
Probabilistically Accurate Program
Transformations

Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard

MIT CSAIL
{misailo, droy, rinard}@csail.mit.edu

Abstract. The standard approach to program transformation involves
the use of discrete logical reasoning to prove that the transformation
does not change the observable semantics of the program. We propose
a new approach that, in contrast, uses probabilistic reasoning to justify
the application of transformations that may change, within probabilistic
accuracy bounds, the result that the program produces.
Our new approach produces probabilistic guarantees of the form
P(|D| ≥ B) ≤ ε, ε ∈ (0, 1), where D is the difference between the results
that the transformed and original programs produce, B is an acceptabil-
ity bound on the absolute value of D, and ε is the maximum acceptable
probability of observing large |D|. We show how to use our approach
to justify the application of loop perforation (which transforms loops to
execute fewer iterations) to a set of computational patterns.

1 Introduction

The standard approach to program transformation involves the use of discrete
logical reasoning to prove that the applied transformation does not change the
observable semantics of the program, This paper, in contrast, introduces a novel
approach that uses probabilistic reasoning to justify transformations that may
change the result that the program produces.

Our approach provides probabilistic guarantees that the absolute value of the
difference between the results that the transformed and original programs pro-
duce will rarely be large. A user or developer can specify bounds on the accept-
able difference. The analysis can then determine the conditions under which the
transformed computation satisfies the probabilistic guarantees for those bounds.

1.1 Loop Perforation

In this paper, we focus on loop perforation, which transforms loops to execute
only a subset of their original iterations. Empirical results demonstrate the util-
ity and effectiveness of loop perforation in reducing the amount of time (and/or
other resources such as energy) that the application requires to produce a result
while preserving acceptable accuracy [33,18,25,38]. While investigating the rea-
sons behind these empirical results, we identified specific computations in our
benchmark applications that interacted well with loop perforation.

Inspired by these computations, in this paper we present four generalized
computational patterns that interact well with loop perforation. We have previ-
ously proposed the the use of Monte-Carlo simulation to explore how loop per-
foration changes the result that specific computational patterns produce [35].
In this paper we propose an analytical approach that produces algebraic ex-
pressions that characterize the effect of loop perforation on our identified set of
computational patterns.

1.2 Computational Patterns

We present four computational patterns that interact well with loop perforation
— the sum pattern, which calculates the sum of elements, the mean pattern,
which calculates the mean of elements, the argmin-sum pattern, which calcu-
lates the index of the minimum sum of elements, and the ratio pattern, which
calculates the ratio of two sums. These patterns identify general classes of com-
putations to which we can apply the analyses that we present in this paper
(rather than specific syntactic structures). The following code, for example, uses
a for loop to implement a mean pattern. Note that the pattern abstracts away
the details of the computation performed in each loop iteration, represented by
a function call f(i). We call each such abstracted value an input to the pattern.

sum = 0.0;
for (int i = 1; i <= n; i++) sum += f(i);
mean = sum / n;

In general, there may be many potential ways to realize each pattern in an
actual program. In some cases the pattern may be inherent in the program-
ming language constructs used to express the computation. For example, the
sum pattern may be realized by an explicit reduction operation in a functional
language. In other cases (as in the for loop example above) the pattern may
be realized by combinations of constructs. In such cases existing program anal-
yses (for example, reduction recognition [16,20]) can identify specific instances
of these patterns.

1.3 Modeling and Analysis

We quantify the effect of loop perforation by defining the perforation noise – the
difference between the result that the perforated computation produces and the
result that the original computation produces. We denote this (signed) noise as
D. The probabilistic guarantees have the form: P(|D| ≥ B) ≤ ε, ε ∈ (0, 1), where
P(|D| ≥ B) is the probability that the absolute value |D| is greater than or equal
to some bound B. The probability ε is the maximum acceptable probability of
observing large |D|.

We use random variables to model our uncertainty about the input values
and the results that subcomputations produce. We express the perforation noise
as a function of these random variables. Random variables in our analyses can
represent 1) inherent randomness in the inputs and/or 2) our incomplete knowl-
edge about the exact underlying processes that produce these inputs. These two

forms of uncertainty are called aleatory (objective) and epistemic (subjective)
uncertainty. Our probabilistic model therefore allows us to analyze both prob-
abilistic and deterministic computations (although in this paper we focus on
deterministic computations).

We use properties of random variables, in combination with the applied
transformations, to derive algebraic expressions that characterize the perforation
noise. Specifically, for each pattern our analysis produces algebraic expressions
that characterize the expected value and variance of the perforation noise as
well as the probability of observing large absolute perforation noise. Our anal-
ysis also identifies the conditions under which these expressions are accurate.
These conditions may include the number of iterations of perforated loops or
distribution or independence assumptions involving random variables. Multiple
analyses, each with different conditions, may be applicable to a single pattern.
The expressions and the conditions that the analysis produces precisely charac-
terize the effect of loop perforation on the result that the computation produces,
providing the information that automated procedures, users, or developers need
to determine whether to apply a candidate transformation.

1.4 Contributions
To the best of our knowledge, this paper is the first to propose the concept of
using static program analysis to derive probabilistic accuracy bounds to justify
transformations that may change the result that the program produces. It is
also the first to present specific static analyses which produce such probabilistic
bounds. This paper makes the following specific contributions:
– New Paradigm: It presents a new paradigm for justifying program trans-

formations. Instead of using discrete logical reasoning to justify transforma-
tions that preserve the exact semantics of the program, this paradigm uses
probabilistic reasoning to justify transformations that may, within guaran-
teed probabilistic bounds, change the result that the program produces.

– Probabilistic Modeling of Uncertainty: Every static analysis must some-
how characterize its uncertainty about the behavior of the analyzed compu-
tation. The standard approach is to use conservative, worst-case reasoning
to show that the transformation preserves the semantics in all cases.
Our novel approach, in contrast, models the values which the computation
manipulates as random variables. We use properties of these random vari-
ables to reason about the effect of the transformation on the values that the
computation produces. In particular, our analysis produces derived random
variables that model the difference between the result that the transformed
computation produces and the result that the original computation produces.

– Probabilistic Accuracy Guarantees: The analysis extracts properties of
the derived random variables such as their mean, variance, and probabilistic
bounds on their magnitude. It uses these properties to extract probabilistic
accuracy guarantees that characterize the probability of observing unaccept-
ably large changes in the result that the transformed program produces. It
uses these guarantees to determine whether or not it is acceptable to apply
the transformation.

– Pattern-based Analyses: It presents a set of computational patterns
(sum, mean, argmin-sum, and ratio) with transformations that can be ana-
lyzed using probabilistic analyses. For each pattern it presents a probabilistic
analysis that characterizes the effect of loop perforation on the result that the
pattern produces. Each analysis produces expressions for the expected value
and variance of the absolute perforation noise and bounds that characterize
the probability of observing large perforation noise.

2 Example

Swaptions is a financial analysis application from the PARSEC benchmark suite [4];
it uses Monte Carlo simulation to calculate the price of a portfolio of swaption
financial instruments. Figure 1(a) presents an abstract version of a perforatable
computation from this application. The loop performs a sequence of simula-
tions to compute the mean simulated value of the swaption into the variable
dMeanPrice. The analysis recognizes this computation as an instance of the
mean pattern.

float dPrice = 0.0;
for (i = 1; i <= lTrials; i += 1) {

float simres = runSimulation(this, i)
dPrice += simres;

}
double dMeanPrice = dPrice / lTrials;
printf("%g\n", dMeanPrice);

float dPrice = 0.0;
for (i = 1; i <= lTrials; i += 2) {

float simres = runSimulation(this, i)
dPrice += simres;

}
double dMeanPrice = (dPrice * 2) / lTrials;
printf("%g\n", dMeanPrice);

(a) Original Computation (b) Transformed Computation

Fig. 1. Swaptions Computation: Original and Transformed Computations

Figure 1(b) presents the transformed version of the computation after loop
perforation [18], applied in this case by changing the induction variable increment
from 1 to 2. The perforated loop therefore executes half of the iterations of
the original loop. The transformed computation also extrapolates the result to
eliminate any systematic bias introduced by executing fewer loop iterations.

Modeling Values With Random Variables. The analysis models the value
of simres at each iteration as a random variable Xi, i ∈ {1, . . . n}. The variable
dPrice contains the sum of the Xi. In the original computation, the final value
of dPrice is SO =

∑n
i=1Xi. In the perforated computation the final value is

SP =
∑n/2
i=1X2i−1 (for simplicity, we present the analysis for the case when n is

even). After extrapolating SP , the perforation noise D = 1
n

(
2SP − SO

)
.

Scenarios. We have developed analyses for a variety of scenarios, with each
scenario characterized by properties such as the distributions of the Xi and the
number of loop iterations n. For each scenario the analysis produces an ε and B
such that P(|D| ≥ B) ≤ ε, ε ∈ (0, 1). Specific scenarios for which analyses exist
include (see Section 4) (a) the Xi have finite mean and covariance, (b) the Xi

are independent and identically distributed (i.i.d.), (b.1) in addition, the number
of iterations n of the original loop is large, or (b.2) n may be small but the Xi

are normally distributed, or (c) the Xi are correlated and form a random walk.

Note that some scenarios are more specific than others; in general, analyses for
more specific scenarios tend to deliver tighter probabilistic bounds.

Scenario (b.1). We next discuss how the analysis proceeds for Scenario (b.1)
(the Xi are i.i.d. and n is large). Using results from Section 4, the expected value
of the perforation noise E(D) = 0, and the variance is var(D) = σ2

(
1
m−

1
n

)
= σ2

n ,
where σ2 is the variance of the input variables Xi.

Because SP and SO−SP are sums of a large number of i.i.d. random variables,
the distribution of their means approaches a normal distribution (by a Central
Limit Theorem argument). Furthermore, since D is a linear combination of these
two independent means, D is also normally distributed and we can use the
Gaussian confidence interval to obtain the following bound: with probability at
least 1− ε, |D| < z1− ε2

√
var(D) = z1− ε2

σ√
n

, where zα is the quantile function of
the standard normal distribution. For example, P(|D| ≥ B) ≤ 0.05 for B ≈ 1.96σ√

n

(z0.975 ≈ 1.96).

Comparison with Worst-Case Analysis. We next compare the probabilistic
and worst-case analyses in an identical scenario. We assume that the Xi are
i.i.d. random variables drawn from the uniform distribution on [a, b]. In this case
the 95% probabilistic bound is BP = 1.96 b−a√

12n
≈ 0.6 b−a√

n
(σ2 = (b−a)2

12 for the
uniform distribution). The worst-case analysis, on the other hand, extracts the
bound BW = b−a

2 . Note that the worst case bound BW is asymptotically
√
n

times larger than the probabilistic bound BP .

Choosing an Appropriate Scenario. In general, the validity of the prob-
abilistic bounds may depend on how closely the actual use case matches the
selected analysis scenario. In some cases it may be appropriate to choose a sce-
nario by recording values from instrumented representative executions of the
computation, then using the values to (potentially conservatively) select aspects
of the scenario such as specific probability distributions or the expected number
of loop iterations [24]. In other cases it may be appropriate to have a user or
developer simply provide this information directly to the analysis [24].

Identifying Appropriate ε and B. In general, acceptable values for ε and B
will depend on the application and the context in which it is used. We therefore
anticipate that the user (or potentially the developer) will identify the maximum
acceptable ε and B. Transformations with ε and B less than these maxima
are acceptable. Transformations with ε or B greater than these maxima are
unacceptable.

3 Preliminaries

We next describe the notation that we use throughout the probabilistic analyses.
The original loop executes n iterations; the perforated loop executes m, m < n
iterations. The perforation rate r = 1− bmn c. A loop perforation strategy can be
represented by a n× 1 perforation vector P , each element of which corresponds
to a single loop iteration. The number of non-zero elements of P is equal to

m. The all-ones perforation vector A = (1, . . . , 1)′ represents the original (non-
perforated) computation. Some transformations may use the perforation vector.
The perforation transformation for the sum pattern, for example, uses the values
of the non-zero elements of the vector P to extrapolate the final result.

Interleaving perforation executes every k-th iteration, where k = b nmc. The
corresponding perforation vector has elements Pki+1 = 1, where i ∈ {0, ...m−1},
and Pki+j = 0 for j < k, j 6= 1. Truncation perforation executes m iterations
at the beginning of the loop; the perforation vector has elements Pi = 1 for
1 ≤ i ≤ m, and Pi = 0 otherwise. Randomized perforation selects a random
subset of m elements. All of these perforation strategies can be implemented
efficiently without explicitly creating the vector P .

4 Patterns and Analyses

For each pattern we present an example of the original and the transformed
code. For simplicity we apply an interleaving perforation and assume a number
of iterations n to be a multiple of the new loop increment k.

In each pattern analysis section we first present the assumptions we make
on the distribution of the inputs. These assumptions characterize our uncer-
tainty about the values of these inputs. With these assumptions in place, we
derive expressions for 1) the mean perforation noise, 2) the variance of the per-
foration noise, and 3) bounds on the probability of observing large absolute
perforation noise. In some cases we perform additional analyses based on addi-
tional assumptions. When applicable, we present bounds based on Chebyshev’s
inequality, Hoeffding’s inequality, and Gaussian confidence intervals. We present
a more detailed derivation of these expressions in our accompanying technical
report [24].

4.1 Sum Pattern

We present an example of the original and perforated code for the extrapolated
sum pattern in Figure 2. We first present a generalized analysis for the sum
of correlated random variables. We then present specializations of the analysis
under additional assumptions. Special cases that we analyze include independent
and identically distributed (i.i.d.) inputs and inputs generated by a random walk.

Original code Transformed Code
double sum = 0.0;
for (int i = 1; i <= n; i++) {

sum += f(i);
}

double sum = 0.0;
for (int i = 1; i <= n; i+=k) {

sum += f(i);
}
sum *= k;

Fig. 2. Sum Pattern; Original and Transformed Code

Assumptions. We first assume only that the terms of the sum have a common
finite mean µ and finite covariance.

Analysis. For i = 1, . . . , n, let Xi = f(i) be the i-th term of the summation.
We model our uncertainty about the values Xi by treating X = (X1, . . . , Xn)′

as a vector of n random variables with mean µ and covariance matrix Σ with
elements (Σ)ij = cov(Xi, Xj). Let A be the all-ones vector defined in Section 3,
then A′X =

∑n
i=1Xi. Let P be a perforation vector with m non-zero elements.

Then P ′X =
∑n
i=1 PiXi is the result of the perforated computation. The signed

perforation noise is D ≡ P ′X −A′X = (P −A)′X with

E(D) = µ

n∑
i=1

(Pi − 1), (1)

var(D) =
∑
i,j

(Pi − 1) (Pj − 1)Σi,j . (2)

To avoid systematic bias, we can choose P so that E(D) = 0. In particular, it
follows from Equation 1 that an estimate is unbiased if and only if

∑n
i=1 Pi = n.

One extrapolation strategy equally extrapolates every non-zero element, choos-
ing Pi = n

m for non-zero elements Pi.
If P satisfies E(D) = 0, we can use Chebyshev’s inequality and var(D) to

bound the absolute perforation noise, such that, with probability at least 1− ε

|D| <
√

var(D)
ε

(3)

This bound will be conservative in practice; additional knowledge (e.g., indepen-
dence or distribution of Xi) can be used to derive tighter bounds. We next study
a number of special cases in which additional assumptions enable us to better
characterize the effect of perforation.

Independent Variables

Assumptions. We assume that the elements Xi = f(i) of the summation are
i.i.d. random variables with finite mean µ and variance σ2. To derive a tighter
bound on the mean and the variance of the absolute perforation noise, we con-
sider additional assumptions – specifically, that the Xi are normally distributed,
or that the Xi are bounded.

Analysis. From (1), we know that E(D) = 0 for any perforation P such that∑
i P = n. From (2), and since the covariance matrix Σ of i.i.d. variables

has non-zero values only along its leading diagonal, it follows that var(D) =
σ2
∑
i (1− Pi)2. It is straightforward to show that this value is minimized by

any perforation vector P with n −m zeros and the remaining elements taking
the value n

m . In this case, the variance takes the value

var(D) =
σ2 n (n−m)

m
. (4)

We can immediately bound the probability of observing large absolute perfora-
tion noise using Chebyshev’s inequality (Equation 3).

We can get potentially tighter bounds if we make additional assumptions.
If we assume that each term Xi is normally distributed, then D will also be
normally distributed. Consequently, E(D) = 0 and var(D) remains the same as
in Equation 4.

The normality of D allows us to obtain a tighter bound on the perforation
noise. In particular, with probability 1− ε

|D| ≤ z1− ε2
√

var(D) (5)

where zα is the quantile function of the standard normal distribution. As a
comparison, for ε = 0.01 the bound (5) is 6.6 times smaller than the Chebyshev-
style bound (3). For normally distributed D we can also bound the absolute
perforation noise. In particular, |D| has a half-normal distribution with mean

E
(
|D|
)

= σ
√

2n(n−m)
πm , and variance var(|D|) =

(
1− 2

π

)
var(D).

If, instead, we assume that each Xi is bounded, falling in the range [a, b],
we can apply Hoeffding’s inequality to bound the absolute perforation noise
|D|. Let X ′i = (Pi − 1)Xi, and note that the variables X ′i are also mutually
independent. The range of X ′i is [ai, bi] =

[
(Pi − 1)a, (Pi − 1)b

]
. Then the sum∑n

i=1(bi − ai)2 = (b− a)2 n (n−m)
m , and thus, with probability at least 1− ε

|D| <

√√√√1
2

ln
2
ε
·
n∑
i=1

(
bi − ai

)2

= (b− a)

√
n (n−m)

2m
ln

2
ε
. (6)

Nested Loops. We next extend the sum analysis (for i.i.d. inputs) to nested
loops. The outer loop executes n1 iterations (m1 iterations after perforation);
the inner loop executes n2 iterations (m2 iterations after perforation). When
both loops are perforated, E(D) = 0. We use Equation 4 to compute var(D)
by assigning n = n1n2 and m = m1m2. The result generalizes to more deeply
nested loops.

Random Walk

Assumptions. We assume that the sequence X of random variables is a random
walk with independent increments. Specifically, we assume that the sequence is
a Markov process, and that the differences between the values at adjacent time
steps δi = Xi+1 −Xi are a sequence of i.i.d. random variables with mean 0 and
variance σ2. Let X0 = µ be a constant.

Analysis. From the assumption E(δi) = 0, it follows by induction that the
expected value of every element is E(Xi) = µ. As a consequence, for any perfo-
ration vector that satisfies

∑n
i=1 Pi = n, we have that E(D) = 0.

For i < j, the covariance between Xi and Xj satisfies cov(Xi, Xj) = iσ2.
Therefore, the covariance matrix Σ has entries (Σ)ij = σ2 min{i, j}, and the
variance of the perforation noise satisfies

var(D) = σ2
∑
i,j

(1− Pi) (1− Pj) min{i, j}. (7)

We may choose a perforation strategy P by minimizing this variance (and
thus minimizing Chebyshev’s bound on the absolute perforation noise). For ex-
ample, when Pi = 2 for odd i and 0 otherwise, we have that var(D) = n

2σ
2.

Once again, we can use Chebyshev’s inequality or Gaussian confidence intervals
to derive a probabilistic accuracy bound.

4.2 Mean Pattern
We present an example of the original and perforated code for the mean pattern
in Figure 3.

Original code Transformed Code
double sum = 0.0;
for (int i = 1; i <= n; i++) {

sum += f(i);
}
double mean = sum / n;

double sum = 0.0;
for (int i = 1; i <= n; i+=k) {

sum += f(i);
}
double mean = sum * k / n;

Fig. 3. Mean Pattern; Original and Transformed Code

We can extend the analysis for the sum pattern (Section 4.1) because the
result of the mean computation is equal to the result of the sum computation
divided by n. We denote the perforation noise of the sum as DSum, the output
produced by the original computation as 1

nA
′X, and the output produced by

the perforated computation as 1
nP
′X. The perforation noise of the mean D in

the general case with correlated variables is D ≡ 1
n

(
P ′X − A′X

)
= 1

nDSum.
By the linearity of expectation, the perforation noise has expectation E(D) =
1
nE(DSum) and variance

var(D) =
1
n2

var(DSum). (8)

The derivation of the bounds for the more specific cases (i.i.d., normal, ran-
dom walk inputs) is analogous to the derivation discussed in Section 4.1. In
particular if we assume i.i.d. inputs, the variance var(D) = σ2

(
1
m −

1
n

)
. Based

on Chebyshev’s and Hoeffding’s inequalities, we can derive algebraic expressions
that characterize the probabilistic accuracy bounds for this case. A similar result
can be shown for the random walk case.

We can also obtain a potentially tighter Gaussian interval style bound if we
assume a large number of i.i.d. inputs with finite mean and variance. In this case
the sums P ′X and (A − m

n P)′X will be independent and their means will be
approximately normally distributed (by a Central Limit Theorem argument).1

Consequently, the perforation noise D, which is a linear combination of these
two means, will also be approximately normally distributed. We can then use
Equation 5 to calculate a bound on the perforation noise.
1 Note that the tails of the distribution of the mean (which we use to bound the

perforation noise) converge to the normal distribution slower than the means. The
Berry-Esseen inequality can be used to determine how closely the normal distribution
approximates the actual distribution of the sum. In particular, if n is the number
of the terms, the maximum distance between the standardized sum distribution and
the normal distribution is less than δ≈0.48 ρ

σ3√n , where ρ=E(|Xi|3) and σ2 =var(Xi).

4.3 Argmin-Sum Pattern

We present an example of the original and transformed code for the argmin-sum
pattern in Figure 4.2

Original code Transformed Code
double best = MAX_DOUBLE;
int best_index = -1;
for (int i = 1; i <= L; i++) {

s[i] = 0;
for (int j = 1; j <= n; j++)

s[i] += f(i,j);

if (s[i] < best) {
best = s[i];
best_index = i;

}
}
return best_index;

double best = MAX_DOUBLE;
int best_index = -1;
for (int i = 1; i <= L; i++) {

s[i] = 0;
for (int j = 1; j <= n; j+=k)

s[i] += f(i,j);

if (s[i] < best) {
best = s[i];
best_index = i;

}
}
return best_index;

Fig. 4. Argmin-Sum Pattern; Original and Transformed Code

Assumptions. For each i ∈ {1, . . . , L}, we assume that Xi,j = f(i, j) are in-
dependent and drawn from some distribution F . The elements of the perforation
vector P take only the values from the set {0, 1}.

Analysis The output of the argmin-sum pattern is an index which is used later
in the program. To calculate the perforation noise, we model the weight of an
index i as the entire sum Xi =

∑n
j=1Xi,j . Therefore, the original computation

produces the value SO = miniA′Xi = mini
∑n
j=1Xi,j , while the perforated

computation produces the value SP =
∑n
j=1Xγ,j , where γ ≡ arg mini

∑m
j=1Xi,j

and m is the reduced number of steps in the perforated sum. Note that the
independence of the variables Xi,j implies that we can, without loss of generality,
choose any perforation strategy with perforation rate r.

We are interested in studying the perforation noise D ≡ SP −SO. Note that
the perforation noise D is non-negative because SO is a minimum sum, and so
D = |D| is also the absolute perforation noise.

Let Yi ≡
∑m
j=1Xi,j and Zi ≡

∑n
j=m+1Xi,j . Then, SO = mini (Yi + Zi) =

Yω + Zω and SP = Yγ + Zγ where γ = arg mini Yi and ω = arg mini(Yi + Zi) is
the index of the minimum sum. Then the perforation noise satisfies

D ≤ Zγ −min
i
Zi. (9)

Let D̄ ≡ Zγ −mini Zi denote this upper bound. We can obtain conservative
estimates of the perforation noise D by studying D̄. Note that for this pattern,
D̄ is always non-negative (because Zγ ≥ mini Zi).

2 We can apply the same analysis to the min-sum pattern, which returns the (extrap-
olated) value best instead of the index best index. It is also possible to modify this
analysis to support the max-sum and argmax-sum patterns.

Let Z be a sum of n−m independent F -distributed random variables. Then
(1) Zi has the same distribution as Z, (2) γ is independent of Zγ , and (3) Zγ
has the same distribution as Z. Therefore,

E(D̄) = E(Z)− E(min
i
Zi), (10)

or, put simply, the expectation of our bound D̄ is the difference between the
mean of Z and its first order statistic (given a size L sample).

To proceed with the analysis, we make the additional assumption that Z is
uniformly distributed on the interval a ± w

2 of width w > 0 and center a.3 Let
Zi be i.i.d. copies of Z.

Define ML = mini≤L Zi. Then 1
w (ML−a+ w

2) has a Beta(1, L) distribution,
and so E(ML) = a+ w

L+1 −
w
2 and variance var(ML) = Lw2

(L+1)2(L+2) . From (10),
we have E(D̄) = w

2 −
w
L+1 . Furthermore, as γ is independent of every Zi, it

follows that Zγ is independent of ML. Therefore,

var(D̄) =
1
12
w2 +

Lw2

(L+ 1)2(L+ 2)
. (11)

The mean and variance of D̄ can be used to derive one-sided Chebyshev style
bounds on D̄ and, since |D| = D < D̄, bounds on the absolute perforation noise
|D|. In particular, using Chebyshev’s one-sided inequality, it follows that with
probability at least 1− ε

|D| <
√

var(D̄)
(1
ε
− 1
)

+ ED̄ (12)

4.4 Ratio Pattern

We present an example of the original and transformed code for the ratio pattern
in Figure 5.

Original code Transformed Code
double numer = 0.0;
double denom = 0.0;
for (int i = 1; i <= n; i++) {

numer += x(i);
denom += y(i);

}
return numer/denom;

double numer = 0.0;
double denom = 0.0;
for (int i = 1; i <= n; i+=k) {

numer += x(i);
denom += y(i);

}
return numer/denom;

Fig. 5. Ratio Pattern; Original and Transformed Code

3 We anticipate that Z will in practice rarely be uniform, however this assumption
simplifies the analysis and is in some sense conservative if we choose the center and
width to cover all but a tiny fraction of the mass of the true distribution of Z. Note
that when, instead, Z is Gaussian, the variance of the perforation noise does not
have a closed form [2]. However, if we assume Z to be uniform, we might take our
approximation to cover some number of standard deviations.

Assumptions. Let Xi = x(i) and Yi = y(i) denote random variables repre-
senting the values of the inner computations. We assume that the sequence of
pairs (Xi, Yi) are i.i.d. copies of a pair of random variables (X,Y), where Y > 0
almost surely. Define Z = X/Y and Zi = Xi/Yi. For some constants µ and σ2

Z ,
we assume that the conditional expectation of Z given Y is µ, i.e., E(Z|Y) = µ,
and that the conditional variance satisfies var(Z|Y) = σ2

Z

Y .

Analysis. The elements of the perforation vector P only take values from
the set {0, 1}. Note that the independence of the pairs (Xi, Yi) from different
iterations implies that the perforation strategy does not influence the final result.
To simplify the derivation, but without loss of generality, we use the perforation
vector P in which the first m elements are 1 and the remaining elements 0.

Define Y n1 = A′Y =
∑n
i=1 Yi and Y m1 = P ′Y =

∑m
i=1 Yi and define Xn

1 and
Xm

1 analogously. Then the value of the original computation is SO = Xn1
Y n1

=∑n
i=1

Yi
Y n1
Zi, while the value of the perforated computation is given by SP =∑m

i=1
Yi
Ym1

Zi, where m is the reduced number of steps in the perforated sum.
Note that in the previous equations, we used the identity Xi = YiZi.

We begin by studying the (signed) perforation noise D ≡ SP − SO. The
conditional expectation of D given Y1:n = {Y1, . . . , Yn} satisfies E(D|Y1:n) =∑n
i=1

Yi
Y n1
µ −

∑m
i=1

Yi
Ym1

µ = 0. The conditional variance satisfies var(D|Y1:n) =

σ2
Z

(
1
Ym1
− 1

Y n1

)
By the law of iterated expectations E(D) = E(E(D|Y1:n)) = 0.

To proceed with an analysis of the variance of the perforation noise D, we
make a distributional assumption on Y . In particular, we assume that Y is
gamma distributed with shape α > 1 and scale θ > 0. Therefore, the sum Y m1
also has a gamma distribution with parameters α′ = mα, θ′ = θ, 1

Ym1
has an

inverse gamma distribution with mean (θ(mα− 1))−1, and so

var(D) =
σ2
Z

θ

(
1

mα− 1
− 1
nα− 1

)
. (13)

Again, using Chebyshev’s inequality, we can bound the probability of large ab-
solute perforation noise |D|.

5 Discussion

Usage Scenarios. We anticipate several usage scenarios for the analyses we
present in Section 4. First, the analyses can provide the formal foundation re-
quired to justify the automatic application of loop perforation. In this scenario,
the analysis works with a probabilistic accuracy specification (which provides the
desired accuracy bounds and probability with which the transformed computa-
tion should satisfy the bounds) and a specification of the probability distribu-
tions for the random variables used to model pattern inputs. These probability
distributions can be provided either by a developer, by a user, or by fitting dis-
tributions to values observed during profiling executions. In [24] we present an

initial empirical evaluation of our probabilistic analyses on perforatable compu-
tations from the PARSEC benchmark suite.

Second, the analyses can also help users and developers better understand
the effect of loop perforation. They may then use this information to select an
optimal operating point for their application given their combined performance
and accuracy constraints and requirements.

Third, the analyses can also help a control system dynamically select op-
timal application operating points as underlying characteristics (such as load,
clock rate, number of processors executing the computation, or any other charac-
teristic that many affect the delivered computational capacity) of the underlying
computational platform change [18,33].

In all of these scenarios the probabilistic analyses in this paper can be used to
better understand the shape of the trade-off space and more productively drive
the selection of perforation policies, with appropriate maximum acceptable ε and
B determining the range of available policies.

Scope. In this paper we provide probabilistic guarantees for the accuracy of
perforated computations. We expect that the basic framework of the probabilistic
guarantees (algebraic expressions for expected values, variances, and probabilis-
tic bounds) will remain largely the same for other transformations (the derivation
of the expressions will of course differ). We note that even for loop perforation,
we do not attempt to provide an exhaustive list of the possible patterns and
analyses. The statistical literature provides a comprehensive treatment of op-
erations on random variables [41] and order statistics of random variables [2].
The basic compositional properties of probability distributions under such oper-
ations can provide the foundation for the analysis of computations which employ
many of these operations. In addition, for the random perforation strategy, sur-
vey sampling [9] can provide useful bounds that do not make assumptions on
the distribution of the inputs for a number of aggregation computations.

We note that, given known composition properties of operations on proba-
bility distributions (for example, sums of Gaussian distributions are Gaussian;
multiplying a Gaussian by constant produces another Gaussian), it is possible
to compose our pattern-based analyses in straightforward ways to analyze more
complex computations. For example, it is straightforward to generalize the anal-
ysis of the sum pattern to analyze arbitrary linear computations over values
modeled using Gaussian distributions.

We also anticipate that a number of program analyses or type systems can
work in concert with our probabilistic analyses. These analyses and type sys-
tems can, for example, help identify computational patterns, increase confidence
in some of the input assumptions, or reason about safety of the transformation.
For example, analyses or type systems may distinguish critical parts of the com-
putation (which, if transformed, can dramatically change the behavior of the
application and as such should not be perforated), from approximate parts of
the computation, which can be perforated [5,37].

6 Related Work

Loop Perforation and Task Skipping: Loop perforation [18,25,38] can be
seen as a special case of task skipping [33,34]. The first publication on task
skipping used linear regression to obtain empirical statistical models of the time
and accuracy effects of skipping tasks and identified the use of these models
in purposefully skipping tasks to reduce the amount of resources required to
perform the computation while preserving acceptable accuracy [33].

The first publication on loop perforation presented a purely empirical justi-
fication of loop perforation with no formal statistical, probabilistic, or discrete
logical reasoning used to justify the transformation [18]. The first statistical jus-
tification of loop perforation used Monte Carlo simulation [35]. The first proba-
bilistic justification for loop perforation used a pattern-based static analysis and
also presented the use of profiling runs on representative inputs and developer
specifications to obtain the required probability distribution information [24].
The probabilistic analyses in this paper can help users or developers better un-
derstand the shape of the induced accuracy vs. performance trade-off space and
select optimal operating points within this space given their combined accuracy
and performance requirements and/or constraints.

Continuity, Sensitivity, and Robustness: Chaudhuri et al. present a pro-
gram analysis for automatically determining whether a function is continuous [6].
The reasoning is deterministic and worst-case. An extension of this research in-
troduces a notion of function robustness, and, under an input locality condition,
presents an approximate memoization approach similar to loop perforation [7].
For a special case when the inputs form a Gaussian random walk (as described
in Section 4.1) and the loop body is a robust function, the paper derives a
probabilistic bound to provide a justification for applying loop perforation.

Reed and Pierce present a type system for capturing function sensitivity,
which measures how much a function may magnify changes to its inputs [32].
Although the language contains probabilistic constructs, the type system uses
deterministic worst-case reasoning, resulting in a worst-case sensitivity bound.

Modeling Uncertainty. Typical approaches for modeling uncertainty involve
the use of intervals, random variables, or fuzzy sets to represent values, and
the definition of computational patterns that operate on these uncertain values.
Interval analysis [28] represents uncertain values as intervals and defines basic
arithmetic operations on such values. It is often used to analyze the worst-case
rounding error in numerical computations, ideally producing small interval sizes.
For loop perforation the interval sizes are typically much larger and the derived
bounds therefore much less precise.

Additional knowledge about the inputs can make it possible to use proba-
bilistic, fuzzy, or hybrid modeling of the computations [21] to provide tighter
bounds. In this paper we use random variables to model uncertainty. The source
of this uncertainty can be either 1) innate randomness in the inputs or com-
putation or 2) our partial understanding of parts of the computation. Fuzzy
or hybrid approaches to modeling uncertainty may also, at least in principle,
provide alternate justifications for loop perforation.

Probabilistic Languages and Analyses: Researchers have previously de-
fined languages for probabilistic modeling, in which programs work directly with
probability distributions [36,22,19,31,11,30,13], and analyses to reason about
probabilistic programs [29,12,26,27,23,10,39]. Researchers have also used a prob-
abilistic foundation to quantitatively reason about certain properties of deter-
ministic programs [14,8]. Our approach quantitatively analyzes the application of
loop perforation to a set of amenable computational patterns, which may appear
in deterministic or probabilistic programs. It specifies probabilistic semantics at
a pattern level instead of the statement level. In comparison with general prob-
abilistic analyses, pattern-based analyses can, typically, provide more precise
accuracy bounds, since patterns provide additional information about the na-
ture of the analyzed computations (instances of patterns). Moreover, patterns
can identify additional information such as a definition of perforation noise (e.g.,
for the argmin-sum pattern), which may be impossible for a general probabilis-
tic semantics to capture. Computational patterns similar to ours have also been
used to provide more precise analyses in other contexts [15].

Performance vs. Accuracy Trade-Off Management: Both task skip-
ping [33,34] and loop perforation [18,38] can augment an application with the
ability to operate at multiple points in an underlying accuracy vs. performance
trade-off space. Of particular interest is the ability to move between points in this
space as the application is executing, enabling the application to adapt to the
underlying computing environment [18,33,34]. The empirical discovery of Pareto-
optimal combinations of perforated computations can enable a control system
to find and exploit optimal operating points within the trade-off space [18].

Dynamic Knobs converts static application configuration parameters into
dynamic control variables, which the system can use to change the point in
the underlying trade-off space at which the application executes [17]. Eon [40],
Green [3], and Petabricks [1] allow developers to provide multiple implementa-
tions of a specific piece of application functionality, with each implementation
potentially exhibiting different performance versus accuracy trade-offs. There is
no explicit reasoning to justify the acceptability of the different alternatives –
all of these systems empirically evaluate the alternatives and ultimately rely on
the developer to identify only acceptable implementations.

7 Conclusion

Traditional program analysis and transformation approaches use worst-case log-
ical reasoning to justify the application of transformations that do not change
the result that the program produces. We propose instead to use probabilistic
reasoning to justify the application of transformations that may, within proba-
bilistic bounds, change the result that the program produces. A goal is to provide
a reasoning foundation that can enable the application of a richer class of pro-
gram transformations.

Our results demonstrate how to apply this approach to justify the use of loop
perforation, which transforms the program to skip loop iterations. We identify
computations that interact well with loop perforation and show how to use

probabilistic reasoning to bound how much loop perforation may change the
result that the program produces. This reasoning can provide the foundation
required to understand, predict, and therefore justify the application of loop
perforation. In the future, we anticipate the use of similar probabilistic reasoning
to justify the application of a broad range of new transformations that may
change the result that the program produces.

Acknowledgements. We would like to thank Michael Carbin and the anony-
mous reviewers for their useful comments on the earlier drafts of this paper.

This research was supported in part by the National Science Foundation
(Grants CCF-0811397, CCF-0905244, CCF-1036241 and IIS-0835652) and the
United States Department of Energy (Grant DE-SC0005288).

References

1. J. Ansel, C. Chan, Y. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amara-
singhe. Petabricks: A language and compiler for algorithmic choice. In PLDI ’10.

2. B. Arnold, N. Balakrishnan, and H. Nagaraja. A first course in order statistics.
Society for Industrial Mathematics, 2008.

3. W. Baek and T. Chilimbi. Green: A framework for supporting energy-conscious
programming using controlled approximation. In PLDI ’10.

4. C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:
Characterization and architectural implications. In PACT ’08.

5. M. Carbin and M. Rinard. Automatically Identifying Critical Input Regions and
Code in Applications. In ISSTA ’10.

6. S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis of programs.
In POPL ’10.

7. S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving Programs
Robust. In FSE ’11.

8. S. Chaudhuri and A. Solar-Lezama. Smooth interpretation. In PLDI ’10.
9. W. G. Cochran. Sampling techniques. John Wiley & Sons, 1977.

10. A. Di Pierro, C. Hankin, and H. Wiklicky. A systematic approach to probabilistic
pointer analysis. In ASPLAS ’07.

11. A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic λ-calculus and quantitative
program analysis. Journal of Logic and Computation, 2005.

12. A. Di Pierro and H. Wiklicky. Concurrent constraint programming: Towards prob-
abilistic abstract interpretation. In PPDP ’00.

13. N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum. Church:
a language for generative models. In UAI ’08.

14. S. Gulwani and G. C. Necula. Precise interprocedural analysis using random in-
terpretation. In POPL ’05.

15. S. Gulwani and F. Zuleger. The reachability-bound problem. In PLDI ’10.
16. M. Hall, B. Murphy, S. Amarasinghe, S. Liao, and M. Lam. Interprocedural analysis

for parallelization. Languages and Compilers for Parallel Computing, 1996.
17. H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard.

Dynamic knobs for power-aware computing. In ASPLOS ’11.
18. H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard. Using Code

Perforation to Improve Performance, Reduce Energy Consumption, and Respond
to Failures . Technical Report MIT-CSAIL-TR-2009-042, 2009.

19. J. Hurd. A formal approach to probabilistic termination. In TPHOLs ’02.

20. K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufman, 2002.

21. G. Klir. Uncertainty and information. John Wiley & Sons, 2006.
22. D. Kozen. Semantics of probabilistic programs. Journal of Computer and System

Sciences, 1981.
23. M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model

checker. Computer Performance Evaluation: Modelling Techniques and Tools, 2002.
24. S. Misailovic, D. Roy, and M. Rinard. Probabilistic and Statistical Analysis of Per-

forated Patterns. Technical Report MIT-CSAIL-TR-2011-003, MIT, 2011.
25. S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service pro-

filing. In ICSE ’10.
26. D. Monniaux. Abstract interpretation of probabilistic semantics. In SAS ’00.
27. D. Monniaux. An abstract monte-carlo method for the analysis of probabilistic

programs. In POPL ’01.
28. R. Moore. Interval analysis. Prentice-Hall, 1966.
29. C. Morgan and A. McIver. pGCL: formal reasoning for random algorithms. South

African Computer Journal, 22, 1999.
30. S. Park, F. Pfenning, and S. Thrun. A probabilistic language based upon sampling

functions. In POPL ’05.
31. N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability

distributions. In POPL ’02.
32. J. Reed and B. C. Pierce. Distance makes the types grow stronger: a calculus for

differential privacy. In ICFP ’10.
33. M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations that

discard tasks. In ICS ’06.
34. M. Rinard. Using early phase termination to eliminate load imbalances at barrier

synchronization points. In OOPSLA ’07.
35. M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou. Patterns and statistical

analysis for understanding reduced resource computing. In Onward! ’10.
36. N. Saheb-Djahromi. Probabilistic LCF. In MFCS ’78.
37. A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman.

Enerj: Approximate data types for safe and general low-power computation. In
PLDI ’11.

38. S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing Performance
vs. Accuracy Trade-offs With Loop Perforation. In FSE ’11.

39. M. Smith. Probabilistic abstract interpretation of imperative programs using trun-
cated normal distributions. Electronic Notes in Theoretical Computer Science, 2008.

40. J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and E. D. Berger.
Eon: a language and runtime system for perpetual systems. In SenSys ’07.

41. M. Springer. The algebra of random variables. John Wiley & Sons, 1979.

	Probabilistically Accurate Program Transformations

