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Abstract

This paper presents Jade, a high-level parallel pro-
gramming language for managing coarse-grain concur-
rency. Jade simplifies programming by providing the
programmer with the abstractions of sequential exe-
cution and a shared address space. Jade program-
mers augment sequential, imperative programs with
constructs that declare how parts of the program access
data; the Jade implementation dynamically interprets
this information to execute the program in parallel.
This parallel execution preserves the serial semantics
of the original program. Jade has been implemented as
an extension to C on shared-memory multiprocessors,
a message-passing machine, networks of heterogeneous
workstations, and systems with special-purpose func-
tional units. Programs written in Jade run on all of
these platforms without modification.

1 Introduction

This paper addresses the problem of providing pro-
gramming support for coarse-grain concurrency. It
is often possible to increase the performance of reg-
ular, data-parallel computations by aggregating oper-
ations into large tasks. Coarse-grain concurrency is
also available in many irregular computations. This
form of concurrency is available, for example, between
independent sub-computations that access different
data structures. These computations typically gener-
ate complex concurrency patterns with sophisticated
synchronization requirements. The parallelism is of-
ten data dependent, requiring dynamic detection and

This research was supported in part by DARPA contract
DABT63-91-K-0003.

management.
Exploiting coarse-grain concurrency is often the

most cost-effective way to increase the performance
of an application. The large task size and infre-
quent communication that characterize such com-
putations allow them to execute efficiently in such
cheap, widely available computational environments
as loosely-coupled collections of workstations. Appli-
cations with specialized computational requirements
may exploit coarse-grain concurrency in heterogeneous
environments. For example, one part of a computa-
tion may require the computational power of a dedi-
cated signal processor, while another part may visu-
ally present results on a sophisticated graphics work-
station.

The design of a language for expressing coarse-grain
concurrency should address the important but often
conflicting goals of programmability, portability, and
efficiency. Programs written in the language should be
easy to develop, debug and maintain. These programs
should execute efficiently and without modification on
the wide variety of computational environments that
can effectively execute coarse-grain parallel computa-
tions. These environments range from shared-memory
multiprocessors through networks of workstations to
heterogeneous systems with special-purpose accelera-
tors connected by high-speed networks.

This paper presents Jade, a high-level paral-
lel programming language for developing coarse-
grain applications. Jade simplifies programming be-
cause it allows the programmer to use the familiar
shared-memory, sequential, imperative programming
paradigm. Instead of using low-level constructs to cre-
ate, synchronize, and communicate between parallel
tasks, Jade programmers provide information about
how a serial program uses data. The Jade implementa-
tion then interprets this information to automatically
detect the concurrency in the application, distribute
the tasks across the parallel machines, and manage
the data movement required to implement the shared
address space abstraction. Jade provides high-level
support for heterogeneous parallel programming by



allowing programmers to run sequential, imperative
programs in parallel on a heterogeneous collection of
machines.

Because Jade preserves the serial, imperative pro-
gramming paradigm, all parallel executions of a Jade
program deterministically generate the same result as
a serial execution of the program. This property of
Jade considerably simplifies the process of debugging
parallel applications. Rather than struggling to re-
produce subtle timing-dependent bugs, Jade program-
mers can employ the same standard techniques used
to debug serial programs.

Jade programmers supply application-specific in-
formation about how tasks access data, not low-level
commands that directly manage the hardware. This
high-level approach gives implementors the flexibility
they need to generate optimized implementations of
Jade on a wide variety of platforms. On shared mem-
ory machines, the implementation only needs to syn-
chronize the computation and can rely on the hard-
ware to implement the shared address space. In
a message-passing environment, the implementation
must also map the shared address space onto the local
address spaces and manage the data movement be-
tween machines. If the heterogeneous machines in the
system have different data formats, the implementa-
tion must perform the format translation required to
maintain a correct representation of the data on each
machine.

We have implemented Jade as an extension to C on
shared memory multiprocessors, a homogeneous mes-
sage passing machine (the Intel iPSC/860), a network
of heterogeneous workstations, and a heterogeneous
system containing special-purpose graphics accelera-
tors. A previous paper [9] describes a preliminary de-
sign of Jade that applied only to shared-memory ma-
chines. [16] contains a formal treatment of the equiva-
lence between the serial and parallel executions of Jade
programs. This paper describes the Jade language and
provides a detailed example of how to use Jade to par-
allelize a sparse Cholesky factorization algorithm. We
also present some preliminary applications experience
and performance numbers for Jade applications exe-
cuting in a variety of computational environments.

2 Language Overview

Jade programmers provide the high-level knowledge
required for effective parallel execution of a Jade pro-
gram. The programmer must specify three things: 1)
a decomposition of the data into the atomic units that

the program will access, 2) a decomposition of a se-
quential program into tasks, and 3) a description of
how each task will access data when it runs.

Jade supports the abstraction of a single shared
memory that all tasks can access; each piece of data
(statically or dynamically) allocated in this memory
is called a shared object. Shared objects are identified
in a Jade program via the shared type qualifier. For
example:

double shared A[10];
double shared *B;

The first declaration defines a statically allocated vec-
tor of doubles, while the second declaration defines a
reference (pointer) to a dynamically allocated vector
of doubles.

Jade programmers use the withonly-do construct
to identify a task and to specify how that task will
access data. Here is the general syntactic form of the
construct:

withonly { access declaration } do
(parameters for task body) {

task body
}

The task body section contains the serial code ex-
ecuted when the task runs. The parameters section
declares a list of variables from the enclosing environ-
ment that the task body may access. The access
declaration section summarizes how the task body
will access the shared objects.

The access declaration is an arbitrary piece of code
containing access specification statements. Each such
statement declares how the task will access a given
shared object. For example, the rd (read) statement
declares that the task may read the given object, while
the wr (write) statement declares that the task may
write the given object. Each access specification state-
ment takes one parameter: a reference to the object
that the task may access. The task’s access declara-
tion section may contain dynamically resolved vari-
able references and control flow constructs such as
conditionals, loops and function calls. The program-
mer may therefore use information available only at
run time when generating a task’s access specifica-
tion. Consequently, Jade programs can exploit dy-
namic concurrency that can only be determined at run
time.

If one task declares that it will write a shared ob-
ject and another task declares that it will access that
object, we say that the two tasks declare conflicting
accesses. Tasks that declare no conflicting accesses



Figure 1: Sparse Matrix Data Structure

typedef int *row_indices;
typedef double *vector;
typedef struct {

int start_row;
vector column;

} column_data;
typedef column_data *column_vector;

Figure 2: C Data Structure Declarations

The serial factorization algorithm processes the
columns of the matrix from left to right. The algo-
rithm first performs an internal update on the current
column; this update divides the column by the square
root of its diagonal. After this internal update the
current column reaches its final value. The algorithm
then uses the current column to update some subset
of the columns to its right. For a dense matrix the



Figure 4: Dynamic Task Graph

to allow the application to concurrently write disjoint
parts of the object. In the sparse Cholesky example
the objects are already allocated at the appropriate
granularity. The programmer only needs to modify
the matrix declaration to identify the references to
shared objects, as shown in Figure 5.

typedef double shared *vector;
typedef int shared *row_indices;
typedef struct {

int start_row;
vector column;

} column_data;
typedef column_data shared *column_vector;

Figure 5: Jade Data Structure Declarations

The programmer next augments the sequential code
with withonly-do constructs to identify the tasks and
specify how they access shared objects. To paral-
lelize the sparse Cholesky factorization code, the pro-
grammer adds two withonly-do constructs to the
original serial code; each construct identifies an up-
date as a task. Figure 6 contains the Jade version
of the sparse Cholesky factorization algorithm. The
first withonly-do construct uses the rd wr and rd
access specification statements to declare that the
InternalUpdate will execute with only reads and
writes to the i’th column of the matrix and reads
to the column array and row index data structures.
The second withonly-do construct uses the same
access specification statements to declare that the
ExternalUpdate will execute with only reads and
writes to the r[j]’th column of the matrix, reads to
the i’th column of the matrix, and reads to the col-
umn vector and row index data structures. At this
point the programmer is done: the Jade implemen-
tation has all the information it needs to execute the
factorization in parallel on a heterogeneous collection
of machines.



factor(c, r, n)
column_vector c;
row_indices r;
int n;
{
int i, j;
for (i = 0; i < n; i++) {

withonly {
rd_wr(c[i].column); rd(c); rd(r);

} do (c, r, i) {
InternalUpdate(c, r, i);

}
for (j = c[i].start_row;

j < c[i+1].start_row; j++) {
withonly {
rd_wr(c[r[j]].column);
rd(c[i].column); rd(c); rd(r);

} do (c, r, i, j) {
ExternalUpdate(c, r, i, r[j]);

}
}

}
}

Figure 6: Jade Sparse Cholesky Factorization

This example highlights the data-oriented, implic-
itly parallel aspects of Jade. The Jade programmer
only provides information about how parts of the pro-
gram access data. The programmer does not explic-
itly specify which tasks can execute in parallel. The
Jade implementation, not the programmer, detects
the available concurrency. Because the access specifi-
cations are dynamically determined, the programmer
can express the dynamic, data-dependent concurrency
available in the sparse Cholesky factorization.

This example also illustrates how Jade programs
can exploit forms of concurrency that are well be-
yond the reach of current parallelizing compilers. The
dynamically resolved data accesses characteristic of
this and other sparse matrix computations defeat the
dependence-testing algorithms of such compilers. We
know of no automatic aggregation algorithm that can
generate this program’s coarse-grained tasks. In fact,
this example is actually a simplification of the sparse
Cholesky algorithm that we have parallelized in Jade;
in the more complex algorithm, the task grain size
is increased further by aggregating adjacent columns
into groups called “supernodes”.

3.3 Executing a Jade Program

We now trace the execution of the sparse Cholesky
factorization algorithm on a collection of message-
passing machines. This will demonstrate how the Jade
implementation manages the parallel execution of such
dynamic computations on, for example, a network of
workstations.

Figure 7 shows the system state at several points
in the execution of the Jade sparse Cholesky factor-
ization algorithm. In this figure, the algorithm is ex-
ecuting concurrently on two machines connected by a
network. Each machine has its own private memory;
the two machines communicate with messages. Figure
7(a) labels the various parts of system and graphically
represents the initial state of the system. In this ini-
tial state, one machine is executing the original task
that starts the program execution. This main task will
create all of the tasks in the factorization. We assume
that the columns are initially distributed across the
system.

In Figure 7(b), the original thread has created the
first task, the InternalUpdate to column 0. This task
is ready to execute, but is suspended because the first
machine is still running the original thread. Because
the second machine is idle, the Jade implementation
will move the InternalUpdate task to that machine
to be executed.

In Figure 7(c), the implementation has moved the
InternalUpdate task to the second machine. Based
on the task’s access specification, the Jade implemen-
tation generates the messages required to move or
copy the required objects to the machine that will
access them. The InternalUpdate will write the
first column, so the implementation has moved col-
umn 0 to the second machine and deallocated the ver-
sion on the first machine (which will be obsolete after
the InternalUpdate). The InternalUpdate task will
only read the column vector and row index data struc-
tures. Consequently, the Jade implementation copies
these data structures to the second machine without
invalidating the version on the first machine, thus al-
lowing the machines to read these data structures con-
currently. In moving or copying objects between ma-
chines, the implementation (or the transport proto-
col it uses) also performs any data format conversion
required because of different representations of data
items on the two machines.

As the InternalUpdate executes, it will use refer-
ences to access various shared objects. Because ob-
jects can migrate across machines, each reference to
a shared object is in reality a globally valid identifier
for that object. The Jade front end generates code
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Figure 7: Executing A Jade Program



that dynamically translates the globally valid identi-
fier to a pointer to the local version of the object. The
access checking that guarantees the serial semantics
takes place at the same time as the global to local
translation. As described earlier, the task can amor-
tize the cost of one translation/check over many ac-
cesses to the same shared object.

In Figure 7(d), the original task has generated the
two ExternalUpdate tasks from column 0 to columns
3 and 4. In this case there is a dynamic data depen-
dence conflict between the InternalUpdate task and
the two ExternalUpdate tasks: the InternalUpdate
task writes column 0, while the two ExternalUpdate
tasks read column 0. The implementation therefore
suspends the two ExternalUpdate tasks until the
InternalUpdate task completes.

In Figure 7(e), the implementation has gener-
ated the InternalUpdate to column 1 and the
ExternalUpdate from column 1 to column 2. At this
point the implementation may decide that the origi-
nal task is creating tasks faster than they are being
consumed, and that there is a danger that excessive
task generation may overwhelm the machine. In this
case, the implementation can suspend the original task
and execute the InternalUpdate to column 1. In
many explicitly parallel languages, suppressing exces-
sive task creation may create deadlock [8, 13]. In Jade,
on the other hand, the implementation can suppress
task creation in the face of excess concurrency without
risking deadlock. The serial semantics guarantees that
a task never waits for a subsequent task (in the orig-
inal serial order). Consequently, the implementation
can suspend any task with at least one outstanding
child task or legally inline any task without risking
deadlock.

In Figure 7(f), the InternalUpdate to column 0
has completed, and the implementation has moved
the two ExternalUpdate tasks from the first ma-
chine to the second machine. Because columns 0
and 3 are already located on the second machine,
the implementation can execute the ExternalUpdate
from column 0 to column 3 immediately. Column 4,
on the other hand, is still located on the first ma-
chine. The Jade implementation will therefore is-
sue a message to the first machine requesting column
4. While column 4 is in transit from the first ma-
chine to the second machine, the implementation ex-
ecutes the ExternalUpdate from column 0 to column
3. The Jade implementation uses the excess concur-
rency present in the computation to hide the latency
of fetching remote data.

The execution of a Jade program can be viewed as a

process of creating and executing a parallel task graph.
Some systems [3, 12] separate the task generation and
execution phases of a computation. However, the Jade
implementation overlaps the creation and execution of
the task graph. Overlapping task generation and exe-
cution allows the machine to get an early start on the
computation. More importantly, it allows the Jade
implementation to execute programs whose dynamic
task graphs depend on the results of previously ex-
ecuted tasks, or whose task graphs are too large to
represent explicitly in their entirety.

4 Advanced Task Specification

We have, so far, described the basic programming
model in Jade. Here we describe briefly some of the
advanced constructs of the Jade language that allow a
Jade programmer to achieve more sophisticated par-
allel behavior.

4.1 More Precise Access Specifications

To motivate the need for more precise access spec-
ifications, let us return back to our factorization ex-
ample. In solving a set of equations, the step after
factoring a matrix is to perform a back substitution.
The back substitution algorithm takes as input the
factored matrix and an initial right hand side of the
equation; it repeatedly updates the initial right hand
side until it gets the final value. This task reads all
the columns of the sparse matrix and both read and
writes the initial right hand side. We can write this
algorithm in Jade as follows:

backsubst(c, r, n, x)
column_vector c;
row_indices r;
int n;
vector x;
{

int i;
withonly {
rd(c); rd(r); rd_wr(x);
for (i = 0; i < n; i++) rd(c[i].column);

} do (c, r, n, x) {
int j;
for (j = 0; j < n; j++) Update(c, r, j, x);

}
}

If we compose the factor and the backsubst rou-
tines, the backsubst task cannot execute until all



of the columns produced in the factor computation
reach their final value. This means that there is no
concurrency between the factor computation and the
backsubst computation. This wastes concurrency,
since it should be possible to pipeline the two com-
putations. The backsubst task should be able to use
the columns from the factor computation as soon as
they reach their final value, overlapping the back sub-
stitution with the factorization.

The problem is that the withonly-do construct
supports a limited model of parallel computation in
which all synchronization takes place at task bound-
aries. Two tasks may either execute concurrently (if
none of their accesses conflict) or sequentially (if any
of their accesses conflict). The construct allows no
partial overlap in the executions of tasks with data
dependence conflicts. As the back substitution exam-
ple illustrates, synchronizing only at task boundaries
makes it impossible to exploit pipelining concurrency
available between tasks that access the same data.

4.2 Eliminating Task Boundary Synchro-
nization

Jade solves the problem of task boundary synchro-
nization by allowing the programmer to provide more
precise information about when a task actually ac-
cesses data. Jade provides this functionality with an
additional construct, with-cont, and the additional
access specification statements df rd, df wr, no rd,
and no wr. Here is the general syntactic form of the
with-cont construct:

with { access declaration} cont;

As in the withonly-do construct, the access
declaration section is an arbitrary piece of code con-
taining access declaration statements. These state-
ments update the task’s access specification, allowing
the specification to reflect more precisely how the re-
mainder (or continuation, as the cont keyword sug-
gests) of the task will access shared objects.

The df rd and df wr statements declare a deferred
access to the shared object. That is, they specify that
the task may eventually read or write the object, but
that it will not do so immediately. Before the task
can access the object, it must execute a with-cont
construct that uses the rd or wr access declaration
statements to convert the deferred declaration to an
immediate declaration. Therefore, a task that initially
declares a deferred access to a shared object does not
have the right to access that object. It does, however,
have the right to convert the deferred declaration to

an immediate declaration. This immediate declaration
then gives the task the right to access the object.

The no rd (no future read) and no wr (no future
write) allow the programmer to declare that a task
has finished its access to a given object and will no
longer read or write the object. This declaration dy-
namically reduces a task’s access specification, which
may potentially eliminate a conflict between the task
executing the with-cont and later tasks. In this case
the later tasks may execute as soon as the with-cont
executes rather than waiting until the first task com-
pletes.

Deferred declarations allow a task to delay its syn-
chronization for a shared object until just before it
actually accesses the object. Deferred declarations al-
low the programmer to exploit the pipelining concur-
rency available between the factor computation and
the backsubst task:

backsubst(c, r, n, x)
column_vector c;
row_indices r;
int n;
vector x;
{

int i;
withonly {
rd(c); rd(r); rd_wr(x);
for (i = 0; i < n; i++) df_rd(c[i].column);

} do (c, r, n, x) {
int j;
for (j = 0; j < n; j++) {
with { rd(c[j].column); } cont;
Update(c, r, i, x);
with { no_rd(c[j].column); } cont;

}
}

}

The backsubst task initially uses the df rd access
specification statement to declare that it may even-
tually access the columns of the sparse matrix, but
that it will not access the columns immediately. Be-
cause the task cannot immediately access the columns,
it can start to execute concurrently with the factor
computation.

When the task actually needs to access a column,
it uses a with-cont construct to convert the deferred
access declaration into an immediate access declara-
tion. The task then synchronizes with the last factor
task that modifies that column of the matrix and will
not proceed until that task has completed. When the
factor task completes, backsubst task can resume its



Figure 8: Executing A Jade Program

4.3 Higher-level Access Specifications

The Jade access specifications introduced so far
only allow the programmer to declare that a task will
read or write certain objects. The programmer, how-
ever, may have higher-level knowledge about the way
tasks access objects. For example, the programmer
may know that even though two tasks update the same
object, the updates can happen in either order. The
Jade programming model generalizes to include access
specifications that allow the programmer to express
such higher-level program knowledge.

4.4 Hierarchical Concurrency

Programmers may create hierarchical forms of con-
currency in a Jade program by dynamically nest-
ing withonly-do constructs. The task body of a
withonly-do construct may execute any number of
withonly-do constructs, in a fully recursive manner.
The access specification of a task that hierarchically
creates child tasks must declare both its own accesses
and the accesses performed by all of its child tasks.

4.5 Low-Level Control

Jade provides several low-level constructs that pro-
grammers can use to guide the default management
algorithms in the Jade implementation. Programmers
can explicitly specify the machine on which a task will
execute or an object will be allocated. The program-
mer also has access to the number of machines involved
in the computation for use in adjusting the task gran-
ularity.

5 Summary of Jade Language and Im-
plementation

Jade implements several high-level abstractions
that support the effective development of coarse-grain
parallel applications:

• Shared Address Space. Jade programs reference
shared objects via a single uniform address space
that is accessible by all tasks.

• Implicit Concurrency. Jade programmers only
provide information about how tasks access
shared data, and tasks execute in parallel if they
have no conflicting accesses to data. Jade pro-
grammers indirectly express the possibility of
concurrent execution by creating tasks whose ac-
cess specifications do not conflict.

• Serial, Imperative Paradigm. Every parallel ex-
ecution of a Jade program deterministically pre-
serves the semantics of the serial, imperative pro-
gram upon which it is based.

These concepts together support a model of pro-
gramming that is familiar to programmers and con-
venient for them to use. We have implemented this
programming model on shared-memory multiproces-
sors, a homogeneous message-passing machine, and on
a heterogeneous collection of workstations. Jade pro-
motes the portability of parallel applications by pro-
viding a high-level programming model which can be
supported on widely different parallel architectures.

Given this high-level programming model, the Jade
implementation, rather than the programmer, handles
much of the complexity involved in running a parallel
application. Several aspects of the Jade implementa-
tion involve executing the application correctly accord-
ing to the Jade programming model:

• Parallel Execution. The Jade implementation
analyzes tasks’ access declarations to determine



which tasks can execute concurrently without vi-
olating the serial semantics. It also generates
the synchronization required to execute conflict-
ing tasks in the correct order.

• Access Checking. The Jade implementation dy-
namically checks each task’s accesses to ensure
that its access specification is correct. If a task
attempts to perform an undeclared access, the im-
plementation generates an error.

• Object Management. In a message-passing en-
vironment, the Jade implementation moves or
copies objects between machines as necessary to
implement the shared address space abstraction.
The implementation also translates global object
references to pointers to the local version of ob-
jects.

• Data Format Conversion. In a computing en-
vironment with different representations for the
same data items, the Jade implementation per-
forms the data format conversion required to
maintain a coherent representation of the data
on different machines.

Jade’s high level programming model gives the Jade
implementation the flexibility it needs to optimize the
parallel execution of Jade programs. The current
Jade implementation uses the following optimization
algorithms in an attempt to execute applications effi-
ciently:

• Dynamic Load Balancing. The Jade implementa-
tion keeps track of which processors may be idle
and dynamically assigns executable tasks to pro-
cessors which may become idle. Dynamic load
balancing is especially important in a heteroge-
neous environment in which some machines exe-
cute faster than others.

• Matching Exploited Concurrency with Available
Concurrency. The Jade implementation sup-
presses excess task creation as necessary in order
to prevent the excessive generation of concurrency
from overwhelming the parallel machine.

• Enhancing Locality. The Jade implementation
uses a heuristic that attempts to execute tasks on
the same processor if they access some of the same
objects. Such a task assignment may improve lo-
cality, because tasks can reuse objects fetched by
other tasks.

• Hiding Latency with Concurrency. If there is ex-
cess concurrency in the application, the Jade im-
plementation hides the latency associated with
accessing remote objects by executing one task
while fetching the shared objects that another
task will access.

• Object Replication. In a message-passing en-
vironment, the Jade implementation replicates
shared objects for concurrent access.

The list of activities of the implementation illus-
trates the utility of Jade. Without Jade, programmers
would have to manage the associated problems them-
selves. In a large or complicated parallel program,
this management software could dominate the appli-
cation development process. Jade allows programmers
to concentrate on the algorithmic aspects of the par-
ticular application at hand rather than on the systems
issues associated with mapping that application onto
the current parallel machine.

6 Comparison with Other Work

In this section we compare Jade with other systems
designed to provide the abstraction of a shared address
space on a collections of machines that interact via
message passing. We consider three alternatives in
turn: distributed shared memory, Linda, and object-
oriented parallel languages.

6.1 Distributed Shared Memory

The difficulties associated with managing the move-
ment and replication of data have prompted re-
searchers to look for ways to provide a shared-memory
interface to a collection of message passing machines
[2, 11, 15]. The typical approach is to use a cache-
coherence algorithm implemented in software, with
pages taking the place of cache lines and the page
fault hardware detecting attempts to access remote or
invalid pages. The page-fault handler can then copy
the remote page on a read access or move the page on
a write access.

Although such systems free the programmer from
having to explicitly manage the data movement, the
programmer still has to generate a synchronization al-
gorithm for each application. The inherently nonde-
terministic nature of the distributed shared memory
paradigm can make it difficult to debug and maintain
these synchronization algorithms. Jade programs ex-
ecute deterministically in accordance with the serial
program on which they are based.



Another potential problem is that all sharing takes
place at the granularity of pages. If the program
accesses an object that is smaller than a page, the
page coherence system will fetch the entire page. The
comparatively large size of pages also increases the
probability of an application suffering from excessive
communication caused by false sharing (when multi-
ple processors repeatedly access disjoint regions of a
single page in conflicting ways). This problem does
not occur in Jade because all data sharing takes place
at the level of individual objects.

Distributed shared memory systems deal with the
raw address space of the application and have no
knowledge of the types of the data stored in various lo-
cations in memory. Each parallel program must there-
fore have the same address space on all the different
machines on which it executes. This restriction has so
far limited distributed shared memory systems to ho-
mogeneous collections of machines (except for a pro-
totype described in [19]). The Jade implementation
can do the necessary conversions in a heterogeneous
environment because it knows the types of all shared
objects.

One advantage of the distributed shared memory
approach over Jade is that the shared memory ab-
straction is provided completely transparently to the
programmer. In Jade, the programmer must specify
the granularity of shared objects and declare which
variables and data structures reference shared objects.

6.2 Linda

Linda [5] is an explicitly parallel language that sup-
ports the concept of a global tuple space. Linda pro-
grammers create parallel processes that interact via
asynchronous operations that insert, read and remove
tuples from tuple space. One major difference between
Jade and Linda is that Jade supports an object model
that is integrated into the serial imperative language
on which Jade is based. In Jade programs, shared ob-
jects are normal data structures which programmers
manipulate using the standard operators provided by
the underlying programming language. In Linda, on
the other hand, shared objects must be located in a
separate area of storage (tuple space). Tasks which
manipulate shared data must explicitly extract the
data from tuple space, manipulate it locally, then rein-
sert it.

The other major difference between Jade and Linda
is that Linda is an explicitly parallel, inherently non-
deterministic programming language. Each parallel
application written in Linda contains an application-

specific synchronization algorithm built using the low-
level tuple-space primitives.

6.3 Parallel Object-Oriented Languages

There are a variety of distributed programming lan-
guages that take an object-oriented approach to pro-
gramming message-passing machines or networks of
workstations [4, 6, 1]. These languages typically make
each object a unit of communication and each method
invocation a unit of synchronization. Each method
that modifies an object obtains exclusive access to
that object; in some systems objects may be replicated
to allow concurrent read access. Programmers using
these languages exploit concurrency by using built-in
constructs to explicitly create parallel tasks. Program-
mers must then manually synchronize these tasks us-
ing the built-in primitive of mutual exclusion on object
access. Some systems also support a signalling mech-
anism similar to that used on monitor-based systems.

Jade differs from these languages in that it pro-
vides an implicitly parallel, inherently deterministic
programming paradigm. Another difference is that in
the parallel object-oriented languages, each method
invocation can access only one object. These lan-
guages do not support the concept of an atomic task
that accesses multiple objects. If a programmer has
an application (such as the sparse Cholesky factor-
ization example presented earlier) that requires tasks
to access multiple objects atomically, the programmer
must implement a distributed locking protocol that
correctly synchronizes the multiple accesses. Jade cor-
rectly synchronizes tasks that access any number of
objects.

7 Preliminary Applications Experi-
ence

We have implemented Jade on shared-memory par-
allel processors and on both heterogeneous and homo-
geneous message-passing environments. There are no
source code modifications required to port Jade appli-
cations between these platforms. Our shared-memory
implementation of Jade runs on the Silicon Graphics
4D/240S multiprocessor and on the Stanford DASH
multiprocessor [10]. The workstation implementation
of Jade uses PVM [18] as a reliable, typed transport
protocol. Currently, this implementation of Jade runs
on the SPARC-based Sun workstations and on MIPS-
based systems, including the DECStation 3100 and
5000 machines, the Silicon Graphics workstations, and



the Stanford DASH multiprocessor. Jade applications
can use any combination of these kinds of worksta-
tions in the course of a single execution. We have also
implemented Jade on the Intel iPSC/860 using the
native message passing system. Jade also runs on the
High Resolution Video (HRV) Workstation [14] from
Sun Microsystems Laboratories. The machine consists
of several SPARC and Intel i860 processors; its func-
tional units are capable of digitizing and displaying
video at up to full HDTV rates.

To test the Jade paradigm, we have implemented
several computational kernels, including the sparse
Cholesky factorization algorithm described earlier and
the Barnes-Hut algorithm for solving the N-body
problem. We have also implemented several complete
applications in Jade. The following describes our ex-
perience in developing several applications chosen to
illustrate different aspects of Jade.

7.1 Make

make is a UNIX program that incrementally recom-
piles a program based on which of its dependent files
have changed. make reads as input a “makefile” which
describes, for each file involved in the compilation pro-
cess, the command to be executed to rebuild that file
from its dependent files. The serial make program con-
tains a loop that sequentially executes the commands
required to rebuild out-of-date files. In the Jade ver-
sion of this program, the body of this loop is enclosed
in a withonly-do construct that declares which files
each recompilation command will access. As the loop
executes, it generates a task to recompile each out-
of-date file. The Jade implementation executes these
tasks concurrently unless one command depends on
the result of another command. The dynamic paral-
lelism available in the recompilation process defeats
static analysis: it depends on the makefile and on the
modification dates of the files it accesses. It is easy
to express this form of concurrency in Jade, however.
The performance of the make program is limited by
the amount of parallelism in the recompilation pro-
cess and the available disk bandwidth.

7.2 Digital Image Processing

An application that we have developed on the HRV
workstation illustrates how programmers can use Jade
to control the execution of a coarse-grain application
on a heterogeneous machine. In this application a
SPARC-based workstation uses a camera to capture
and compress in hardware a sequence of video frames.
It passes each frame to one of the i860-based graphics

accelerators, which decompresses the frames in soft-
ware, applies a simple digital transformation, and dis-
plays the frame on the HDTV monitor. The Jade
version of this program consists of a loop with two
withonly-do constructs. The first construct’s task
body acquires a camera frame; the second construct’s
task body applies the digital transformation. Using
Jade simplifies the development of this application be-
cause the programmer does not have to write complex
message-passing code to initiate the communication
between the workstation and the graphics accelera-
tors and to manage the movement of frames through
the machine.

7.3 Liquid Water Simulation

LWS is a program derived from the Perfect Club
benchmark MDG that evaluates forces and potentials
in a system of water molecules in the liquid state.
For the problem sizes that we are running, almost
all of the computation takes place inside the O(n2)
phase that determines the pairwise interactions of the
n molecules. We therefore execute only that phase in
parallel and run the O(n) phases serially. To paral-
lelize this program in Jade we first restructured sev-
eral of the program’s data structures and then added
23 Jade constructs. These modifications increased the
size of the program from 1216 to 1358 lines of C code.

Figure 9 shows a plot of the running times of the
same Jade LWS program in three different parallel en-
vironments: an Intel iPSC/860, a Mica multiprocessor
(an array of Sparc ELC boards connected by Ethernet
from Sun Microsystems Laboratories), and the Stan-
ford DASH shared-memory multiprocessor. All times
are for a simulation involving 2197 particles. Figure 10
shows a plot of the speedups for the same runs. There
is ample coarse-grain parallelism in the LWS appli-
cation; the figures confirm that Jade can give good
performance for such an application over a range of
architectures.

8 Conclusions

Jade is a high-level language for developing
portable coarse-grain parallel programs. Jade sup-
ports the development of such programs by providing
programmers with the abstractions of sequential exe-
cution and a shared address space. Jade programmers
apply their application knowledge to define suitable
task and data granularity and describe how each task
accesses data. The Jade implementation uses this in-
formation to automatically detect the concurrency in
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the application, map the tasks onto the various par-
allel machines, and, in message-passing environments,
manage the data movement required to implement the
shared address space abstraction.

Because the Jade implementation dynamically re-
solves tasks’ access specifications, Jade programs can
exploit dynamic, data-dependent concurrency. The
run-time overhead associated with detecting and man-
aging dynamic concurrency limits the grain size that
Jade programs can efficiently use. Jade’s serial se-
mantics, however, enables the direct application of
parallelizing compiler techniques to Jade programs.
Jade therefore promotes a hierarchical model of par-
allel computation in which a high-level program-
ming language allows programmers to exploit coarse-
grain, data-dependent concurrency while the com-
piler exploits fine-grain, concurrency statically avail-
able within tasks. The difficulty of applying compiler
optimizations to explicitly parallel code [7, 17] limits
the amount of concurrency that programmers can ex-
ploit using explicitly parallel languages.

We have implemented Jade in a wide variety
of computational environments, from tightly-coupled
shared memory multiprocessors through networks of
workstations to heterogeneous systems with special-
purpose accelerators connected by high-speed net-
works. Jade programs execute without modification
on all of these computational platforms. Our initial
applications experience demonstrates that Jade effec-
tively supports the development of efficient coarse-
grain parallel programs.

Most portable parallel programming languages
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give the programmer only the low-level functionality
present on all of the targeted platforms. With a se-
quential semantics and a single address space model,
Jade provides portability and efficiency as it maintains
a high level of programming abstraction.
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