
Robust Programs with Filtered Iterators
Jiasi Shen

MIT EECS and CSAIL
Cambridge, MA, USA
jiasi@csail.mit.edu

Martin Rinard
MIT EECS and CSAIL
Cambridge, MA, USA
rinard@csail.mit.edu

Abstract
We present a new language construct, filtered iterators, for
robust input processing. Filtered iterators are designed to
eliminate many common input processing errors while en-
abling robust continued execution. The design is inspired
by (1) observed common input processing errors and (2) suc-
cessful strategies implemented by human developers fixing
input processing errors. Filtered iterators decompose inputs
into input units and atomically and automatically discard
units that trigger errors. Statistically significant results from
a developer study demonstrate the effectiveness of filtered
iterators in enabling developers to produce robust input pro-
cessing code without common input processing defects.

CCS Concepts • Software and its engineering→ Con-
trol structures;Error handling and recovery; • Security
and privacy → Software and application security;

Keywords Input processing; robustness; filtered iterators;
atomicity; continued execution; controlled experiment
ACM Reference Format:
Jiasi Shen and Martin Rinard. 2017. Robust Programs with Filtered
Iterators. In Proceedings of 2017 ACM SIGPLAN International Confer-
ence on Software Language Engineering (SLE’17). ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3136014.3136030

1 Introduction
We present the design and evaluation of a new program-
ming language construct, filtered iterators, for robust input
processing. Filtered iterators target defects and security vul-
nerabilities in input processing code and provide continued
successful execution in the face of otherwise fatal or ex-
ploitable errors.
The design of filtered iterators was driven by observed

strategies from human developers fixing input processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00
https://doi.org/10.1145/3136014.3136030

defects [27]. These strategies exploit a structure present in
many applications: the application breaks the input into input
units, then processes each input unit in sequence. The defect
involves unanticipated corner case input units that trigger
errors. Developers often fix such defects by modifying the
program to recognize and discard such corner case input
units (they are often malformed and should be discarded
even by a correct program) [27]. Filtered iterators automate
this strategy to provide the following benefits:
● Survival: Filtered iterators eliminate program crashes and
enable successful continued execution, automatically and
atomically discarding input units that trigger fatal errors,
cause assertion failures, or target certain classes of security
vulnerabilities.
● Simplified Development: Filtered iterators simplify soft-
ware development by eliminating the need for many ex-
plicit checks and error-handling code. Developers can po-
tentially omit any check—and the associated error-handling
code—that is otherwise required to protect the program
from crashes and security exploits.
We empirically evaluate the effectiveness of filtered itera-

tors in a study where matched pairs of developers develop
input processing programs with and without filtered itera-
tors. The statistically significant results show that the use of
filtered iterators produces code with fewer defects overall,
fewer fatal defects, fewer crashes, smaller cyclomatic com-
plexity, and fewer conditional clauses. Moreover, the use
of filtered iterators, by construction, completely eliminates
many common sources of defects and vulnerabilities. Filtered
iterators therefore address the following problem statement:
“Design and evaluate a new programming language construct
that eliminates input processing errors to enhance survival,
robustness, reliability, and security.”

1.1 Main Concept
Filtered iterators first split the input into input units, then
iterate over the input units. Example input units include lines
in a text file, rows in a database table, packets in network
traffic, and images in an animation. Each iteration executes
sequentially as an atomic (all-or-nothing) transaction that
processes one input unit: if the iteration succeeds, it executes
normally; if the iteration encounters a runtime error, it is
rolled back and discarded atomically. The implementation of
atomicity involves executing and rolling back the program
state on errors, using standard atomic execution techniques
that checkpoint program state and delay externally visible

https://doi.org/10.1145/3136014.3136030
https://doi.org/10.1145/3136014.3136030

SLE’17, October 23–24, 2017, Vancouver, Canada Jiasi Shen and Martin Rinard

outputs until processing commits (see Section 3.2). Apart
from ensuring the atomic processing of each input unit, fil-
tered iterators also discard bad input units—input units that
trigger errors.1 These errors include execution integrity er-
rors, such as memory errors and arithmetic errors, as well
as application-specific errors caught by failed assertions. In
short, filtered iterators implement the following schema:
1 split input into input units
2 iterate over input units {
3 atomic transaction {
4 delay outputs until commit
5 process input unit
6 if unhandled exception or assertion failure {
7 abort transaction
8 } else{
9 commit transaction

10 release outputs
11 } } }

The synergy between atomic error recovery and discard-
ing bad input units enables the program to continue process-
ing the remaining input units, as if the bad input units had
never existed.2 For example, a program that uses a conven-
tional language to extract files from a ZIP [1] archive may
crash on files that trigger unanticipated conditions. Using
filtered iterators, the new programwill (1) survive, (2) extract
all the files that the program can successfully extract, and (3)
automatically skip the files that the program cannot process.
Filtered iterators, therefore, use the program itself to find
and filter bad input units.
Relevance: Input processing defects occur frequently in
practice and often have serious consequences such as pro-
gram failures, data corruption, and security vulnerabilities
[4, 26, 27, 30, 45, 50]. The consequences can be especially
severe for programs that are exposed to potentially malicious
inputs that purposefully target defects that well-formed or
anticipated inputs do not expose. Filtered iterators address
these problems.
The design of filtered iterators is based on two empirical

observations: (1) many of these defects correspond to un-
common corner cases that developers simply overlook and
(2) when developers fix these defects, they often maximize
program utility via robust continued execution. Specifically,
many human bug fixes for null dereferences and divide-by-
zero errors do not throw an exception or exit the program.
They instead skip the computation associated with the cur-
rent input unit and continue to process subsequent input
units [27]. For example, in the CVE database [4], fixes to er-
rors CVE-2013-2483, CVE-2012-4286, CVE-2012-4285, CVE-
2012-1143, CVE-2012-4507, and CVE-2011-4153 all exhibit
this pattern. Many of these bug fixes are specifically designed
to enable the program to provide useful partial results in the
face of bad input units [27]. Filtered iterators automate this

1Note that bad input units may differ from illegal (malformed) input units
that violate the input format specification. See Section 4 for definitions.
2To help developers debug programs, the language runtime generates a log
that contains all errors that occurred during execution. See Section 3.3.

empirical bug fixing strategy that developers repeatedly ap-
ply in practice.
Applicability in Different Contexts: Filtered iterators are
designed for application contexts where obtaining partial
results computed from a subset of the input units is preferable
to simply terminating when the computation encounters a
bad input unit. This property may be particularly relevant
when the input contains multiple largely-independent input
units and when the application can deliver acceptable results
even after some input units are discarded [27, 38]. Example
application contexts include: servers that process requests
[18], big data analytics that process rows in large tables
[29], video decoders that process video frames [52], network
routers that process packets [24], embedded systems that
process events [47], and text processors that process files
line by line. This paper investigates applications that process
text files and images (see Sections 2, 3.2, and 5). All of these
applications benefit from continued execution in the face of
errors and can use filtered iterators to process input units
that can be correctly handled, skipping bad input units that
trigger errors.

Input units can influence how subsequent input units are
processed. Filtered iterators may therefore not be appropriate
for applications that must successfully process all input units.
For example, an application that first updates, then queries, a
database may need to successfully process all of the updates
so that the subsequent queries execute properly. Filtered
iterators may also not be appropriate for applications that
should terminate when they encounter an unanticipated er-
ror. A compiler, for example, should usually terminate when
it encounters an internal compiler error rather than silently
generate potentially incorrect code. In general, we expect
developers to match the needs of their applications against
the capabilities of filtered iterators to determine whether
filtered iterators are appropriate for their application.
Empirical Evaluation:We evaluate the effectiveness of fil-
tered iterators in a controlled experiment. The experiment
uses paired human developers to test hypotheses regarding
the ability of filtered iterators to deliver smaller, more robust
programs with fewer defects. In our study, programs from
developers using filtered iterators had a total of six defects,
none fatal. The paired control group, in contrast, produced
programs with a total of 33 defects, 18 fatal, with every pro-
gram containing at least two fatal defects. We verified the
exercisable presence of every defect (with the exception of
the defects related tomemory allocation failures andmemory
leaks, which we identified by a code analysis) by developing
an input file that triggered the defect. We detected statisti-
cally significant differences between the two groups in terms
of program defects, program survival, and program complex-
ity (see Section 4). These results support the hypothesis that
filtered iterators can enable a range of developers to produce
more robust programs with significantly fewer defects than
comparable developers using standard language constructs.

Robust Programs with Filtered Iterators SLE’17, October 23–24, 2017, Vancouver, Canada

1.2 Contributions
This paper makes the following contributions:
Filtered Iterators:We present filtered iterators, a novel con-
trol structure as the synergy between atomicity, exception
handling, and input processing.
Empirical Evaluation: We present results from an empiri-
cal evaluation of filtered iterators. The statistically significant
results highlight the effectiveness of filtered iterators in elim-
inating many of the difficulties that developers face when
developing input processing code using standard constructs.
We also briefly discuss our experience using filtered it-

erators to develop programs for a variety of input formats
including the PCAP, PNG, ZIP, JSON, and OBJ formats.

2 Example
We illustrate filtered iterators by contrasting two implemen-
tations of a bitmap thumbnail generator program. The first
implementation uses conventional C language constructs to
handle errors explicitly (Conventional C Version). The sec-
ond implementation uses filtered iterators to handle errors
implicitly (C/RIFL Version).
Program Functionality: The thumbnail program uses the
following algorithm to average the values of neighboring
pixels. Given a scaling factor s , the thumbnail for an image
of height h and width w has height ⟨︀h⇑s⧹︀ and width ⟨︀w⇑s⧹︀.
The value of the pixel in row i and column j of the thumbnail
is the floor of the average of the values of all pixels in the s2
square area between rows i ⋅ s . . . (i ⋅ s + s − 1) and columns
j ⋅ s . . . (j ⋅ s + s − 1) of the original image.
Program Input: Figure 1a presents an example input file.
The input file contains lines that describe original images.
Each line describes an original image with the following
components, separated by a single space character: (1) A
string image name, which contains no space or newline
characters and is 1–10 characters long. (2) An integer scaling
factor, s . (3) An integer height, h. (4) An integer width, w .
(5) h ⋅w consecutive digits, ranging from ‘0’. . . ‘9’, that each
represents the color of a pixel in the original image. The
pixels represent the image by forming a matrix of h rows
andw columns. Pixels are ordered as follows: inside each row,
pixels are ordered from left to right; the rows are grouped
together and ordered from top to bottom.
Program Output: Figure 1b presents the example output.
Each line describes a thumbnail image with the following
components, separated by a single space character: (1) The
image name. (2) ⟨︀h⇑s⧹︀⟨︀w⇑s⧹︀ digits that each represents the
value of a pixel in the thumbnail.
Robustness: Like other image file formats [2, 11, 21], the
input files in our example may contain multiple images. To
maximize utility, the program should continue to generate
thumbnails for other images even after encountering one for
which (for whatever reason) it cannot generate a thumbnail.

The example input in Figure 1a contains illegal lines that
violate the input specification. Images CharS and CharPix

1 Img1 2 2 2 1234
2 Img2 2 4 4 1234567890123456
3 CharS b 2 2 1234
4 CharPix 2 2 2 12a4
5 BufOvfVeryLongName 2 2 2 1234
6 2 2 2 1234
7 Div0S 0 2 2 1234
8 Div0H 2 0 2
9 HeapOvf 2 60000 1000 1234

10 BufOvfInt 2 16 268435457
12345678901234567890

11 Img3 2 1 2 12
12 Img4 3 3 4 123456789012

(a) Example input

1 Img1 2
2 Img2 3543
3 Img3
4 Img4 3

(b) Example output

Figure 1. Example input and output for thumbnail programs

contain illegal characters in the scaling factor and the pix-
els, respectively. Image BufOvfVeryLongName’s name is too
long. In the line that follows, the image name is missing.
Image Div0S’s scaling factor is zero, which is undefined for
thumbnail generators. Some other lines in the example input
are legal but rare. They satisfy the specification but may still
trigger errors in defective implementations. Image Div0H
contains an empty image. Image HeapOvf’s dimensions may
be too large to fit the entire image in the heapmemory. Image
BufOvfInt’s dimensions are so large that the multiplication
of the image height and width overflows a 32-bit integer. The
example output in Figure 1b excludes thumbnails for these
kinds of illegal or rare images.

2.1 Conventional C Version
Figure 2 presents a conventional C implementation of the
thumbnail generator that handles all errors explicitly. Lan-
guage keywords are in bold. The control structure that loops
through images is underlined. Error-handling code is high-
lighted with colored text: Vital code that prevents crashes is
in red. Integrity code that prevents input misinterpretation
and input desynchronization is in brown. Service code that
cleans up resources is in purple.

Table 1 enumerates the error-handling code in this imple-
mentation. Each row describes a piece of code. The columns
are as follows: the identifier number (Id), location (Lines),
importance category (Category), and functionality (Purpose).

2.2 C/RIFL Version
Figure 3 presents another version of the thumbnail program
(with the same functionality) using the inspectt construct
as a filtered iterator. The program uses C syntax augmented
with the RIFL inspectt loop construct and associated se-
mantics. These semantics include (1) atomic execution of
the loop body, (2) array bounds and assertion checks, and (3)
automatic error recovery when an error or assertion failure
is detected in the loop body. 3

3 The rest of this paper evaluates filtered iterators using the RIFL language,
which is presented in Section 3. A RIFL version of the thumbnail program
is available in the RIFL technical report [42].

SLE’17, October 23–24, 2017, Vancouver, Canada Jiasi Shen and Martin Rinard

1 FILE *f;
2 void flush (char x) { // I1
3 while (x!=EOF && x!='\n') { x=fgetc(f); } // I1
4 }
5 int rdint () {
6 int x=0; char dgt=fgetc(f);
7 while (dgt!=' ') {
8 if (dgt == EOF || dgt <'0' || dgt >'9') { // I2
9 fseek(f,-1, SEEK_CUR); // I3

10 return -1; // I4
11 }
12 x=x*10+(dgt -'0'); dgt=fgetc(f);
13 }
14 return x;
15 }
16 int main (){
17 f = fopen("images.txt", "r");
18 if (!f) { return -1; } // V1
19 char name [10];
20 char x;
21 while ((x=fgetc(f)) != EOF) {
22 int bad=0; int i=0; // I5
23 while (x!=' ') {
24 if (x==EOF || x=='\n' || i>=10) { // V2,I6,I7
25 bad=1; break; // I8
26 }
27 name[i]=x; i=i+1; x=fgetc(f);
28 }
29 if (i<=0 || bad) { flush(x); continue; } // I9
30 while (i<10) { name[i]=0; i=i+1; }
31 int s=rdint(); int h=rdint(); int w=rdint();
32 if (s<=0||h<=0||w<=0||(h*w)/h!=w) { // V3,V4,I10
33 flush (0); continue; // I11
34 }
35 char *pix=(char *) malloc(h*w);
36 if (!pix) { flush (0); continue; } // V5
37 i=0;
38 while (i<h && !bad) { // I12
39 int j=0;
40 while (j<w) {
41 x=fgetc(f);
42 if (x==EOF||x<'0'||x>'9'){bad=1; break;} // I13
43 pix[i*w+j]=x; j=j+1;
44 }
45 i=i+1;
46 }
47 flush(x); // I14
48 if (bad) { free(pix); continue; } // I15,S1
49 printf("%s ", name);
50 // << compute and print averages, code omitted >>
51 putchar('\n'); free(pix);
52 }
53 fclose(f);
54 return 0;
55 }

Figure 2. A conventional C thumbnail implementation

In particular, the (simplified) structure of an inspectt
loop is as follows:

inspectt (f, du) { ... }

This loop iterates through file f, executing a block of code for
each input unit. A delimiter value du defines the boundaries
between input units. In each iteration, inspectt nullifies
the effects of all detectable errors by processing each in-
put unit atomically so that all updates from each input unit
either commit or abort. After each iteration, inspectt al-
ways advances the input file pointer and positions it after

1 FILE *f;
2 int rdint () {
3 int x=0; char dgt=fgetc(f);
4 while (dgt!=' ') {
5 assert(dgt >='0' && dgt <='9');
6 x=x*10+(dgt -'0'); dgt=fgetc(f);
7 }
8 return x;
9 }

10 int main () {
11 f = fopen("images.txt", "r");
12 char name [10];
13 char x;
14 inspectt (f,'\n') {

15 int i=0; x=fgetc(f);
16 while (x!=' ') {
17 name[i]=x; i=i+1; x=fgetc(f);
18 }
19 assert(i>=1);
20 while (i<10) { name[i]=0; i=i+1; }
21 int s=rdint(); int h=rdint(); int w=rdint();
22 char *pix=(char *) malloc(h*w);
23 i=0;
24 while (i<h) {
25 int j=0;
26 while (j<w) {
27 x=fgetc(f);
28 assert(x>='0' && x<='9');
29 pix[i*w+j]=x; j=j+1;
30 }
31 i=i+1;
32 }
33 printf("%s ", name);
34 // << compute and print averages, code omitted >>
35 putchar('\n'); free(pix);
36 }
37 fclose(f);
38 return 0;
39 }

Figure 3. A C/RIFL thumbnail implementation

the delimiter. This mechanism ensures that each iteration
starts reading input at the beginning of the next input unit,
which prevents the C/RIFL program from desynchronization,
which occurs when a program fails to completely read in
a bad input unit, leaving the file pointer incorrectly posi-
tioned in the middle of the preceding bad input unit (instead
of correctly positioned at the start of the next input unit).
This semantics skips bad input units (which trigger errors or
assertion failures) so that the program executes as if these
bad input units were not present in the input at all.
EliminatedChecks:Wenext discuss checks and statements
that are required in the conventional C version but are un-
necessary in the C/RIFL version. Checks V1–V5 (see Table 1),
which are vital in the conventional C version, are unnec-
essary in the C/RIFL version because filtered iterators at
runtime implicitly trigger an error on invalid file accesses,
failed heap allocations, out-of-bounds array accesses, and
divisions by zero. The inspectt loop starting from line 14
implicitly handles all these errors by discarding bad input
units atomically. On the other hand, if the conventional C
version omits any of the vital error-handling code, the pro-
gram would crash from bad inputs:

Robust Programs with Filtered Iterators SLE’17, October 23–24, 2017, Vancouver, Canada

Table 1. Error-handling code in the conventional C thumb-
nail program.

Id Lines Category Purpose

V1 18 vital avoid invalid file accesses
V2 24 (i>=10) vital avoid out-of-bounds array ac-

cesses
V3 32 (s<=0, h<=0) vital avoid divisions by zero
V4 32

((h*w)/h!=w)
vital avoid integer overflows that can

cause out-of-bounds array ac-
cesses

V5 36 vital avoid null array accesses
I1 2–4 integrity flush trailing bytes for current

unit (helper function)
I2 8 (dgt==EOF) integrity identify incomplete units at the

ends of files
I3 9 integrity avoid mixing bad units with fol-

lowing units
I4 10 integrity identify bad units
I5 22 (bad=0;) integrity default to good units
I6 24 (x==EOF) integrity identify incomplete units at the

ends of files
I7 24 (x=='\n') integrity avoid mixing bad units with fol-

lowing units
I8 25 integrity skip bad units
I9 29 integrity skip bad units
I10 32 (w<=0) integrity identify bad units
I11 33 integrity skip bad units
I12 38 (!bad) integrity avoid mixing bad units with fol-

lowing units
I13 42 integrity identify bad units
I14 47 integrity avoid mixing bad units with fol-

lowing units
I15 48 (bad) integrity skip bad units
S1 48 (free) service avoid memory leak on bad units

● Direct out-of-bounds array access:Without check V2,
the conventional C version writes beyond array name on
line 27 when an image name is longer than the array size.
● Indirect out-of-bounds array access caused by inte-
ger overflow: Without check V4, the conventional C ver-
sion writes beyond array pix on line 43 with carefully
chosen image dimensions that cause the multiplication on
line 35 to overflow the integer representation. This integer
overflow can cause the program to allocate an array pix
that is smaller than expected.
● Division by zero: Without check V3, the conventional C
version triggers division-by-zero errors on line 32 or in the
code for line 50 when an image contains a zero height or a
zero scaling factor.
● Null array access:Without check V5, the conventional C
version writes to a null array on line 43 when the memory
allocation fails on line 35.
● Invalid file access:Without check V1, the conventional
C version reads from a null file pointer on line 21 when
the opening operation fails on line 17.
Apart from freeing the developers from having to write

otherwise vital error-handling code above, filtered iterators

Prog ∶= Stmt ⋃︀ func q(x){Stmt; return y};Prog
Exp ∶= n ⋃︀ x ⋃︀ Exp op Exp ⋃︀ a(︀Exp⌋︀ ⋃︀ valid(a) ⋃︀ end(f) ⋃︀ pos(f)
Stmt ∶= x = Exp ⋃︀ a = malloc(Exp) ⋃︀ free(a) ⋃︀ a(︀Exp⌋︀ = Exp

⋃︀ x = q(Exp) ⋃︀ seek(f , Exp) ⋃︀ x = read(f) ⋃︀ assert(Exp)
⋃︀ Stmt; Stmt ⋃︀ if(Exp){Stmt}else{Stmt} ⋃︀ while(Exp){Stmt}
⋃︀ inspectt(Exp, f , du , ds){Stmt} ⋃︀ f = opent(str)
⋃︀ inspectb(Exp, f , Exp, Exp, Exp){Stmt} ⋃︀ f = openb(str)

x, y ∈ IVar a, du , ds ∈ AVar f ∈ FVar
q ∈ function names n ∈ Int str ∈ String

Figure 4. Abstract syntax

also reduce the need for other code in the conventional C
version. With automatic error handling, there is no need
to explicitly maintain the integrity of input units as in (1)
checks I2, I6, I7, I9, I10, I12, and I15, or (2) statements I1,
I3–I5, I8, I11, I13, and I14. Statement S1 is also unnecessary
in the C/RIFL version because the inspectt loop discards
bad input units atomically, preventing a memory leak in this
situation. On the other hand, the conventional C version
would be defective without these checks and statements:
● Inputmisinterpretation and desynchronization: The
code I2, I4–I6, I9, I10, and I15 detect bad input units. Code
I1, I3, I7, I8, and I11–I14 isolate bad units from other inputs.
● Memory leak: Without statement S1, the conventional
C version leaks memory on images with corrupted pixel
values. Memory leaks degrade the quality of service and
may result in allocation failures.
The C/RIFL version has simpler control flow and fewer

statements than the conventional C version.

3 The RIFL Language
To support our experimental evaluation of filtered iterators,
we design the Robust Input Filtering Language (RIFL). RIFL
is a simple imperative language inspired by C. RIFL has two
filtered iterator constructs: the inspectt construct for text
files and the inspectb construct for binary files.

3.1 Syntax
Figure 4 presents the syntax of RIFL. The structure of inspect
loops for text inputs is

inspectt (e, f, du, ds) { ... }

which, while expression e evaluates to true, iterates through
input units in text file f. The arrays du and ds contain single-
character delimiter values. Each iteration may access an
input unit that consists of the file contents up to the end-
of-unit delimiter values specified in du. The loop terminates
when e evaluates to false, when the program reads the end-
of-sequence delimiter values specified in ds, or when the
program reaches the end of file.

The structure of inspect loops for binary inputs is
inspectb (e, f, o, w, c) { ... }

SLE’17, October 23–24, 2017, Vancouver, Canada Jiasi Shen and Martin Rinard

which similarly iterates through input units in a binary file
f. The contents of each input unit is computed from a length
field in f, which is specified by the offset parameter o and the
width parameter w, and the extra length parameter c. The
loop terminates when e evaluates to false, when the program
reaches the end of an outer-level input unit, or when the
program reaches the end of file f.
To allow more sophisticated ways to specify the bound-

aries of input units, it is possible to incorporate I/O libraries
that decompose inputs into input units.

3.2 Semantics
We next discuss the RIFL semantics. The full operational
semantics is presented in the RIFL technical report [42].
Atomic Execution and Filtering: Inspect loops handle er-
rors by filtering out bad input units. The RIFL runtime in-
cludes checks for execution integrity violations such as out-
of-bounds accesses, null pointer dereferences, divisions by
zero, and memory allocation failures. Of course, not all ap-
plication errors manifest as these errors. RIFL therefore also
supports assertions, which enable developers to explicitly
specify application-level validation checks in inspect loops.

When an inspect loop iteration triggers an error or asser-
tion failure, the RIFL runtime handles the error or failure
automatically by (1) identifying the bad input unit, (2) ad-
vancing the file pointer past the bad input unit, (3) restoring
the rest of the program state, such as externally visible mem-
ory, by rolling back to the old state when entering the current
iteration, (4) discarding any externally visible outputs that
the current iteration produced, and (5) restarting the program
execution. Conceptually, the program restarts the original
inspect loop iteration, but with the file pointer changed to
the start of the next input unit (unless the bad input unit is
the last input unit in the file).
Atomicity is known to be difficult for developers to im-

plement correctly [10, 13]. Filtered iterators eliminate these
difficulties because the atomicity is implemented systemati-
cally by the RIFL implementation.
Nesting and Recursion: Nested inspect loops can process
hierarchical input structures. Nested filtered iterators are sup-
ported with nested transactions. For example, the JavaScript
Object Notation (JSON) [12] input format contains nested
objects. The objects are delimited by brace characters. A
RIFL program that processes JSON input may repeatedly use
the right brace character as the delimiter for objects (input
units) across all nesting layers. The program may contain a
recursive function where an inspect loop recursively parses
the nested inner input units.

3.3 Implementation
Besides the RIFL operational semantics, we developed two
RIFL implementations: (1) a full RIFL interpreter in OCaml
and (2) a compiler in Scala that generates C code for RIFL
programs with inspectt loops. The generated C programs

(1) capture runtime errors with dynamic checks and (2) im-
plement atomicity by explicitly saving state and invoking
the built-in setjmp() and longjmp() functions. While RIFL
can use any atomicity mechanism [20, 41], both our current
implementations use standard checkpointing techniques to
restore externally visible data structures if an iteration en-
counters a bad input unit and aborts. Both implementations
use standard logging techniques to delay externally visible
outputs until each iteration commits [20].
While performance is not the focus of our current im-

plementations, we did measure the performance of the two
C programs compiled from the two RIFL programs in Sec-
tion 2. For a range of input sizes, the RIFL version compiled
program’s execution time was 34%–51% longer than the con-
ventional version compiled program’s execution time. Most
of the overhead was generated by the RIFL runtime checks,
occurring mostly in the main computation after parsing the
input (line 32 in Figure 3). This overhead is consistent with
prior research on the overhead of memory safety checks
[31, 33, 39] and could be reduced by applying prior tech-
niques developed for optimizing these checks. The overhead
caused by enforcing atomicity was small, because each in-
spect loop iteration has little externally visible data to back
up and restore. Overall, we believe this overhead is reason-
able as a trade off for the increased robustness.
By design, filtered iterators enable programs to survive

errors and continue execution. To aid debugging and cor-
recting these errors, the filtered iterator runtime generates
an exhaustive error log that contains all errors that occurred
during execution. Developers can examine the error log and
take appropriate action if desired. The runtime can also be
configured to terminate execution immediately on any error.
This configuration may be especially helpful during software
development (as opposed to production).

4 Controlled Experiment
We evaluate the design of filtered iterators with a controlled
experiment that uses pairwise comparison [46, 54] to evalu-
ate its use in program development. We are interested in the
following research questions:

● RQ1: Does inspect reduce program defects?
● RQ2: Does inspect increase program survival?
● RQ3: Does inspect reduce wrong outputs?
● RQ4:Does inspect reducewrong outputs even if we apply
failure-oblivious computing [38] to the control group?
● RQ5: Does inspect reduce program complexity?

To address these questions, we define input categories
based on their accordance to the input format specification:
Common legal inputs satisfy the input specification and
belong to common scenarios that are typically correctly han-
dled by the main functionality of programs. Rare legal in-
puts satisfy the input specification while containing corner

Robust Programs with Filtered Iterators SLE’17, October 23–24, 2017, Vancouver, Canada

cases that may be incorrectly handled by developers. Illegal
(malformed) inputs violate the input specification.

Besides these categories, bad inputs are inputs that trigger
errors or assertion failures in program execution, whether
they are illegal or not. Filtered iterators discard bad input
units. Filtered iterators are not specifically designed to find
and discard all illegal inputs or input units, although in many
cases they may do so. They are instead designed to find and
discard input units, illegal or not, that the program cannot
process successfully.

4.1 Methodology
Experimental Design:We defined an input processing pro-
gramming task, specifically, a thumbnail generator for files
that may contain multiple images, as in Section 2. We re-
cruited subjects to write the program. These subjects were
drawn from the population of active developers at MIT, in-
cluding doctoral students and post-doctoral researchers. The
study was approved by the institutional review board.

The Wilcoxon signed-rank test [53] tests the location shift
of paired samples. As directed by the test, we first manually
matched pairs of demographically similar subjects based
on educational background, programming experience in the
past five years, and knowledge of C/C++.4 We next randomly
assigned each pair of subjects to either the inspect group or
the control group. Both groups performed the programming
task on a virtual machine. We then analyzed the resulting
developer programs with the Wilcoxon signed-rank test.
Independent Variable: The only difference between the
two groups was the use of the inspect construct. The in-
spect group used the full RIFL language. The control group
used RIFL without the inspect construct, but with standard
constructs for control flow and error handling. To minimize
other differences, we purposefully disabled the special er-
ror logs for inspect (which, if enabled, would provide the
inspect group with additional helpful information).
Dependent Variables: Before performing experiments, we
decided to analyze all programs focusing on their defects,
behavior on a range of inputs, and program complexity. We
were most interested in the number of total defects.
● Defects: To address RQ1, we manually analyzed the de-
fects in all programs from the experiment, based on a pre-
defined list of possible defects which we extended during
the analysis. Tables 2 and 3 present the lists of possible
fatal defects and other defects, respectively, where the first
column presents abbreviations and the second column de-
scribes the defects in detail. We say that a program has a
defect if the defect appears anywhere in the program.
● Behavior on test inputs: To address RQ2 and RQ3, we
predefined a range of test inputs to expose possible defects.
For each test input, we compared the behavior of the two

4To minimize noise, we matched C/C++ knowledge because RIFL resembles
C/C++ in syntax, program layout, and memory management interface.

Table 2. Possible fatal defects. These defects are predefined,
except for the underlined defect which is new observed.

Defect Description

AWL Out-of-bounds array write when reading input, triggered by
input fields that are longer than an input buffer.

AWO Out-of-bounds array write when reading input, triggered by
an integer overflow that causes overly small memory alloca-
tion.

ARL Out-of-bounds array read during computation, triggered by
image dimensions that are too large for an input buffer.

ARO Out-of-bounds array read during computation, triggered by an
integer overflow that causes overly small memory allocation.

DS Division by zero during computation, triggered by a zero
scaling factor.

DD Division by zero when checking integer overflow, triggered
by a zero dimension.

NA Null array access when reading input, triggered by failed
memory allocation.

IL Infinite loop when reading illegal input units.

Table 3. Possible other defects. These defects are predefined,
except for the underlined defects which are new observed.

Defect Description

MP Memory leak evenwhen processing common legal input units.
MS Memory leak when skipping input units.
WP Wrong behavior from producing partial outputs for illegal

input units.
WS Wrong behavior from desynchronization for at least one input

unit after illegal input units.
WM Wrong behavior from misusing illegal input units and produc-

ing outputs for these illegal input units as if they are legal.
WA Wrong behavior from aborting on illegal input units.

programs from each pair of subjects. These inputs include
common legal inputs that test the main functionality, rare
legal inputs that test corner cases that still satisfy the input
specification but may be incorrectly handled by developers,
and illegal inputs that test the error-detection and error-
handling code. We extended the list of inputs to trigger
new defects observed from code review. All of these inputs
and their correct outputs are available [42].
● Comparisonwith failure-oblivious executions:To ad-
dress RQ4, we implemented a failure-oblivious computing
(FOC) [38] version for the control group’s language. This
implementation has the same behavior as the original con-
trol group language in benign situations and differs in
erroneous situations that would otherwise cause crashes.
Specifically, the FOC implementation (1) returns value zero
for divide-by-zero expressions, out-of-bounds array reads,
and null array reads and (2) silently ignores out-of-bounds
array writes and null array writes. For each test input,
we observed the behavior of the control group programs
running with failure-oblivious computing. For reference,
we also analyzed the behavior of programs that entered

SLE’17, October 23–24, 2017, Vancouver, Canada Jiasi Shen and Martin Rinard

infinite loops, assuming the presence of tools [14] that help
programs (1) escape from infinite loops and (2) continue
executing the instructions that follow the escaped loop.
● Program complexity: To addressRQ5, wemeasured pro-
gram complexity in terms of predefined metrics. Control
flowmetrics include (1) cyclomatic complexity [28], which
indicates the complexity of the decision structure of a pro-
gram, and (2) number of conditional clauses in conditional
predicates and assertion statements. Code size metrics in-
clude (1) number of lines in the source code, (2) number of
all statements, and (3) number of unconditional statements.

Experimental Procedure: The experiment contains a lan-
guage tutorial and the thumbnail generator task. In the tu-
torial stage, each subject reads a language manual, runs an
example program, and writes two small programs that may
be helpful for implementing the thumbnail generator. These
two tasks are designed to interactively teach subjects the
experimental languages and to calibrate the two groups in
terms of language understanding before they start the task.
The specification for the thumbnail generator task ex-

plains the program functionality with typical inputs and
explicitly states that the program should be able to handle
arbitrary inputs by skipping malformed images. Complete
instructions for the experiment are available [5, 42]. The
experiments are unlimited in duration. To gain more insight
into the developers’ experience, we recorded and examined
full screen recordings of the developers as they worked.
Prior to collecting data, we used a pilot experiment to

estimate the effect size and the number of subjects needed.
We decided to recruit ten subjects.

4.2 Results
Subjects: Ten subjects participated. None of them had any
prior experience with RIFL. None of them knew about the
design or the goals of the study except that it was about lan-
guage features and program complexity. All subjects volun-
teered for the study for five dollars compensation. We denote
each subject with a letter that stands for the group followed
by a number that stands for the pair. Letters “i” and “c” de-
note the inspect group and the control group, respectively.
The subjects were matched up into five pairs (numbered
1 through 5), based on the similarity of their backgrounds.
Among the five pairs, four pairs (2; 3; 4; 5) received bachelor’s
degrees in Computer Science or equivalent majors and one
pair (1) in Electrical Engineering. Two pairs (1; 2) received
C/C++ education in the past five years and primarily write
scientific-computing programs in Python and Matlab. The
other three pairs (3; 4; 5) have been proficient with C/C++
for at least five years. Two of them (3; 4) primarily write
system-level programs in C/C++ and Go. The other pair (5)
has trained for competitive programming in C/C++.
We observed that six subjects did not check that their

programs generated outputs that matched the specification
precisely. Trivial fixes, such as adding the value ‘0’ to the

Table 4. Defects in inspect (i1–i5) and control (c1–c5) group
programs. Letter “X” denotes the existence of a defect.

Defect i1 i2 i3 i4 i5 c1 c2 c3 c4 c5

AWL X X X
AWO
ARL X
ARO X X X X
DS X X X X
DD
NA X X X X X
IL X

Fatal 0 0 0 0 0 4 5 2 4 3
MP X X X X X
MS X X X
WP X X
WS X X
WM X X X X X X X
WA X X

Other 1 0 1 2 2 2 4 0 4 5
Total 1 0 1 2 2 6 9 2 8 8

final result, brought the programs into compliance. Two of
these fixes (i4; c5) were applied immediately on the scene
after the participants said that they had finished, when the
problem was brought to their attention. The other four (i1;
c1; c2; i3) were fixed during our analysis.
Most subjects took comparable time, between one and

two hours, to finish the entire experiment including tutorial.
Two subjects (c1; c2) took between two and three hours.
Measurements: We provide the full raw data online [5].
Table 4 presents the defects found in all developer programs.
Each column represents a program by the name of the devel-
oper. The rows are: the list of fatal defects (first eight rows),
number of fatal defects (“Fatal”), list of other defects (next
six rows), number of other defects (“Other”), and number of
all defects (“Total”). Table 5 presents the behavior of these
programs processing the test inputs. Each column represents
a program. We denote the failure-oblivious executions of
the control group programs with “foc” followed by the pair
number. The rows are: behavior on common legal inputs
(the first row), behavior on rare legal inputs (next four rows),
number of crashes or infinite loops and the number of in-
correct outputs on rare legal inputs (“Crash/Loop rare” and
“Incorrect/Explode rare”), behavior on illegal inputs (next
21 rows), number of crashes or infinite loops and number
of incorrect outputs on illegal inputs (“Crash/Loop illegal”
and “Incorrect/Explode illegal”), and number of crashes or
infinite loops and the number of incorrect outputs on all in-
puts (“Crash/Loop total” and “Incorrect/Explode total”). We
define an incorrect output to explode if the output size is pro-
portional to an input value, instead of to the input size. The
reasons for the incorrect behavior in Table 5 are the defects
in Table 4. Figure 5 presents the complexity measurements
for all developer programs. Vertical axes in Figures 5a, 5b,
5c, 5d, and 5e represent cyclomatic complexity, number of

Robust Programs with Filtered Iterators SLE’17, October 23–24, 2017, Vancouver, Canada

Table 5. Behavior of the inspect group programs (i1–i5), original control group programs (c1–c5), and failure-obliviously
executed control group programs (foc1–foc5) processing test inputs. These inputs are predefined, except for the underlined input
which is new developed. Letters “C”, “L”, “W”, and “E” denote crashing, entering an infinite loop, producing incorrect (wrong)
and small outputs, and producing incorrect and exploding outputs, respectively. Letter “s” denotes data desynchronization for
at least one subsequent input unit. Letter “a” denotes aborting. Combination “Ls” denotes that the program enters an infinite
loop and that the program would desynchronize after escaping from the infinite loop. Empty cells denote correct behavior.

Input Category i1 i2 i3 i4 i5 c1 c2 c3 c4 c5 foc1 foc2 foc3 foc4 foc5

good common legal
bufovfverylongname rare legal C C W

div0h rare legal
div0w rare legal

heapovf2 rare legal C C C C C W W W W
Crash/Loop rare legal 0 0 0 0 0 1 2 1 2 1 0 0 0 0 0

Incorrect/Explode rare legal 0 0 0 0 0 0 0 0 0 0 1 2 1 0 1
bufovfint1 illegal C C C C E E E Es
bufovfint2 illegal C C C C E E E Es
bufovfint3 illegal C C C C C E E E E
bufovfint4 illegal C C C C E W E Es
charh illegal W W Ws W W Ws W

charpix1 illegal W W W W Ws Wa W Ws Wa
charpix2 illegal Ls Wa Ls Wa
chars illegal W W C W W W W

chartrail illegal Ws Ws Ws Ws
charw1 illegal W W Ws W W Ws W
charw2 illegal C W Ws W W Ws
div0s illegal C C C C W W W W
empty illegal

heapovf1 illegal C C C C C E Ls E
intovf illegal
long illegal C C C Ws Ws Ws
nullint illegal W W Ws Wa Ws W Ws Wa Ws
short1 illegal W Ls W W Ls W
short2 illegal C Ws Ws W Ws Ws
short3 illegal W Ls W W Ls W
short4 illegal C C Ws W Ws Ws

Crash/Loop illegal 0 0 0 0 0 10 12 2 7 6 0 4 0 0 0
Incorrect/Explode illegal 0 0 2 1 4 7 7 0 3 11 16 14 1 8 17

Crash/Loop total 0 0 0 0 0 11 14 3 9 7 0 4 0 0 0
Incorrect/Explode total 0 0 2 1 4 7 7 0 3 11 17 16 2 8 18

� � � � �

��

��

��

��

����������

����������

(a) Cyclomatic complexity

� � � � �

�

��

��

��

��

�����������

�������

(b) Conditional clauses
� � � � �

��

���

���

����� ��

����

(c) Lines of code

� � � � �

��

��

��

��

���

���

����������

(d) All statements

� � � � �

��

��

��

��

�������-

������ �����

(e) Unconditional stmts� � � � �

��

��

��

��

����������
����������

������� ����� ������� �����

Figure 5. Complexity measurements for developer study

conditional clauses, lines of code, number of all statements,
and number of unconditional statements, respectively. Hori-
zontal axes represent the five pairs of subjects.
Statistical Analysis: We applied the one-sided Wilcoxon
signed-rank tests [53] on all measurements using R [36].
We assume that the differences are comparable across pairs
[46]. According to the test results, we observed statistical

significance to reject null hypotheses where the p-values are
less than the standard significance level, 0.05. Specifically:

● Defects, RQ1: The inspect group has significantly fewer
defects (p = 0.029) and fewer fatal defects (p = 0.029) than
the control group. See Table 4.

SLE’17, October 23–24, 2017, Vancouver, Canada Jiasi Shen and Martin Rinard

● Survival, RQ2: The inspect group crashes or enters infi-
nite loops on significantly fewer occasions than the control
group when processing rare legal inputs (p = 0.027), illegal
inputs (p = 0.031), and all inputs (p = 0.031). See Table 5.
● Incorrect outputs with FOC, RQ4: The inspect group
produces fewer incorrect outputs than the failure-oblivious
executions of the control group programs when processing
rare inputs (p = 0.044). See Table 5.
● Program complexity, RQ5: The inspect group programs
have significantly smaller cyclomatic complexity (p = 0.031)
and fewer conditional clauses (p = 0.031) than the control
group. See Figures 5a and 5b.
Apart from these statistically significant results, we also

observed the following interesting tendencies:
● Defects, RQ1: The inspect group has fewer non-fatal de-
fects than the control group (p = 0.068). See Table 4.
● Incorrect outputs, RQ3: The inspect group produces
fewer incorrect outputs than the original control group
when processing illegal inputs (p = 0.064). See Table 5.
● Incorrect outputs with FOC, RQ4: The inspect group
produces fewer incorrect outputs than the failure-oblivious
control group when processing illegal inputs (p = 0.063)
and all inputs (p = 0.050). See Table 5.
● Program complexity, RQ5: The inspect group programs
have fewer lines of code (p = 0.052), fewer all statements
(p = 0.063), and fewer unconditional statements (p = 0.063).
See Figures 5c, 5d, and 5e.
Our overall conclusion is that these results support the

hypothesis that filtered iterators can enable a range of devel-
opers to produce robust programs with significantly fewer
defects than comparable developers using standard language
constructs. We also note that the numerous defects, includ-
ing defects corresponding to typical security vulnerabilities,
present in the control group programs are consistent with
defects observed in input processing code more broadly.

4.3 Discussion
Program Robustness: Defects, survival, and incorrect out-
puts are three measures of program robustness. The experi-
mental results show that, for our programs, filtered iterators
reduced defects, increased survival, and reduced incorrect
outputs. We attribute these improvements to the ability of
filtered iterators to (1) eliminate program crashes completely,
(2) discard bad input units atomically, which enables more
predictable program behavior by preventing partially cor-
rupted program state or outputs, (3) advance to the next
input unit automatically, which prevents desynchronization
on errors, and (4) reduce the program complexity, which al-
lows developers to reason about their programs more easily
and to produce fewer non-fatal defects.
Program Complexity: The results show that filtered itera-
tors significantly reduced the cyclomatic complexity and the
number of conditional clauses. The inspect group programs

contain more straightforward code, using assertions to re-
place many of the more convoluted error-handling checks
that the control group programs need. Also note that, for
cyclomatic complexity, the inspect group cluster in a smaller
range (σ = 1.34) while the control group scatter in a larger
range (σ = 9.69). This difference in aggregation indicates that
filtered iterators reduced both the complexity and the num-
ber of different designs for decision structures. As an insight,
with the language automatically handling exceptional situa-
tions, developers can be relieved from anticipating certain
corner cases and focus more on the main functionality.

The code size—lines of code, all statements, and uncondi-
tional statements—was also reduced, though not statistically
significant. We attribute these improvements to the ability
of filtered iterators to (1) ensure atomic recovery, which pre-
vents bad input units from corrupting the data structures
accessed across multiple input units even when the inspect
group programs omit the code for maintaining these data
structures, and (2) eliminate the code that identifies bound-
aries between input units and prevents desynchronization in
case of bad input units. We attribute the lack of significance
here to the noise caused by various approaches to imple-
menting the same functionality. For example, program i1 is
longer than program c1 because (1) i1 elaborates interme-
diate computations as individual statements on temporary
data structures and (2) c1 reads all fields in a line using a loop,
which reuses code. Despite these implementation variations,
the inspect group still tends to have shorter code.
Defects: The control group programs contain a substan-
tial number of input processing defects, highlighting the
difficulty of developing robust input processing code using
current language constructs.
Threats to Validity: Using standalone programming tasks
could limit the ability to generalize the results to industrial
practice. Participant variation might affect results. We mit-
igated by manually matching similar participants and ran-
domly assigning each pair into groups [53]. One group might
learn faster. We mitigated by having participants finish tuto-
rial tasks before starting the thumbnail task. A new language
could affect one group more. We mitigated by matching par-
ticipants into pairs with similar language experience and by
manually examining screen recordings to verify that partici-
pants worked with the new language without changing their
programs’ behavioral framework. Participants might guess
our hypotheses and be more or less careful handling errors
than normal. We mitigated by not revealing our goals and
design to either group. We provide full design and raw data
[5] for reproduction.

5 Other Input File Formats
In addition to the controlled experiment, we also investi-
gated the use of RIFL for the following input file formats.
Binary formats include network traffic capture file format
PCAP [6, 16], image format PNG [11], and file compression

Robust Programs with Filtered Iterators SLE’17, October 23–24, 2017, Vancouver, Canada

format ZIP [1]. Text formats include JavaScript object format
JSON [12], three-dimensional object geometry format OBJ
[3], and table format CSV [40]. Each format is processed by
a benchmark program. An analysis shows that, compared
to the conventional versions, the full RIFL versions have on
average 62.2% smaller cyclomatic complexity, 59.1% fewer
conditional clauses, 41.9% fewer lines of code, 38.5% fewer
all statements, and 34.2% fewer unconditional statements. A
more exhaustive evaluation of the data from these experi-
ments is available in our technical report [42].

6 Related Work
Language Constructs: Iterators [25] generalize loops over
collections. Filter functions [48] apply a predicate to extract
a subset of elements from a collection. In contrast to explicit
filtering predicates, filtered iterators use the program exe-
cution as an implicit filter. The result is automatic detection
and recovery from a range of errors. Exception handling
[19] can improve program structure by separating common-
case and error-handling code. In contrast, filtered iterators
additionally (1) decompose inputs into input units, (2) pro-
vide transactional semantics that atomically discards bad
input units, and (3) provide for continued processing of sub-
sequent input units. Implementing filtered iterator function-
ality using exceptions would require changing the language
semantics to support (1) atomic execution, that is, discard-
ing bad input units atomically and continuing execution,
and (2) the decomposition of inputs into input units. Re-
covery blocks [7] and N-version programming [8] tolerate
software faults using multiple implementations of the same
component. Bristlecone [17] ensures error-free execution
using decoupled transactional tasks according to high-level
task specifications. Shinnar et al. [43] propose the try_all
construct for C# programs. Warth et al. [51] propose the
“worlds” construct for JavaScript programs. These constructs
combine exception handling with rollback of program state,
with the goal of ensuring data structure consistency and con-
trolling the scope of in-memory side effects in the presence
of exceptions. The motivation for filtered iterators is differ-
ent. Specifically, filtered iterators enable robust execution
for programs that process input units. To this end, filtered
iterators, try_all, and “worlds” all preserve data structure
consistency and control side effects. But filtered iterators also
detect and discard bad input units, roll back outputs, and
ensure that every iteration begins its execution at the start
of the next input unit. We also evaluate the effectiveness of
filtered iterators using a controlled experiment.
Recovery by Manipulating Execution: Failure-oblivious
techniques [27, 38] purposefully change the program seman-
tics to survive inputs that the program would otherwise be
unable to process. Error virtualization [44] recovers program
execution by turning function executions into transactions
and mapping faults into return values used by the applica-
tion code. These techniques aim to change the semantics of

existing programs to improve robustness, but with uncertain
impacts on the semantics of the program. Filtered iterators
integrate error handling in the language semantics.
Recovery with Replay: Transactional recovery techniques
such as backward recovery [15] and forward recovery [23]
recover programs from transient errors. Rx [35] rolls back
and replays programs in new configurations to survive fail-
ures. These techniques rely on the existence of alternative
non-deterministic computations.
Empirical Studies That Compare Languages: Empirical
studies have compared programming languages by analyz-
ing code repositories [9, 32, 37] or performing controlled
experiments on developers [22, 34, 49]. We similarly use a
rigorous controlled experiment on developers and detect
statistical significance. One difference is that our experiment
evaluates the design of a novel language construct, while the
cited experiments evaluate existing languages.

7 Conclusion
Input processing defects are a common source of software er-
rors and security vulnerabilities. We propose a new language
construct, filtered iterators, to help developing reliable and
robust programs. The statistically significant results from
a developer study demonstrate the empirical benefits that
filtered iterators can provide.

Acknowledgments
We thank Deokhwan Kim, Julia Rubin, and the anonymous
reviewers for their insightful comments. This research was
supported by DARPA (Grant FA8750-14-2-0242).

References
[1] 1989. .ZIP Application Note. https://www.pkware.com/support/zip-

app-note/. (1989).
[2] 1990. GRAPHICS INTERCHANGE FORMAT Version 89a.

http://www.w3.org/Graphics/GIF/spec-gif89a.txt. (1990).
[3] 1996. Wavefront OBJ File Format Summary.

http://www.fileformat.info/format/wavefrontobj/egff.htm. (1996).
[4] 2017. CVE – Common Vulnerabilities and Exposures.

http://cve.mitre.org/. (2017).
[5] 2017. SLE 2017 RIFL Artifact. http://people.csail.mit.edu/jiasi/sle2017_

rifl_artifact/ and https://people.csail.mit.edu/rinard/paper/sle17.rifl.
artifact. (2017).

[6] 2017. Wireshark. https://www.wireshark.org/. (2017).
[7] T. Anderson and R. Kerr. 1976. Recovery Blocks in Action: A System

Supporting High Reliability. In Proceedings of the 2Nd International
Conference on Software Engineering (ICSE ’76). 447–457.

[8] A. Avizienis. 1985. The N-Version Approach to Fault-Tolerant Software.
IEEE Trans. Softw. Eng. 11, 12 (Dec. 1985), 1491–1501.

[9] P. Bhattacharya and I. Neamtiu. 2011. Assessing Programming Lan-
guage Impact on Development and Maintenance: A Study on C and
C++. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11). 171–180.

[10] S. Biswas, J. Huang, A. Sengupta, andM. D. Bond. 2014. DoubleChecker:
Efficient Sound and Precise Atomicity Checking. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). 28–39.

[11] T. Boutell. 1997. PNG (Portable Network Graphics) Specification Ver-
sion 1.0. (1997).

http://people.csail.mit.edu/jiasi/sle2017_rifl_artifact/
http://people.csail.mit.edu/jiasi/sle2017_rifl_artifact/
https://people.csail.mit.edu/rinard/paper/sle17.rifl.artifact
https://people.csail.mit.edu/rinard/paper/sle17.rifl.artifact

SLE’17, October 23–24, 2017, Vancouver, Canada Jiasi Shen and Martin Rinard

[12] T Bray. 2014. JavaScript Object Notation (JSON) Data Interchange
Format. http://www.rfc-editor.org/rfc/rfc7159.txt. (March 2014). RFC
7159.

[13] J. Burnim, G. Necula, and K. Sen. 2011. Specifying and Checking Se-
mantic Atomicity for Multithreaded Programs. In Proceedings of the
Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XVI). 79–90.

[14] M. Carbin, S. Misailovic, M. Kling, and M. C. Rinard. 2011. Detect-
ing and Escaping Infinite Loops with Jolt. In Proceedings of the 25th
European Conference on Object-oriented Programming (ECOOP’11). 609–
633.

[15] K.M. Chandy and C.V. Ramamoorthy. 1972. Rollback and Recovery
Strategies for Computer Programs. Computers, IEEE Transactions on
C-21, 6 (June 1972), 546–556.

[16] L. Degioanni, F. Risso, and G. Varenni. 2004. PCAP Next Genera-
tion Dump File Format. https://www.winpcap.org/ntar/draft/PCAP-
DumpFileFormat.html. (March 2004).

[17] B. Demsky and A. Dash. 2008. Bristlecone: A Language for Robust
Software Systems. In Proceedings of the 22Nd European Conference on
Object-Oriented Programming (ECOOP ’08). 490–515.

[18] R. Fielding and J. Reschke. 2014. Hypertext transfer protocol
(HTTP/1.1): Semantics and content. (2014).

[19] J. B. Goodenough. 1975. Exception Handling: Issues and a Proposed
Notation. Commun. ACM 18, 12 (Dec. 1975), 683–696.

[20] J. Gray and A. Reuter. 1992. Transaction Processing: Concepts and
Techniques (1st ed.).

[21] E. Hamilton. 1992. JPEG File Interchange Format. (1992).
[22] S. Hanenberg. 2010. An Experiment About Static and Dynamic Type

Systems: Doubts About the Positive Impact of Static Type Systems on
Development Time. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’10). 22–35.

[23] K. Huang and J. Wu E. B. Fernández. 1998. A Generalized Forward
Recovery Checkpointing Scheme. In IPPS/SPDP Workshops. 623–643.

[24] J.F. Kurose and K.W. Ross. 2010. Computer Networking: A Top-down
Approach.

[25] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. 1977. Abstraction
Mechanisms in CLU. Commun. ACM 20, 8 (Aug. 1977), 564–576.

[26] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard. 2012.
Automatic Input Rectification. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). 80–90.

[27] F. Long, S. Sidiroglou-Douskos, and M. Rinard. 2014. Automatic Run-
time Error Repair and Containment via Recovery Shepherding. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’14). 227–238.

[28] T. J. McCabe. 1976. A Complexity Measure. IEEE Trans. Softw. Eng. 2,
4 (July 1976), 308–320.

[29] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A.
Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al. 2010.
The Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome research 20, 9 (2010),
1297–1303.

[30] B. P. Miller, L. Fredriksen, and B. So. 1990. An Empirical Study of the
Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32–44.

[31] S. Nagarakatte, J. Zhao, M. M.K. Martin, and S. Zdancewic. 2010. CETS:
Compiler Enforced Temporal Safety for C. In Proceedings of the 2010
International Symposium on Memory Management (ISMM ’10). 31–40.

[32] S. Nanz and C. A. Furia. 2015. A Comparative Study of Programming
Languages in Rosetta Code. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE ’15). 778–788.

[33] G. C. Necula, S. McPeak, and W. Weimer. 2002. CCured: Type-safe
Retrofitting of Legacy Code. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
’02). 128–139.

[34] V. Pankratius, F. Schmidt, and G. GarretÃşn. 2012. Combining func-
tional and imperative programming for multicore software: An em-
pirical study evaluating Scala and Java. In 2012 34th International
Conference on Software Engineering (ICSE). 123–133.

[35] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. 2005. Rx: Treating Bugs
As Allergies—a Safe Method to Survive Software Failures. SIGOPS
Oper. Syst. Rev. 39, 5 (Oct. 2005), 235–248.

[36] R Core Team. 2015. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org

[37] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. 2014. A Large Scale
Study of Programming Languages and Code Quality in Github. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014). 155–165.

[38] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S. Bee-
bee, Jr. 2004. Enhancing Server Availability and Security Through
Failure-oblivious Computing. In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume 6
(OSDI’04). 21–21.

[39] O. Ruwase and M. S Lam. 2004. A Practical Dynamic Buffer Overflow
Detector.. In NDSS, Vol. 2004. 159–169.

[40] Y. Shafranovich. 2005. Common Format and MIME Type for Comma-
Separated Values (CSV) Files. https://tools.ietf.org/html/rfc4180. (Oct.
2005). RFC 4180.

[41] N. Shavit and D. Touitou. 1995. Software transactional memory. In
Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing (PODC ’95). 204–213.

[42] J. Shen and M. Rinard. 2015. Filtered Iterators for Safe and Robust
Programs in RIFL. http://hdl.handle.net/1721.1/100542. (2015). http:
//hdl.handle.net/1721.1/100542 MIT-CSAIL-TR-2015-036.

[43] A. Shinnar, D. Tarditi, M. Plesko, and B. Steensgaard. 2004. Integrating
support for undo with exception handling. Technical Report. Microsoft
Research. MSR-TR-2004-140.

[44] S. Sidiroglou and A. D. Keromytis. 2004. Using Execution Transactions
To Recover From Buffer Overflow Attacks. Technical Report. Columbia
University Computer Science Department. http://academiccommons.
columbia.edu/item/ac:109823 CUCS–031–04.

[45] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard. 2015. Auto-
matic Error Elimination by Horizontal Code Transfer Across Multiple
Applications. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2015). 43–54.

[46] S. Siegel. 1956. Nonparametric statistics for the behavioral sciences.
[47] P. Stanley-Marbell and M. Rinard. 2015. Lax: Driver Inter-

faces for Approximate Sensor Device Access. In 15th Workshop
on Hot Topics in Operating Systems (HotOS XV). Kartause It-
tingen, Switzerland. https://www.usenix.org/conference/hotos15/
workshop-program/presentation/stanley-marbell

[48] G. L. Steele, Jr. 1990. Common LISP: The Language (2Nd Ed.).
[49] A. Stefik and S. Siebert. 2013. An Empirical Investigation into Pro-

gramming Language Syntax. Trans. Comput. Educ. 13, 4, Article 19
(Nov. 2013), 40 pages.

[50] Symantec Inc. 2005. Symantec Internet security threat report: Vol. VII.
Technical Report.

[51] A.Warth, Y. Ohshima, T. Kaehler, and A. Kay. 2011. Worlds: Controlling
the Scope of Side Effects. In Proceedings of the 25th European Conference
on Object-oriented Programming (ECOOP’11). 179–203.

[52] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. 2003.
Overview of the H.264/AVC Video Coding Standard. IEEE Trans. Cir.
and Sys. for Video Technol. 13, 7 (July 2003), 560–576.

[53] F. Wilcoxon. [n. d.]. Biometrics Bulletin 6 ([n. d.]), 80–83.
[54] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.

Wesslén. 2000. Experimentation in Software Engineering: An Introduc-
tion.

https://www.R-project.org
http://hdl.handle.net/1721.1/100542
http://hdl.handle.net/1721.1/100542
http://hdl.handle.net/1721.1/100542
http://academiccommons.columbia.edu/item/ac:109823
http://academiccommons.columbia.edu/item/ac:109823
https://www.usenix.org/conference/hotos15/workshop-program/presentation/stanley-marbell
https://www.usenix.org/conference/hotos15/workshop-program/presentation/stanley-marbell

	Abstract
	1 Introduction
	1.1 Main Concept
	1.2 Contributions

	2 Example
	2.1 Conventional C Version
	2.2 C/RIFL Version

	3 The RIFL Language
	3.1 Syntax
	3.2 Semantics
	3.3 Implementation

	4 Controlled Experiment
	4.1 Methodology
	4.2 Results
	4.3 Discussion

	5 Other Input File Formats
	6 Related Work
	7 Conclusion
	References

