
(Relative) Safety Properties for Relaxed Approximate
Programs

Michael Carbin
MIT CSAIL

mcarbin@csail.mit.edu

Martin Rinard
MIT CSAIL

rinard@csail.mit.edu

ABSTRACT
Researchers have recently begun to explore a new class of
program transformations called approximate program trans-
formations. These program transformations take an existing
program and produce a new, relaxed approximate program
that trades accuracy of its results for increased performance.

In this paper, we explore how developers can use relational
reasoning to verify relative properties of relaxed approxi-
mate programs in that if their original program satisfies a
property (such as memory safety), then the relaxed program
also satisfies the property. Such relational reasoning enables
developers to transfer their reasoning about the original pro-
gram over to verify the relaxed.

1. INTRODUCTION
Researchers have recently investigated a number of program
transformations that trade the accuracy of a program’s re-
sults for performance. Approximate program transforma-
tions, such as loop perforation [6, 9], approximate memo-
ries and data types [7, 13], approximate function memo-
ization [3], dynamic knobs [5], and synchronization reduc-
tion [8, 14, 12, 10] take existing programs and produce new,
relaxed approximate programs that approximate the behav-
ior of the original and operate with higher performance (i.e.,
decreased execution time or power consumption).

A key aspect of the development of relaxed approximate
programs through the application of approximate program
transformations is safety. Specifically, when a developer first
develops his or her initial program, he or she typically estab-
lishes several safety properties about the behavior of the pro-
gram. For example, the developer may use program analysis
or his or her own reasoning (code review) to establish that
all pointer dereferences in the program are within bounds
of an allocated object. However, unlike as in the case for
traditional semantics-preserving compiler transformations,
approximate program transformations specifically augment
the semantics of the original program to produce a relaxed
approximate version, which therefore jeopardizes the valid-
ity of the developer’s reasoning on the final, approximate
program.

In this paper we advocate that developers use relational rea-
soning — in the form of relational proofs that relate the be-
havior of the original and relaxed program — to establish
that their desired safety properties still hold of the relaxed
variant of their program. Relational reasoning enables us

to define and provide a semantics for the relative safety of
a relaxed program: if the original program satisfies a safety
property, then the relaxed program also satisfies a safety
property (given an appropriate relational proof). While this
stands in contrast to the standard unconditioned definition
of safety (i.e., all executions of the program satisfy a prop-
erty), relative safety enables a developer to formally transfer
their original reasoning about the program — which may be
established through informal techniques, such as testing or
code review — over to the relaxed program in cases where
an approximate program transformation does not interfere
with the validity of their reasoning.

Synchronization Reduction. In this paper we investigate
relative safety in the context of synchronization reduction
(SR) [8, 14, 10, 12]. Synchronization reduction (or oppor-
tunistic synchronization [10]) exploits the observation that
some parallel programs are over-synchronized in that it is
possible to increase their exploitable parallelism (and there-
fore performance) by reducing the number of synchroniza-
tion operations in the program. While synchronization re-
duction may introduce data races into a previously race-free
program, the effects of these data races on the quality of the
program’s output can be small and controlled if the trans-
formation is applied in a directed and controlled manner.

Reasoning about Synchronization Reduction. In this pa-
per we present a simple language for imperative concurrent
programs and demonstrate how we can capture a seman-
tics for synchronization reduction. We also present the ba-
sic definitions of relative safety for programs written in this
language and illustrate how relative safety enables a devel-
oper to transfer properties about his or her original program
to the relaxed version produced by synchronization reduc-
tion. We also discuss a program logic that enables developers
to establish the relative safety of a relaxed program by de-
scribing and verifying relations between it and the original
program.

2. EXPRESSING SR
Figure 1 presents a simple imperative language for concur-
rent programs. The language contains integer variables,
arithmetic expressions, boolean expressions, conditional state-
ments, while loops, and sequential composition. The lan-
guage also includes assume e statements, which allow the
programmer to note e as an assumption about the state of

E ::= n | x | E iop E

B ::= true | false | E cmp E | B lop B | ¬B
S ::= skip | x = E | S ; S | S ‖ S

| if (B) {S} else {S} | while (B) {S}
| assume B | assert B
| acquire l | release l

Figure 1: Base Language Syntax

the program at the point at which the statement occurs,
and assert e statements, which allow the programmer to
assert e as a property about the state of the program at
the point at which the statement appears. The language
also includes statements to enable and coordinate concur-
rent executions through the parallel composition statement
s1 ‖ s2, which executes s1 and s2 in parallel, and the mu-
tual exclusion statements acquire l and release l, which
acquire and release named locks.

Semantics. The semantics for this language follow that of
traditional presentations of imperative languages with par-
allel composition [11]. We define and denote the small-step
operational semantics of the language by the evaluation rela-
tion 〈s, σ, φ〉 → 〈s′, σ′, φ′〉. This notation means that from
a configuration consisting of a statement s, a memory state
σ (a finite map from program variables to integer values),
and a lock state φ (a finite map from lock names to boolean
values indicating if the lock has been acquired), evaluation
takes one step, yielding the configuration 〈s′, σ′, φ′〉. So
for example, if s is an assignment statement x = 2, then x
is assigned the value 2 in the resulting memory state. Al-
ternatively, if s is a lock acquisition statement acquire l,
then the resulting lock state records that lock l has been
acquired.

To introduce the ability to apply synchronization reduction,
we extend the standard semantics with the concept of a
synchronization plan. A synchronization plan is a function
π : Σ×Z→ B, that takes as input a state of the program and
the line number of an acquire or release statement and re-
turns a boolean indicating if the lock should be acquired. We
extend the standard semantics by parameterizing it with a
synchronization plan π, 〈s, σ, φ〉 π→ 〈s′, σ′, φ′〉. In this se-
mantics, the inference rule for the lock acquisition statement
acquire l first queries the synchronization plan to see if it
should acquire the lock. If so, then the resulting lock state
records that lock l has been acquired. Otherwise, evalua-
tion does not acquire the lock and the statement behaves as
a skip statement.

Synchronization plans provide a simple way to describe both
the semantics of a fully synchronized program and its re-
laxed variant in that the fully synchronized version uses the
synchronization plan πt, which returns true for all program
states and lock statements, whereas a relaxed variant (pro-
duced by synchronization reduction) uses an alternative syn-
chronization plan. The task of a synchronization reduction
transformation is therefore the task of producing an appro-
priate synchronization plan.

/* parallel section */

...

while (K < N) {

if (RS[K] < gCUT2) {

assume (K < len_FF);

assert (K < len_FF);

FF[K] = EXP(RS[K]); }

K = K + 1;

}

Figure 2: Code snippet from Water

3. REASONING ABOUT SR
Hoare Logic is the standard way to describe and verify be-
havioral properties of sequential programs [4]. The Hoare
Logic judgment ` {P} s {Q} states that if the predicate P
is true of the program state before the evaluation of s and
the evaluation of s terminates, then Q is also true of the
resulting state. A developer can therefore use Hoare Logic
to verify the judgment ` {x = 1} x = x+ 1 {x = 2}.

The goal of our work is to enable developers to be able to
provide a Hoare Logic proof that describes key safety prop-
erties of the original program and an additional small re-
lational proof that, together, establish these key properties
for the relaxed variant of the program. In our previous work
on sequential relaxed approximate programs [2], we demon-
strate that its possible to do just this for sequential programs
by using a relational variant of the Hoare Logic.

Example. Figure 2 presents a code snippet from Water,
a water molecule simulation application [1] for which re-
searchers have previously explored synchronization reduc-
tion [8, 10]. In [8], the suggested synchronization plan
eliminates lock operations that make updates to an array RS

execute atomically. The resulting race conditions produce
a parallel computation whose result may vary nondetermin-
istically (because of CPU scheduling variations). The loop
shown in the figure is a sequential loop that executes after
the parallel portion of the computation; this loop compares
RS[K] to a cutoff variable gCUT2 and, if it is less than the
cutoff, uses RS[K] to update an array FF (here EXP(RS[K])

is an expression involving RS):

A key safety property that a developer may like to establish
for this computation is that K is within the bounds of the
array FF, which is stored in the variable len_FF.1 The de-
veloper therefore specifies this property with the assertion
statement assert (K < len_FF). In this example, the de-
veloper establishes the validity of the assert statement by
placing an assumption statement (assume (K < len_FF))
immediately prior to the assertion. As in most verification
systems and unlike an assert statement, the asssume state-
ment does not generate a obligation to verify that its con-
dition is formally true of the program. Such statements
therefore enable developers to establish properties about
their program (such as the assert statement in the figure)
through alternative means, such as testing, code review, or
third-party program analysis tools.

1We note that K must also be within the bounds of RS.

Verification. Note again that the values in RS in the relaxed
variant of the program may differ from that in the origi-
nal program because synchronization reduction alters the
semantics of the program by making updates to RS execute
non-atomically. More importantly, this semantic difference
may invalidate the developer’s assumptions because the as-
sumption is predicated by (and possibly dependent on) the
condition RS[K] < gCUT2, which may now have a different
value. Therefore, if a developer would like to re-establish
the assertion for the relaxed program, he or she has two
choices: 1) verify the assumption outright or 2) verify that
the semantic changes do not interfere with the assumption.
In the former case, the developer would need to repeat the
reasoning process that they performed to establish their as-
sumption about the original program, duplicating the effort
that he or she has already done. Moreover, if the reason-
ing process for this assumption is informal, the developer
may arrive at a different or incorrect conclusion that leads
the developer to believe that synchronization reduction has
introduced an error. In the latter case, the developer can
provide a relational proof. Specifically, if the developer can
prove that K and len_FF are the same in both the original
and relaxed program then it is straightforward to establish
relative safety: if K < len_FF in the original program, then
K < len_FF in also the relaxed program.

4. RELATIVE SAFETY
Our example illustrates the power of relative safety, which
relies on relational proofs to show that if some property is
true of the original program then it is also true of the relaxed
program. In the context of approximate program transfor-
mations, relative safety is an important addition to standard
notions of safety because if the developer can establish an
appropriate relation between the semantics of the original
and relaxed variants of the program, then he or she can
transfer proofs (both formal and informal) about the origi-
nal program over to reason about the relaxed.

To make this more precise, we can formalize relative safety
as follows:

Definition 4.1. Relative Safety

If 〈s, σ, φ〉 π→
∗
〈s′, σ′, φ′〉

and assert(〈s′, σ′, φ′〉) and blocked(〈s′, σ′, φ′〉)

then exists s′′, σ′′, φ′′ such that 〈s, σ, φ〉 πt→
∗
〈s′′, σ′′, φ′′〉

and assert(〈s′′, σ′′, φ′′〉) and blocked(〈s′′, σ′′, φ′′〉)

In this definition the notation 〈s, σ, φ〉 π→
∗
〈s′, σ′, φ′〉 de-

notes the reflexive transitive closure of the small-step eval-
uation relation — i.e., evaluation from the configuration
〈s, σ, φ〉 yields 〈s′, σ′, φ′〉 in zero or more steps. The rela-
tion assert(c) ⊆ S×Σ×Φ defines configurations for which an
assert e statement is the foremost statement of one of the
threads of control. And the relation blocked(c) ⊆ S ×Σ×Φ
defines configurations for which it is not possible to take an
additional step according to the evaluation relation.

In words, this definition states that if a relaxed variant of
the program reaches an assertion statement in the program
and evaluation becomes blocked (i.e., the assertion is false),
then there exists an execution in the original program that
reaches an assertion and also becomes blocked. The contra-
positive of this statement is more difficult to express, but
states the relative safety definition that we have described
thus far: if the original program satisfies all assertions in the
program, then the relaxed program also satisfies all asser-
tions in the program.

In our previous work on verifying sequential, relaxed ap-
proximate programs [2] we demonstrated that its possible
to define a program logic that enables developers to ex-
press relations between their original and relaxed programs
such that the resulting relaxed programs exhibit the relative
safety definition described here. This logic adapts the tradi-
tional Hoare Logic to include relational assertions between
the original and relaxed program. So for example a devel-
oper can specify and prove a Hoare-style judgment such as

` {x〈o〉 = x〈r〉} x = x + 1 {x〈o〉 = x〈r〉}

This judgment states that if the value of x in both the
original(x〈o〉) and relaxed (x〈r〉) program are the same, then
after executing the assignment statement x = x+ 1, x is still
the same in both the original and relaxed variant of the
program. The design of this judgment captures both the
original semantics of the program and the relaxed semantics
of the program and, therefore, states that the approximate
program transformation that produced the relaxed program
did not interfere with the value of x. Non-interference prop-
erties such as this are the primary way that a developer can
transfer properties from the original program. For example,
consider any property that is solely a function of x (e.g., x >
0). If a developer can establish that approximate program
transformation does not interfere with x, then that property
is still valid in the relaxed program.

Challenges. While we as a community have made great
strides in verifying sequential programs, our progress with
concurrent programs has been hampered by the inherent
complexity of concurrency. The primary challenge that we
face going forward with this work is developing an expressive
(yet comprehensible) framework for relationally reasoning
about concurrent programs, which requires reasoning about
concurrency in two semantically different (though syntacti-
cally similar) programs.

5. CONCLUSION
Approximate program transformations present a new opti-
mization tool that stands to provide developers with perfor-
mance gains that are out of the realm of traditional semantics-
preserving program optimizations. However, a key compo-
nent to unlocking the power of approximate transformations
is finding some technique to ensure that the resulting pro-
gram is safe. Our position is that relational reasoning is
the key to providing developers with a scalable reasoning
mechanism wherein they provide small proofs relating the
original and relaxed program that therefore enable them to
transfer much of the reasoning they have already done for
the original program over to verify the relaxed.

6. REFERENCES
[1] W. Blume and R. Eigenmann. Performance analysis of

parallelizing compilers on the Perfect Benchmarks
programs. Transactions on Parallel and Distributed
Systems, 3(6), 1992.

[2] M. Carbin, D. Kim, S. Misailovic, and M. Rinard.
Proving acceptability properties of relaxed
nondeterministic approximate programs. PLDI, 2012.

[3] S. Chaudhuri, S. Gulwani, R. Lublinerman, and
S. Navidpour. Proving Programs Robust. FSE, 2011.

[4] C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10), October 1969.

[5] H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for
responsive power-aware computing. ASPLOS, 2011.

[6] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal,
and M. Rinard. Using Code Perforation to Improve
Performance, Reduce Energy Consumption, and
Respond to Failures . Technical Report
MIT-CSAIL-TR-2009-042, MIT, 2009.

[7] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn.
Flikker: Saving dram refresh-power through critical

data partitioning. ASPLOS, 2011.

[8] S. Misailovic, D. Kim, and M. Rinard. Parallelizing
sequential programs with statistical accuracy tests.
Technical Report MIT-CSAIL-TR-2010-038, MIT,
2010.

[9] S. Misailovic, S. Sidiroglou, H. Hoffmann, and
M. Rinard. Quality of service profiling. ICSE, 2010.

[10] S. Misailovic, S. Sidiroglou, and M. Rinard. Dancing
with uncertainty. In Submission to RACES, 2012.

[11] S. Owicki and D. Gries. An axiomatic proof technique
for parallel programs. Acta Informatica, 6, 1976.

[12] M. Rinard. A lossy, synchronization-free, race-full, but
still acceptably accurate parallel space-subdivision
tree construction algorithm. Technical Report
MIT-CSAIL-TR-2012-005, MIT, 2012.

[13] A. Sampson, W. Dietl, E. Fortuna,
D. Gnanapragasam, L. Ceze, and D. Grossman. Enerj:
approximate data types for safe and general low-power
computation. PLDI, 2011.

[14] A. Udupa, K. Rajan, and W. Thies. Alter: exploiting
breakable dependences for parallelization. PLDI, 2011.

