Op-
timization

Keywords Parallelization, Accuracy, Tradeoff, Statistical
Test

1. Introduction
Parallel programming is often considered difficult – pro-
grammers struggle with the design of efficient, concurrent
algorithms and have difficulty reasoning about potential
dependences which may limit parallelism (and thus over-
all efficiency). The dominant approach for reasoning about
the behavior of software systems, which revolves around

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
RACES’12, October 21, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1632-3/12/10. . . $15.00

hard binary correctness, further exacerbates the problem.
Coupled with the inherent difficulty of testing and debug-
ging parallel code, programmers resort to conservative ap-
proaches (e.g. conservative over synchronization) that limit
parallelism.

Relaxing the notion of binary correctness frees the pro-
grammer from the constraint of preserving precise seman-
tics. This freedom may open up a much larger optimiza-
tion space with additional opportunities for reduced engi-
neering effort, reduced resource consumption, or increased
functionality. But fully exploiting these new opportunities
may require additional reasoning about trade-offs between
accuracy, performance, and power consumption.

In recent work, our research group has advocated for the
use of accuracy-aware transformations that exploit the free-
dom to change the semantics of the transformed program to
trade accuracy for improved performance and/or energy con-
sumption. We have proposed empirical, statistical, and prob-
abilistic techniques for understanding the effects of these
transformations [9, 14, 16, 17, 19–21, 24, 30].

Several of these techniques use a find-transform-navigate
design approach to discover optimization opportunities. In
this paper we present a version of this approach that uses
synchronization reduction transformations to find new op-
portunities for improving the performance of already paral-
lelized programs. First, we analyze the original program to
find locations in the program that are potentially promising
optimization candidates. Then, we transform each of these
locations, one at a time, and analyze the effect of the individ-
ual transformation on the program’s performance, accuracy,
and safety. The transformed program has the freedom to pro-
duce an acceptably accurate result that is different from the
result of the original program. Finally, understanding the ef-
fects of individual transformations lets us efficiently navi-
gate the trade-off space of multiple transformations applied
at the same time as we search for a transformed program that
maximizes performance subject to an acceptability bound on
the result that it produces.

We present Dubstep, a novel system that implements
the find-transform-navigate approach to automatically ex-
plore new parallelization opportunities in already paral-
lelized (fully-synchronized) programs by relaxing synchro-
nization primitives. This set of transformations generates

a space of alternative, possibly non-deterministic, parallel
programs with varying performance and accuracy charac-
teristics. Dubstep explores this space to find more efficient
parallel programs that, with high likelihood, produce ac-
ceptably accurate results. Dubstep builds upon our previous
work on Quickstep, an interactive parallelizing compiler
that finds parallelization opportunities in sequential pro-
grams and produces (potentially non-deterministic) parallel
programs [13–15].

2. Approach
We next summarize how Dubstep’s implements the find-
transform-navigate approach to identifying and exploiting
approximate optimization opportunities.

2.1 Find
Representative Inputs and Accuracy Model: A user
provides Dubstep with a source code of the program and
a set of inputs that represent typical program’s workloads.
Dubstep then uses these inputs to evaluate the accuracy and
performance effects of candidate transformations.

A user also specifies an output abstraction function that is
used to select relevant parts of the output or calculate a mea-
sure of output’s quality. This is a function that takes as input
the program’s output and calculates a single numerical value
or a vector of numerical values that summarizes the relevant
properties of the output. Common output abstractions extract
individual output components produced directly by the pro-
gram, or compute quality metrics of the output, such as the
signal to noise ratio in signal processing applications.

Analyze Original Program: Dubstep analyzes the origi-
nal, fully-synchronized parallel program to help identify new
optimization opportunities:
• Baseline execution: Dubstep runs the original parallel

program on the representative inputs. It records the run-
ning times and uses the user-provided output abstrac-
tion function to compute the relevant output metrics. The
analyses of the transformed programs use these baseline
results to evaluate the accuracy and performance of the
transformed versions.

• Performance Profiling: Next, Dubstep applies a perfor-
mance profiler on the original parallel program to find the
program locations where the programs spends most of its
time. Specifically, the profiler focuses on the percentage
of time that computations spend in existing parallel sec-
tions. Profiling allows Dubstep to focus on program com-
ponents that are likely to yield high performance benefits.

• Memory profiling: Dubstep next generates an instru-
mented version of the program that generates a trace of
memory access patterns (sequences of reads and writes).
It executes this instrumented version of the program to
identify program regions with high and low memory con-
tention. Relaxing synchronization primitives around low-

contention memory regions is more likely to produce
highly accurate transformed programs.

2.2 Transform
Transformations: The transformations are designed to
improve the performance of the parallel program while
maintaining acceptable accuracy. Dubstep deploys two types
of transformations to generate its search space of parallel
programs:
• Opportunistic Synchronization: This transformation

replaces synchronized operations with unsynchronized
operations (by removing locks). The goal is to decrease
synchronization overhead and lock waiting times by al-
lowing data races that do not alter, or only slightly alter,
the result that the program produces.

• Opportunistic Barriers: This transformation replaces
traditional synchronization barriers (which force threads
to wait until all threads have reached the barrier) with
barriers that wait only for a specified fraction of the
threads to reach the barrier. The barrier then instructs the
remaining (non-waiting) threads to stop their work and
all threads proceed past the barrier. The goal is to reduce
waiting time at barriers (this waiting time is typically
caused by thread scheduling anomalies and differences
in the amount of work assigned to each thread).
Both of these transformations introduce non-determinism

and may cause the application to produce varying results
when executed on the same input.

Analyze Transformations: To evaluate, understand and
predict the behavior of the resulting non-deterministic pro-
grams, Dubstep runs analyses that (1) help the developer un-
derstand the tradeoff between accuracy and performance and
(2) ensure that the executions of the transformed programs
are safe.

All analyses are relational in the sense that they use ex-
ecutions of the original program to reason about executions
of the transformed program.
• Performance Analysis: The goal of this analysis is to

identify transformations that improve end-to-end pro-
gram performance. The performance measure is a speedup
T0/T

′, where T0 is the average execution time of the
original program and T ′ is the average execution time
of the transformed program. To obtain T ′, the analysis
executes the transformed program on the same inputs it
used for the original program.

• Accuracy Analysis: The goal of this analysis is to iden-
tify transformations that preserve the accuracy of the pro-
gram within acceptable bounds. By applying an output
abstraction function on outputs of the original and trans-
formed program, Dubstep obtains two abstracted output
vectors o (for the original program) and ô (for the trans-
formed program). Dubstep then relates these two outputs
using an accuracy metric, which calculates the distance

between the two vectors. In this paper we will use aver-
age absolute relative error as the accuracy metric:

d(o, ô) =
1

m

m∑
i=1

∣∣∣∣oi − ôioi

∣∣∣∣ (1)

The user also defines an acceptable accuracy loss bound
b. If the value d of the accuracy measure is less than the
accuracy loss bound b that the user defined, then the ex-
ecution is considered acceptably accurate. If, in contrast,
the value of d is greater than b, then the execution accu-
racy loss is unacceptably high.
Since the transformed programs are non-deterministic,
multiple executions of a program on the same input can
result in different results of the accuracy metric d. To
represent accuracy in this scenario, we define an execu-
tion reliability as a probability that the accuracy loss d of
the result that the non-deterministic transformed program
produces on a single input is smaller than the bound b.
We accept the transformed program if its reliability on
all tested inputs is higher than an acceptance reliability r
that the user defines. To estimate the reliability of each
parallel program, Dubstep uses statistical testing. We
review to these techniques in Section 4.

• Safety Analysis: We use criticality testing to discover
program crashing errors, which may be introduced as
a consequence of an applied transformation. Criticality
testing instruments the original and transformed pro-
grams using dynamic analysis to detect critical errors
introduced by the applied transformations (e.g. reading
uninitialized memory) [17, 24]. The goal of criticality
testing is to eliminate the introduction of new memory
and parallelization errors that may occur as a result of the
applied transformations. Note that data races introduced
by the applied transformations that do not lead to abrupt
program termination (or unacceptable accuracy degrada-
tion) are not considered critical errors. Criticality testing
only checks for errors introduced by transformations. In
other words, if a certain error exists in the original pro-
gram, then it is acceptable for the transformed program
to exhibit the same error. Conversely, if an error does not
exist in the original program then it should not exist in
the transformed program.

2.3 Navigate
Given an initial program, the opportunistic transformations
generate a new, larger, space of corresponding alternative
programs with relaxed synchronization. Each alternative
program may have one or more locations transformed.

Exhaustive Search: If the number of alternative programs
is small, Dubstep can exhaustively explore all of them, ap-
plying performance, accuracy, and safety analysis on each
explored transformed program.

Pruning: Dubstep can also use a two-stage exploration
algorithm to prune parts of the tradeoff space that it explores.
In the first stage, Dubstep applies a transformation to a single
location in the program, and runs performance, accuracy
and safety tests. If a candidate transformed program does
not pass one of the tests, the Dubstep will not use this
transformation in the second stage.

In the second stage, Dubstep explores the tradeoff space
induced by combinations of successful transformations from
the first stage (those that passed all three tests) to find addi-
tional transformed programs that profitably trade accuracy
for performance. Specifically, Dubstep uses Quickstep’s ex-
ploration algorithm [14, Sec. 5], which prioritizes individual
transformations that demonstrated better tradeoffs between
accuracy and performance.

2.4 Results
Dubstep presents its findings to developers in a detailed
report. This report contains the list of applied transforma-
tions and the effects that these transformations had on accu-
racy and performance of programs, ordered by the tradeoff
between performance increase and accuracy loss that they
cause. A developer can use the report to evaluate the accept-
ability of the synchronization transformations and obtain in-
sight into how the application responds to different synchro-
nization reduction strategies.

Confidence. Dubstep implements its accuracy analysis us-
ing a statistical test. Note that statistical tests are not sound
decision procedures — since they use a finite number of ob-
servations to make their decision, statistical tests may (ide-
ally with low likelihood) make an incorrect decision. A de-
veloper can use a confidence c to control the likelihood of
making an incorrect decision. The confidence is the rate at
which the accuracy analysis returns a correct answer (i.e.,
accepts a parallelization that should be accepted and rejects
a parallelization that should be rejected).

Execution Time. The confidence of the result, together
with the desired acceptance reliability r, influence the num-
ber of trials that the analysis needs to execute, and thus in-
creases the execution time of the analysis. Greater reliability
and confidence require more trials for a procedure to com-
pute its answer. We present more details about this relation-
ship in Section 4.

3. Example
In this section we present a preliminary evaluation of Dub-
step on Water, a C++ version of the Perfect Club benchmark
MDG [3]. Water evaluates forces and potentials in a system
of water molecules in the liquid state. Figure 1 presents the
main computation that Water performs.

Computation: Water computes pairwise interactions be-
tween simulated water molecules (they are stored in wrap-
per ScratchPad objects). The parallel computation interf

void ensemble::interf(){

parallel_for(interf_internal, 0, NumMol-1);

}

void ensemble::interf_internal(int i){

double Res1[3][3], Res2[3][3];

ScratchPad *p1, *p2;

for(j = i+1; j < numMol; j++){

p1 = getPad(j); p2 = getPad(i);

double incr = cshift(p1,p2,Res1,Res2);

p1->updateForces(Res1);

p2->updateForces(Res2);

VIR.addvalRepl(incr);

}

}

void scratchPad::updateForces(double Res[3][3]) {

parallel_mutex_lock(this->lock)

this->H1force.vecAdd(Res[0]);

this->Oforce.vecAdd(Res[1]);

this->H2force.vecAdd(Res[2]);

parallel_mutex_unlock(this->lock);

}

void ensemble::poteng(){

parallel_for(poteng_internal, 0, numMol-1);

}

void ensemble::poteng_internal(){

double Res [3][3]

for(j = i+1; j < numMol; j++){

computePoteng(Res, getPad(i), getPad(j));

potenergy->vecAddRepl(Res);

}

}

void ensemble::main(){

// ...

for (int t = 0; t < T; t++) {

computation_1();

interf();

computation_2();

poteng();

computation_3();

}

// ...

// output system status

}

Figure 1. Example Water Computation

calculates the interactions between every two molecules. It
calls cshift to compute the results of each interaction and
store the results in two 3 by 3 arrays (Res1 and Res2). Then,
updateForces takes the two arrays and updates the vectors
that store the forces acting on each molecule. The addval

updates the VIR accumulator object, which stores the sum of
the virtual energies of all interactions. The poteng function
takes as input the state of the system of molecules, com-
putes the potential energy of the system and stores it in the
potenergy vector variable. Finally, the main computation
evolves the system over time — at each time step it cal-
culates the interactions between molecules, their positions,
and energies. The intermediate computations inside the main
for loop (computation i) are short sequential computa-
tions. The application outputs the final state of the system of
molecules, including the total kinetic and potential energy of
the system.

Parallelization Primitives: Both interf and poteng use
the parallel for function call. This function executes the
function passed as the first parameter in parallel threads. The
second and the third parameter of parallel for specify
the starting and ending iteration point respectively. Each
thread increments the index, and passes it to the function
it executes as a parameter, until it reaches the final point.
In this experiment we assume the cyclic scheduling strategy
(each thread increments its local index by a constant equal
to the number of threads).

Internally, the function parallel for uses two barriers,
one at the beginning to ensure that the computation enters

the loop body only after all threads have completed previous
work, and the one at the end to ensure that the computation
continues only after all threads have finished their work.

The interf computation has two synchronization prim-
itives. The accumulator function addvalRepl implements
a replicated update to the accumulator. The updateForces

subcomputation for each molecule is synchronized with a
lock that belongs to each ScratchPad object to avoid si-
multaneous updates from multiple threads. Each scratch-
pad has its own unique lock. The poteng computation has
one synchronization primitive. The vector addition function
vecAddRepl implements a replicated update to the vector.

Dubstep Input: Dubstep can automatically explore the
application to find new parallelization opportunities when
allowed the freedom to produce output that may differ from
the original manually parallelized program. To use Dubstep,
an application developer provides the program’s original
source code, a set of representative inputs, and an output
abstraction function.

For this experiment, we provide a simulation of 1000
molecules for 30 time steps. The initial positions of the
molecules are also part of the input. The output abstrac-
tion vector for water, o, consists of measures of the kinetic
and potential energies of the system. These are values that
the original program produces; the output abstraction func-
tion extracts these values from the program’s printed output.
In addition, a developer provides a specified accuracy loss
bound b and reliability r.

Transformation Speedup (max 8) Relative Speedup Accuracy Loss
Original 6.21 1.00 0.000 ±0.000
BarrierInterf 6.34 1.02 0.027 ±0.082
BarrierPoteng 6.48 1.04 0.035 ±0.032
LockForces 6.34 1.02 0.004 ±0.001

Table 1. Empirical Results for Individual Transformations

Transformation Speedup (max 8) Relative Speedup Accuracy Loss
Original 6.21 1.00 0.000 ±0.000
BarrierInterf + LockForces 6.44 1.03 0.027 ±0.044
BarrierPoteng + LockForces 6.79 1.09 0.042 ±0.033
BarierInterf + BarrierPoteng 7.10 1.14 0.053 ±0.063
All Three 7.44 1.20 0.051 ±0.070

Table 2. Empirical Results for Combinations of Transformations

Experimental Environment: We performed all experi-
ments on a dual quad-core 2.27 GHz Intel Xeon E5520 CPU
with 16 GB of RAM. The operating system is Ubuntu Linux
10.10 running kernel version 2.6.32-41. All programs are
compiled with the LLVM C++ compiler version 2.7, with
the optimization level -O3.

Roadmap: We first present the computations that Dubstep
identifies as good optimization candidates in the find phase
(Section 3.1). We next present Dubstep’s exhaustive explo-
ration of the tradeoff space induced by these optimization
candidates (Section 3.2). We then present how Dubstep can
navigate the tradeoff space and select the transformed pro-
gram with highest performance for a set of accuracy bounds
b guided by a statistical test (Section 3.3).

3.1 Find
Dubstep applies performance- and memory-profiling to find
optimization opportunities in Water.

Performance Profiling: The execution time of the se-
quential program is 16.5 seconds. The original parallel pro-
gram running with 8 parallel threads achieves speedup of
6.21 times over the sequential program. The loop profil-
ing information (collected using Valgrind’s Callgrind tool)
indicates that 99.7% of the execution time is spent in the
parallel sections of the interf and poteng functions. Dub-
step thus narrows its optimization focus to these parallel
sections. Since these computations contain synchronization
barriers, they are a good target for the opportunistic bar-
rier transformation. We transform the barriers at the end of
each parallel for section. We call these transformation
opportunities BarrierInterf (for the interf loop) and Bar-
rierPoteng (for the poteng loop).

Memory profiling: The memory profiling information
highlights two high-contention memory regions in the paral-
lel loops. These memory regions represent the addresses of
the accumulator VIR accessed from the addvalRepl op-
eration (inside the interf computation), and the vector

accumulator potenergy accessed from the vecAddRepl

operation (inside the poteng computation). These memory
regions are accessed within every iteration of the parallel
loops and are, therefore, not good candidates for our trans-
formations.

On the other hand, updating vectors within ScratchPad

objects inside the updateForces function results in a much
smaller density of races. This is due to the fact that the num-
ber of scratch-pads is equal to the number of molecules and
during the execution of multiple threads there is a much
smaller chance for data races within individual scratch-
pads. The lock in this function is identified by Dubstep as
a promising candidate for the opportunistic synchronization
transformation. In the rest of the section we call this trans-
formation opportunity LockForces.

3.2 Exhaustive Tradeoff Space Exploration
In this section we present the result of the tradeoff space
exploration for the Water benchmark. Since the number of
candidate transformed locations is small, we use an exhaus-
tive exploration of the tradeoff space. First, Dubstep applies
one transformation at a time and evaluates the effects of that
transformation on the program’s performance, accuracy, and
safety (through criticality testing). Then, Dubstep combines
the transformations together and evaluates their joint effects.

Individual Transformations: Table 1 presents the re-
sults of executing the transformed Water benchmark with
eight parallel threads. Column 1 (Transformation) presents
the transformation reference name. Column 2 (Speedup)
presents the speedup of the execution of the parallel pro-
gram relative to the execution of the sequential program.
Column 2 (Relative Speedup) presents the speedup rela-
tive to the fully-synchronized parallel program. Column 4
(Accuracy Loss) presents the average accuracy loss and the
standard deviation of the accuracy loss. We used Equation 1
to calculate the accuracy loss. The results are based on 100
executions of each program on the representative input.

• Opportunistic Barriers in interf and poteng: Both
transformations introduce non-determinism in the results
as a consequence of early termination (i.e. not waiting for
all threads to finish their work). For this particular exper-
iment, we used an aggressive version of the opportunistic
barrier transformation that waits for a half of the threads
to arrive at the barrier before terminating the computation
of the remaining threads. When half of the threads have
reached the barrier, Dubstep’s runtime system directs the
remaining threads to terminate further computation after
the current loop iteration.
This transformation produces a faster version of the pro-
gram — the program has less waiting time at the bar-
rier and performs less work. However, due to the skipped
work, the produced result is less accurate. We note that
with cyclic scheduling each thread executes roughly the
same amount of work. Reports produced by Dubstep in-
dicate that the terminated threads complete more than
95% of their total iterations.

• Remove Synchronization in updateForces: This trans-
formation introduces non-determinism due to data races
that may lead to overwriting some of the intermediate
sums that the vecAdd function computes.
Due to a relatively large number of molecules in the in-
put, the execution with data races (introduced by Dub-
step) has minimal accuracy loss (with low variance) but
it also does not drastically improve performance.

All transformed programs continued execution and ter-
minated normally after producing output. Dynamic program
analysis with Valgrind did not reveal memory errors caused
by these transformations.

Combination of Transformations: It is a tractable task
for Dubstep to exhaustively explore all configurations of the
program. Table 2 presents results for all four combinations
of multiple transformations. Note that as we combine mul-
tiple transformations performance increases, but the average
accuracy loss also increases. We observe the maximum per-
formance for the case when all three transformations are ap-
plied at the same time. This program executes 20% faster
than the original, fully synchronized program. Its average
accuracy loss is 0.051.

3.3 Tradeoff Space Exploration with Accuracy Tests
In this section we present how Dubstep can leverage statis-
tical accuracy tests to determine, with high confidence, that
the executions of the transformed program are reliable.

Dubstep uses the SPR (sequential probability ratio) hy-
pothesis testing framework to determine if a transformed
program is reliable. We now briefly summarize this test here
and provide a more detailed description in Section 4.2. The
SPR test takes as input the accuracy bound b and the accep-
tance reliability r, provided by the developer. The test exe-
cutes the candidate transformed program on the representa-

Accuracy Best Trials
Bound b Transformation (Average)
0.01 LockForces 106
0.05 LockForces 100
0.10 All Three 161
0.15 All Three 100
0.20 All Three 100
0.25 All Three 100

Table 3. The Best Transformed Programs for Accuracy
Loss Bounds

tive input multiple times and observes after each run whether
the accuracy loss d is smaller than the accuracy bound b.
At the end the test returns TRUE if the actual reliability of
the transformed program was greater than r (and, therefore,
Dubstep accepts the transformed program) and FALSE if the
actual reliability was smaller than r (and, therefore, Dubstep
rejects the transformed program).

The number of the total observations that the test takes
is not fixed. It depends on the previous observations of the
program executions. In this experiment, we set the reliability
r = 0.9. Our target confidence that the test returns the
correct answer is also c = 0.9 (thus, the probability that
the accuracy test fails is 0.1). This test also requires a user to
set a borderline tolerance ε (this is a narrow interval around
the acceptable reliability r in which the test does not make a
decision). In this experiment ε = 0.02.

Throughout the experiment, we use different accuracy
bounds b. Dubstep then selects transformed programs that
can meet these bounds by successively running the SPR test
for each bound. Table 3 presents the best transformations for
each choice of the bound b. Column 1 (Accuracy Bound)
presents the accuracy bound for which we run the test. Col-
umn 2 (Transformation) presents the transformed program
with the highest performance, subject to the accuracy bound.
Column 3 (Trials) presents the number of trials that the sta-
tistical test performed to provide the accuracy guarantee.
This number of trial is an average over ten runs of the statis-
tical accuracy test.

For bounds 0.01 and 0.05, the fastest r-reliable program
is LockForces. For bounds between 0.1 and 0.25, the fastest
r-reliable program is All Three. We now interpret the results
of the statistical test. For instance, for row 2, the test states
that, the transformed program LockForces executed on the
representative input produces a result such that the differ-
ence d from the original result is smaller than the bound
b = 0.05 with probability at least r = 0.9. The test also
guarantees that this previous statement is correct with prob-
ability equal to confidence c = 0.9.

We repeated this experiment ten times. For all ten runs
the statistical test produced the same answer for the best
transformed program, but the number of trials that the test
performs depends on the observations made during the test.
The minimum number of trials that the test needs to perform

is 100. More trials indicate that some program executions
produced a result whose difference d is greater than b. The
average number of trials for the transformed programs that
the test accepted was between 100 and 161 (the maximum
number of trials for a single test was 279). To reject other
transformations that do not satisfy accuracy bound the accu-
racy test needed between 30 and 70 trials.

4. Accuracy Analysis
In this section, we describe statistical accuracy analyses de-
signed to help Dubstep characterize the effects that the syn-
chronization relaxation transformations have on program’s
accuracy. In particular, these analyses attempt to answer the
following question: how often does the execution of a non-
deterministic program produce small deviations from the
original result?

Program Model. Let there exist an application A, an input
I, and an environment H (e.g., hardware description, operat-
ing system version – including information about its sched-
uler – and the compiler version – including optimization pa-
rameters – used to create application’s executable). An exe-
cution context is a triple C = (A, I,H). A sample from the
execution context C is a single execution of the application A
on the input I in the environment H. Each sample is random-
ized (due to non-deterministic program transformations).

Our analysis treats each sample from the context C as one
of two events: the execution either produced a result whose
accuracy loss d (which is calculated using the accuracy met-
ric) is either smaller or equal to the accuracy bound b, or it is
greater than b. Therefore, if we take several samples, we can
represent the i-th sample (that has the accuracy loss di) as a
Bernoulli random variable:

Xi =

{
1 if di ≤ b
0 if di > b

For each of the n samples (executions) from C, we can
calculate the accuracy loss di (i ∈ {1, . . . , n}) and deter-
mine which event (di ≤ b or di > b) occurred. We call such
(known) outcomes observations and denote them with low-
ercase letters x1, . . . , xn.

Reliability. The reliability of an execution context C is
the probability

p = Pr [X = 1] .

In other words, the reliability is a probability that an execu-
tion of the application A on the input I in the environment
E produces accuracy loss d smaller than the acceptable loss
bound b.

The true value of the reliability p is typically unknown.
A direct modeling of p is a hard task — it depends on the
complex interactions between the elements of the environ-
ment (including hardware, operating system, and the com-
piler) and the input of the program.

Instead, we use a notion of an acceptance reliability, r,
which represents a lower bound on the true reliability p. The
acceptance reliability is provided by a user. We consider
an execution context to be acceptable if and only if its
reliability p is greater than r. Then the acceptability test is a
procedure that determines the acceptability of an execution
context.

We will review two acceptability tests. Each test returns
TRUE if it determines that p is greater than r (in this case
Dubstep accepts a candidate transformed program), or oth-
erwise return FALSE (in this case Dubstep rejects a candidate
transformed program). Both of these tests take observations
x1, x2, . . . on which they base their decisions. The decisions
of the tests are not sound, but a user can set the probability
with which these decisions are correct. We have previously
used these tests in the context of evaluating automatic ap-
proximate program parallelization [13, 14].

4.1 Hoeffding’s Inequality Test
Let an estimated reliability p̂ be an average of n observations
x1, . . . , xn of the random variable X:

p̂ =
1

n

n∑
i=1

xi

Note that merely knowing p̂ is not enough to reason about
the acceptability of the context C. We cannot directly com-
pare p̂ with the acceptance reliability r, as we do not know
the relation between p and p̂. For a sound decision of ac-
ceptability we would need to establish that p̂ ≤ p. However,
to make such a decision an additional information about pa-
rameter p is necessary. For an probabilistically accurate de-
cision of acceptability, it is enough to establish that the un-
desired case p̂ > p occurs only with a small probability.

Hoeffding’s inequality [8] provides a bound on the prob-
ability that the estimate p̂ is significantly different from p:

Pr [|p̂− p| > ε] ≤ 2exp
(
−2ε2n

)
The inequality includes a user-defined tolerance ε that

gauges the precision of the resulting confidence bound es-
timate. Also, note that the number of samples n affects the
probability of a large distance between p̂ and p – intuitively,
the more samples the test takes, the closer the estimate will
be to the true value p. The value δ = 2exp

(
−2ε2n

)
is the

failure rate — it is a probability that the test returns an incor-
rect result.

Application to Acceptability Testing: The result of Ho-
effding’s inequality gives us a desired connection between p,
p̂, and r. It states that |p̂ − p| ≤ ε with probability at least
1 − δ. Then, one can show that p̂ ≥ r + ε implies p ≥ r
(with probability at least 1− δ). A similar derivation follows
in the case when p < r.

The test based on Hoeffding’s inequality makes these
decisions after computing p̂:

• If p̂ ≥ r + ε, then p ≥ r with probability at least 1 − δ.
As a result, the test returns TRUE and Dubstep accepts
the candidate transformed program.

• If p̂ < r−ε than p < r with probability at least 1− δ. As
a result, the test returns FALSE and Dubstep rejects the
candidate transformed program.

• If r − ε ≤ p̂ ≤ r + ε, then the test returns UNKNOWN.
Dubstep then acts conservatively and rejects the candi-
date transformed program. As an alternative, the test can
be repeated with smaller ε such that the new test execu-
tion returns either TRUE or FALSE.

The confidence that the test makes a correct decision is
c = 1− δ.

4.2 Sequential Probability Ratio Test
An alternative technique is to find an interval [p′, 1] that
almost surely contains the probability p. In this case, a lower
bound p′ is a conservative approximation of p – if p′ is
greater than the acceptance reliability r, then p is also greater
than r.

The SPR test [29] is a sequential hypothesis testing
framework. This test performs multiple iterations to deter-
mine which of the two hypotheses, H0 or H1, to accept. At
each iteration i the test collects a single observation xi and
evaluates which of the two hypotheses is more likely based
on xi and the previous observations x1, . . . , xi−1. The test
continues taking observations until its confidence becomes
high enough to accept one of the two hypotheses.

The test takes as input two hypotheses of the following
form:

H0 : p ≤ p′

H1 : p ≥ p′ + ε

This test cannot make a sharp decision between the hy-
potheses involving only p and p′ and therefore must use a
tolerance ε, which determines a narrow interval (p′, p′ + ε)
in which the test does not make a decision. If p is outside
of this interval, the test determines with high probability the
correct hypothesis.

It is possible that the SPR test makes an incorrect deci-
sion, but a user can control the rate of incorrect decisions. A
user of the test can set a false positive rate PF (the proba-
bility that the test incorrectly accepts a bad parallelization),
and a false negative rate 1−PG (the probability that the test
incorrectly rejects a good parallelization).

Application to Acceptability Testing: The value p′ must
be specified before the test begins. Since a candidate trans-
formed program should be rejected if p < r, and accepted
otherwise, then p′ = r. Therefore, the SPR test accepts the
hypothesis H0 (and thus rejects the candidate transformed
program) if the reliability p is less than r. Conversely, it ac-
cepts the hypothesis H1 (and accepts the candidate trans-
formed program) if p is greater than r + ε.

The SPR test makes the following decisions:

• H0 accepted: The decision that p < r is correct with
probability at least PG. As a result, the test returns FALSE
and Dubstep rejects the candidate transformed program.

• H1 accepted: The decision p > r + ε is correct with
probability at least 1 − PF . As a result, the test returns
TRUE and Dubstep accepts the candidate transformed
program.

• Test timeout: The test has not made a decision after
taking a maximum number of observations. As a result,
Dubstep stops the test and rejects the candidate trans-
formed program.

When PG = 1 − PF , then the confidence that the test
makes a correct decision is c = PG.

Comparison of the Acceptability Tests. Both tests can
decide whether to accept or reject a candidate parallelization
after taking enough samples. The difference is that the SPR
test is an on-line test (it uses observations as the test executes
to update the number of samples it needs to take), while the
Hoeffding’s inequality test is an off-line test (it determines
the number of samples to take before it starts executing).

Most of the time the SPR test is the preferred choice
because of the number of observations it needs to take. Since
Hoeffding’s inequality test is off-line, it must provision for
the worst-case scenario, when the actual probability p ≈
r + ε. Because of this inflexibility, this test will typically
require significantly more observations than the SPR test
even if its confidence p is much greater (or smaller) than
this borderline case. However, the execution time of the
Hoeffding’s test is more predictable. In addition, it can be
used to determine reliability in cases when the finite number
of samples have been previously collected.

5. Related Work
Accuracy/Performance Tradeoffs. Researchers have
studied various program transformations [1, 2, 6, 9, 14, 17,
19, 20, 24, 25, 30] and approximate data structures [10, 21,
23, 28] that give a promise of a faster program execution
or better energy utilization at the expense of some accu-
racy of the result that these computations produce. One of
the proposed techniques uses synchronization-free approxi-
mate data structures with data races [21]. Researchers have
also proposed probabilistic techniques for reasoning about
accuracy and performance effects of some of these transfor-
mations [6, 16, 30].

Quickstep. We have previously presented Quickstep [13–
15], a parallelizing compiler that uses the find-transform-
navigate approach to produce parallel programs with poten-
tial data races. Quickstep takes as input a sequential pro-
gram, representative inputs, acceptable accuracy loss bound,
and a set of parallelization introduction transformations and
accuracy introduction transformations. It then explores the

tradeoff space induced by these transformations to find a
(potentially non-deterministic) parallel program that exe-
cutes in a maximum amount of time, subject to an accuracy
bound.

Dubstep operates as a “reverse Quickstep” – it takes as
input an already parallelized (deterministic) program and ap-
plies synchronization relaxation transformations that remove
locks or terminate late tasks to improve the performance
of computations, subject to accuracy bound. Dubstep, like
Quickstep, uses transformed program executions and statis-
tical tests to assess the reliability of non-deterministic paral-
lel programs and to guide the search of the parallel programs.

Parallelization with Data Races. Meng et al. [11, 12] and
Renganarayana et al. [18] propose developer-guided tech-
niques to produce parallel programs with data races that
slightly affect the accuracy of the results. These techniques
rely on the developer to manually find profitable computa-
tions, parallelize programs, and provide computations that
compute the quality of intermediate results (i.e., the outputs
of each transformed subcomputation).

Dubstep, in contrast, automates a part of the process of
finding parallel programs with relaxed synchronization. A
developer provides only the representative inputs and the
quality measure of the result of the whole program. Dubstep
explores the tradeoff space that the synchronization relax-
ation transformations induce, uses statistical tests to assess
the reliability of its observations, and provides the results of
the exploration to the developer.

Integrity of Computations. As a related problem, re-
searchers have also explored techniques that identify and en-
force separation between regions of a program that identify
or enforce separation between critical regions of a program
(that must always produce correct result) and approximate
regions (that may produce results with varying level of ac-
curacy) [4, 5, 23]. With the focus on non-critical program
regions, probabilistic or statistical accuracy analyses (such
as those used by Dubstep) can be used to reason about the
effects of transformations on the program’s accuracy.

Profile Driven Parallelization Compilers. Profile-driven
parallelization approaches run the program on representa-
tive inputs and use memory profiling (in some cases sup-
ported by additional static analysis) to suggest potential par-
allelizations that do not cause data races in the optimized
program [7, 22, 26]. These approaches result in semantically
equivalent optimized programs that produce the same result
as the original programs. Alter [27] provides a determinis-
tic execution model that supports parallelizations that read
stale data or otherwise violate the data dependences of the
sequential program. Alter is designed to provide determinis-
tic execution and freedom from data races.

In contrast, Dubstep explores a larger optimization space
that includes non-deterministic execution and data races.
The transformations that Dubstep applies purposefully intro-

duce non-determinism in transformed programs to improve
performance at a cost of accuracy of the result that the trans-
formed programs produce. Supporting a larger optimization
space comes at the cost of requiring multiple executions of
the same input to determine if a candidate parallelization re-
spects the accuracy bounds with acceptable probability.

6. Conclusion
Writing parallel programs with a hard notion of correctness
constraints the development of such programs to conserva-
tive practices that favor excessive use of synchronization
primitives. Our results show that Dubstep’s approach, which
revolves around the find-transform-navigate approach, helps
developers navigate a richer trade-off space to obtain more
efficient acceptably accurate parallel programs.

Acknowledgements
This research was supported in part by the National Science
Foundation (Grants CCF-0811397, CCF-0905244, CCF-
1036241, and IIS-0835652), DARPA (Grants FA8650-11-
C-7192 and FA8750-12-2-0110), and the United States De-
partment of Energy (Grant DE-SC0005288).

References
[1] J. Ansel, C. Chan, Y. Wong, M. Olszewski, Q. Zhao, A. Edel-

man, and S. Amarasinghe. Petabricks: A language and com-
piler for algorithmic choice. PLDI, 2009.

[2] W. Baek and T. Chilimbi. Green: A framework for supporting
energy-conscious programming using controlled approxima-
tion. PLDI, 2010.

[3] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang,
L. Pointer, R. Roloff, A. Sameh, E. Clementi, et al. The perfect
club benchmarks: Effective performance evaluation of super-
computers. International Journal of High Performance Com-
puting Applications, 3(3):5–40, 1989.

[4] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving
acceptability properties of relaxed nondeterministic approxi-
mate programs. PLDI, 2012.

[5] M. Carbin and M. Rinard. Automatically Identifying Critical
Input Regions and Code in Applications. ISSTA, 2010.

[6] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour.
Proving Programs Robust. FSE, 2011.

[7] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. PLDI, 2007.

[8] W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Associ-
ation, 58(301), 1963.

[9] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for responsive
power-aware computing. ASPLOS, 2011.

[10] C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Performance,
scalability, and semantics of concurrent FIFO queues. PODC,
2011.

[11] J. Meng, S. Chakradhar, and A. Raghunathan. Best-Effort
Parallel Execution Framework for Recognition and Mining
Applications. IPDPS, 2009.

[12] J. Meng, A. Raghunathan, S. Chakradhar, and S. Byna. Ex-
ploiting the Forgiving Nature of Applications for Scalable Par-
allel Execution. IPDPS, 2010.

[13] S. Misailovic, D. Kim, and M. Rinard. Automatic paralleliza-
tion with statistical accuracy bounds. Technical Report MIT-
CSAIL-TR-2010-007, MIT, 2010.

[14] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential
programs with statistical accuracy tests. Technical Report
MIT-CSAIL-TR-2010-038, MIT, 2010.

[15] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential
programs with statistical accuracy tests. ACM Transactions on
Embedded Computing, Special Issue on Probabilistic Embed-
ded Computing (to appear), 2013.

[16] S. Misailovic, D. Roy, and M. Rinard. Probabilistically Accu-
rate Program Transformations. SAS, 2011.

[17] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard.
Quality of service profiling. ICSE, 2010.

[18] L. Renganarayana, V. Srinivasan, R. Nair, D. Prener, and
C. Blundell. Relaxing synchronization for performance and
insight. Technical Report RC25256, IBM, 2011.

[19] M. Rinard. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. ICS, 2006.

[20] M. Rinard. Using early phase termination to eliminate load
imbalances at barrier synchronization points. OOPSLA, 2007.

[21] M. Rinard. A lossy, synchronization-free, race-full, but still
acceptably accurate parallel space-subdivision tree construc-

tion algorithm. Technical Report MIT-CSAIL-TR-2012-005,
MIT, 2012.

[22] S. Rul, H. Vandierendonck, and K. De Bosschere. A dynamic
analysis tool for finding coarse-grain parallelism. HiPEAC
Industrial Workshop, 2008.

[23] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. Enerj: Approximate data types
for safe and general low-power computation. PLDI, 2011.

[24] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard.
Managing Performance vs. Accuracy Trade-offs With Loop
Perforation. FSE ’11.

[25] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D.
Corner, and E. D. Berger. Eon: a language and runtime system
for perpetual systems. SenSys, 2007.

[26] G. Tournavitis, Z. Wang, B. Franke, and M. O’Boyle. Towards
a holistic approach to auto-parallelization: integrating profile-
driven parallelism detection and machine-learning based map-
ping. PLDI, 2009.

[27] A. Udupa, K. Rajan, and W. Thies. Alter: Leveraging break-
able dependences for parallelization. PLDI, 2011.

[28] D. Ungar, D. Kimelman, and S. Adams. Inconsistency ro-
bustness for scalability in interactive concurrent-update in-
memory MOLAP cubes. Technical report, IBM TJ Watson,
2011.

[29] A. Wald. Sequential analysis. John Wiley and Sons, 1947.
[30] Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized

accuracy-aware program transformations for efficient approx-
imate computations. POPL, 2012.

