
Unsynchronized Techniques for Approximate Parallel Computing

Martin C. Rinard
MIT EECS and CSAIL
rinard@csail.mit.edu

Abstract
We present techniques for obtaining acceptable unsynchro-
nized parallel computations. Even though these techniques
may generate interactions (such as data races) that the cur-
rent rigid value system condemns as incorrect, they are en-
gineered to 1) preserve key data structure consistency con-
straints while 2) producing a result that is accurate enough,
often enough. And because they contain no synchronization,
they eliminate the synchronization overhead, parallelism re-
duction, and failure propagation typically associated with
synchronization mechanisms.

We also identify a class of computations that interact well
with our techniques. These computations combine multiple
contributions to obtain a composite result. Redundancy in
the contributions enables the unsynchronized computation
to produce an acceptably accurate result even though it may,
in effect, drop contributions. Thus our unsynchronized tech-
niques (either directly or indirectly) are often acceptably ac-
curate for the same reason as other successful approximate
computing techniques such as task skipping and loop perfo-
ration.

1. Introduction
To eliminate potentially undesirable interactions (such as
data races) that may occur when multiple parallel threads
access shared data, developers often augment parallel pro-
grams with synchronization. The disadvantages of standard
synchronization mechanisms include:

• Synchronization Overhead: The time overhead of exe-
cuting the synchronization primitives and the space over-
head of the state required to implement the primitives.

• Parallelism Reduction: Synchronization can reduce par-
allelism by forcing one or more threads to wait for other
threads.

• Failure Propagation: With standard synchronization
mechanisms, threads often wait for another thread to
perform a synchronization operation (such as releasing
a lock or hitting a barrier) before they can proceed. If
the thread does not perform the operation (because of
an infinite loop, a crash, or a coding error that omits the
operation), the waiting threads can hang indefinitely.

Now, it may not be immediately clear that it is possible
to eliminate potentially undesirable interactions in parallel
computations without incurring one or more of these dis-
advantages. We don’t even try — we instead develop ap-
proaches in which such interactions may indeed take place as
long as they occur infrequently enough for the computation
to produce an acceptably accurate result with high enough
likelihood. In other words, instead of attempting to deliver
a perfect/correct computation, we only aspire to deliver a
computation that is accurate enough, often enough.

This change in perspective calls into question the legiti-
macy of the current rigid value system, which classifies all
data races as undesirable [4]. It also opens up new regions of
the engineering space and enables us to develop new mech-
anisms and techniques that deliver advantages unobtainable
with previous approaches. Armed with this new perspective,
we develop the following concepts, mechanisms, and tech-
niques:

• Integrity and Accuracy Instead of Correctness: The
field of program analysis and verification has tradition-
ally focused on obtaining correct programs that always
satisfy traditional correctness properties. With this ap-
proach, each program is characterized either as correct
or incorrect.
We see this classification as counterproductive — there
are many incorrect programs that provide worthwhile re-
sults for their users. In fact, it is common knowledge that
essentially every large software system has errors and
is therefore incorrect. One may very reasonably ques-
tion the utility of a conceptual framework that condemns
essentially every successfully deployed artifact as incor-
rect.
We therefore focus instead on acceptability, in particu-
lar two kinds of acceptability: integrity and accuracy.
Integrity constraints capture properties that the program
must satisfy to execute successfully to produce a well-
formed result. Accuracy constraints characterize how ac-
curate the result must be. To date we have largely fo-
cused on obtaining programs that always satisfy their
integrity constraints but only satisfy their accuracy con-
straints with high likelihood. But we anticipate that other
combinations (for example, programs that satisfy the in-

1



tegrity constraints only with high likelihood) will be ap-
propriate for many usage contexts.

• Semantic Data Races: Data races have traditionally
been defined in terms of unsynchronized reads and writes
to shared data [4]. This approach misses the point in at
least two ways: 1) the absence of data races does not en-
sure that the computation satisfies any particular useful
property (note that inserting a lock aquire and release
around every access to shared data eliminates data races
but does not change the semantics) and 2) the presence
of data races does not ensure that the computation has
any undesirable properties. The problem is that the cur-
rent concept of data races focuses on a narrow aspect of
the program’s internal execution that may or may not be
relevant to its semantics.
We instead propose to characterize interactions in terms
of the acceptability properties of the shared data that they
may or may not preserve. If an interaction violates a
specified property, we characterize the interaction as a
semantic data race with respect to the property that it may
violate. With this perspective, synchronization becomes
necessary only to the extent that it is required to preserve
essential acceptability properties.
Prioritizing different acceptability properties makes it
possible to classify potential interactions between par-
allel threads according to the properties that they may or
may not violate. This characterization, in turn, induces a
trade-off space for synchronization mechanisms. An ex-
pensive synchronization mechanism, for example, may
preserve most or all of the properties. A less expensive
synchronization mechanism, on the other hand, may pre-
serve fewer properties. The trade off between the desir-
ability of the properties and the cost of the synchroniza-
tion mechanisms required to preserve these properties
determines the best synchronization mechanism for any
given context.

• Synchronization-Free Updates to Shared Data: Devel-
opers have traditionally used mutual exclusion synchro-
nization to make updates to shared data execute atomi-
cally. We have identified a class of data structures and
updates that can tolerate unsynchronized updates (even
when the lack of synchronization may cause updates
from different parallel threads to interfere). These data
structures and updates are characterized by:

No Synchronization, No Atomicity: The updates op-
erate with no synchronization and provide no atom-
icity guarantees. There is therefore no synchroniza-
tion overhead, no parallelism reduction, and parallel
threads continue to execute regardless of what hap-
pens in other threads.

Preservation of Key Consistency Properties: The
data structures come with a set of standard consis-
tency properties. The data structure clients, however,

can often use the data structure successfully even if
some of these consistency properties do not hold.
Even though the unsynchronized updates may vio-
late some of these properties, they preserve the key
properties that the clients require to execute success-
fully (i.e., without crashing to produce a result that is
accurate enough, often enough).
The updates we consider in this paper have the prop-
erty that even if an update may perform multiple
writes to shared data, each individual write preserves
the key consistency properties. This feature ensures
that these properties hold in all possible executions.
In general, however, we believe it will also be produc-
tive to consider updates that use data structure repair
to repair temporary violations of the key consistency
properties or updates that ensure the key properties
hold only with high likelihood.

Acceptably Infrequent Interactions: In theory, it
may be possible for non-atomic interactions to occur
frequently enough to produce unacceptably accurate
results. In practice, however, such potentially undesir-
able interactions occur infrequently enough so that the
result is acceptably accurate.

Internal Integrity: The unsynchronized updates never
crash or perform an illegal operation such as an out of
bounds access.

• Barrier Elimination: We also discuss a mechanism that
eliminates barrier idling — no thread ever waits at a
barrier [23]. The mechanism is simple. The computation
contains a set of threads that are cooperating to execute
a group of tasks that comprise a parallel computation
phase. The standard barrier synchronization mechanism
would force all threads to wait until all tasks have been
completed.
Our alternate mechanism instead has all threads proceed
on to the next phase (potentially dropping the task they
are working on) as soon as there are too few tasks to keep
all threads busy. The net effect is 1) to eliminate barrier
idling (when threads wait at a barrier for other threads to
finish executing their tasks) by 2) dropping or delaying a
subset of the tasks in the computational phase to produce
3) an approximate but accurate enough result.

We note that both our synchronization-free data struc-
tures and barrier elimination mechanisms exploit the fact
that many programs can produce acceptably accurate re-
sults even though they execute only a subset of the origi-
nally specified computation. This property is the key to the
success of such fundamental approximate computing tech-
niques as task skipping [22, 23] and loop perforation [15,
16, 25, 27]. Our synchronization elimination mechanisms
deliver another form of approximate computing.

2



2. Unsynchronized Data Structure Updates
We next present several data structures with corresponding
synchronization-free updates. We characterize the effect of
these updates according to the consistency properties they
are guaranteed to preserve and the consistency properties
their interactions may violate. We identify two kinds of
consistency properties:

• History-Sensitive: Consistency properties that depend
on the history of operations applied to the data struc-
ture. For example, a history-sensitive property of a binary
search tree might state that each element inserted into the
tree is present in the tree.

• Instantaneous: Consistency properties that depend only
on the current state of the data structure. For example,
an instantaneous property of a binary search tree might
state that all elements to the left of a given element are
less than that element, while all elements to the right are
greater than the element.

We note that there is a technical detail associated with
data structure consistency properties in the presence of par-
allelism — namely, that the consistency properties are most
naturally stated with respect to a quiescent data structure
state in which there are not ongoing operations. In a par-
allel computation such a state may never exist (i.e., the data
structure may always have at least one ongoing operation).
Strictly speaking, it may therefore be necessary to reason
about data structure states that may result if all operations
are allowed to complete with no new operations allowed to
start.

2.1 An Accumulator
We start by considering a simple accumulator with a single
add operation:

double accumulator;

void add(double value) {

accumulator = accumulator + value;

}

The add operation reads the accumulator, adds value,
then stores the sum back into the accumulator. Note that if
two threads simultaneously perform an add operation, it is
possible for both threads to read the accumulator, add their
values, then write the sum back into the accumulator. The
net result is that the accumulator includes only one, but not
both, of the values. This has traditionally been considered
to be a classical data race and concurrency error.

From our perspective, this interaction violates a history-
sensitive property, namely that the accumulator include all
of the values from the add operations performed on it in
the past. The interaction is therefore a semantic data race
because it violates this history-sensitive property.

But on machines with atomic reads and writes, the in-
teraction does not violate the instantaneous property that
accumulator contains a number. If the client of the accu-
mulator does not require the sum to be exact, and if the in-
teraction above occurs infrequently enough, the unsynchro-
nized add operation presented above may provide an accept-
ably accurate result (even if the accumulator does not con-
tain some of the added values) [13–15].

This example illustrates a basic pattern that is repeated in
more complex data structures such as lists, trees, and graphs.
Many data structures contain operations that conceptually
add elements into the data structure. It is often possible to
obtain unsynchronized updates that may drop added ele-
ments (thereby violating the history-sensitive property that
the data structure contains all of the added elements) but
otherwise leaves the data structure consistent (i.e., the data
structure respects all instantaneous consistency properties).

For example, standard sequential (unsynchronized) im-
plementations of operations that add elements to linked list
and binary search tree data structures, when run in parallel
without synchronization, may drop elements but preserve the
instantaneous consistency properties of the data structures.

2.2 A Growable Array
We next consider a growable array data structure with an add
operation:

class array {

public:

double *values;

int next;

int length;

};

struct array *current;

void add(double value) {

array *c = current;

int l = c->last;

int n = c->next;

if (l <= n) {

double *v = new double[l*2];

for (int i = 0; i <= l; i++) {

v[i] = c->values[i];

}

array *a = new array;

a->values = v;

a->length = l*2;

a->next = n;

current = a;

c = a;

}

c->values[n] = value;

c->next = n+1;

}

3



A key element of the acceptability of this algorithm in
the presence of parallel unsynchronized updates is that each
write preserves the instantaneous consistency properties of
the underlying data structure. This element ensures that the
data structure always preserves these consistency properties
regardless of the way the parallel writes interleave. In this
case the key consistency property is that current->next
must always be less than current->length.

This key element ensures the internal integrity of the add
operation. To avoid out of bounds accesses, it must always be
the case that n is less than the length of c->values when the
statement c->values[n] = value executes. We ensure
that this property is true for every array that current ref-
erences by setting c->length to the length of c->values
when c is created (it is critical that this initialization takes
place without interference from other threads), then never
changing c->length.

Note that replacing the statement c->values[n] = value

with c->values[c->next] = value produces an add op-
eration that may violate internal integrity with an out of
bounds access — it is possible for another add operation to
change c->next in between the check to see if c->next is
in bounds and the use of c->next to insert the next value
into the array.

There are many ways this unsynchronized data structure
can drop added values, for example:

• Simultaneous Insertion: Two add operations can re-
trieve the same c->next and insert their two values into
the same array element.

• Simultaneous Grow and Insertion: Two add operations
may determine that there is no room in the current array.
Both then start to execute the code that grows the array.
One finishes, other threads insert their values into the
new array, then the second grow code finishes and installs
a new version of the array without the inserted elements.

If these kinds of interactions occur infrequently enough,
the dropped elements can have an acceptable effect on the
accuracy.

2.3 Single Write Commits
We note that, conceptually, each modification to the grow-
able array commits with a single write — either at the state-
ment current = a (this statement commits the array grow
operation) or at the statement c->next = n (this statement
commits the insertion of value into the array). Unsynchro-
nized updates with this property tend to work well — if mod-
ifications require multiple writes to commit simultaneously,
it may be difficult to order the writes in such a way that each
write preserves the relevant consistency properties. In this
case, it may be possible for operations to interleave in a way
that produces an inconsistent data structure with some mod-
ifications from one operation and others from another oper-
ation.

2.4 Final Check
We call the time between when the add operation decides
to update the data structure and the time when the update
has actually taken place the window of vulnerability (because
this is the time when other operations can interfere and cause
elements to be dropped). One way to make the window of
vulnerability smaller is to recheck the original condition just
before performing the update. If the original condition still
holds, the update proceeds. Otherwise, the operation retries
in the new state.

The following code uses a final check to make the win-
dow of vulnerability smaller:

class array {

public:

double *values;

int next;

int length;

};

struct array *current;

void add(double value) {

array *c = current;

int l = c->last;

int n = c->next;

while (l <= n) {

double *v = new double[l*2];

for (int i = 0; i <= l; i++) {

v[i] = c->values[i];

}

array *a = new array;

a->values = v;

a->length = l*2;

a->next = n;

// final check

if (current == c) {

current = a;

c = a;

} else {

c = current;

l = c->last;

n = c->next;

}

}

c->values[n] = value;

c->next = n+1;

}

2.5 Parallel Space Subdivision Tree Construction
We have used the ideas presented above, along with data
structure repair, to obtain a synchronization-free parallel
space subdivision tree construction algorithm for the Barnes-
Hut N-body simulation algorithm [2, 21]. Eliminating syn-
chronization improves the performance of the parallel algo-

4



rithm by approximately 20% with negligible impact on the
overall accuracy of the simulation. The use of final checks
to reduce the sizes of various windows of vulnerability sig-
nificantly reduces the number of dropped bodies (each op-
eration in the tree construction algorithm inserts a body into
the space subdivision tree under construction).

3. Connections With Other Techniques
Task skipping [22, 23] and loop perforation [15, 16, 25, 27]
provide benefits such as increased robustness and fault toler-
ance, improved performance and energy consumption, and
eliminating idle time in parallel computations by dropping
subcomputations.

Many data structures exist to collect contributions from
multiple subcomputations, with each update integrating a
contribution into the data structure. Interactions between
unsynchronized updates may drop contributions, with same
effect on the result as dropping the subcomputations that
produced the contributions.

Other data structures exist to organize the computation,
with each element in the data structure corresponding to one
or more subcomputations. The elements in the Barnes-Hut
space subdivision tree, for example, correspond to compu-
tations that calculate part of the force acting on each body
in the simulation. If an unsynchronized update drops one or
more elements, the net effect is often to drop the correspond-
ing subcomputation.

Unsynchronized updates therefore often have, indirectly,
the same effect that task skipping and loop perforation have
directly — in some cases the unsynchronized update drops
a contribution from a complete subcomputation, in others
a dropped element corresponds to a dropped subcomputa-
tion. Task skipping, loop perforation, and unsynchronized
updates therefore often share the same underlying reason be-
hind their success.

It is also possible to exploit this phenomenon to obtain
a parallelizing compiler that generates code with data races
that may (acceptably) drop updates to shared data [13, 14].
Again, the reason is similar — dropping updates has the
same end effect as dropping the subcomputation that gen-
erated the update.

We note that all of these mechanisms tend to work well
with computations that generate many contributions, then
combine the contributions to obtain a composite result.
This broad category of computations includes many modern
search, machine learning, financial, and scientific computa-
tions. Because of redundancy in the many contributions to
the result, the computations can typically generate an ac-
ceptably accurate result with a subset of the contributions.
Many of the computations that successfully tolerate loop
perforation, task skipping, and unsynchronized updates tend
to exhibit this pattern.

4. Performance Consequences
One of the primary performance consequences of unsyn-
chronized updates is the elimination of the performance
overhead from synchronization operations. The overall amor-
tized performance impact depends on 1) how frequently
the computation performs updates, and 2) how efficiently
the underlying computational platform implements synchro-
nization primitives.

The bottom line is that it should be possible to engi-
neer a computational platform with negligible synchroniza-
tion overhead. Whether vendors will choose to build such a
platform depends on whether the performance benefits jus-
tify the engineering cost. In one plausible scenario, the cost
of synchronization in typical systems will not justify maxi-
mal engineering effort — synchronization will be infrequent
enough so that vendors will provide reasonably but not max-
imally efficient synchronization primitives (as is the case
with current platforms). The following analysis assumes the
computational platform is multithreaded and implements a
shared address space (but similar issues arise on other plat-
forms).

Mutual exclusion synchronization is typically tied to data
access. In general, local data access is fast, while remote
data access is slow. Standard shared address space caching
protocols obtain exclusive local access to data when it is
written (anticipating further accesses that should be made
local for optimal performance). Similarly, synchronization
primitives obtain local access to the synchronization state.
A synchronized update to locally available data typically
proceeds as follows: 1) a local synchronization operation
(typically a lock acquire), 2) local accesses to shared data,
then 3) a local synchronization operation (typically a lock
release). Because the synchronization operations are local,
they can be engineered to execute essentially as quickly as
the local data accesses. So the overhead is determined by
the size of the local data accesses (which are often large
enough to profitably amortize the synchronization overhead)
and how often the computation executes the update.

A synchronized update to remote data typically proceeds
as follows: 1) a remote synchronization operation (which
obtains exclusive local access to the synchronization state),
2) remote access to shared data (which obtains exclusive
local access to the updated data structure state), and 3) a local
synchronization operation. Once again, the synchronization
overhead is determined by the size of shared data accesses
and how often the computation executes the update.

It is possible to eliminate much of the synchronization
overhead in the remote case by combining the synchroniza-
tion operation with the remote access of both the synchro-
nization state and shared data state. Optimistic synchroniza-
tion primitives (such as load linked/store conditional) imple-
ment this combination linkage. It is also possible to imagine
other mechanisms (such as prefetching the shared data state

5



along with the synchronization state at the first synchroniza-
tion operation).

A final consideration is how efficiently the synchroniza-
tion primitives are engineered. Because such primitives
occur fairly infrequently in current and envisioned multi-
threaded computations, they tend to be less intensively engi-
neered than more common primitives (such as loads, stores,
and arithmetic primitives). In summary:

• It is possible to implement computational platforms that
provide synchronization with little or no overhead.

• But current usage patterns and incentives do not support
the engineering of such platforms.

• So there are likely to be some performance gains avail-
able from unsynchronized updates. We would expect the
20% performance gain we observed for the unsynchro-
nized parallel Barnes-Hut space subdivision tree con-
struction algorithm [21] to be generally representative of
the benefits available for computations that perform fre-
quent updates to potentially shared data.

• Of course, if the underlying synchronization primitives
are not implemented reasonably efficiently (for example,
if they perform a remote operation even when the shared
data is available locally), then much more substantial
gains should be possible.

5. Eliminating Barrier Synchronization
We now turn our attention to eliminating barrier synchro-
nization. The basic idea is simple — ensure that threads can
proceed beyond the barrier without waiting for other threads
to continue. If the other threads drop their tasks, the effect is
to terminate the computational phase (the barrier marks the
end of this phase) early. If the other threads continue to exe-
cute, the phases overlap. To avoid having the threads become
completely out of phase, it may be desirable to occasionally
resynchronize.

We would expect this approach to work well when one
phase produces data (typically by combining multiple contri-
butions to a composite result) that the next phase consumes.
In this case we again see the effect of the synchronization
elimination is to drop some of the subcomputations. If the
parallel tasks from adjacent phases overlap, the subcompu-
tations are not dropped but are simply late. In this case the
second phase may observe a fully computed result if the sub-
computations arrive from the completion of tasks in the first
phase by the time it accesses the result.

In most cases the computational phases are large enough
to make the amortized overhead of the barrier operation
itself negligible — the performance impact comes from load
imbalances as threads wait at the barrier for other threads to
complete and hit the barrier.

6. Related Work
Early work on synchronization elimination focused on lock
coarsening — replacing repeated adjacent lock acquires and
releases with a single acquire and release [7, 8, 10, 11], po-
tentially with dynamic feedback to select the optimal lock
granularity as the computation executes [9, 12]. The goal is
to eliminate the overhead associated with the lock acquire
and release primitives. The transformation may also reduce
the available concurrency by increasing the size of the region
over which the lock is held. A similar approach can reduce
synchronization overhead in sequential executions of con-
current object-oriented programs [17]. Unlike the synchro-
nization removal techniques discussed in this paper, lock
coarsening preserves the semantics of the original program.

Early Java implementations had significant synchroniza-
tion overhead. This overhead was caused by the combina-
tion of 1) many Java data structures were thread-safe and
always synchronized their operations and 2) the Java imple-
mentation of the synchronization primitives was fairly in-
efficient. In response, researchers developed escape analy-
sis algorithms that located objects accessed by only a sin-
gle thread [1, 3, 5, 6, 24, 26]. The compiler then removed
the synchronization otherwise associated with such objects.
Java implementations have since evolved to have more ef-
ficient synchronization primitives and to give the developer
explicit control over which data structures are synchronized.

Many of the computations that work well with unsyn-
chronized updates and the elimination of barrier synchro-
nization combine multiple contributions to obtain a result.
In many cases it is possible to improve the performance
of such updates by using optimistic synchronization prim-
itives such as load linked/store conditional [18, 20]. It is
also possible to detect heavily contended data by observ-
ing contention for the lock that makes updates to that data
atomic. Threads then eliminate the contention by performing
unsynchronized updates on local replicas, then combining
the replicas at the end of the computational phase to obtain
the result [13, 14, 19]. The elimination of remote accesses
and synchronization overhead can make this technique ex-
tremely effective in enabling efficient parallel execution.

7. Conclusion
Synchronized parallel computations can suffer from syn-
chronization overhead, parallelism reduction, and failure
propagation when a thread fails to execute a synchroniza-
tion operation. We present a set of unsynchronized tech-
niques that eliminate these effects. These techniques are at
the forefront of the emerging field of approximate comput-
ing, which exploits the freedom that many programs have to
deliver results that are only accurate enough, often enough.
The success of these techniques casts doubt on the legiti-
macy of the current rigid value system [4], which condemns
these techniques as unsound and incorrect even though they
produce successful executions.

6



References
[1] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers. Static

analyses for eliminating unnecessary synchronization from
Java programs. In Proceedings of the 6th International Static
Analysis Symposium, September 1999.

[2] J. Barnes and P. Hut. A hierarchical o(n log n) force-
calculation algorithm. Nature, 324(4):446–449, 1986.

[3] B. Blanchet. Escape analysis for object oriented languages.
application to Java. In Proceedings of the 14th Annual ACM
SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, Denver, CO, November
1999.

[4] Hans-Juergen Boehm and Sarita V. Adve. You don’t know
jack about shared variables or memory models. Commun.
ACM, 55(2):48–54, 2012.

[5] J. Bogda and U. Hoelzle. Removing unnecessary synchro-
nization in Java. In Proceedings of the 14th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications, Denver, CO, November 1999.

[6] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Mid-
kiff. Escape analysis for Java. In Proceedings of the 14th
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, Denver,
CO, November 1999.

[7] P. Diniz and M. Rinard. Synchronization transformations
for parallel computing. Concurrency Practice & Experience,
11(13):773–802, November 199.

[8] P. Diniz and M. Rinard. Lock coarsening: Eliminating lock
overhead in automatically parallelized object-based programs.
In Languages and Compilers for Parallel Computing, Ninth
International Workshop, pages 285–299, San Jose, CA, Au-
gust 1996. Springer-Verlag.

[9] P. Diniz and M. Rinard. Dynamic feedback: An effective
technique for adaptive computing. In Proceedings of the
SIGPLAN ’97 Conference on Program Language Design and
Implementation, pages 71–84, Las Vegas, NV, June 1997.

[10] P. Diniz and M. Rinard. Synchronization transformations for
parallel computing. In Proceedings of the 24th Annual ACM
Symposium on the Principles of Programming Languages,
pages 187–200, Paris, France, January 1997.

[11] P. Diniz and M. Rinard. Lock coarsening: eliminating lock
overhead in automatically parallelized object-based programs.
Journal of Parallel and Distributed Computing, 49(2):218–
244, March 1998.

[12] P. Diniz and M. C. Rinard. Eliminating synchronization
overhead in automatically parallelized programs using dy-
namic feedback. ACM Transactions on Computer Systems,
17(2):89–132, May 1999.

[13] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential
programs with statistical accuracy tests. ACM Transactions on
Embedded Computing Systems. ”to appear”.

[14] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential
programs with statistical accuracy tests. Technical Report

MIT-CSAIL-TR-2010-038, MIT, August 2010.
[15] Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. Prob-

abilistically accurate program transformations. In SAS, pages
316–333, 2011.

[16] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and
Martin C. Rinard. Quality of service profiling. In ICSE (1),
pages 25–34, 2010.

[17] J. Plevyak, X. Zhang, and A. Chien. Obtaining sequential effi-
ciency for concurrent object-oriented languages. In Proceed-
ings of the 22nd Annual ACM Symposium on the Principles
of Programming Languages, San Francisco, California, USA,
January 1995.

[18] M. Rinard. Effective fine-grain synchronization for automat-
ically parallelized programs using optimistic synchronization
primitives. In Proceedings of the 6th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming,
pages 112–123, Las Vegas, NV, June 1997.

[19] M. Rinard and P. Diniz. Eliminating synchronization bot-
tlenecks in object-based programs using adaptive replication.
In 1999 ACM International Conference on Supercomputing,
pages 83–92, Rhodes, Greece, June 1999.

[20] M. C. Rinard. Effective fine-grain synchronization for au-
tomatically parallelized programs using optimistic synchro-
nization primitives. ACM Transactions on Computer Systems,
17(4):337–371, November 1999.

[21] Martin Rinard. A lossy, synchronization-free, race-full, but
still acceptably accurate parallel space-subdivision tree con-
struction algorithm. Technical Report MIT-CSAIL-TR-2012-
005, MIT, February 20012.

[22] Martin C. Rinard. Probabilistic accuracy bounds for fault-
tolerant computations that discard tasks. In ICS, pages 324–
334, 2006.

[23] Martin C. Rinard. Using early phase termination to eliminate
load imbalances at barrier synchronization points. In OOP-
SLA, pages 369–386, 2007.

[24] A. Salcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs. In Proceedings of the 8th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Snowbird, Utah, June 2001.

[25] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoff-
mann, and Martin C. Rinard. Managing performance vs. accu-
racy trade-offs with loop perforation. In SIGSOFT FSE, pages
124–134, 2011.

[26] J. Whaley and M. Rinard. Compositional pointer and es-
cape analysis for java programs. In Proceedings of the 14th
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, Denver,
CO, November 1999.

[27] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and
Martin C. Rinard. Randomized accuracy-aware program
transformations for efficient approximate computations. In
POPL, pages 441–454, 2012.

7


