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This paper presents our experience using optimistic synchronization to implement fine-grain atomic opera-
tions in the context of a parallelizing compiler for irregular, object-based computations. Our experience shows
that the synchronization requirements of these programs differ significantly from those of traditional parallel
computations, which use loop nests to access dense matrices using affine access functions. In addition to coarse-
grain barrier synchronization, our irregular computations require synchronization primitives that support efficient
fine-grain atomic operations.

The standard implementation mechanism for atomic operations uses mutual exclusion locks. But the overhead
of acquiring and releasing locks can reduce the performance. Locks can also consume significant amounts of
memory. Optimisitic synchronization primitives such asload linked/store conditionalare an attractive alternative.
They require no additional memory and eliminate the use of heavyweight blocking synchronization constructs.

We evaluate the effectiveness of optimistic synchronization by comparing experimental results from two ver-
sions of a parallelizing compiler for irregular, object-based computations. One version generates code that uses
mutual exclusion locks to make operations execute atomically. The other version uses optimistic synchronization.
We used this compiler to automatically parallelize three irregular, object-based benchmark applications of interest
to the scientific and engineering computation community. The presented experimental results indicate that the
use of optimistic synchronization in this context can significantly reduce the memory consumption and improve
the overall performance.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: atomic operations, commutativity analysis, synchronization, optimistic syn-
chronization, parallel computing, parallelizing compilers

1. INTRODUCTION

Parallelizing compilers have traditionally exploited a specific, restricted form of concur-
rency: the concurrency available in loops that access dense matrices using affine access
functions [Bacon et al. 1994]. The generated parallel programs use a correspondingly re-
stricted kind of synchronization: coarse-grain barrier synchronization at the end of each
parallel loop.

As shared-memory multiprocessors become the dominant commodity source of com-
putation, parallelizing compilers must support a wider class of computations. It will be
especially important to support irregular, object-based computations, including computa-
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tions that access pointer-based data structures such as lists, trees and graphs. We have
implemented a parallelizing compiler for this class of computations [Rinard and Diniz
1997]. Our experience using this compiler shows that the automatically generated parallel
computations exhibit a very different kind of concurrency. Instead of parallel loops with
coarse-grain barrier synchronization, the computations are structured as a set of lightweight
threads that synchronize using fine-grained atomic operations. The implementation of
these atomic operations has a critical impact on the performance and resource consumption
of the generated parallel code.

1.1 Mutual Exclusion Locks

The standard implementation mechanism for atomic operations usesmutual exclusion
locks. In this approach, each piece of data has an associated lock. To update a piece
of data, an operation first acquires the corresponding lock. It performs the update, then
releases the lock. Any other operation that attempts to acquire the lock blocks until the
first operation releases the lock.

Despite their popularity, mutual exclusion locks are far from an optimal synchroniza-
tion mechanism. One drawback is the memory required to hold the state of the locks.
Locks increase the amount of memory that the program consumes, and can degrade the
performance of the memory hierarchy by occupying space in the caches. The overhead of
executing the acquire and release constructs may also reduce the performance.

Locking the computation at a coarse granularity (by mapping multiple pieces of data to
the same lock) addresses these problems. It reduces the impact on the memory system and
may allow the program to amortize the lock overhead over many updates to different pieces
of data. Unfortunately, a coarse lock granularity may also introducefalse exclusion. False
exclusion occurs when multiple operations that access different pieces of data attempt to
acquire the same lock. The operations execute serially even though they are independent
and could, in principle, execute in parallel. False exclusion can significantly degrade the
performance by reducing the amount of available parallelism.

1.2 Optimistic Synchronization

Optimistic synchronizationis an attractive alternative to locks. Atomic operations that
use optimistic synchronization use aload linkedprimitive to retrieve the initial value in
an updated memory location. They compute the new value, then use astore conditional
primitive to attempt to write the new value back into the memory location. If no other
operation wrote the location between the load linked and the store conditional, the store
conditional succeeds. Otherwise, the store conditional fails, the new value is not written
into the location, and the operation typically retries the computation. Operations that use
optimistic synchronization never block — they avoid atomicity violations by nullifying
and retrying computations. Optimistic synchronization primitives therefore avoid prob-
lems (such as poor responsiveness, lock convoys, priority inversions, deadlock, and the
need to reclaim locks held by failed processes) that are associated with the use of locks
in multiprogrammed systems [Herlihy 1993]. But they also have properties that make
them especially appropriate for implementing the fine-grain atomic operations character-
istic of irregular parallel computations. Specifically, the use of optimistic synchronization
imposes no memory overhead and eliminates the use of heavyweight blocking synchro-
nization primitives.

This paper describes our experience using optimistic synchronization to implement atomic
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operations in the context of a parallelizing compiler for object-based programs. The com-
piler accepts an unannotated serial program written in a subset of C++ and automatically
generates a parallel program that performs the same computation [Rinard and Diniz 1997].
The compiler is designed to parallelize irregular computations, including computations
that manipulate pointer-based data structures such as lists, trees and graphs. Because it
uses commutativity analysis [Rinard and Diniz 1997] as its primary analysis technique, the
compiler views the computation as consisting of a sequence ofoperationsonobjects. If all
of the operations in a given computation commute (i.e. generate the same result regardless
of the order in which they execute), the compiler can automatically generate parallel code.
For the parallel computation to execute correctly, each operation must execute atomically.

We have implemented two versions of the compiler — one version generates code that
uses mutual exclusion locks to make operations execute atomically; the other generates
code that uses optimistic synchronization. A comparison characterizes the impact of using
optimistic synchronization instead of mutual exclusion locks. Our results show that using
optimistic synchronization instead of locks can significantly improve the performance and
reduce the amount of memory required to execute the computation.

This paper provides the following contributions:

—Optimistic Synchronization: It identifies optimistic synchronization as an effective
synchronization mechanism for atomic operations in the context of a parallelizing com-
piler for object-based programs.

—Analysis Algorithms: It presents novel analysis and transformation algorithms that
enable a compiler to automatically generate optimistically synchronized parallel code.

—Experimental Results: It presents a complete set of experimental results that charac-
terize the overall impact of using optimistic synchronization instead of mutual exclusion
locks. These results show that optimistic synchronization can substantially reduce the
amount of memory that the program consumes. Furthermore, the optimistically syn-
chronized versions never perform significantly worse than the best lock synchronized
versions, and perform significantly better than versions that lock the computation at an
inappropriate granularity.

To our knowledge, our compiler is the first compiler to automatically generate optimisti-
cally synchronized code.

The remainder of the paper is structured as follows. Section 2 presents the optimistic
synchronization primitives that the compiler uses to implement fine-grain atomic opera-
tions. Section 3 presents an example that illustrates the use of optimistic synchronization.
Section 4 discusses how the differences between optimistic and lock synchronization af-
fect the computation. In Section 5 we present an overview of the technique, commutativity
analysis, that our prototype compiler uses to parallelize the applications. In Section 6 we
present the synchronization selection algorithm, which enables the compiler to generate
optimistically synchronized code. Section 7 presents the experimental results. Section 8
discusses related work. We conclude in Section 9.

2. OPTIMISTIC SYNCHRONIZATION PRIMITIVES

Only recently have modern RISC processors provided efficient implementations of the
hardware primitives required for optimistic synchronization. Examples include the load
linked/store conditional instructions in the MIPS RISC [Heinrich 1993], PowerPC [Mo-
torola, Incorporated 1993], and DEC Alpha architectures [Digital Equipment Corporation
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retry: ll $2,0($4) # load value
addiu $3,$2,1 # increment value
sc $3,0($4) # attempt to store new value
beq $3,0,retry # retry if failure

Fig. 1. Atomic Increment Usingll andsc

1992], and the compare-and-swap instructions in the SPARC architecture [Weaver and Ger-
mond 1994]. In this section we focus on hardware primitives available on MIPS processors
such as the MIPS R4400 and R10000. The two key instructions are the load linked (ll )
and store conditional (sc ) instructions [Jensen et al. 1987], which can be used together to
atomically update a memory location as follows.

The program first uses a load linked instruction to load the original value from the mem-
ory location into a register. It computes the new value into another register, then uses a
store conditional instruction to attempt to store the new value back into the memory loca-
tion. If the memory location was not written between the load linked and store conditional,
the store conditional succeeds and writes the new value into the memory location. If the
memory location was written between the load linked and the store conditional, the store
conditional fails and the new value is not written into the memory location. A flag in-
dicating the success or failure of the store conditional is written into the register in the
store conditional instruction that held the new value. The computation typically retries the
atomic update until it succeeds. Figure 1 presents an assembly language sequence that uses
the ll andsc instructions to atomically increment an integer variable. Register 4 ($4)
contains a pointer to the variable to increment.

The standard implementation mechanism for load linked and store conditional uses a
reservation address register that holds the address from the last load linked instruction and
a reservation bit that is invalidated when the address is written [Michael and Scott 1995].

As implemented in the MIPS processor family,ll andsc directly support atomic oper-
ations only on 32 bit and 64 bit data items. Although it is possible to use the instructions to
synthesize atomic operations on larger data items, the transformations may impose substan-
tial data structure modifications [Herlihy 1993]. Because these modifications may degrade
the performance, the current compiler uses optimistic synchronization only for updates to
32 or 64 bit data items. Transactional memory [Herlihy and Moss 1993] and Oklahoma
update [Stone et al. 1993] would support optimistically synchronized atomic operations on
larger objects, but no hardware implementation of these mechanisms currently exists, and
it is unclear how efficient any such mechanism would be.

3. AN EXAMPLE

We next provide an example that illustrates how the compiler can use optimistic synchro-
nization to implement atomic operations. The program in Figure 2 implements a graph
traversal. Thevisit operation traverses a single node. It first adds the parameterp into
the running sum stored in thesum instance variable, then recursively invokes the oper-
ations required to complete the traversal. The way to parallelize this computation is to
execute the two recursive invocations in parallel. Our compiler is able to use commutativ-
ity analysis to statically detect this source of concurrency [Rinard and Diniz 1997]. But
because the data structure may be a graph, the parallel traversal may visit the same node
multiple times. The generated code must therefore contain synchronization constructs that
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class graph f
private:

int value, sum;
graph *left; graph *right;

public:
void visit(int);

g;
void graph::visit(int p) f

sum = sum + p;
if (left != NULL) left->visit(value);
if (right != NULL) right->visit(value);

g

Fig. 2. Serial Graph Traversal

make each operation execute atomically with respect to all other operations that access the
same object.

Figure 3 presents the code that the compiler generates when it uses mutual exclusion
locks to make operations execute atomically. The compiler augments eachgraph object
with a mutual exclusion lockmutex. The automatically generatedparallel visit
operation, which performs the parallel traversal, uses this lock to ensure that it executes
atomically. It acquires the lock before it updates thesum instance variable, then releases
the lock after the update.

The transitions from serial to parallel execution and from parallel back to serial execu-
tion take place inside thevisit operation. This operation first invokes theparallel visit
operation, then invokes thewait construct, which blocks until all parallel tasks created by
the current task or its descendant tasks finishes. Theparallel visit operation exe-
cutes the recursive calls concurrently using thespawnconstruct, which creates a new task
for each operation. A straightforward application of lazy task creation [Mohr et al. 1990]
can increase the granularity of the resulting parallel computation.

Figure 4 presents a high-level version of the code that the compiler generates when it
uses optimistic synchronization. Unlike the version that uses locks, there is no change
to thegraph objects. Instead of acquiring and releasing locks, theparallel visit
operation uses a load linked instruction to fetch the value ofsum. It computes the new
value, then uses a store conditional instruction to attempt to store the new value back into
sum. A loop retries the update until it succeeds.

4. ISSUES

We next discuss how the differences between optimistic and lock synchronization affect
the computation.

4.1 Memory System Effects

To generate code that uses mutual exclusion locks, the compiler must augment the data
structures with locks. Our experimental results indicate that using locks can significantly
increase the amount of memory required to run the program. The memory overhead as-
sociated with using locks is therefore an important potential problem. In many cases, it is
desirable to run as large a problem as possible, and the amount of available memory is the
key factor that limits the runnable problem size.
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class graph f
private:

lock mutex;
int value, sum;
graph *left; graph *right;

public:
void visit(int);
void parallel visit(int);

g;
void graph::visit(int p) f

this->parallel visit(p);
wait();

g
void graph::parallel visit(int p) f

mutex.acquire();
sum = sum + p;
mutex.release();
if (left != NULL) spawn(left->parallel visit(value));
if (right != NULL) spawn(right->parallel visit(value));

g

Fig. 3. Parallel Traversal With Locks

class graph f
private:

int value, sum;
graph *left; graph *right;

public:
void visit(int);
void parallel visit(int);

g;
void graph::visit(int p) f

this->parallel visit(p);
wait();

g
void graph::parallel visit(int p) f

register int new sum;
do f

new sum = ll (sum);
new sum = new sum + p;

g while (! sc(new sum,sum));
if (left != NULL) spawn(left->parallel visit(value));
if (right != NULL) spawn(right->parallel visit(value));

g

Fig. 4. Parallel Traversal With Optimistic Synchronization
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Locks can also have a negative impact on the performance of the memory hierarchy.
They occupy space in the data caches, which reduces the amount of useful application
data that the caches can hold. They also increase the amount of space between useful
application data, which may reduce the spatial locality. If the lock and its associated data
are stored on different cache lines, a locked update may generate extra cache misses —
operations may incur not only the cache misses required to perform the update, but also an
extra cache miss to acquire the lock.

The use of locks may also affect the performance of the instruction cache. The addi-
tional instructions required to address, acquire, and release the lock increase the size of
the generated code, effectively reducing the amount of application code that the instruction
cache can hold. For optimistic synchronization, the conditional branches that retry failed
updates are the only additional instructions.

Lock synchronization may also affect the performance of the memory consistency pro-
tocol. To execute the program correctly, the machine must globally order the execution
of the locking constructs with respect to the memory accesses performed as part of the
atomic operation. Modern machines that implement relaxed memory consistency mod-
els typically enforce this order by waiting for all outstanding writes to complete globally
before releasing a lock [Adve and Gharachorloo 1996; Gharachorloo 1996]. But unlike
lock synchronization, optimistic synchronization imposes no additional order between ac-
cesses to different memory locations. Although interactions between the caches, optimistic
synchronization and out of order execution complicate the implementation on modern pro-
cessors, in principle the machine can use the same relaxed ordering constraints for opti-
mistically synchronized updates as it does for unsynchronized updates. The fundamental
performance differences between optimistically synchronized and unsynchronized updates
come primarily from the need to acquire exclusive access to the memory location before
a store conditional can succeed and control dependences from the branch that retries the
update if it fails.

A significant advantage of optimistic synchronization is that it imposes no memory, data
cache or memory consistency overheads — the serial and parallel programs have iden-
tical data memory layouts, identical data memory access patterns and identical ordering
constraints between accesses to different memory locations.

4.2 Synchronization Granularity

As described in Section 2, existing optimistic synchronization primitives support atomic
operations only on individual data items. The advantage of synchronizing at this fine gran-
ularity is that it minimizes the possibility of false exclusion and maximizes the exposed
concurrency. But it may not always be desirable or even possible to synchronize at this
granularity. If an operation updates many data items, it may be more efficient to acquire a
lock, perform all of the updates without additional synchronization, then release the lock.
Furthermore, atomic operations that perform multiple interdependent updates to multiple
data items cannot synchronize at the granularity of individual items — all of the updates
must execute atomically together as a group. In this case, the compiler must generate code
that uses lock synchronization.

4.3 Impact on Applications

The extent to which an application can use optimistic synchronization depends on the
characteristics of its atomic operations. The parallel phases of many applications compute a
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set of contributions that are atomically accumulated into shared objects using simple binary
operators such as, max, min, addition, or multiplication. The basic atomic operations in
these applications update a single word of memory, and all of these atomic operations can
use optimistic synchronization instead of mutual exclusion locks. All of our benchmark
applications use this kind of atomic operation exclusively, as do many of the applications
in parallel benchmark suites such as the SPLASH and SPLASH2 benchmarks [Singh et al.
1992; Woo et al. 1995].

Problematic cases tend to arise when applications use atomic operations to construct or
update linked data structures in parallel, as opposed to simply traversing the data structures
in parallel. The version of Barnes-Hut in the SPLASH2 benchmark suite, for example,
builds an space-subdivision tree in parallel. The atomic operations used to build or update
linked data structures tend to update multiple words of data atomically, which makes them
unsuitable for the simple atomic synchronization primitives that are currently available
on RISC microprocessors. Experience with operating systems kernels, however, suggests
that more advanced primitives such as double compare and swap may make it possible to
recode these computations to use optimistic synchronization instead of mutual exclusion
locks [Greenwald and Cheriton 1996; Massalin and Pu 1989].

A final question is whether it may be more efficient to synchronize at the coarser gran-
ularity of objects instead of using optimistic synchronization. For our set of benchmark
applications, synchronizing at the granularity of objects never significantly improves the
performance. We expect, however, that applications with coarser granularity updates than
those in our set of benchmark applications may execute more efficiently with lock syn-
chronization than with optimistic synchronization. Given the relatively efficient current
implementations of optimistic synchronization primitives, we would not expect to see dra-
matic performance differences from this effect.

5. COMMUTATIVITY ANALYSIS

We next provide an overview ofcommutativity analysis, the technique that our compiler
uses to automatically parallelize our set of applications [Rinard and Diniz 1997]. Com-
mutativity analysis is designed to parallelize pure object-based programs. Such programs
structure the computation as a set of operations on objects. Each object implements its state
using a set of instance variables. An instance variable can be a nested object, a pointer to
an object, a primitive data item such as anint or a double , or an array of any of the
preceding types. Each operation has a receiver object and several parameters. When an op-
eration executes, it can read and write the instance variables of the receiver object, access
the parameters, or invoke other operations. Well structured object-based programs con-
form to this model of computation; pure object-based languages such as Smalltalk enforce
it explicitly.

The commutativity analysis algorithm analyzes the program at the granularity ofoper-
ationson objectsto determine if the operations commute, i.e., if they generate the same
result regardless of the order in which the operations commute. If all operations in a given
computation commute, the compiler can automatically generate parallel code.

To test that two operations A and B commute, the compiler must consider two execution
orders: the execution order A;B in which A executes first, then B executes, and the execu-
tion order B;A in which B executes first, then A executes. The two operations commute if
they meet the following commutativity testing conditions:
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—Instance Variables: The new value of each instance variable of the receiver objects of
A and B under the execution order A;B must be the same as the new value under the
execution order B;A.

—Invoked Operations: The multiset of operations directly invoked by either A or B under
the execution order A;B must be the same as the multiset of operations directly invoked
by either A or B under the execution order B;A.

Both commutativity testing conditions are trivially satisfied if the two operations have dif-
ferent receiver objects or if neither operation writes an instance variable that the other
accesses — in both of these cases the operations are independent. If the operations may
not be independent, the compiler reasons about the values computed in the two execution
orders.

The compiler uses symbolic execution [King 1976; Kemmerer and Eckmann 1985] to
extract expressions that denote the new values of instance variables and the multiset of
invoked operations. Symbolic execution simply executes the methods, computing with ex-
pressions instead of values. It maintains a set of bindings that map variables to expressions
that denote their values and updates the bindings as it executes the methods. The compiler
uses the extracted expressions from the symbolic execution to apply the commutativity
testing conditions presented above. If the compiler cannot determine that corresponding
expressions are equivalent, it must conservatively assume that the two operations do not
commute.

5.1 Automatic Parallelization and Parallel Phases

The compiler uses commutativity analysis as outlined above to parallelize the program. It
recursively traverses the call graph of the program visiting operation invocation sites as
follows. At each site, it first computes the set of operations executed by the computation
rooted at that site. It then uses commutativity analysis to determine if all pairs of operations
in this set commute. If so, the compiler generates code that executes the operations in
parallel. We refer to such parallelized computations asparallel phases. The parallel phase
therefore corresponds to the entire computation rooted at the invocation site.

As soon as the traversal detects a parallel phase, it does not recursively visit the operation
invoked at the invocation site. It instead skips to the next invocation site after the parallel
phase. If the compiler was unable to parallelize the computation rooted at the call site, the
traversal recursively visits the invocation sites in the invoked operation.

5.2 Synchronization in the Generated Code

Commutativity analysis assumes that the operations in the parallel phases execute atomi-
cally. When the compiler generates the parallel code, it must therefore choose a synchro-
nization mechanism and insert the corresponding synchronization constructs into opera-
tions in parallel phases that access potentially updated objects. These constructs ensure
that the operation executes atomically with respect to all other operations in the parallel
phase that access the same object. A standard mechanism is to augment each potentially
updated object with amutual exclusion lock. The generated code for each operation would
first acquire the object’s lock, access the object, then release the lock. This paper presents
the results of a compiler that, when possible, uses optimistic synchronization instead of the
standard lock synchronization.
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6. THE SYNCHRONIZATION SELECTION ALGORITHM

Synchronization selection takes place after the commutativity analysis algorithm has suc-
cessfully parallelized a phase of the computation as outlined above in Section 5. The
synchronization selection algorithm chooses a synchronization mechanism for all vari-
ables updated by operations in the phase. The algorithm uses optimistic synchronization
whenever possible. The synchronization mechanism for a given variable can differ across
parallel phases — i.e., one phase may use lock synchronization, while another phase may
use optimistic synchronization for the same variable.

Even though we implemented the synchronization selection algorithm in the context
of our parallelizing compiler, the algorithm is independent of the specific means used to
extract the concurrency, and can be used both for automatically and manually parallelized
computations.

6.1 Model of Computation

We next outline the basic requirements for the application of the synchronization selection
algorithm. The algorithm is designed to work on pure object-based programs with parallel
phases and atomic operations. For each atomic operation, the algorithm must be able
to determine the operations that may execute in parallel with the atomic operation and
the instance variables that the operations update. To use optimistic synchronization, it
must also be able to generate expressions that denote the new values of updated instance
variables.

In our compiler, the commutativity analysis algorithm extracts some of the information
that the synchronization selection algorithm uses. Specifically, it produces the set of op-
erations that each parallel phase may invoke and the set of instance variables that these
operation may update [Rinard and Diniz 1997]. For each operation, it also produces a
set ofupdate expressionsthat represent how the operation updates instance variables and
a multiset ofinvocation expressionsthat represent the multiset of operations that the op-
eration may invoke. There is one update expression for each instance variable that the
operation modifies and one invocation expression for each operation invocation site. Ex-
cept where noted, the update and invocation expressions contain only instance variables
and parameters — the algorithm uses symbolic execution to eliminate local variables from
the update and invocation expressions [King 1976; Kemmerer and Eckmann 1985; Rinard
and Diniz 1997].

6.2 Update Expressions

An update expression of the formv=exp represents an update to a scalar instance vari-
ablev. The symbolic expressionexp denotes the new value ofv. An update expression
v[exp0]=exp represents an update to the array instance variablev. An update expression
of the formfor (i=exp

1
; i<exp

2
; i+=exp

3
) upd represents a loop that repeatedly per-

forms the updateupd. In this case,< can be an arbitrary comparison operator and+=
can be an arbitrary assignment operator. The induction variablei may appear in the sym-
bolic expressions ofupd. An update expression of the formif (exp) upd represents an
updateupd that is executed only ifexp is true. For some operations, the compiler may be
unable to generate update expressions that accurately represent the new values of the in-
stance variables. The commutativity analysis algorithm is unable to parallelize phases that
may invoke such operations. Because the synchronization selection algorithm runs only
after the commutativity analysis algorithm has successfully parallelized a phase, update
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expressions are available for all operations that the parallel phase many invoke.

6.3 Invocation Expressions

An invocation expressionexp
0
-> op(exp

1
; � � � ; exp

n
) represents an invocation of the op-

erationop. The symbolic expressionexp
0

denotes the receiver object of the operation and
the symbolic expressionsexp

1
; � � � ; exp

n
denote the parameters. An invocation expres-

sion of the formfor (i=exp
1
; i<exp

2
; i+=exp

3
) inv represents a loop that repeatedly

invokes the operationinv. In this case,< can be an arbitrary comparison operator and+=
can be an arbitrary assignment operator. The induction variablei may appear in the sym-
bolic expressions ofinv. An invocation expression of the formif (exp) inv represents an
operationinv that is invoked only ifexp is true. For some operations, the compiler may be
unable to generate invocation expressions that accurately represent the multiset of invoked
operations. The commutativity analysis algorithm is unable to parallelize phases that may
invoke such operations. Because the synchronization selection algorithm runs only af-
ter the commutativity analysis algorithm has successfully parallelized a phase, invocation
expressions are available for all operations that the parallel phase many invoke.

6.4 Synchronization Selection Requirements

To execute correctly, all accesses to a potentially updated variable must use the same syn-
chronization mechanism. The synchronization selection algorithm therefore classifies each
potentially updated variable as either anoptimistically synchronized variable, (a variable
whose updates can use optimistic synchronization or no synchronization) or alock syn-
chronized variable(a variable whose accesses must use lock synchronization).

The commutativity analysis algorithm assumes that each operation executes atomically
with respect to other operations that access the same object. The analysis takes place at
the granularity of instance variables and multisets of invoked operations — two opera-
tions commute if the instance variables and multisets of invoked operations are the same
in both execution orders [Rinard and Diniz 1997]. But optimistically synchronized up-
dates execute atomically only at the granularity of individual updates, not at the coarser
granularity of complete operations (each operation may perform multiple updates). If the
synchronization selection algorithm chooses to optimistically synchronize a set of updates,
it must ensure that the generated parallel program always produces the same result as the
corresponding program in which all operations execute atomically.

The atomicity requirements may force the synchronization selection algorithm to use
lock synchronization. Consider, for example, a computation that contains an operation that
updates multiple variables and an update in a different operation that reads all of the vari-
ables. To satisfy the atomicity requirements, the updates in the first operation must execute
atomically as a group with respect to the update that reads the variables. Because opti-
mistically synchronized updates are atomic only at the granularity of individual updates,
the synchronization selection algorithm cannot optimistically synchronize the updates in
the first operation. All of the updated variables must be classified as lock synchronized
variables.

The current algorithm applies two constraints to enforce the atomicity requirements.

—First, each update to an optimistically synchronized variable may access only the up-
dated variable and variables that are not updated during the parallel phase.

—Second, all accesses to an optimistically synchronized variable may occur only in up-
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dates to that variable — no other update reads the variable and no operation invocation
site depends on the variable.

It is possible to relax these constraints. For example, if an operation accessed only one
updated variable, the compiler could allow its operation invocation sites to depend on the
variable even if the variable were optimistically synchronized. To ensure that updates to
the variable would execute atomically with respect to the accesses in the operation, the
generated code would read the value of the variable into a local variable. It would then
access the value from that local variable for the remainder of the operation.

It would also be possible to integrate the commutativity testing and synchronization
selection more closely. In such a scenario, the synchronization selection algorithm would
propose a set of optimistically synchronized variables, and the commutativity testing would
take place at the finer granularity of individual updates to those variables.

The practical impact of these generalizations would depend on the characteristics of
the applications. In general, we expect the current algorithm to recognize most of the
opportunities to use optimistic synchronization that occur in practice. But experience with
a broader range of applications would shed additional light on the situation.

6.5 The Algorithm

We next present some notation that we will use when we present the synchronization se-
lection algorithm. The program defines a set of classescl 2 CL and a set of operations
op 2 OP. Given an operationop, the function receiverClass(op) returns the class of the re-
ceiver objects ofop. The program also defines a set of instance variablesv 2 V. The func-
tion instanceVariables(cl) returns the instance variables of the classcl. No two classes
share an instance variable — i.e., instanceVariables(cl1) \ instanceVariables(cl2) = ; if
cl1 6= cl2.

Figure 5 presents the algorithm. It takes as parameters a set of invoked operations, a set
of updated variables, a function updates(op), which returns the set of update expressions
that represent the updates that the operationop performs, and a function invocations(op),
which returns the multiset of invocation expressions that represent the multiset of opera-
tions that the operationop invokes. There is also an auxiliary function called variables;
variables(exp) returns the set of variables in the symbolic expressionexp, variables(upd)
returns the set of free variables in the update expressionupd, and variables(inv) returns
the set of free variables in the invocation expressioninv. The free variables of an update
or invocation expression include all variables in the expression except the induction vari-
ables in expressions that representfor loops. In particular, the free variables in an update
expression include the updated variable. The algorithm produces a set of variables whose
updates may be optimistically synchronized, a set of classes that must be augmented with
locks, and a set of operations that must use lock synchronization.

The algorithm determines the kind of synchronization it must use by processing all of
the updates and invocations. For each update, the choices are to use lock synchroniza-
tion, optimistic synchronization, or no synchronization at all. For simplicity, the algorithm
classifies each variable as either requiring lock synchronization or able to use optimistic
synchronization. Some updates to variables classified as able to use optimistic synchro-
nization may require no synchronization at all. When the compiler generates the code
for such updates, it simply omits the synchronization. The decision to generate or omit
synchronization is based on the form of the update as discussed below.



Effective Fine-Grain Synchronization For Automatically Parallelized Programs � 13

synchronizationSelection(invokedOperations; updatedVariables;updates; invocations)
lockedClasses= ;;
lockedOperations= ;;
optimisticVariables= updatedVariables;
for all op 2 invokedOperations

for all u 2 updates(op)
if (requiresLockSynchronization(u; updatedVariables))

optimisticVariables= optimisticVariables� variables(u);
lockedClasses= lockedClasses[ freceiverClass(op)g;

for all i 2 invocations(op)
if (variables(i) \ updatedVariables6= ;)

optimisticVariables= optimisticVariables� variables(i);
lockedClasses= lockedClasses[ freceiverClass(op)g;

lockedVariables= updatedVariables� optimisticVariables;
for all op 2 invokedOperations

for all u 2 updates(op)
if (variables(u) \ lockedVariables6= ;)

lockedOperations= lockedOperations[ fopg;
for all i 2 invocations(op)

if (variables(i) \ lockedVariables6= ;)
lockedOperations= lockedOperations[ fopg;

returnhoptimisticVariables; lockedClasses; lockedOperationsi;

requiresLockSynchronization(u; updatedVariables)
if (u is of the formv = exp and variables(exp) \ updatedVariables= ;)

return false;
if (u is of the formv[exp0] = exp and(variables(exp) [ variables(exp0)) \ updatedVariables= ;)

return false;
if (u is of the formv = v� exp and variables(exp) \ updatedVariables= ;)

return false;
if (u is of the formv[exp0] = v[exp0]� exp and

(variables(exp) [ variables(exp0)) \ updatedVariables= ;)
return false;

if (u is of the formif (exp) upd and variables(exp) \ updatedVariables= ;)
returnrequiresLockSynchronization(upd;updatedVariables);

if (u is of the formfor (i = exp
1
; i < exp

2
; i+ = exp

3
) upd

and81�j�3variables(expj) \ updatedVariables= ;)

returnrequiresLockSynchronization(upd;updatedVariables);
return true;

Fig. 5. Synchronization Selection Algorithm



14 � Martin C. Rinard

Three factors contribute to the synchronization choice for a given variable: the require-
ment of each update to the variable, the way that other updates use the variable, and the
way that invocations use the variable. Each update imposes the following requirement on
the updated variable:

—No Synchronization: If an update computes a new value that does not depend on any
updated variable, then writes the value into a variable, it is a candidate for using no
synchronization at all. The sole responsibility of the synchronization selection algorithm
is to ensure that the operations execute atomically. Because store instructions execute
atomically, there may be no need to explicitly synchronize an update that simply writes
a value into an instance variable if the value does not depend on a variable that some
other operation may update.

—Optimistic Synchronization: In principle, if an update reads an instance variable, com-
putes a new value that does not depend on a different variable that another operation
might update, then writes the new value back into the variable, the update should be a
candidate for optimistic synchronization. In the MIPS R4400, however, it is illegal to
perform a memory access between thell andsc instructions. The compiler could still
use optimistic synchronization whenever it is possible to compute the new value without
accessing memory after the initial read of the instance variable. To simplify the imple-
mentation of the compiler, however, the algorithm uses optimistic synchronization only
when the new value can be expressed in the formv� exp or v[exp0]� exp, wherev or
v[exp0] denotes the original value of the variable,� is an arbitrary binary operator, and
exp andexp0 do not contain an updated variable. In this case, the generated code can
compute the value ofexp into a register, then use an instruction sequence similar to that
in Figure 1 to atomically perform the computation and update the variable.

—Lock Synchronization: The algorithm classifies all other updates as requiring lock
synchronization.

In a given parallel phase, all accesses to an updated variable must use the same synchro-
nization mechanism. If even one update that accesses the variable (either by reading the
variable or writing the variable) requires lock synchronization, then all updates that access
the variable must use lock synchronization.

The algorithm starts by assuming that all variables can use either optimistic synchro-
nization or no synchronization at all. It then scans the updates to find updates that require
lock synchronization. Any variable involved in such an update is removed from the set
of optimistically synchronized variables. The compiler will augment the class of the re-
ceiver object of the variable with a lock and insert constructs that acquire and release the
lock into all operations that access the variable. The invocation expressions capture the
remainder of the operation’s accesses to updated variables. If an invocation expression ac-
cesses an updated variable, the algorithm deletes the variable from the set of optimistically
synchronized variables. All accesses to the variable will use lock synchronization. The
algorithm computes the set of operations that must use lock synchronization by scanning
the operations to find all operations that access a lock synchronized variable.

6.6 Multiple Updates In Loops

There is a technical detail associated with loops that update the same variable or array
element more than once. If the updates are optimistically synchronized, they are atomic
only at the granularity of the individual loop iterations, not at the granularity of the entire
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loop. With lock synchronization, they would be atomic at the granularity of the entire loop.
Optimistically synchronizing variables that may be updated multiple times in a loop makes
the granularity of the enforced atomicity finer. Because the commutativity analysis for
such variables takes place at the granularity of individual loop iterations instead of at the
granularity of the entire loop, this change in the granularity does not affect the correctness
of the optimistically synchronized parallel program.

6.7 Code Generation

If an operation must use lock synchronization, the generated code acquires the lock in the
receiver object before it accesses any potentially updated instance variables; it does not
release the lock until it has completed all of its accesses to potentially updated variables.
The commutativity analysis algorithm ensures that all invocations of operations that may
access potentially updated variables occur after the invoking operation has completed its
last access to a potentially updated variable [Rinard and Diniz 1997]. Thisseparability
property ensures that the generated code never attempts to acquire more than one lock,
which in turn ensures that it never deadlocks.

It is possible for an operation to synchronize some of its updates using locks and other
updates using optimistic synchronization. The nonblocking nature of optimistic synchro-
nization ensures that the combination of the two different synchronization mechanisms
never causes deadlock. Finally, note that the code generation algorithm augments a class
with a lock only if one of the phases uses lock synchronization when it updates an object
of that class. So if the compiler is able to use optimistic synchronization for all updates in
parallel phases to objects of a given class, the object layout is the same in the parallel and
serial versions and there is no memory overhead for locks in objects of that class.

7. EXPERIMENTAL RESULTS

We next present experimental results that characterize the performance and memory im-
pact of using optimistic synchronization. We present results for three automatically par-
allelized applications: Barnes-Hut [Barnes and Hut 1986], a hierarchical N-body solver,
String [Harris et al. 1990], which builds a velocity model of the geology between two oil
wells, and Water [Singh et al. 1992], which simulates water molecules in the liquid state.
Each application performs a complete computation of interest to the scientific computing
community. Barnes-Hut consists of approximately 1500 lines of serial C++ code, String
consists of approximately 2050 lines of serial C++ code, and Water consists of approxi-
mately 1850 lines of serial C++ code.

7.1 The Compilation System

We implemented a prototype parallelizing compiler that uses commutativity analysis as
its basic analysis paradigm. Compiler flags determine whether it generates code that uses
mutual exclusion locks or (when possible) optimistic synchronization.

The compiler is structured as a source-to-source translator that takes a serial program
written in a subset of C++ and generates an explicitly parallel C++ program that performs
the same computation. We use Sage++ [Bodin et al. 1994] as a front end. The analysis
and code generation phases consist of approximately 21,000 lines of C++ code. This count
includes no code from the Sage++ system. The generated parallel code contains calls to
a run-time library that provides the basic concurrency management and synchronization
functionality. The library consists of approximately 6000 lines of C code.
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The current version of the compiler imposes several restrictions on the dialect of C++
that it can analyze. The major restrictions include the following:

—The program does not use operator or method overloading.
—The program uses neither multiple inheritance nor templates.
—The program contains notypedef , union , struct , or enum types.
—Global variables cannot be primitive data types; they must be class types.
—The program has no static members.
—The program contains no casts between base types such asint , float , anddouble

that are used to represent numbers. The program may contain casts between pointer
types; the compiler assumes that the casts do not cause the program to violate its type
declarations.

—The program contains no default arguments or methods with variable numbers of argu-
ments.

—No operation accesses an instance variable of a nested object of the receiver or an in-
stance variable declared in a class from which the receiver’s class inherits.

—The program has no virtual methods or function pointers.
—The program does not use exceptions.
—The program does not use pointers to members.

In addition to these restrictions, the compiler assumes that the program has been type
checked and does not violate its type declarations. The goal of these restrictions is to sim-
plify the implementation of the compiler while providing enough expressive power to allow
the programmer to develop clean object-based programs. Most of the restrictions are de-
signed simply to reduce the number of cases that the compiler must handle, and impose no
conceptual limitation on the expressive power of the language. But the restrictions against
virtual methods, function pointers, exceptions, and pointers to members do significantly
limit the expressive power of the language. Supporting these constructs in our compiler
would require the presence of additional analysis algorithms. The current call graph con-
struction algorithm, for example, would have to be extended to determine which methods
could be invoked at virtual function call sites and call sites that use function pointers. The
symbolic execution algorithm would have to be extended to support the additional control
flow associated with exceptions and to operate conservatively in the presence of pointers
to members. While none of these extensions would fundamentally affect the commuta-
tivity analysis or synchronization selection algorithms discussed in this paper, they would
require a significant engineering effort to integrate into the compiler.

7.2 Methodology

We collected experimental results for the applications running on an SGI Challenge XL
multiprocessor with 24 100 MHz R4400 processors running IRIX version 6.2. We com-
piled the generated parallel programs using version 7.1 of the MipsPro compiler from
Silicon Graphics. We implemented two versions of the lock primitives: a spin lock [Hein-
rich 1993], and a Mellor-Crummey Scott (MCS) lock [Mellor-Crummey and Scott 1991].
The spin lock acquire is implemented using a compiler intrinsic that usesll andsc to
atomically test and set a value that indicates whether the lock is free or not. The release
simply clears the value. Whenever an attempt to acquire a lock fails, the processor imme-
diately reexecutes the instruction sequence that attempts to acquire the lock: there is no
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backoff. Spin locks perform well if there is little lock contention. If there is substantial
lock contention, spin locks typically perform poorly because they generate a large amount
of invalidation traffic [Mellor-Crummey and Scott 1991].

MCS locks are designed to perform well across a range of locking conditions. Pro-
cessors waiting to acquire a lock are arranged in a linked list; each processor spins on a
separate memory location. MCS locks therefore avoid significant invalidation traffic even
for heavily contended locks. The drawback is that the MCS lock implementation executes a
compare-and-swap operation both when the lock is acquired and when the lock is released.
As Table I in Section 7.3 illustrates, it therefore takes significantly longer to acquire and
release an available MCS lock than it does to acquire and release an available spin lock.

We used the compiler to obtain the following versions of each application:

—Optimistic: When possible, the compiler generates code that uses optimistic synchro-
nization. For our three applications, the atomic operations use optimistic synchroniza-
tion exclusively — the generated code contains no mutual exclusion locks. The serial
and Optimistic versions therefore have identical memory layouts.

—Item Lock: If a primitive data item (such as anint , float or double ) in an object
may be updated in a parallel phase, there is a spin lock associated with that item. If
an operation in a parallel phase updates an item, it acquires the corresponding lock,
performs the update, then releases the lock.

—Object Lock: If an object may be updated in a parallel phase, there is a spin lock
associated with that object. When an operation in a parallel phase updates an object,
it acquires the object’s lock, performs the update, then releases the lock. Each nested
object has the same lock as its enclosing object.

—Coarse Lock: Like the Object Lock version, there is a spin lock associated with each
object and each operation that updates an object holds that object’s lock. But the com-
piler analyzes the program to detect sequences of operations that acquire and release the
same lock. It then transforms the sequence so that it acquires the lock once, executes
the operations without synchronization, then releases the lock [Diniz and Rinard 1998;
1997].

—Item MCS Lock: The same as Item Lock listed above, except that the generated code
uses MCS locks instead of spin locks.

—Object MCS Lock: The same as Object Lock listed above, except that the generated
code uses MCS locks instead of spin locks.

—Coarse MCS Lock: The same as Coarse Lock listed above, except that the generated
code uses MCS locks instead of spin locks.

The Optimistic versions synchronize at the granularity of individual data items. The Item
Lock versions also synchronize at this granularity, but use locks instead of optimistic syn-
chronization. Because the Object Lock versions synchronize at the coarser granularity of
objects, they allocate fewer locks and execute fewer lock constructs than the Item Lock
versions. The tradeoff, of course, is that the Object Lock versions may suffer from false
exclusion.

The Coarse Lock versions allocate the same number of locks as the Object Lock ver-
sions, but execute fewer lock constructs. The tradeoff is that the Coarse Lock versions
may suffer fromfalse contention. False contention occurs when a processor attempts to
acquire a lock, but the processor that currently holds the lock is executing code that was
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originally in no atomic operation. The first processor must wait until the lock is released,
even though the computations are independent and should, in principle, be able to execute
concurrently. False contention can significantly degrade the performance by reducing the
amount of available parallelism.

The compiler is structured as a source to source translator from serial C++ to parallel
C++ containing synchronization primitives and calls to procedures in our run time system.
Starting with an unannotated, serial C++ program, the compiler generates the Object Lock
and Coarse Lock versions automatically with no programmer intervention. Although it
would be possible to generate the Item Lock versions automatically, we generated these
versions by hand starting from the Object Lock version. Ideally, the generated code for the
Optimistic versions would use compiler intrinsics to implement the atomic updates. But the
7.1 version of the MipsPro compiler does not support such compiler intrinsics for floating
point numbers, and all of our applications need to perform atomic updates on floating point
numbers. The Optimistic versions therefore contain calls to assembly language routines
that implement the atomic updates using optimistic synchronization primitives.

7.3 Cost Of Basic Operations

Table I presents the execution times for a single update implemented using different syn-
chronization mechanisms. Each update reads an array element, adds a constant to the
element, then stores the new value back into the array. We present times for cached up-
dates, in which all of the accessed data are present in the first level processor cache, and
for uncached updates, in which all of the data are present in the first level processor cache
of another processor. The times vary significantly for the cached versions, with the opti-
mistically synchronized update executing faster than the lock synchronized updates. The
execution times of the uncached versions are dominated by the cache miss time and are
roughly comparable for the different synchronization mechanisms.

Execution Time For Execution Time For
One Cached Update One Uncached Update

Version (microseconds) (microseconds)
No Synchronization 0.049 3.34
Optimistic Synchronization 0.20 3.48
Lock Synchronization 0.34 3.69
MCS Lock Synchronization 0.56 3.93

Table I. Measured Execution Times for One Update

7.4 Barnes-Hut

We start our discussion of Barnes-Hut by analyzing the memory overhead of using locks.
Table II presents thememory usagefor each version — the amount of memory used to
store objects during the execution of the program. The applications store all of their data
except local variables in objects. The memory usage therefore indicates the total heap data
usage of the program.� Thelock overheadis the percentage of memory used to hold locks.

�The reader should bear in mind that the numbers in Table II are for a realistic but small data set — 16,384
particles. Larger data sets would increase the memory usage.
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Version Memory Usage (Mbytes) Lock Overhead
Serial 5.37 -
Optimistic 5.37 -
Item Lock 7.08 24%
Object Lock 6.30 15%
Coarse Lock 5.51 2.5%
Item MCS Lock 7.08 24%
Object MCS Lock 6.30 15%
Coarse MCS Lock 5.51 2.5%

Table II. Lock Memory Overheads for Barnes-Hut

Number of Lock Number of Optimistically
Version Acquire/Release Pairs Synchronized Updates
Optimistic - 108,641,972
Item Lock 108,641,972 -
Object Lock 54,271,834 -
Coarse Lock 212,992 -
Item MCS Lock 108,641,972 -
Object MCS Lock 54,271,834 -
Coarse Lock 212,992 -

Table III. Number of Synchronization Operations for Barnes-Hut

Locks impose a significant memory overhead, with the Item Lock version allocating twice
as much memory for locks as the Object Lock and Coarse Lock versions.

Table III presents the number of synchronization operations performed by the differ-
ent versions. The Optimistic and Item Lock versions synchronize each update separately
from all other updates. The Item Lock version therefore executes as many acquire/release
pairs as the Optimistic version executes optimistically synchronized updates. The Object
Lock version executes half as many acquire and release pairs as the Item Lock version
— on average, the computation performs two updates every time it acquires and releases
a lock. The Coarse Lock version executes dramatically fewer acquire/release pairs than
the Item Lock and Object lock versions. On average, the Coarse Lock version performs
approximately 510 updates every time it acquires and releases a lock.

Table IV presents the running times for Barnes-Hut as a function of the number of pro-
cessors executing the computation. We evaluate how well the application scales by com-
puting thespeedup, which is the running time of the serial version divided by the running
time of the parallel version. The serial version executes with no parallelization overhead.
The serial versions of Barnes-Hut and Water perform slightly better than a highly opti-
mized version written in C [Rinard and Diniz 1997]. The serial version of String performs
slightly worse than the corresponding C version. Figure 6 presents the speedups using
speedup curves, which plot the speedup as a function of the number of processors execut-
ing the computation. These curves show that Barnes-Hut scales reasonably well — the
speedup over the Serial version is above 12 out of 24 processors for all versions.

We used program counter sampling [Graham et al. 1982; Knuth 1971] to measure how
much time each version spends in different parts of the parallel computation. We break the
execution time down into the following components:
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Processors
Version 1 4 8 12 16 20 24

Serial 136.34 - - - - - -
Optimistic 147.10 41.05 22.06 16.55 13.00 11.41 10.08
Item Lock 169.20 46.84 25.56 18.58 14.79 12.87 11.62
Object Lock 150.04 41.74 22.71 16.84 13.43 11.79 10.37
Coarse Lock 135.09 38.88 20.90 15.83 12.38 11.10 9.63
Item MCS Lock 211.65 55.98 30.18 22.00 17.34 14.95 13.24
Object MCS Lock 173.55 47.70 25.69 18.76 14.92 12.97 11.67
Coarse MCS Lock 139.12 39.15 20.80 15.79 12.49 11.13 9.71

Table IV. Execution Times for Barnes-Hut (seconds)

—Atomic Operation: The amount of time spent executing operations that require syn-
chronization to execute atomically or operations that contain lock constructs. Perfor-
mance problems caused by contention for locks or retried updates show up as increases
in this component of the execution time.
For the Optimistic, Item Lock and Object Lock versions, all application-level synchro-
nization takes place inside operations that require synchronization to execute atomically.
For the Coarse Lock versions, the compiler occasionally lifts lock constructs out of oper-
ations that require synchronization into operations that would otherwise not contain lock
constructs. Our applications spend very little time executing such operations. Barnes-
Hut always spends less than 0.5% of its execution time executing operations that contain
lifted lock constructs; Water always spends less than 1.8% of its execution time execut-
ing operations that contain lifted lock constructs. As discussed below in Section 7.5, the
Coarse Lock versions of String execute sequentially because of false contention, so we
do not present performance results for these versions.

—Idle: The amount of time spent idle. All but one processor is idle during serial phases of
the computation; processors may also be idle during parallel phases if the program has
poor load balancing.

—Serial Compute: Time spent computing in serial phases of the computation.

—Parallel Compute: Time spent computing in parallel phases of the computation.

Figure 7 graphically presents the time breakdowns for the different versions of Barnes-
Hut. For each category, the size of the part of the bar dedicated to that category corresponds
to the sum over all processors of the amount of time the processor spends in that category.
Ideally, the total height of the bar divided by the number of processors would therefore
be the execution time of the application on that number of processors. In practice, there
are several sources of instrumentation error that introduce discrepancies between the two
measurements. First, the time breakdown numbers are from runs with program counter
sampling turned on, while the execution times are from runs without this instrumentation.
Second, the execution times reflect the absolute running times, while the time breakdown
numbers reflect the amount of time spent executing on the processor. Third, there is a
delay between the time when the application completes its execution and when the pro-
gram counter sampling is turned off on all processors and the results collected. This delay
can artificially increase the time breakdown numbers relative to the execution time num-
bers. Given these sources of instrumentation error, the time breakdown numbers should be
viewed primarily as giving qualitative insight into the application’s overall performance.
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Fig. 6. Speedups for Barnes-Hut

For Barnes-Hut, the time breakdown numbers show that as the number of processors
increases, the primary limiting factor on the performance is the idle time. One of the phases
of the computation (the tree construction phase) executes sequentially. As the number of
processors increases, this serial phase becomes a bottleneck that limits the performance.

The time breakdowns for the different versions are approximately equivalent except for
the atomic operation times, which directly reflect the efficiency differences between the
different synchronization mechanisms. For each version, the atomic operation times stay
roughly constant as the number of processors increases. This independence of the number
of processors indicates that contention is not a problem in any of the versions, that the
Object Lock and Coarse Lock versions do not incur false exclusion, and that the Coarse
Lock version does not incur false contention. Note that contention occurs when two opera-
tions attempt to update the same object or data item. In the Optimistic version, contention
causes the store conditional instruction to fail, which in turn causes the operation to retry
the update. In the versions that use locks, contention causes multiple operations to attempt
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Optimistic

Item Lock Object Lock Coarse Lock

Item MCS Lock Object MCS Lock Coarse MCS Lock

Fig. 7. Time Breakdowns for Barnes-Hut
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to acquire the same lock at the same time. One of the operations acquires the lock, and the
other operations must wait until that operation finishes the update and releases the lock.
Contention shows up in the time breakdowns as an increase in the atomic operation time.
Given the lack of false exclusion and false contention, the Coarse Lock version performs
best, although the difference between all of the versions is quite small as the computation
scales.

7.5 String

For String, false contention in the Coarse Lock version completely serializes the compu-
tation. We therefore present results for only the Optimistic, Item Lock, and Object Lock
versions. Table V presents the lock memory overheads for String. For the Object Lock
version, the overhead is negligible. For the Item Lock version, allocating one lock for each
data item significantly increases the overhead. Table VI presents the number of synchro-
nization operations for the different versions. The Item Lock and Object Lock versions
both execute one lock acquire/release pair per update — the increased lock granularity in
the Object Lock version does not decrease the number of executed lock constructs.

Table VII presents the execution times; Figure 8 presents the corresponding speedup
curves. The Optimistic and Item Lock versions scale almost perfectly up to 24 processors.
The Object Lock version, however, stops scaling at 16 processors. An examination of the
time breakdowns in Figure 9 shows that the atomic operation times for the Object Lock
versions grow dramatically as the number of processors increases, while the Optimistic
and Item Lock versions spend almost no time executing atomic operations regardless of
the number of processors executing the computation. This difference in the atomic oper-
ation times indicates that false exclusion causes the poor performance in the Object Lock
version.

An examination of the application helps to explain the performance differences. String
repeatedly updates individual elements of a large aggregate data structure stored in a single
object. Because the update pattern is very irregular and is determined in part by the input
data, it is impractical to lock the data structure at any granularity other than the object or
item granularities.

In the Object Lock version, there is one lock for the entire aggregate. Operations that
attempt to concurrently update any item in the aggregate must contend for that one lock
even if they update different items. The results indicate that this coarse synchronization
granularity generates a significant amount of contention. Because the Optimistic and Item
Lock versions synchronize at the granularity of individual items, operations suffer from
contention only if they attempt to concurrently update the same item. The results indicate
that this fine synchronization granularity almost completely eliminates contention.

7.6 Water

Table VIII presents the lock memory overheads for Water. The use of locks significantly
increases the amount of memory that the program consumes. Table IX presents the num-
ber of synchronization operations. The Object Lock version executes approximately 2.75
updates per lock acquire/release pair; the Coarse Lock version executes approximately 5.5
updates per acquire/release pair.

Table X presents the execution times; Figure 10 presents the corresponding speedup
curves. The application scales reasonably well to 8 or 12 processors (depending on the
specific version), then the performance levels off. The time breakdowns in Figure 11 show



24 � Martin C. Rinard

Version Memory Usage (Mbytes) Lock Overhead
Serial 3.58 -
Optimistic 3.58 -
Item Lock 5.98 40%
Object Lock 3.57 0%
Item MCS Lock 5.98 40%
Object MCS Lock 3.57 0%

Table V. Lock Memory Overheads for String

Version Number of Lock Number of Optimistically
Acquire/Release Pairs Synchronized Updates

Optimistic - 30,036,938
Item Lock 30,036,938
Object Lock 30,036,938 -
Item MCS Lock 30,036,938
Object MCS Lock 30,036,938 -

Table VI. Number of Synchronization Operations for String

Processors
Version 1 4 8 12 16 20 24

Serial 886.25 - - - - - -
Optimistic 899.24 227.07 113.17 76.75 56.05 46.80 39.59
Item Lock 885.16 223.41 113.50 76.62 55.91 49.53 38.78
Object Lock 894.85 235.37 125.78 93.23 78.31 80.14 86.29
Item MCS Lock 889.31 229.16 114.70 77.37 57.80 45.95 38.76
Object MCS Lock 913.04 245.51 135.56 110.00 99.45 94.99 89.75

Table VII. Execution Times for String (seconds)

that increased atomic operation times cause the poor performance. In one of the parallel
phases, there is a single one-word object that all of the parallel threads repeatedly update.
As the number of processors increases, these updates generate a synchronization bottleneck
in all of the versions.

7.7 Discussion

The experimental results demonstrate that optimistic synchronization is the superior choice
for this set of applications. It imposes no memory overhead at all, and, for all of the
benchmark applications, the fastest lock synchronized version never performs significantly
better than the optimistically synchronized version. This robustness enables a compiler
to automatically generate optimistically synchronized code without risking a significant
degradation in the performance. Based on these results, we believe that, whenever possible,
compilers should generate code that uses optimistic synchronization instead of locks.

The results also demonstrate the simplicity of automatically applying optimistic syn-
chronization in a parallelizing compiler instead of lock synchronization. For these appli-
cations, one of the lock synchronized versions always performs at least as well as the opti-
mistically synchronized version. The problem is that the best lock synchronized version is
different for different applications.

For Barnes-Hut, the Coarse Lock version performs better than both the Object Lock and
Item Lock versions and consumes less memory than the Item Lock version. For String,
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Fig. 8. Speedups for String

the Item Lock version consumes more memory than the Object Lock and Coarse Lock
versions, but it eliminates the false exclusion and false contention problems that limit the
performance of the other two versions. For Water, all versions incur significant memory
and synchronization overheads. These results show that the compiler must manage a com-
plex tradeoff between memory usage, lock overhead, false exclusion, and false contention
if it is to choose the best lock granularity. We have been able to use dynamic feedback
to successfully manage the tradeoff between the Object Lock and different Coarse Lock
versions [Diniz and Rinard 1999]. The basic approach is to measure the performance of
each version during a short sampling interval, then use the best version during a longer
production interval. The generated code periodically resamples to dynamically adapt to
changes in the best version. This approach requires the code to switch between the dif-
ferent versions dynamically. This dynamic switching is feasible for the Object Lock and
Coarse Lock versions, in part because these versions all have the same association of locks
with data and therefore the same memory layout. The fact that the Item Lock version has
a different memory layout than the Object Lock and Coarse Lock versions would signif-
icantly complicate the extension of dynamic feedback to include the Item Lock version.
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Fig. 9. Time Breakdowns for String
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Version Memory Usage (Mbytes) Lock Overhead
Serial 0.43 -
Optimistic 0.43 -
Item Lock 0.72 40%
Object Lock 0.57 25%
Coarse Lock 0.58 25%
Item MCS Lock 0.72 40%
Object MCS Lock 0.57 25%
Coarse MCS Lock 0.58 25%

Table VIII. Lock Memory Overheads for Water

Number of Lock Number of Optimistically
Version Acquire/Release Pairs Synchronized Updates
Optimistic - 34,652,160
Item Lock 34,652,160 -
Object Lock 12,601,344 -
Coarse Lock 6,297,600 -
Item MCS Lock 34,652,160 -
Object MCS Lock 12,601,344 -
Coarse MCS Lock 6,297,600 -

Table IX. Number of Synchronization Operations for Water

Processors
Version 1 4 8 12 16 20 24

Serial 164.83 - - - - - -
Optimistic 170.93 49.14 25.32 18.35 20.15 21.22 22.09
Item Lock 176.60 52.70 28.11 37.71 47.83 52.66 54.30
Object Lock 172.23 49.16 25.84 20.02 28.48 31.66 33.95
Coarse Lock 170.66 49.63 26.27 31.18 38.57 43.46 49.56
Item MCS Lock 190.10 56.68 34.38 40.75 47.65 50.12 52.67
Object MCS Lock 172.65 51.48 28.06 29.54 31.93 31.44 31.62
Coarse MCS Lock 169.77 51.30 28.44 29.58 32.49 32.30 32.75

Table X. Execution Times for Water (seconds)

Another drawback of using lock synchronization is that, as String illustrates, the version
with the best performance may have significant memory overhead.

Based on these experimental results, we believe the major reasons for using optimistic
synchronization in automatically parallelized applications are the absence of memory over-
head and the elimination of the need to choose a lock granularity that works well for the
application at hand. In general, we would not expect the best optimistically synchronized
version of a parallel application to perform significantly better than the best lock synchro-
nized version in a standard parallel computing environment.

8. RELATED WORK

The majority of existing research in optimistic synchronization has addressed problems
associated with using blocking synchronization primitives such as locks in a multipro-
grammed system. These problems include poor responsiveness, lock convoys, priority in-
versions, deadlock, and the need to reclaim locks held by failed processes [Herlihy 1993].
Optimistically synchronized data structures such as atomic queues allow programmers to
avoid these problems. Such data structures were a key component of the extremely efficient
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Fig. 10. Speedups for Water

Synthesis kernel [Massalin and Pu 1989], a complete operating system kernel built without
blocking synchronization. Herlihy has developed a general methodology for implement-
ing optimistically synchronized data structures [Herlihy 1993], and other researchers have
implemented and measured the performance of several such data structures [Michael and
Scott 1996]. Our research explores the use of optimistic synchronization in a different con-
text (a parallelizing compiler for irregular, object-based computations) and for a different
reason (to enable efficient fine-grain synchronization).

Advanced parallel machines such as Tera [Alverson et al. 1990] or Monsoon [Hicks
et al. 1993] augment each word of memory with state bits. These machines provide a
synchronizing read instruction that suspends until a state bit is set, then atomically reads
the value in the word and clears the bit. The corresponding synchronizing write instruction
writes a value into the word, then sets the bit. These machines provide exceptional support
for fine-grain atomic operations — each operation simply uses a synchronizing read to
obtain the current value, computes the new value, then uses a synchronizing write to write
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the new value back into the word. There is no additional memory overhead (the lock bit
for each word is already integrated into the machine) and no instruction overhead (the
computation simply uses synchronizing read and write instructions in the place of normal
read and write instructions).

Several software systems for these machines exploit this hardware support. The im-
plementation of M-structures in the dataflow language Id uses the state bits to implement
efficient, implicitly synchronized atomic operations [Barth et al. 1991]. The Tera compiler
exploits the state bits to automatically parallelize loops that update indirectly accessed ar-
rays. The generated code uses the bits to make the updates execute atomically. A simple
modification to our code generation algorithm would enable our compiler to generate sim-
ilarly synchronized code for computations that update dynamic, pointer-based data struc-
tures. Instead of anll instruction, the generated code would use a synchronizing read.
Instead of ansc instruction, the code would use a synchronizing write. Because the up-
date would never fail, the code would omit the conditional branch that retries the operation
in case of failure.

9. CONCLUSION

As shared-memory multiprocessors become the dominant commodity source of parallel
computation, it will be important for parallelizing compilers to support irregular compu-
tations, including computations that access pointer-based data structures. Our experience
with a parallelizing compiler for this class of applications indicates that their synchro-
nization requirements differ significantly from those of traditional parallel computations.
Instead of coarse-grain barrier synchronization, irregular computations require synchro-
nization primitives that support efficient fine-grain atomic operations.

This paper presents our experience using optimistic synchronization to implement fine-
grain atomic operations in automatically parallelized programs. For our set of benchmark
applications, optimistic synchronization is clearly the superior choice. The optimistically
synchronized versions have no memory overhead at all and the fastest lock synchronized
version never performs significantly better than the optimistically synchronized version.
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