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Epistemic logics model how agents reason about their beliefs and the beliefs of other agents. Exist-

ing logics typically assume the ability of agents to reason perfectly about propositions of unbounded

modal depth. We present DBEL, an extension of S5 that models agents that can reason about epis-

temic formulas only up to a specific modal depth. To support explicit reasoning about agent depths,

DBEL includes depth atoms Ed
a (agent a has depth exactly d) and Pd

a (agent a has depth at least d).

We provide a sound and complete axiomatization of DBEL.

We extend DBEL to support public announcements for bounded depth agents and show how the

resulting DPAL logic generalizes standard axioms from public announcement logic. We present two

alternate extensions and identify two undesirable properties, amnesia and knowledge leakage, that

these extensions have but DPAL does not. We provide axiomatizations of these logics as well as

complexity results for satisfiability and model checking.

Finally, we use these logics to illustrate how agents with bounded modal depth reason in the clas-

sical muddy children problem, including upper and lower bounds on the depth knowledge necessary

for agents to successfully solve the problem.

1 Introduction

Epistemic logics model how agents reason about their beliefs and the beliefs of other agents. These

logics generally assume the ability of agents to perfectly reason about propositions of unbounded modal

depth, which can be seen as unrealistic in some contexts [7, 19].

To model agents with the ability to reason only to certain preset modal depths, we extend the syntax

of epistemic logic S5 [8] to depth-bounded epistemic logic (DBEL). The DBEL semantics assigns each

agent a depth in each state. For an agent to know a formula ψ in a given state of a model, the assigned

depth of the agent must be at least the modal depth of ψ , i.e. d (ψ). To enable agents to reason about

their own and other agents’ depths, DBEL includes depth atoms Ed
a (agent a has depth exactly d) and

Pd
a (agent a has depth at least d). For example, the formula Ka(P

5
b → Kb p) expresses the fact that, “agent

a knows that whenever agent b is depth at least 5, agent b knows the fact p.” Depth atoms enable agents

to reason about agent depths and their consequences in contexts in which each agent may have complete,

partial, or even no information about agent depths (including its own depth).

We provide a sound and complete axiomatization of DBEL (Section 2), requiring a stronger version

of the LINDENBAUM lemma which ensures each agent can be assigned a depth (proven in Appendix B).

Its satisfiability problem for two or more agents is immediately PSPACE-hard (because DBEL includes

S5 as a syntactic fragment). We provide a depth satisfaction algorithm for DBEL in PSPACE (Section 5),

establishing that the DBEL satisfiability problem is PSPACE-complete for two or more agents.

Public announcement logic (PAL) [9] extends epistemic logic with public announcements. PAL

includes the following public announcement and knowledge axiom (PAK), which characterizes agents’

knowledge after public announcements,

[ϕ ]Kaψ ↔ (ϕ → Ka[ϕ ]ψ). (PAK)
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We extend DBEL to include public announcements (Section 3). The resulting depth-bounded public an-

nouncement logic (DPAL) provides a semantics for public announcements in depth-bounded epistemic

logic, including a characterization of how agents reason when public announcements exceed their epis-

temic depth. We prove the soundness of several axioms that generalize (PAK) to DPAL, first in a setting

where each agent has exact knowledge of its own depth, then in the general setting where each agent may

have partial or even no knowledge of its own depth. We provide a sound axiom set for DPAL as well as

an upper bound on the complexity of its model checking problem 1

We also present two alternate semantics that extend DBEL with public announcements (Section 3.3).

The resulting logics verify simpler generalizations of (PAK) in the context of depth-bounded agents,

but each has one of two undesirable properties that we call amnesia and knowledge leakage. Amnesia

causes agents to completely forget about all facts they knew after announcements, whereas knowledge

leakage means shallow agents can infer information from what deeper agents have learned from a public

announcement. DPAL suffers from neither of these two undesirable properties. We provide a sound

and complete axiomatization of the first of the two alternate semantics (Section 4). We also prove the

PSPACE-completeness of its satisfiability problem and show that its model checking problem remains

P-complete (Section 5).

Finally, we use these logics to illustrate how agents with bounded depths reason in the muddy chil-

dren reasoning problem [8]. We prove a lower bound and an upper bound on the structure of knowledge

of depths required for agents to solve this problem (Section 6).

Related work Logical omniscience, wherein agents are capable of deducing any fact deducible from

their knowledge, is a well-known property of most epistemic logics. The ability of agents to reason

about facts to unbounded modal depth is a manifestation of logical omniscience. Logical omniscience

has been viewed as undesirable or unrealistic in many contexts [8] and many attempts have been made

to mitigate or eliminate it [8, 15, 17]. To the best of our knowledge, only Kaneko and Suzuki [11] below

have involved modal depth in the treatment of logical omniscience in epistemic logic.

Kaneko and Suzuki [11] define the logic of shallow depths GLEF , which relies on a set E of chains

of agents (i1, . . . , ik) for which chains of modal operators Ki1 · · ·Kim can appear. A subset F ⊆ E restricts

chains of modal operators along which agents can perform deductions about other agents’ knowledge.

An effect of bounding agents’ depths in DPAL is creating a set of allowable chains of modal opera-

tors ∪a{(a, i1, . . . , ida
), (i1, . . . , ida

) ∈ A da}. Unlike GLEF , the bound on an agent’s depth is not global

in DPAL, it can also be a function of the worlds in the Kripke possible-worlds semantics [8]. In particu-

lar, DPAL, unlike GLEF , enables agents to reason about their own depth, the depth of other agents, and

(recursively) how other agents reason about agent depths. DPAL also includes public announcements,

which to the best of our knowledge has not been implemented in GLEF .

Kline [12] uses GLEF to investigate the 3-agent muddy children problem, specifically by deriving

minimal epistemic structures F that solve the problem. The proof relies on a series of belief sets with

atomic updates called “resolutions,” with the nested length of the chains in F providing epistemic bounds

on the required reasoning. DPAL, in contrast, includes depth atoms and public announcements as first-

class features. We leverage these features to directly prove theorems expressing that for k muddy chil-

dren, (i) (Theorem 6.2) if the problem is solvable by an agent, that agent must have depth at least k− 1

and know that it has depth at least k−1 (this theorem provides a lower bound on the agent depths required

to solve the problem) and (ii) (Theorem 6.1) if an agent has depth at least k−1, knows it, knows another

agent is depth at least k−2, knows that the other agent knows of another agent of depth k−2, etc., then it

1Arthaud and Rinard [3] present a lower bound for this problem, as well as additional results, proofs and content.
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can solve the problem (this theorem provides an upper bound on the agent depths necessary to solve the

problem). Our depth bounds match the depth bounds of Kline [12] for 3 agents (Theorems 3.1 and 3.3

in [12]), though our bounds also provide conditions on recursive knowledge of depths for the agents as

described above.

Dynamic epistemic logic (DEL) [6, 18] introduces more general announcements. Private announce-

ments are conceptually similar to public announcements in DPAL in that they may be perceived by only

some of the agents. In DEL, model updates depend only on the relation between states in the initial

model and the relations in the action model. But in DPAL, model updates must also take into account

the agent depths in the entire connected components of each state (see Definition 3).

Resource-bounded agents in epistemic logics have been explored by Balbiani et. al [5] (limiting

perceptive and inferential steps), Artemov and Kuznets [2] (limiting the computational complexity of

inferences), and Alechina et. al [1] (bounding the size of the set of formulas an agent may believe at the

same time and introducing communication bounds). Alechina et. al [1] also bound the modal depth of

formulas agents may believe, but all agents share the same depth bound and they leave open the question

of whether inferences about agent depth or memory size could be implemented, which DPAL does.

2 Depth-bounded epistemic logic

The modal depth d (ϕ) of a formula ϕ , defined as the largest number of modal operators on a branch of its

syntactic tree, is the determining factor of the complexity of a formula in depth-bounded epistemic logic

(DBEL). Modal operators are the main contributing factor to the complexity of model checking a for-

mula; the recursion depth when checking satisfiability of a formula is equivalent to its modal depth [14];

and bounding modal depth often greatly simplifies the complexity of the satisfiability problem in epis-

temic logics [16]. Humans are believed to reason within limited modal depth [7, 19].

We extend the syntax of classical epistemic logic by assigning to each agent a in a set of agents A a

depth d(a,s) in each possible world s. The language also includes depth atoms Ed
a and Pd

a to respectively

express that agent a has depth exactly d and agent a has depth at least d.

To know a formula ϕ , agents are required to be at least as deep as d (ϕ) and also know that the

formula ϕ is true in the usual possible-worlds semantics sense [8]. We translate the classical modal

operator Ka from multi-agent epistemic logic into the operator K∞
a with the same properties, therefore

K∞
a ϕ can be interpreted as “agent a would know ϕ if a were of infinite depth”. The operator Kaϕ will

now take the meaning described above, i.e. P
d(ϕ)
a ∧K∞

a ϕ .

Definition 1. The language of DPAL is inductively defined as, for all agents a ∈A and depths d ∈ N,

L
∞ := ϕ = p | Ed

a | P
d
a | ¬ϕ | ϕ ∧ϕ | Kaϕ | K∞

a ϕ | [ϕ ]ϕ .

The K∞
a operator is used mainly as a tool in axiomatization proofs, we call L the fragment of our logic

formulas without any K∞
a operators, which will be used in most of our theorems. We further define H ∞

and H to respectively be the syntactic fragments of L ∞ and L without public announcements [ϕ ]ψ .

The modal depth d of a formula in L ∞ is inductively defined as,

d (p) = d
(

Ed
a

)

= d
(

Pd
a

)

= 0 d (¬ϕ) = d (ϕ) d ([ϕ ]ψ) = d (ϕ)+d (ψ)

d (ϕ ∧ψ) = max(d (ϕ),d (ψ)) d (Kaϕ) = 1+d (ϕ) d (K∞
a ϕ) = 1+d (ϕ).

We defer treatment of public announcements [ϕ ]ψ to Section 3. We work in the framework of S5 [8],

assuming each agent’s knowledge relation to be an equivalence relation, unless otherwise specified—

however, our work could be adapted to weaker epistemic logics [8] by removing the appropriate axioms.
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All propositional tautologies p→ p, etc.

Deduction (Kaϕ ∧Ka(ϕ → ψ))→ Kaψ

Truth Kaϕ → ϕ

Positive introspection (Kaϕ ∧P
d(ϕ)+1
a )→ Ka(P

d(ϕ)
a → Kaϕ)

Negative introspection (¬Kaϕ ∧P
d(ϕ)+1
a )→ Ka¬Kaϕ

Depth monotonicity Pd
a → Pd−1

a

Exact depths Pd
a ↔¬(E

0
a ∨ ·· ·∨Ed−1

a )
Unique depth ¬(Ed1

a ∧Ed2
a ) for d1 6= d2

Depth deduction Kaϕ → P
d(ϕ)
a

Modus ponens From ϕ and ϕ → ψ , deduce ψ

Necessitation From ϕ deduce P
d(ϕ)
a → Kaϕ

Table 1: Sound and complete axiomatization for DBEL over H .

Definition 2. A model in DBEL is defined as a tuple M = (S ,∼,V,d) where S is a set of states,

V : S → 2P is the valuation function for atoms and d : A ×S → N is a depth assignment function.

For each agent a, ∼a is an equivalence relation on S modeling which states are seen as equivalent in the

eyes of a. The semantics are inductively defined over H ∞ by,

(M,s) |= p ⇐⇒ p ∈V (s) (M,s) |= Ed
a ⇐⇒ d(a,s) = d (M,s) |= Pd

a ⇐⇒ d(a,s) ≥ d

(M,s) |= ¬ϕ ⇐⇒ (M,s) 6|= ϕ (M,s) |= ϕ ∧ψ ⇐⇒ (M,s) |= ϕ and (M,s) |= ψ

(M,s) |= K∞
a ϕ ⇐⇒ (∀s′, s∼a s′ =⇒ (M,s′) |= ϕ) (M,s) |= Kaϕ ⇐⇒ (M,s) |= P

d(ϕ)
a ∧K∞

a ϕ .

Note that this definition does not require agents to have any (exact or approximate) knowledge of

their own depth. On the other hand, it does not prohibit agents agents from having exact knowledge of

their own depths, for instance we could model each agent carrying out some ‘meta-reasoning’ about its

own depth 2 leading each agent to know its own depth exactly. These models are a subset of the class of

the models we consider, which we study in more detail in Section 3.1.

As DBEL is an extension of S5 up to renaming of the modal operators, one can expect for it to have

a similar axiomatization: one new axiom is needed to axiomatize Ka and three others for depth atoms.

Theorem 2.1. Axiomatization from Table 1 is sound and complete with respect to DBEL over H .

Proof. Rather than directly showing soundness and completeness, we show it is equivalent to the axiom-

atization of Table 3 in Appendix A on the fragment H , which is shown to be sound and complete over

H ∞ in Theorem A.1. We begin by proving any proposition in H that can be shown using Table 1 can

be shown using Table 3 and then that any proof of a formula in H using the axioms in Table 3 can be

shown using those in Table 1.

For the first direction, we prove that the axioms in Table 1 can be proven using those from Table 3.

Most of them are immediate applications of bounded knowledge within the axioms of Table 3, along with

tautologies when necessary. For positive and negative introspection, see equation (6) below in the proof

of the opposite direction of the equivalence. We prove the least evident axiom, the deduction axiom, here

as an example:

Deduction (K∞
a ϕ ∧K∞

a (ϕ → ψ))→ K∞
a ψ (1)

2For instance deducing P
d(ϕ)
a from the fact that it knows ϕ , or deducing ¬Pn

a from the fact that it does not know Kn
a⊤.
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Bounded knowledge in (1) (K∞
a ϕ ∧K∞

a (ϕ → ψ))→ P
d(ψ)
a → Kaψ (2)

Tautology in (2) P
max(d(ϕ),d(ψ))
a → K∞

a ϕ→ K∞
a (ϕ → ψ)→ P

d(ψ)
a → Kaψ (3)

Repeated depth consistency P
max(d(ϕ),d(ψ))
a → (P

d(ϕ)
a ∧P

d(ψ)
a ) (4)

Bounded knowledge and (3) and (4) P
max(d(ϕ),d(ψ))
a → Kaϕ → Ka(ϕ→ ψ)→ Kaψ (5)

Bounded knowledge in (5) Kaϕ→ Ka(ϕ → ψ)→ Kaψ .

In the other direction, we will show by induction over a proof of a valid formula in H using Table 3

that it can be transformed into a proof with the same conclusion, using only axioms from Table 1. The

transformation of a proof in the first axiomatization is as follows,

• If an item of the proof is a propositional tautology, replace all K∞
a ϕ subformulas by P

d(ϕ)
a → Kaϕ ,

clearly the tautology still holds and it is in Table 1.

• If an item is an instance of the bounded knowledge axiom, replace it with the formula

Kaϕ ↔ (P
d(ϕ)
a ∧P

d(ϕ)
a → Kaϕ) which is a consequence of depth deduction and a tautology (and

therefore can be added to the proof with two extra steps).

• If it uses any of the other axioms, replace it with the corresponding axiom (with the same name)

from Table 1.

We now have a sequence that has the same conclusion (since the conclusion is in H ) and only uses

axioms from Table 1. The last thing to show for this to be a proof in this axiomatization is that all

applications of modus ponens and necessitation are still correct within this sequence. To this end, we

show by induction that each step of the sequence is the same as the original proof where every K∞
a ϕ

subformula in each step has been replaced by P
d(ϕ)
a → Kaϕ .

First, note that this is the case for the two first bullet points of our transformation rules above. This

is also true of each axiom in the table after our transformation: a proof similar to the one in equation (1)

will yield the equivalence for deduction, the only remaining non-trivial cases are positive and negative

introspection. For positive introspection, performing the substitution yields,

(P
d(ϕ)
a → Kaϕ)→ P

d(ϕ)+1
a → Ka(P

d(ϕ)
a → Kaϕ). (6)

Through application of a tautology and the depth monotonicity axiom we find it to be equivalent to,

P
d(ϕ)+1
a → Kaϕ → Ka(P

d(ϕ)
a → Kaϕ). Therefore, up to adding steps to the proof and using tautologies,

we can prove the axiom from Table 1 from the axiom in Table 3 after the substitution. The same can be

said of negative introspection through a similar transformation.

Finally, since modus ponens and necessitation also maintain the property of replacing K∞
a ϕ subfor-

mulas in each step by P
d(ϕ)
a → Kaϕ , it is true that the transformed proof is indeed a proof of the same

conclusion in Table 1’s axiomatization.

3 Depth-bounded public announcement logic

We next present how to incorporate depth announcements in DBEL, which are a key challenge in defin-

ing depth-bounded public announcement logic (DPAL). Recall the axiom (PAK) of public announce-

ment logic, [ϕ ]Kaψ ↔ (ϕ → Ka[ϕ ]ψ). For the right-hand side to be true, agent a must be of depth

d([ϕ ]ψ) = d(ϕ)+ d(ψ) according to DBEL. This suggests that an agent must “consume” d (ϕ) of its
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depth every time an announcement ϕ is made, meaning that an agent’s depth behaves like a depth budget

with respect to public announcements.

Moreover, to model that some agents might be too shallow for the announcement ϕ , each possible

world is duplicated in a negative version where the announcement has not taken place and a positive

version where the announcement takes place in the same way as in PAL. Agents who are not deep

enough to perceive the announcement see the negative and positive version of the world as equivalent.

Definition 3. Models in depth-bounded public announcement logic (DPAL) are defined the same way

as in DBEL and the semantics is extended to L ∞ by (M,s) |= [ϕ ]ψ ⇐⇒ ((M,s) |= ϕ =⇒
(M | ϕ ,(1,s)) |= ψ), where we define M | ϕ to be the model (S ′,∼′,V ′,d′), where,

S
′ = ({0}×S )∪{(1,s), s ∈S , (M,s) |= ϕ}

∼′a is the transitive symmetric closure of Ra such that,

(i,s)Ra (i,s
′) ⇐⇒ s∼a s′ for i = 0,1

(1,s)Ra (0,s) ⇐⇒ (M,s) 6|= P
d(ϕ)
a

V ′((i,s)) =V (s) for i = 0,1

d′(a,(0,s)) = d(a,s)

d′(a,(1,s)) =

{

d(a,s) if d(a,s) < d (ϕ)

d(a,s)−d (ϕ) otherwise.
(7)

Since public announcements are no longer unconditionally and universally heard by all agents, we

revisit the axiom (PAK) in DPAL. The determining factor is depth ambiguity: agents that are unsure

about their own depth introduce uncertainty about which agents have perceived the announcement.

3.1 Unambiguous depths setting

A model verifies the unambiguous depths setting whenever each agent knows its own depth exactly:

∀a,s,s′, s∼a s′ =⇒ d(a,s) = d(a,s′). (8)

The proof of the following theorem is given as Proposition C.1 in Appendix C.

Theorem 3.1. For all ϕ ∈L ∞, the following two properties, respectively called knowledge preservation

and traditional announcements, are valid in DPAL in the unambiguous depths setting,

∀ψ ∈L
∞

a , ¬P
d(ϕ)
a → ([ϕ ]Kaψ ↔ (ϕ → Kaψ)) (KP)

∀ψ ∈L
∞
, P

d(ϕ)
a → ([ϕ ]Kaψ ↔ (ϕ → Ka[ϕ ]ψ)) , (TA)

where L ∞
a is the fragment of L ∞ without depth atoms or modal operators for agents other than a.

Discussion Knowledge preservation (KP) means that an agent who is not deep enough to perceive an

announcement ϕ must not change its knowledge of a formula ψ . However, such a property could not

be true of all formulas ψ , for instance if ψ = KaKbp but b is deep enough to perceive ϕ , then the depth

adjustment formula (7) could mean that b’s depth is now 0, making ψ no longer hold. Even when a

is certain about b’s depth, its uncertainty about what the announcement entails could also mean that

formulas such as ¬Kbp could no longer be true if P
d(ϕ)
b and ϕ → p in the model. This demonstrates
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that in depth-bounded logics public announcements must introduce uncertainty: if a is unsure what b has

perceived, it can no longer hold any certainties about what b does not know. This is not the case in PAL

since all agents perceive all announcements. Our treatment of the depth-ambiguous case in Section 3.2

generalizes (KP) to obtain a property (KP’) that holds on all formulas in L ∞.

Traditional announcements (TA) ensures that announcements behave the same as in PAL when the

agent is deep enough for the announcement. The caveats from the discussion of (KP) no longer apply

here, as any Kb operator that appears in ψ will still appear after the same public announcement operator,

meaning that depth variations or knowledge variations are accounted for.

3.2 Ambiguous depths setting

We now abandon the depth unambiguity assumption from equation (8), and explore how properties (KP)

and (TA) generalize to settings without depth unambiguity. We find a condition that ensures that sufficient

knowledge about other agents’ depths is given to a in order to maintain its recursive knowledge about

other agents. The proof to the following theorem is given as Proposition C.2 in Appendix C.

Theorem 3.2. For any ϕ ∈L ∞, let Fϕ : L ∞→L ∞ be inductively defined as,

Fϕ (p) = Fϕ(E
d
a ) = Fϕ(P

d
a ) =⊤ Fϕ(¬ψ) = Fϕ(ψ) Fϕ(ψ ∧ χ) = Fϕ(ψ)∧Fϕ(χ)

Fϕ(Kaψ) = ¬K∞
a (ϕ → P

d(ϕ)
a )∧K∞

a (ϕ →¬P
d(ϕ)
a ∨P

d(ϕ)+d(ψ)
a )∧K∞

a Fϕ(ψ)

Fϕ(K
∞
a ψ) = ¬K∞

a (ϕ → P
d(ϕ)
a )∧K∞

a Fϕ(ψ) Fϕ([ψ1]ψ2) = Fϕ(ψ1)∧Fϕ(ψ2).

For all ϕ ∈L ∞, the following two properties are valid in DPAL,

∀ψ ∈L
∞
, Fϕ (Kaψ) → ([ϕ ]Kaψ ↔ (ϕ→ Kaψ)) (KP’)

∀ψ ∈L
∞
, K∞

a (ϕ→ P
d(ϕ)
a )→ ([ϕ ]Kaψ ↔ (ϕ→ Ka[ϕ ]ψ)) . (TA’)

3.3 Alternate treatments of model updates for public announcements

One question is whether using a definition of public announcements closer to PAL would produce a

version of the above axioms closer to (PAK). Eager depth-bounded public announcement logic (EDPAL)

below unconditionally decrements the depth value of all agents after public announcements.

Definition 4 (EDPAL). EDPAL extends the DBEL semantics to include public announcements by

defining (M,s) |= [ϕ ]ψ ⇐⇒ ((M,s) |= ϕ =⇒ (M | ϕ ,s) |= ψ), where M | ϕ is the model (S ′,∼′,V,d′)
in which S ′ = {s ∈S , (M,s) |= ϕ}, ∼′a is the restriction of ∼a to S ′, d′(a,s) = d(a,s)−d (ϕ), and d

may take values in Z.

EDPAL has a sound and complete axiomatization based on the axiomatization of DBEL (Theo-

rem 4.1), which also allows us to prove the complexity result of Theorem 5.1.

However, another consequence of its definition is that excessive public announcements in EDPAL

can lead an agent to a state in which it cannot reason anymore, as it has consumed its entire depth budget.

Proposition 3.3 (Amnesia). In EDPAL, the formula ¬P
d(ϕ)
a → [ϕ ]¬Kaψ is valid for all ϕ and ψ .

Proof. If (M,s) 6|= ϕ then the implicand is true. If (M,s) |= ϕ ∧¬P
d(ϕ)
a then the depth of a in (M | ϕ ,s)

will be at most −1, meaning that (M | ϕ ,s) 6|= Kaψ for all ψ .
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In particular, for ψ = ⊤ one notices that standard intuitions about knowledge fail in EDPAL. This

property is undesirable: (i) one may expect agents to maintain some knowledge even after public an-

nouncements that they are not deep enough to understand and (ii) deeper agents should be able to con-

tinue to benefit from the state of knowledge of shallower agents even after the shallower agents have

exceeded their depth.

One way to try to remedy this property is to change model updates in EDPAL to make agents

perceive announcements only when they are deep enough to understand them. The resulting asymmetric

depth-bounded public announcement logic (ADPAL) removes depth from an agent’s budget only when it

is deep enough for an announcement, and only updates its equivalence relation in states where it is deep

enough for the announcement.

Definition 5 (ADPAL). ADPAL extends the DBEL semantics to include public announcements by

defining (M,s) |= [ϕ ]ψ ⇐⇒ ((M,s) |= ϕ =⇒ (M | ϕ ,s) |= ψ), where M | ϕ is the model (S ,∼′,V,d′),

s 6∼′a s′ ⇐⇒ s 6∼a s′ or

{

(M,s) |= P
d(ϕ)
a

(M,s) |= ϕ ⇐⇒ (M,s′) 6|= ϕ ,

d′(a,s) =

{

d(a,s) if d(a,s) < d (ϕ)

d(a,s)−d (ϕ) otherwise.

The relations ∼a are only assumed to be reflexive (as opposed to equivalence relations earlier).

Unfortunately, in ADPAL an agent that is too shallow for an announcement could still learn positive

information that was learned by another agent who is deep enough to perceive the announcement. We

call this property knowledge leakage as reflected in the following proposition.

Proposition 3.4 (Knowledge leakage). ADPAL does not verify the→ direction of (KP’).

Proof. Consider three worlds, {0,1,2} and three agents a,b,c. The relations for a and c are identity, the

relation for b is the symmetric reflexive closure of, 0 ∼b 1 ∼b 2. The depth of a is 1 everywhere, b’s

depth is 0,2,0 in each respective state and the depth of c is 2 everywhere. The atom p0 is true only in 0

and 1. Consider ϕ = KcKc p0, it is true in 0 and 1 only, and consider ψ = Kbp0. Kaψ is not true in state

1, however [ϕ ]Kaψ is. Moreover, one can easily check that Fϕ(Kaψ) is true in that state.

The proof provides a practical example of such leakage in ADPAL and we further demonstrate

knowledge leakage in Proposition 6.4 in the muddy children reasoning problem (see Section 6).

Note how each direction of the equivalence in (KP’) expresses (→) that no knowledge leakage occurs

and (←) no amnesia occurs. As shown in Theorem 3.2, DPAL verifies both directions and thus has

neither amnesia nor knowledge leakage. As reflected in the following proposition, although EDPAL has

amnesia, it doesn’t have knowledge leakage and verifies (TA).

Proposition 3.5. [3] EDPAL verifies (TA) and the → direction in (KP) over ψ ∈ L ∞, but not the

converse.

4 Axiomatizations

Theorem 4.1. The axiomatization in Table 2 is sound and complete with respect to EDPAL (Definition 4)

over the fragment L .
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All axioms from Table 1

Atomic permanence [ϕ ]p↔ (ϕ→ p)

Depth adjustment ∀d ∈ Z, [ϕ ]Ed
a ↔

(

ϕ → E
d(ϕ)+d
a

)

Negation announcement [ϕ ]¬ψ ↔ (ϕ →¬[ϕ ]ψ)
Conjunction announcement [ϕ ](ψ ∧ χ)↔ ([ϕ ]ψ ∧ [ϕ ]χ)

Knowledge announcement [ϕ ](P
d(ψ)
a → Kaψ)↔ (ϕ → P

d(ϕ)+d(ψ)
a → Ka[ϕ ]ψ)

Announcement composition [ϕ ][ψ ]χ ↔ ([ϕ ∧ [ϕ ]ψ ]χ)

Modus ponens From ϕ and ϕ → ψ , deduce ψ

Necessitation From ϕ deduce P
d(ϕ)
a → Kaϕ

Table 2: Sound and complete axiomatization of EDPAL over L .

Proof. Similarly to the proof of Proposition 2.1, rather than directly showing soundness and complete-

ness we show it is equivalent to the axiomatization of Table 4, which is shown to be sound and complete

for EDPAL in Theorem A.2 in Appendix A.

In the first direction, all axioms in Table 2 can be shown using those in Table 4 immediately, either

from the proof of Proposition 2.1 or because they are the same. The only difficulty lies in knowledge

announcement, but a proof similar to equation (1) shows it is sound.

The other direction also follows the exact same proof as in Proposition 2.1: the public announcement

axioms are direct translations of the same axioms in Table 4 by replacing the K∞
a ϕ subformulas with

P
d(ϕ)
a → Kaϕ . The proof transformation from Proposition 2.1 therefore still yields a proof of the same

formula in this axiomatization, which proves completeness.

We now present a sound set of axioms for DPAL. The main missing axioms for a sound and complete

axiomatization are knowledge and public announcements, which we explored in the previous section, and

announcement composition. In fact, announcement composition cannot exist in DPAL, since making a

single announcement of depth d1 + d2 can behave very differently from making an announcement of

depth d1 followed by another of depth d2, for instance when an agent’s depth is between d1 and d1 +d2.

Theorem 4.2. Replacing knowledge announcement by (KP’) and (TA’) and depth adjustment by,

∀d ∈N, [ϕ ]Ed
a ↔

(

ϕ →
(

(P
d(ϕ)
a ∧E

d+d(ϕ)
a )∨ (¬P

d(ϕ)
a ∧Ed

a )
))

in Table 2 produces a set of sound axioms with respect to DPAL 3.

Proof. Theorem 3.2 verifies the two axioms (KP’) and (TA’). The proofs for most axioms follows from

Theorem 4.1 and that knowledge is defined the same way in both semantics. In particular, atomic per-

manence and conjunction announcement axioms are proven in Theorem 3.1’s induction for (KP).

We are left to show depth adjustment,

(M,s) |= [ϕ ]Ed
a ⇐⇒ (M,s) |= ϕ =⇒ (M | ϕ ,(1,s)) |= Ed

a

⇐⇒ (M,s) |= ϕ =⇒

{

d(a,s) = d +d (ϕ) if d(a,s) ≥ d (ϕ)

d(a,s) = d if d(a,s) < d (ϕ)

⇐⇒ (M,s) |= ϕ→
(

(P
d(ϕ)
a ∧E

d+d(ϕ)
a )∨ (¬P

d(ϕ)
a ∧Ed

a )
)

.

3One could also easily add axioms for K∞
a modal operators, for instance using those from Table 4 in Appendix A.
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5 Complexity

We first state that adding depth bounds does not change the complexity of S5 and PAL respectively.

Theorem 5.1. The satisfiability problems for DBEL with n ≥ 2 agents and for EDPAL are PSPACE-

complete.

Proof. The lower bound results from PSPACE-completeness of S5n for n≥ 2 [10] and PAL [14], respec-

tive syntactic fragments of DBEL and EDPAL.

For both logics, we begin by translating Kaϕ subformulas into P
d(ϕ)
a ∧K∞

a ϕ , which only increases

formula size at most linearly. Then, in the case of EDPAL, using the same translation as Lemma 9

of [14], we translate formulas with public announcement ϕ into equivalent formulas t(ϕ) without public

announcement such that |t(ϕ)| is at most polynomial in |ϕ | (this is possible because the axiomatization

of K∞
a with relation to public announcements is the same).

We have therefore transformed our formula ϕ into an equivalent formula in the syntactic fragment

without Ka operators or public announcements of polynomial size relative to the initial formula ϕ’s size.

We can then use the ELE-World procedure from Figure 6 of [14] by re-defining types to accommo-

date for depth atoms. As a reminder, we define cl(Γ) for any set of formulas Γ to be the smallest set of

formulas containing Γ and closed by single negation and sub-formulas. We then say that γ ⊆ cl(Γ) is a

type if all of the following are true,

1. ¬ψ ∈ γ if and only if ψ 6∈ γ when ψ is not a negation

2. if ψ ∧ χ ∈ cl(Γ) then ψ ∧ χ ∈ γ if and only if ψ ∈ γ and χ ∈ γ

3. if K∞
a ψ ∈ γ then ψ ∈ γ

4. if Pd
a ∈ γ then ¬Pd′

a 6∈ γ and Ed′

a 6∈ γ for all d′ < d

5. if Ed
a ∈ γ then Ed′

a 6∈ γ for all d′ 6= d and ¬Pd′

a 6∈ γ for d′ < d

6. if ¬Pd
a ∈ γ then there exists d′ < d such that ¬Ed′

a 6∈ γ

7. ¬P0
a 6∈ γ

Clearly, checking that a subset of cl(Γ) is not a type does not increase the space complexity of the

algorithm. Lemma 18 from [14] remains true here, i.e. the procedure ELE-World returns true if and only

if the formula is satisfiable. It is sufficient for this to show that any type has a consistent depth assignment

for all agents, as it is clear that if any of the new rules introduced for depths are violated the formula is

not satisfiable.

If the type contains Ed
a then it contains only one such depth atom per rule 5, the only Pd′

a it contains

are for d′ ≤ d per rule 4, and it does not contain ¬Pd′

a for d′ ≤ d per rule 5, therefore d(a) = d is a

consistent setting. If it does not contain any Ed
a , it may contain a number of inequalities polynomial in

|ϕ |, that admit a solution in N by rule 7. Therefore a possible algorithm is d0 = max{d′, Pd′

a ∈ γ} and

then d(a) = min{d′, d′ ≥ d0, ¬Ed′

a 6∈ γ}. If no Pd
a are in the type, then d0 = min{d′, ¬Pd′

a ∈ γ} and

d(a) = max{d′, d′ ≤ d0,¬Ed′

a 6∈ γ} are a possible choice (this choice will always be greater or equal to

0 because of rules 7 and 6 above). Finally, if there are no depth atoms in the type, the formula is clearly

satisfiable for any choice of d(a).

The model checking problem remains P-complete in DBEL, using the same algorithm as for S5 [8].

For EDPAL and ADPAL, the model checking problem is P-complete, as the same algorithm as PAL

can be used, relying on the fact that model size can only decrease after announcements [13] (the lower
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bounds results from the fact that PAL is a fragment of both). This is however not the case of DPAL,

where model size grows after announcements, potentially exponentially, in fact model checking in DPAL

is NP-hard [3].

Theorem 5.2. The complexity of model checking for finite models in DPAL is in EXPTIME. An upper

bound in time complexity for checking ϕ in M is O(22|ϕ |‖M‖), where ‖M‖ is the sum of the number of

states and number of pairs in each relation of M.

Proof. The model-checking algorithm is the same as the one for public announcement logic [13]: a tree

is built from subformulas ϕ , with splits introduced only for subformulas of the form [ψ ]χ , with ψ to the

left and χ to the right. Treating a node labeled ψ means labeling each state in M with either ψ or ¬ψ .

The tree is treated from bottom-left to the top, always going up first except when a node of the type [ψ ]χ
is found. In that case, since the nodes in the left sub-tree have been treated, we can build M | ψ easily in

time O(‖M‖) from the truth value of ψ and the depth functions of M. Moreover, the size of M | ψ is at

most 4‖M‖.

To see this, consider an equivalence class for ∼a in M of size k, it has exactly k2 connections within

it. The number of states it creates in M | ψ is at most 2k, and the number of connections it creates is at

most 4k2. Each connection being in exactly one connected component means the bound holds.

Therefore we can recurse in the right sub-tree with M | ϕ to check χ in time O(22|χ | × 4‖M‖).
Writing O(‖M‖) ≤ c‖M‖ the time necessary to build M | ϕ , we find that checking [ψ ]χ takes time at

most O((c+22|ψ |+22|χ |+2)‖M‖) = O(22|[ψ ]χ |‖M‖).

6 Muddy children

Consider the well-known muddy children reasoning problem, where n children convene after playing

outside with mud. k≥ 1 of them have mud on their foreheads, but have no way of knowing it. The father,

an external agent, announces that at least one child has mud on their forehead. Then, he repeatedly asks

if any child would like to go wash themselves. After exactly k− 1 repetitions of the father’s question,

all muddy children understand they are muddy and go wash themselves. Readers unfamiliar with the

reasoning problem and its solution are directed to Van Ditmarsch et. al [18]’s treatment using PAL.

Consider the set of states {0,1}n
, where each tuple contains n entries indicating for each child if they

are muddy (1) or not (0). For the sake of simplicity and since it is of depth 0, we assume the father’s

announcement has taken place and therefore define the Kripke structure Mn with states {0,1}n \ {0}n

with the usual definition of the agents’ knowledge relations [8]. We define the DPAL class of muddy

children models to be models M̂n extending Mn with any depth function. We name mi the atom expressing

that child i is muddy.

We number the agents in [|0;n−1|], where the first k are muddy, and focus on the reasoning of one

agent (without loss of generality agent 0) to understand that it is muddy. Recall the definition of the dual

of public announcements, 〈ϕ〉ψ := ¬[ϕ ]¬ψ and define the following series of formulas for i≤ k,

ϕi = 〈¬Ki−1mi−1〉〈¬Ki−2mi−2〉 · · · 〈¬K1m1〉K0m0.

Here ϕk states that if each of the children from k−1 to 1 announce one after the other they don’t know

they are muddy, then child 0 knows that they (child 0) are muddy 4 It is well known this formula is true

for unbounded agents in Mn in PAL (it is also a consequence of Theorem 6.1 below). The following two

4These announcements are a sufficient subset of the full announcements ∧ j=1,...,n¬(K jm j∨K j¬m j) in the usual formulation.
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theorems define a sufficient structure of knowledge of depths for the formula to be true and a necessary

condition on the structure of knowledge of depths for it to be true.

Theorem 6.1 (Upper bound). For all three semantics, K0

(

Pk−1
0 ∧K1(P

k−2
1 ∧ ·· ·Kk−1(P

0
k−1) · · · )

)

→ ϕk is

true in all muddy children models M̂n in the initial state.

Note that this formula directly provides an upper bound on the structure of depths and knowledge

about depths: it shows a sufficient condition on the knowledge of depths for the problem to be solvable

by agent 0. Moreover, the upper bound for one child readily generalizes to a sufficient condition for all

children to understand they are muddy: each muddy child must know they are of depth at least k− 1,

know at least some other muddy child knows they are of depth at least k− 2, and know that that other

child knows some other muddy child knows they are of depth at least k−3, etc.

Proof. For the sake of simplicity and since it does not change the treatment of the problem, we assume

n = k. We show the result for DPAL, as the treatments for EDPAL and ADPAL are similar.

We will show the result by induction over k. Denote sk = (1, . . . ,1) the true state of the world where

all the children are muddy.

For k = 2, we assume K0P1
0 and want to show ¬K1m1∧ [¬K1m1]K0m0. First notice that (M̂2,s2) |=

¬K1m1, simply because it considers the state (1,0) to also be possible. In the state (0,1), child 1 knows

it is muddy. Therefore, the set of states for the successful part of the model update will be (1,(1,1)) and

(1,(1,0)). Moreover, since K0P1
0 , it is deep enough in s2 to not have any links to the unsuccessful part of

the model update, therefore it knows m0.

Consider some k > 2, we denote Si the set of states that are “active” when considering ϕi. More

precisely, we set Si = {0,1}
i×{1}k−i \{0}k

. We will show that after k− i announcements, the remainder

of the problem is equivalent to checking ϕi on the subgraph induced by the states Si. This is evident for

i = k by definition, we now show by descending induction that it is equivalent to checking ϕ2 on S2,

which we have just verified to be true.

Firstly, it is true that (M̂n,sk) |=¬Kk−1mk−1 since child k−1 considers possible the state (1, . . . ,1,0).
The set of states in which Kk−1mk−1 holds is exactly (0, . . . ,0,1). Therefore, the model update will create

a copy of all other states. We then notice that the set of states whose last component is 0 can be ignored

in the rest of the problem: they are not reachable from sk by any sequence of ∼i that does not contain

∼k−1 and the rest of the formula ϕk−1 to be checked does not use any modal operators for agent k− 1

any more. These states will never be reached and can therefore be removed without altering the result of

the rest of the execution.

We are therefore restricting ourselves, after the model update, to the set of states Sk−1 in the positive

part of the model. Note however there are still possibly links between the negative part of the model and

Sk−1 in the positive part of the model. We will show that these links have no effect on the checking of the

rest of the formula, by showing that links for child i find themselves in Sk−1 \Si: therefore, by the time

we query modal operator i, the set of ignored states will contain all states with a link for child i.

For child i < k− 1, the information we have about its depth is K0K1 · · ·KiP
k−1−i
i before the model

update. Therefore, we in particular know it is deep enough for the announcement (which is of depth

1≤ k−1− i) in the set of states in which the i first components might have changed compared to sk but

the last k−1− i are all fixed to 1: this is exactly Si.

We have shown that the recursive check in M | ¬Kk−1mk−1 will take place on a set of states for which

the execution is equivalent to Sk−1 and on which we will have to check the formula ϕk−1. Finally, since

the depths of each agent other than k−1 was at least 1 on Sk−2, they are reduced by 1 and the induction

hypothesis on depths for k−2 is also verified.
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Theorem 6.2 (Lower bound). For DPAL, the formula ϕk→ K0Pk−1
0 is true in all models M̂n.

Proof. We use the notations from the proof of Theorem 6.1 above. Notice first that all of the announce-

ments remain true when they are performed, because ¬K∞
k−1mk−1→¬Kk−1mk−1 and the implicant is true

by the usual lower bound for muddy children (it takes k announcements for any child to know they are

muddy).

Assume by contraposition that d(0,sk) = i < k− 1 or d(0, s̃k) = i < k− 1 initially, where s̃k is the

state (0,1, . . . ,1) of M̂n. After i public announcements, it will be true that ¬K0m0 still, as well as ¬K0¬E0
0

since each public announcement is of depth 1. The former is a consequence of the usual lower bound

for muddy children, and can be derived from the proof in Theorem 6.1 using symmetry between 0 and

k−1− i after the i announcements and monotonicity of knowledge of atoms: if the depths are lower than

they were in the previous proof, there are more states and more links in the updated model and therefore

¬Kk−1−imk−1−i remains true.

Therefore in this model after i announcements, either sk or s̃k sees agent 0 of depth 0 and both

states are still connected by ∼0. This means that for the next announcement, since ¬K0m0 after each

announcement except potentially the last using the same argument as above, we will have the chain of

connections (1,sk)∼
′
0 (0,sk) ∼

′
0 (0,s

′
k) or (1,sk)∼

′
0 (1, s̃k) ∼

′
0 (0, s̃k). This means that by an immediate

induction, after the k− i announcements it is still true that ¬K0m0: this is a contradiction with ϕk.

A stronger lower bound for each child is available [3], with recursive conditions on the depth of all

agents similarly to Theorem 6.1. This formula provides a lower bound on the knowledge of depths of the

agent 0 to be able to solve the problem: it must be depth at least k−1 and know so. By symmetry, this

generalizes to any child or any set of children solving the problem.

Finally, we present propositions that illustrate how amnesia in EDPAL (Proposition 3.3) and knowl-

edge leakage in ADPAL (Proposition 3.4) manifest in the muddy children problem. These propositions

are easily verified by computing explicitly the models after updates.

Proposition 6.3 (Amnesia in EDPAL). Consider the instance of muddy children M3, where child i is

unambiguously of depth 2− i, i.e. d(i, ·) = 2− i. The formula 〈¬K2m2〉〈¬K1m1〉¬K2⊤ is true in EDPAL

but not in DPAL or ADPAL. This means that in EDPAL, after the first two announcements, agent 2 does

not know anything anymore.

Proposition 6.4 (Knowledge leakage in ADPAL). The formula 〈K1¬K2m2〉K1K0m0 is true in ADPAL

but not in DPAL or EDPAL. In ADPAL, agent 1 has deduced the conclusion of agent 0’s reasoning,

despite not being deep enough to perceive the announcement. Moreover, if agent 0 were of depth 1 it

would not be true that 〈K1¬K2m2〉K0m0: agent 0 would not be able to deduce what agent 1 has deduced.

Library Alongside this paper, we publish code for a library for multi-agent epistemic logic model

checking and visualization in Python. It implements depth-unbounded PAL models as well as DPAL,

EDPAL and ADPAL. The code is available in an online repository [4]. The code can also be used to gen-

erate illustrations of model updates in the muddy children reasoning problem [3] under the assumptions

of Theorem 6.1 above.

Conclusion We have shown how S5 and public announcement logic (PAL) can be extended to incor-

porate bounded-depth agents. We have shown completeness results for several of the resulting logics and

explored the relationship between public announcements and knowledge in DPAL, as well as complexity

bounds for these logics. We finally illustrated the behavior of depth-bounded agents in the muddy chil-

dren reasoning problem, where we showed upper and lower bounds on depths (and recursive knowledge

https://gitlab.com/farid-fari/depth-bounded-epistemic-logic
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of depths) necessary and sufficient to solve the problem. These results extend epistemic logics to support

formal reasoning about agents with limited modal depth.
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A Axiomatization proofs

All propositional tautologies p→ p, etc.

Deduction (K∞
a ϕ ∧K∞

a (ϕ → ψ))→ K∞
a ψ

Truth K∞
a ϕ → ϕ

Positive introspection K∞
a ϕ → K∞

a K∞
a ϕ

Negative introspection ¬K∞
a ϕ→ K∞

a ¬K∞
a ϕ

Depth monotonicity Pd
a → Pd−1

a

Exact depths Pd
a ↔¬(E

0
a ∨ ·· ·∨Ed−1

a )
Unique depth ¬(Ed1

a ∧Ed2
a ) for d1 6= d2

Bounded knowledge Kaϕ↔ P
d(ϕ)
a ∧K∞

a ϕ

Modus ponens From ϕ and ϕ→ ψ , deduce ψ

Necessitation From ϕ deduce K∞
a ϕ

Table 3: Sound and complete axiomatization of DBEL over H ∞.

Theorem A.1. Axiomatization from Table 3 is sound and complete with respect to DBEL over H ∞.

Proof. Soundness of all of these axioms is immediate: the definition of K∞
a follows that of S5 and so

do the axioms, those concerning depth atoms are consequences of linear arithmetic, and the bounded

knowledge axiom follows immediately from the definition of Ka in the semantics.

For completeness, first note we can translate any formula ϕ in H ∞ into an equivalent formula t(ϕ)
that does not contain any Pd

a atoms or Ka modal operators using the exact depths and bounded knowledge

axioms (which we know to be sound). Call S5D this fragment of DBEL.

We will use a proof through the LINDENBAUM lemma and the truth lemma, to this end we need to

complete the definition for the canonical model to add a depth function. As a reminder, the proof is as

follows: if ϕ cannot be shown within the axiomatization in Table 1, i.e. 6⊢ ϕ , then we show that 6|= ϕ by

showing there is a state in the canonical model in which it does not hold.

The canonical model Mc is the model whose states are maximally consistent sets Γ of formulas for

our axiomatization and whose states are related by ∼a if the set of formulas a knows is the same in both

states. Its valuation function for atoms V (Γ) is simply the set of axioms in Γ, i.e. Γ∩P .

We restrict Mc to sets Γ that contain at least some Ed
a for each agent a ∈A and by the unique depth

axiom we define d(a,Γ) = max{d, Ed
a ∈ Γ}, since Γ contains exactly one depth to be consistent. This

completes Mc into a DBEL model.

http://www.aiml.net/volumes/volume5/Nguyen.ps
https://doi.org/10.1002/(SICI)1098-111X(199701)12:1<57::AID-INT3>3.0.CO;2-X
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/s10849-008-9067-4
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All propositional tautologies p→ p, etc.

Deduction (K∞
a ϕ ∧K∞

a (ϕ → ψ))→ K∞
a ψ

Truth K∞
a ϕ→ ϕ

Positive introspection K∞
a ϕ→ K∞

a K∞
a ϕ

Negative introspection ¬K∞
a ϕ → K∞

a ¬K∞
a ϕ

Atomic permanence [ϕ ]p↔ ϕ→ p

Depth adjustment ∀d ∈ Z, [ϕ ]Ed
a ↔

(

ϕ → E
d(ϕ)+d
a

)

Negation announcement [ϕ ]¬ψ ↔ (ϕ →¬[ϕ ]ψ)
Conjunction announcement [ϕ ](ψ ∧ χ)↔ ([ϕ ]ψ ∧ [ϕ ]χ)
Knowledge announcement [ϕ ]K∞

a ψ ↔ (ϕ → K∞
a [ϕ ]ψ)

Announcement composition [ϕ ][ψ ]χ ↔ ([ϕ ∧ [ϕ ]ψ ]χ)

Depth monotonicity Pd
a → Pd−1

a

Exact depths Pd
a ↔¬(E

0
a ∨ ·· ·∨Ed−1

a )
Unique depth ¬(Ed1

a ∧Ed2
a ) for d1 6= d2

Bounded knowledge Kaϕ ↔ P
d(ϕ)
a ∧K∞

a ϕ

Modus ponens From ϕ and ϕ → ψ , deduce ψ

Necessitation From ϕ deduce K∞
a ϕ

Table 4: Sound and complete axiomatization of EDPAL.

Since 6⊢ ϕ , the set {¬ϕ} is consistent for our axiomatization. We must now show we can extend this

set into a maximal consistent set of formulas that contains a depth atom Ed
a for each agent a.

However, this stronger requirement is not satisfied by the usual LINDENBAUM lemma, since a con-

sistent set of formulas could be {Pd
a , d ∈ N} (which is not consistent with any Ed

a ). Note however we

only need it to hold for a finite set of formulas (namely {¬ϕ}): Lemma B.1 below proves this version of

the LINDENBAUM lemma, by showing there must exist some Ed
a that is consistent with any finite set for

each a, and then a maximally consistent set can be derived using the traditional LINDENBAUM lemma.

Finally, the truth lemma shows that ϕ ∈ Γ ⇐⇒ (Mc,Γ) |= ϕ by induction on ϕ and is enough to

conclude (since the maximal consistent set containing ¬ϕ will not verify ϕ). Most induction cases are

the same as for S5, the only new symbols left in our formula ϕ are the Ed
a atoms, and the truth lemma is

immediately true for them by definition of the depth function of Mc.

Finally, if |= ϕ , then |= t(ϕ) by the soundness of the axiomatization and definition of the transfor-

mation, then S5D ⊢ t(ϕ) since we have just shown the completeness of this fragment. Finally, this must

mean DBEL ⊢ t(ϕ) and then ⊢ ϕ since the transformations of t can be performed using equivalences in

our axiomatization: we have shown completeness.

Theorem A.2. The axiomatization in Table 4 is sound and complete with respect to EDPAL.

Proof. Soundness of the axioms of DBEL is proven in Theorem A.1. Soundness of all axioms for public

announcement is also a consequence of their definition in PAL with which they share their definition,

except for depth adjustment for which the proof is relatively immediate.

For completeness, we translate any formula ϕ into t(ϕ) by removing public announcements, Ka

modal operators and Pd
a atoms by using the sound axioms from Table 4. The formula t(ϕ) is in the

syntactic fragment S5D, thus we can use completeness shown in Theorem 2.1 to show ⊢ t(ϕ), which

implies ⊢ ϕ within the axiomatization of Table 4 by using the same axioms in the opposite direction.
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B LINDENBAUM lemma with depth assignments

Lemma B.1. For every agent a and finite consistent set of formulas Γ without public announcement, Pd
b

literals or Kb operators for all b, there exists some d ∈N such that Γ∪{Ed
a} is a consistent set.

Proof. Fix agent a. As Γ is a finite set of finite formulas, the set of exact depth atoms for a that appear

in its formulas is included in a finite set F = {E0
a , . . . ,E

D
a } for some D ∈N.

We can add to Γ instances of the unique depth axiom for each pair of integers in [|0;D|] while

maintaining consistency. The set Γ can then be seen as a consistent set of formulas for S5 over the

set of atoms F ∪P , i.e. consistent in the axiomatization of Table 3 without depth axioms or bounded

knowledge (or tautologies involving symbols not in the language of S5). Therefore there is an S5 model

(M,s) that satisfies it by the usual LINDENBAUM lemma and the truth lemma (the canonical model here).

In (M,s), if any of the Ed
a are valued to ⊤, then at most one of them is satisfied (since we added the

unique depth axiom for all pair of depths). If all of the Ed
a are valued to ⊥, then we can introduce a new

atom ED+1
a and set its value to ⊤ in all states of the model. All of the unique depths axioms for D+ 1

and d ≤D can be added to Γ without making it inconsistent.

In both cases, let d0 be the value of the unique Ed0
a valued to ⊤ in this final model. We claim that

{ϕ ,Ed0
a }must be a consistent set. Indeed, a proof of its inconsistency with the axioms from Table 3 must

only involve axioms from S5 and unique depths axioms for the set F , since none of the symbols Pd
a or

Ka are necessary in a proof (they can be replaced by their equivalents with Ed
a and K∞

a without changing

the conclusion) and any occurrence of Ed
a for d > D+ 1 can be replaced by ⊥ while maintaining the

truthfulness and conclusion of the proof.

Therefore, such an inconsistency proof would also hold within S5, which is a contradiction with

soundness since these formulas are verified in a consistent set (the set of true formulas in (M,s)).

C Proofs for Section 3

Proposition C.1. Formulas (KP) and (TA) are valid for DPAL in the unambiguous depths setting.

Proof. To prove (KP), suppose without loss of generality that (M,s) |= ¬P
d(ϕ)
a ∧ϕ . In particular, this

means that in M | ϕ , we have (0,s)∼′a (1,s) and therefore the equivalence class of (1,s) in M | ϕ contains

all (0,s′) whenever s′ ∼a s. Then,

(M,s) |= [ϕ ]Kaψ ⇐⇒ (M,s) |= ϕ =⇒ (M | ϕ ,(1,s)) |= Kaψ

⇐⇒ (M | ϕ ,(1,s)) |= P
d(ψ)
a and ∀s′, j,( j,s′)∼′a (1,s) =⇒ (M | ϕ ,( j,s′)) |= ψ

⇐⇒ (M | ϕ ,(1,s)) |= P
d(ψ)
a and ∀s′ ∼a s,

{

(M | ϕ ,(0,s′)) |= ψ

(M,s′) |= ϕ =⇒ (M | ϕ ,(1,s′)) |= ψ .

(9)

On the other hand,

(M,s) |= Kaψ ⇐⇒ (M,s) |= P
d(ψ)
a and ∀s′,s′ ∼a s =⇒ (M,s′) |= ψ . (10)

We prove by structural induction over ψ ∈Ha the stronger equivalence,

∀s′ ∼a s,

{

(M,s′) |= ψ ⇐⇒ (M | ϕ ,(0,s′)) |= ψ

(M,s′) |= ϕ =⇒ ((M,s′) |= ψ ⇐⇒ (M | ϕ ,(1,s′)) |= ψ) .
(11)
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Given that (M,s) 6|= P
d(ϕ)
a , we have (M | ϕ ,(1,s)) |= P

d(ψ)
a ⇐⇒ (M,s) |= P

d(ψ)
a . Therefore the depth

conditions in equations (9) and (10) are the same and since both sides are true if (M,s) 6|=ϕ , equation (11)

is enough to prove (KP).

For ψ ∈P , it is true because V ′(( j,s′)) =V (s′) for all j and s′ (note that P does not include depth

atoms). For depth atoms about a, it is a consequence of (M,s) |= Ka¬P
d(ϕ)
a by the depth unambiguity

condition (8), which means the depth of a is unchanged in all s′ ∼a s after the model update.

The cases where ψ = ψ1∧ψ2 and ψ = ¬χ are immediate, by the way these operators coincide with

the usual propositional logic definition on both sides of the equivalences.

If ψ = Kaχ and s′ ∼a s, recall that by the depth unambiguity condition (8) we have (M,s′) |= ¬P
d(ϕ)
a .

Therefore, if (M,s′) |= ϕ ,

(M | ϕ ,(1,s′)) |= ψ ⇐⇒ d(a,s′)≥ d (χ) and ∀( j,s′′)∼′a (1,s
′), (M | ϕ ,( j,s′′)) |= χ

⇐⇒ d(a,s′)≥ d (χ) and ∀s′′ ∼a s,

{

(M | ϕ ,(0,s′′)) |= χ

(M,s′′) |= ϕ =⇒ (M | ϕ ,(1,s′′)) |= χ

⇐⇒ d(a,s′)≥ d (χ) and ∀s′′ ∼a s′, (M,s′′) |= χ

⇐⇒ (M,s′) |= ψ ,

where we have used the induction hypothesis (11) for χ once in each direction. The first equivalence in

equation (11) is even easier to verify, by the same technique. The case for ψ = K∞
a χ is directly implied

by this proof, as there are no depth conditions to verify.

To prove public announcements, we will need a stronger induction hypothesis than (11). Write for

any s, 10(s) = s and 1n(s) = (1,1n−1(s)) = (1, . . . ,(1,s)). We posit,

∀n ∈N, ∀ψ1, . . . ,ψn, ∀s
′ ∼a s, (M,s′) |= P

d(ψ1)+···d(ψn)+d(ψ)
a and (M,s′) |= ¬P

d(ϕ)
a =⇒

(M,s′) |= ψ1 and (M | ψ1,(1,s
′)) |= ψ2 and . . . and (M | ψ1 | · · · | ψn−1,1n−1(s

′)) |= ψn =⇒
{

(M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((0,s

′))) |= ψ

(M,s′) |= ϕ =⇒ ((M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((1,s

′))) |= ψ) .

(12)

Note we slightly abuse notation here and some of these states might not exist, the convention is that the

equivalences need only hold when the states exist in the models on both sides. The implicant implies

that the left-hand term always exists.

Taking this for n = 0 is sufficient to conclude on (KP), since both equations (9) and (10) will be false

whenever (M,s) 6|= P
d(ψ)
a .

The cases for atoms, negations and conjunction are clear for the same reasons as they were in equa-

tion (11). The case for depth atoms for a is direct, since the assumption (M,s′) |= P
d(ψ1)+···d(ψn)
a implies

that the depth of a after the ψ1, . . . ,ψn announcements is its initial depth minus the sum of the depths

of all the announcements, and the assumption that it is not deep enough for ϕ means its depth does not

change with the announcement of ϕ .

The case for modal operators Ka relies on the fact that depth atoms are preserved (by the induction

hypothesis for depth atoms) and the relations verify in M | ψ1 | · · · | ψn when these states exist,

(1,(1, . . . (1,s1)))∼
(n)
a (1,(1, . . . (1,s2))) ⇐⇒ s1 ∼a s2,
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by denoting ∼
(k)
a the relation for a in a model after k announcements. And similarly in M |ϕ |ψ1 | · · · |ψn,

(1,(1, . . . ( j,s1)))∼
(n+1)
a (1,(1, . . . (k,s2))) ⇐⇒ ( j,s1)∼

′
a (k,s2) ⇐⇒ s1 ∼a s2.

This also implies the case for K∞
a , since the verification is the same without the depth condition.

Finally, if ψ = [ψ ′]χ , we verify that for s′ ∼a s such that (M,s′) |= ϕ ,

(M | ψ1 | · · · | ψn,1n(s
′)) |= ψ

⇐⇒ (M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ′ =⇒ (M | ψ1 | · · · | ψn | ψ

′
,1n+1(s

′)) |= χ

⇐⇒ (M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ′ =⇒ (M | ϕ | ψ1 | · · · | ψn | ψ

′
,1n+1((1,s

′))) |= χ

⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((1,s
′))) |= ψ ′ =⇒ (M | ϕ | ψ1 | · · · | ψn | ψ

′
,1n+1((1,s

′))) |= χ

⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((1,s
′))) |= ψ (13)

when the latter state exists. Our first use of the induction hypothesis on χ is justified because the left-hand

side of the implication is the n+1 term in the assumptions for the induction hypothesis in equation (12)

(and d (ψ) = d (ψ ′)+d (χ)). The second use of the induction hypothesis on ψ ′ is justified for the same

depth reason and the other assumptions remain the same. Once more the case for (0,s′) is very similar.

For (TA), we assume without loss of generality that (M,s) |= Ka(P
d(ϕ)
a )∧ϕ (using the depth unam-

biguity condition (8)), this means in particular the equivalence class of (1,s) in M | ϕ is {(1,s′), s′ ∼a

s, (M,s′) |= ϕ} since no state equivalent to s by ∼a has a not deep enough for ϕ . Using the same

reasoning as in equation (9), we have,

(M,s) |= [ϕ ]Kaψ ⇐⇒ (M | ϕ ,(1,s)) |= P
d(ψ)
a and ∀s′ ∼a s, (M,s′) |= ϕ =⇒ (M | ϕ ,(1,s′)) |= ψ .

Moreover, we have,

(M,s) |= Ka[ϕ ]ψ ⇐⇒ (M,s) |= P
d(ϕ)+d(ψ)
a and ∀s′ ∼a s, (M,s′) |= ϕ =⇒ (M | ϕ ,(1,s′)) |= ψ . (14)

Since (M,s) |= P
d(ϕ)
a , the depth of a in (M | ϕ ,(1,s)) is its depth in (M,s) minus d (ϕ). This means that

(M | ϕ ,(1,s)) |= P
d(ψ)
a ⇐⇒ (M,s) |= P

d(ϕ)+d(ψ)
a .

Proposition C.2. DPAL verifies (KP’) and (TA’).

Proof. For (KP’), in light of equations (9) and (10), we use the following induction hypothesis,

∀s,a, (M,s) |= K∞
a Fϕ(ψ) =⇒

∀s′ ∼a s,

{

(M | ϕ ,(0,s′)) |= ψ ⇐⇒ (M,s′) |= ψ

(M,s′) |= ϕ =⇒ ((M | ϕ ,(1,s′)) |= ψ ⇐⇒ (M,s′) |= ψ) .
(15)

Assume that (M,s) |= ϕ ∧Fϕ(Kaψ). In particular, (M,s) |= ¬K∞
a (ϕ → P

d(ϕ)
a ). First notice that this

condition allows us to write, (0,s′)∼′a (1,s) ⇐⇒ s′ ∼a s. Indeed, since there exists some s′′ ∼a s where

a is of depth strictly less than d (ϕ) and ϕ holds, we deduce the chain of connections, (1,s)∼′a (1,s
′′)∼′a

(0,s′′)∼′a (0,s
′) for any s′ ∼a s (and the direct implication is immediate).

Moreover, we have assumed (M,s) |= ϕ ∧ (ϕ →¬P
d(ϕ)
a ∨P

d(ϕ)+d(ψ)
a ). In either case of the disjunc-

tion, the depth conditions of equations (9) and (10) become equivalent as they did in the proof of (KP).

Therefore, proving the induction hypothesis (15) is sufficient to conclude (KP’) here.
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The cases for atoms, negations and conjunctions is the same as in the proof of Proposition C.1, as

the induction hypothesis holds because Fϕ(¬ψ) = Fϕ(ψ), Fϕ (ψ1∧ψ2) = Fϕ(ψ1)∧Fϕ(ψ2), and by

commutativity of K∞
a with conjunction.

If ψ = Kbχ for some agent b ∈A , for some fixed s′ ∼a s, we know that (M,s′) |= ¬K∞
b (ϕ → P

d(ϕ)
b )

as well as (M,s′) |= K∞
b Fϕ(χ). Moreover, the condition (M,s′) |= K∞

b (ϕ→¬P
d(ϕ)
b ∨P

d(ϕ)+d(χ)
b ) implies

that the depth of b will be greater or equal to d (χ) in (M | ϕ ,(1,s′)) if and only if it was in (M,s′). If

(M,s′) |= ϕ , by once more using the induction hypothesis (15) for b in s′, we obtain that,

(M | ϕ ,(1,s′)) |= ψ ⇐⇒ d(b,s′)≥ d (χ) and ∀( j,s′′)∼′b (1,s
′), (M | ϕ ,( j,s′′)) |= χ

⇐⇒ d(b,s′)≥ d (χ) and ∀s′′ ∼b s′,

{

(M | ϕ ,(0,s′′)) |= χ

(M,s′′) |= ϕ =⇒ (M | ϕ ,(1,s′′)) |= χ

⇐⇒ d(b,s′)≥ d (χ) and ∀s′′ ∼b s′, (M,s′′) |= χ

⇐⇒ (M,s′) |= ψ .

The case for (0,s′) is the same, since its equivalence class in M | ϕ is the same and the depth condition

is the same. The case for ψ = K∞
b χ is implied by this proof, as there are no depth conditions to verify.

Finally, checking public announcements involves performing the same induction hypothesis strength-

ening as in the proof of (KP) in its equation (12). The new induction hypothesis becomes,

∀s,a, (M,s) |= K∞
a Fϕ(ψ) =⇒

∀n ∈N, ∀ψ1, . . . ,ψn, ∀s
′ ∼a s, (M,s′) |= P

d(ψ1)+···d(ψn)+d(ψ)
a and (M,s′) |= ¬P

d(ϕ)
a =⇒

(M,s′) |= ψ1 and (M | ψ1,(1,s
′)) |= ψ2 and . . . and (M | ψ1 | · · · | ψn−1,1n−1(s

′)) |= ψn =⇒
{

(M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((0,s

′))) |= ψ

(M,s′) |= ϕ =⇒ ((M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((1,s

′))) |= ψ) .

Note we slightly abuse notation here and some of these states might not exist, the convention is that the

equivalences need only hold when the states exist in the models on both sides. The implicant implies

that the left-hand term always exists.

Checking atoms, depth atoms, negation and conjunction is the same as in the proof of (KP) once

more. Checking modal operators Ka and K∞
a is similar to the proof of (KP) using induction hypothe-

sis (12), but using the same reasoning as above for induction hypothesis (15): the induction hypothesis

contained in Fϕ tells us that the announcement is not perceived by the agent at each modal operator.

Finally, public announcements follow the exact same proof as they did in (KP) in equation (13), with

the extra information that Fϕ([ψ
′]χ) = Fϕ(ψ

′)∧Fϕ (χ), allowing us to obtain the assumption of the

inductive hypothesis in both inductive hypothesis applications (one for ψ ′ and one for χ).

For (TA’), we assume without loss of generality that (M,s) |= K∞
a (ϕ → P

d(ϕ)
a )∧ϕ , this means in

particular the equivalence class of (1,s) in M |ϕ is {(1,s′), s′ ∼a s, (M,s′) |=ϕ} since no state equivalent

to s by ∼a has a not deep enough for ϕ . Using once more the same re-writings as in equation (14), it is

sufficient to prove that the depth conditions are the same. This is the case because (M,s) |= ϕ , therefore

by the truth axiom, (M,s) |= P
d(ϕ)
a .
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