The Design, Implementation, and Evaluation of Jade

MARTIN C. RINARD

Massachusetts Institute of Technology
and

MONICA S. LAM

Stanford University

Jade is a portable, implicitly parallel language designed for exploiting task-level concurrency. Jade
programmers start with a program written in a standard serial, imperative language, then use
Jade constructs to declare how parts of the program access data. The Jade implementation uses
this data access information to automatically extract the concurrency and map the application
onto the machine at hand. The resulting parallel execution preserves the semantics of the original
serial program. We have implemented Jade as an extension to C, and Jade implementations exist
for shared-memory multiprocessors, homogeneous message-passing machines, and heterogeneous
networks of workstations. In this article we discuss the design goals and decisions that determined
the final form of Jade and present an overview of the Jade implementation. We also present our
experience using Jade to implement several complete scientific and engineering applications. We
use this experience to evaluate how the different Jade language features were used in practice and
how well Jade as a whole supports the process of developing parallel applications. We find that
the basic idea of preserving the serial semantics simplifies the program development process, and
that the concept of using data access specifications to guide the parallelization offers significant
advantages over more traditional control-based approaches. We also find that the Jade data model
can interact poorly with concurrency patterns that write disjoint pieces of a single aggregate data
structure, although this problem arises in only one of the applications.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming; D.3.2 [Programming Languages]: Language Constructs and Fea-
tures—concurrent programming structures

General Terms: Languages, Performance

Additional Key Words and Phrases: Parallel computing, parallel programming languages

The research reported in this article was conducted while the first author was a graduate student
in the Computer Science Department at Stanford University. The research was supported in part
by DARPA contract N00039-91-C-0138.

Authors’ addresses: M. Rinard, MIT Laboratory for Computer Science, 545 Technology Square
NE43-620A, Cambridge, MA 02139; email: martin@Ics.mit.edu; M. Lam, Computer Science De-
partment, Stanford University, Stanford, CA 94305; email: lam@cs.stanford.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 1998 ACM 0164-0925/98/0100-0111 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998, Pages 1-63.

2 . Martin C. Rinard and Monica S. Lam

1. INTRODUCTION

Programmers have traditionally developed software for parallel machines using ex-
plicitly parallel systems [Lusk et al. 1987; Sunderam 1990]. These systems provide
constructs that programmers use to create parallel tasks. On shared-memory ma-
chines the programmer synchronizes the tasks using low-level primitives such as
locks, condition variables, and barriers. On message-passing machines the pro-
grammer must also manage the communication using explicit message-passing op-
erations such as send and receive. Explicitly parallel systems are only one step
removed from the hardware, giving programmers maximum control over the paral-
lel execution. Programmers can exploit this control to generate extremely efficient
computations. But explicitly parallel systems also directly expose the programmer
to a host of program development and maintainance problems.

Existing parallel machines present two fundamentally different programming
models: the shared-memory model [Hagersten et al. 1992; Kendall Square Research
Corporation 1992; Lenoski et al. 1992] and the message-passing model [Intel Su-
percomputer Systems Division 1991; Thinking Machines Corporation 1991]. Even
machines that support the same basic model of computation may present interfaces
with significantly different functionality and performance characteristics. Develop-
ing the same computation on different machines may therefore lead to radically
different programs [Salmon 1990; Singh 1993], and it can be difficult to port a
program written for one machine to a machine with a substantially different pro-
gramming interface [Martonosi and Gupta 1989].

A second problem is that the programmer must manage many of the low-level
aspects associated with mapping a computation onto the parallel machine. For
example, the programmer must decompose the program into parallel tasks and
assign the tasks to processors for execution. For the program to execute correctly,
the programmer must generate the synchronization operations that coordinate the
execution of the computation. On message-passing machines the programmer must
also generate the message-passing operations required to move data through the
machine.

For some parallel programs with simple concurrency patterns, the programmer
can generate this management code without too much difficulty, and its direct in-
corporation into the source code does not significantly damage the structure of the
program. In general, however, an explicitly parallel programming environment com-
plicates the programming process and can impair the structure and maintainability
of the resulting program. To generate correct synchronization code, the program-
mer must develop a global mental model of how all the parallel tasks interact and
keep that model in mind when coding each task. The result is a decentralized
concurrency management algorithm scattered throughout the program. To func-
tion effectively, a new programmer attempting to maintain the program must first
reconstruct, then understand, both the global synchronization algorithm and the
underlying mental model behind the algorithm. Explicitly parallel environments
therefore destroy modularity because they force programmers to understand the
dynamic behavior of the entire program, not just the module at hand [Rinard
1994b].

Finally, nondeterministic execution exacerbates all of the problems outlined above.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 3

Parallel machines present an inherently nondeterministic model of computation. If
the programming environment exposes this nondeterminism to the programmer, it
complicates the debugging process by making it difficult to reproduce and eliminate
programming errors.

Jade [Rinard and Lam 1992; Rinard et al. 1992; Rinard et al. 1993] is a high-
level, implicitly parallel language designed for exploiting task-level concurrency.
Jade programmers direct the parallelization process by augmenting a serial pro-
gram with granularity and data usage information.! The Jade implementation
uses this information to automatically extract the concurrency and map the re-
sulting parallel computation onto the machine at hand. This approach eliminates
many of the problems that complicate the development of parallel software. Jade
programs port without modification between shared-memory machines, message-
passing machines, and even heterogeneous collections of workstations. The Jade
implementation, and not the programmer, is responsible for extracting the con-
currency, correctly synchronizing the parallel execution, and, on message-passing
machines, generating the communication required to execute the program. Finally,
because Jade preserves the semantics of the original serial program, Jade programs
execute deterministically.

The remainder of the article is structured as follows. Section 2 presents the
concepts and constructs of Jade. Section 3 discusses the advantages and limitations
of Jade. Section 4 presents the reasoning behind the Jade language design and
discusses how the concrete Jade constructs relate to the language design rationale.
Section 5 describes the Jade implementation. Section 6 describes our experience
with Jade applications. We discuss related work in Section 7 and conclude in
Section 8.

2. THE JADE LANGUAGE

This section presents a detailed description of Jade. It describes both the concepts
behind Jade (objects, tasks, and access specifications) and the relationship between
these concepts and concurrent execution. It describes the concrete expression of
these concepts in the constructs of the language. It analyzes the design choices
implicit in the structure of Jade and presents a rationale for the final design.

2.1 Fundamental Concepts

Jade is based on three concepts: shared objects, tasks, and access specifications.
Shared objects and tasks are the mechanisms the programmer uses to specify the
granularity of, respectively, the data and the computation. The programmer uses
access specifications to specify how tasks access data. The implementation analyzes
this data usage information to automatically extract the concurrency, generate
the communication, and optimize the parallel execution. The next few sections
introduce the fundamental concepts behind Jade.

1Jade is currently implemented as an extension to C. Identical implementations are available
at the first author’s home page, http://www.cag.lcs.mit.edu/~rinard and at the SUIF home
page, http://suif.stanford.edu; another implementation is available at the SAM home page,
http://suif.stanford.edu/~scales/sam.html.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

4 . Martin C. Rinard and Monica S. Lam

2.1.1 Shared Objects. Jade supports the abstraction of a single mutable memory
that all parts of the computation can access. Each piece of data allocated in this
memory is called a shared object. The programmer therefore implicitly aggregates
the individual words of memory into larger granularity objects by allocating data
at a certain granularity. No piece of memory can be part of more than one object.?

2.1.2 Tasks. Jade programmers explicitly decompose the serial computation into
tasks by identifying the blocks of code whose execution generates a task. Program-
mers can create hierarchically structured tasks by creating tasks which, in turn,
decompose their computation into child tasks. In many parallel programming lan-
guages tasking constructs explicitly generate parallel computation. Because Jade
is an implicitly parallel language with serial semantics, Jade programmers osten-
sibly use tasks only to specify the granularity of the parallel computation. The
Jade implementation, and not the programmer, then decides which tasks execute
concurrently.

2.1.3 Access Specifications. In Jade, each task has an access specification that
declares how it (and its child tasks) will read and write individual shared objects. It
is the responsibility of the programmer to provide an initial access specification for
each task when that task is created. As the task runs, the programmer may dynam-
ically update its access specification to more precisely reflect how the remainder of
the task accesses shared objects.

2.1.4 Parallel and Serial Ezxecution. The Jade implementation analyzes access
specifications to determine which tasks can execute concurrently. This analysis
takes place at the granularity of individual shared objects. The dynamic data
dependence constraints determine the concurrency pattern. If one task declares
that it will write an object and another declares that it will access the same object,
there is a dynamic data dependence between the two tasks, and they must execute
sequentially. The task that would execute first in the serial execution of the program
executes first in all parallel executions. If there is no dynamic data dependence
between two tasks, they can execute concurrently.

This execution strategy preserves the relative order of reads and writes to each
shared object, which guarantees that the program preserves the semantics of the
original program. One important consequence of this property is that Jade pro-
grams execute deterministically.

2.1.5 Ezecution Model. As a task runs, it executes its serial computation. It
may also decompose its computation into a set of subcomputations by serially
creating child tasks to execute each subcomputation. When a task is created,
the implementation executes a programmer-provided piece of code that generates
its access specification. As the program runs, the implementation analyzes tasks’
access specifications to determine when they can legally execute.

When a task can legally execute, the Jade implementation assigns the task to a

2The question may arise how this concept interacts with Fortran constructs such as COMMON
or EQUIVALENCE. COMMON variables are a natural candidate for shared objects. EQUIVA-
LENCE declarations would interact poorly with the concept of shared objects because different
variables from different equivalence statements would be allocated in the same memory.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 5

double shared x;
double shared A[10];
struct {
int i, j, k;
double d;
} shared s;

double shared *p;
Fig. 1. Jade shared object declarations.

processor for execution. In the message-passing implementation, the processor on
which the task will execute issues messages requesting the remote shared objects
that the task will access. The implementation then moves (on a write access)
or copies (on a read access) the objects to that processor. When all of the remote
shared objects arrive, the implementation executes the task. When the task finishes,
the implementation may enable other tasks for execution.

The Jade implementation dynamically checks each task’s accesses to ensure that
it respects its access specification. If a task attempts to perform an access that it did
not declare, the implementation will detect the violation and generate a run-time
error identifying the undeclared access.

2.2 Basic Jade Constructs

In this section we describe the basic constructs Jade programmers use to create
and manipulate tasks, shared objects, and access specifications.

2.2.1 Shared Objects. The Jade memory model is based on the abstraction of a
single global mutable memory. Programmers access data in Jade programs using
the same linguistic mechanism as in the original C program. Jade extends the
standard memory model by segregating pieces of data that multiple tasks may
access (shared objects) from data that only one task may access.

Jade uses the shared keyword to identify shared objects. Figure 1 shows how
to declare a shared double, a shared array of doubles, and a shared structure.
Programmers access objects using pointers. Figure 1 also shows how to use the
shared keyword to declare a pointer to a shared object; the shared is inserted
before the * in the pointer declaration.

It is possible for shared objects to, in turn, contain pointers to other shared
objects. To declare pointers to such objects, the programmer may need to use
several instances of the shared keyword in a given declaration. Figure 2 contains the
declaration of a pointer to a shared pointer to a shared double and the declaration of
a shared structure which contains an array of pointers to shared vectors of doubles.
Figure 3 presents a picture of these data structures. Even though q points to
a shared object, q itself is a private object in the sense that only the task that
declares q can access q.

Programmers can allocate shared objects dynamically using the create_object
construct, which takes as parameters the type of data in the object and the number
of elements of that type to allocate. If there is only one element in the object,
the programmer can omit the parameter. The create_object construct returns a

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

6 . Martin C. Rinard and Monica S. Lam

double shared * shared *q;
struct {
int n, m;

double shared *d[N];
} shared s;

Fig. 2. More Jade shared object declarations.

Private Objects Shared Objects

o =]

0 [
nL1 | T

g -]
]

Fig. 3. Data structures for shared object declarations.

pointer to the allocated object. Figure 4 contains a simple example.

Programmers can also implicitly allocate a shared object by declaring a global
variable to be shared. While procedure parameters or local variables may point to
shared objects, it is illegal for the parameter or variable itself to be shared. It is
therefore impossible to allocate shared objects on the procedure invocation stack.
In Figure 1, x, A, and s must be global.

2.2.2 Deallocating Objects. The Jade programmer is responsible for informing
the Jade implementation when the computation will no longer access an object.
The implementation can then reuse the object’s memory for other objects or for
internal data structures. The programmer uses the destroy_object construct to
deallocate an object. The construct takes one parameter: a pointer to the object.

Any language that allows the programmer to explicitly deallocate memory faces
the potential problem of dangling pointers when the programmers deallocate ob-
jects before their last use. This problem can become especially severe in parallel
contexts if the programmer does not correctly synchronize the deallocation with
other potentially concurrent uses. Just as Jade preserves the serial semantics for
reads relative to writes, it preserves the serial semantics for all accesses relative to
deallocations. Jade therefore eliminates the problem of having one task deallocate
an object while another task concurrently accesses it. Of course, if the serial pro-
gram accesses an object after its deallocation, the corresponding Jade program will
suffer from the same error.

We did not consider making Jade garbage-collected because the underlying lan-
guage, C, does not provide a data model that supports garbage collection.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 7

double shared *p;
p = create_object(double, 10);

Fig. 4. Jade shared object creation.

struct {
vector part *column;
int part *row_index;
int part *start_row_index;
int num_columns;
} shared matrix;

Fig. 5. Jade part object declarations.

2.3 Part Objects

In some situations the natural allocation granularity of the data may be finer than
the desired shared object granularity in the parallel computation. For example, the
Jade sparse Cholesky factorization algorithm in Section 2.4.2 manipulates a data
structure that contains pointers to several dynamically allocated index arrays. In
the parallel computation, the desired shared object granularity is the data structure
plus the index arrays. In such situations Jade allows programmers to aggregate
multiple allocation units into a single shared object. The programmer creates such
objects by declaring that some of the objects to which a shared object points are
part of that object. As Figure 5 illustrates, the programmer declares such pointers
using the part keyword.

Programmers dynamically allocate part objects using the create_part_object
construct. The first parameter is a pointer to the shared object that the part object
is part of. The second and third parameters are the type and number of data items
in the part object. Figure 6 contains an example that illustrates how to allocate
part objects. Programmers are also responsible for deallocating part objects when
they are done with them; Jade provides the destroy_part_object construct for
this purpose.

2.3.1 Local Pointers. The Jade implementation ensures that tasks respect their
access specifications by dynamically checking each task’s accesses to shared objects.
If the implementation dynamically checked every access, the overhead would un-
acceptably degrade the performance of the application. Jade therefore provides a
mechanism in the type system that programmers can use to make the implemen-
tation perform many of the access checks statically rather than dynamically. The
programmer can usually drive the overhead down to one dynamic check per object
per task, which generates negligible amortized dynamic checking overhead.

The mechanism is that the programmer can declare a pointer to a shared object
and restrict how the program will access data using that pointer. Such a pointer is
called a local pointer; Figure 7 contains several examples which demonstrate how
to declare local pointers.

In Figure 7, the program can only read shared objects via rp, write shared objects
via wp, and read and/or write objects via rwp. The implementation statically

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

8 . Martin C. Rinard and Monica S. Lam

matrix.row_index = create_part_object(&matrix, int, N);
matrix.start_row_index = create_part_object(&matrix, int, 200);
destroy_part_object(matrix.row_index);

Fig. 6. Jade part object creation and destruction.

double local rd *rp;
double local wr *wp;
double local rd wr *rwp;

Fig. 7. Jade local pointer declarations.

enforces these access restrictions. It performs a dynamic check when the program
sets the local pointer to point to a shared object. The code fragment in Figure 8
illustrates which accesses are checked statically and which are checked dynamically.
Figure 9 presents a picture of the data structures.

Local pointers introduce a complication into the access checking. If a task changes
its access specification to declare that it will no longer access a shared object, the
implementation should ensure that the task has no local pointers to that object.
One way to do this is to count, for each shared object, the number of outstanding
local pointers each task has that point into that object. In this case, the implemen-
tation could preserve the safety of the parallel execution by generating an error if
a task with outstanding local pointers declared that it would no longer access the
object. This feature is currently unimplemented.

It is impossible for one task to use another task’s local pointer. The implementa-
tion enforces this restriction by forbidding shared objects to contain local pointers
and forbidding a task to pass one of its local pointers as a parameter to a child
task. (Section 2.3.3 explains how tasks pass parameters to child tasks.)

It is important to keep the concepts of shared and local pointers separate. Each
execution of a create_object construct returns a shared pointer. The only other
way to obtain a shared pointer is to apply the & operator to a shared global variable.
When applied to shared objects (with the exception for global variables noted
above), the & operation yields local pointers. When applied to shared pointers,
the pointer arithmetic operations yield local pointers (the implementation uses the
surrounding context to determine the appropriate access restriction). The code
fragment in Figure 10 illustrates these concepts.

A shared pointer always points to the first element of a shared object, but a
local pointer can point to any element of a shared object. Shared pointers can
travel across task boundaries, but no task can access another task’s local pointers.
It is illegal to store local pointers in shared objects. Figure 11 presents several
declarations that are illegal because of this restriction.

2.3.2 Private Objects. Jade programs may also manipulate pieces of data that
only one task may access. Such pieces of data are called private objects. All pieces
of data allocated on the procedure call stack are private objects. Jade also provides
a memory allocation construct, new_mem, that programmers can use to dynamically
allocate private objects. new mem has the same calling interface as the C malloc

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 9

void proc(double shared *p, int i, int j)

{
double local rd *rp;
double local rd wr *rwp;
double d;
rp = p; /* checked dynamically for read access */
d = *rp; /* checked statically for read access */
d += p[il /* checked dynamically for read access */
rwp = &(p[jl); /* checked dynamically for read and
write access */
rwp += d; / checked statically for read and
write access */
}

Fig. 8. Local pointer usage.

Private Objects Shared Objects

p

rp

w [—

Fig. 9. Data structures for local pointer usage.

int shared s;
proc(int shared *p)

{
int shared *lp;
int local rd *rp;
1p = (&s /* shared pointer */);
rp = (&(p[5]1) /* local rd pointer */);
1p = &(p[1]); /* illegal - 1lp is a shared pointer,
&(p[1]1) is a local pointer */
(p + 2 / local wr pointer */) = 4;
}

Fig. 10. Shared and local pointers.

double local rd * shared *d; /* illegal declaration */
struct {

double local rd wr *e;

int i, j, k;
} shared s; /* illegal declaration */

Fig. 11. Illegal declarations.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

10 . Martin C. Rinard and Monica S. Lam

double * shared *d; /* illegal declaration */
struct {

double x*e;

int i, j, k;
} shared s; /* illegal declaration */

Fig. 12. More illegal declarations.

double shared *A[N];
struct {
double B[N];
double shared *data;
int i, j, k;
} s

Fig. 13. Legal declarations.

routine, taking as a parameter the size of the allocated private object. There is also
the old_mem routine for deallocating private data; it has the same calling interface as
the C free routine.> Programmers declare variables that deal with private objects
using the normal C variable declaration syntax.

The Jade implementation enforces the restriction that no task may access an-
other task’s private objects. The implementation enforces this restriction in part
by requiring that no shared object contain a pointer to a private object. The decla-
rations in Figure 12 are therefore illegal, because they declare shared objects that
contain pointers to private objects.

Of course, it is possible for private objects to contain pointers to shared objects.
The declarations in Figure 13 are legal, because they declare private objects that
contain pointers to shared objects.

2.3.3 The withonly Construct. Jade programmers use the withonly construct
to identify tasks and to create an initial access specification for each task. The
syntactic form of the withonly construct is as follows:

withonly { access specification } do (parameters) {
task body
}

The task body section identifies the code that executes when the task runs.
The code in this section cannot contain a return statement that would implicitly
transfer control out of one task to another task. It is also illegal to have goto, break,
or continue statements that would transfer control from one task to another task.

The task body section executes in a naming environment separate from the
enclosing naming environment. The parameters section exists to transfer values
from the enclosing environment to the task. The parameters section itself is a

3We chose the names new_mem and old mem rather than malloc and free to emphasize the semantic
difference between private objects and shared objects. malloc and free allocate and free data
that any part of the program can access. new.mem and old mem allocate and free data that only
the allocating task can access.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 11

list of identifiers separated by commas. These identifiers must be defined in the
enclosing context. Their values are copied into the task’s context when the task
is created. When the task executes it can access these variables. The only values
that can be passed to a task using the parameter mechanism are base values from
C (int, double, char, etc.) and shared pointers. This restriction, along with the
restriction that shared objects contain no pointers to private objects, ensures that
no task can access another task’s private objects.

2.3.4 The access specification Section. Each task has an access specification
that declares how that task may access shared objects. When the implementation
creates a task, it executes the access specification section, which generates
an initial access specification for the task. This section can contain arbitrary C
constructs such as loops, conditionals, indirect addresses, and procedure calls, which
gives the programmer a great deal of flexibility when declaring how a task will access
data and makes it easier to specify dynamic parallel computations.

2.3.5 Basic Access Specification Statements. The access specification section
uses access specification statements to build up the task’s access specification. Each
access specification statement declares how the task will access a single shared
object. We next describe the basic access specification statements.

—rd(o0): The rd(o) (read) access specification statement declares that the task
may read the object o. Tasks can concurrently read the same object. The
implementation preserves the serial execution order between tasks that declare
a read access and tasks that declare any other access to the same object. If a
task in the message-passing implementation declares that it will read an object,
the implementation ensures that an up-to-date copy of that object exists on the
processor that will execute the task before the task executes.

—uwr(o): The wr(o) (write) access specification statement declares that the task
may write the object o. The implementation preserves the original serial execu-
tion order between tasks that declare a write access to a given object and all other
tasks that declare any access to the same object. If a task in the message-passing
implementation declares that it will write an object, the implementation moves
the object to the processor that will execute the task before the task executes.

—de(0): The de(o) (deallocate) access specification statement declares that the
task may deallocate o. The implementation preserves the original serial execution
order between tasks that declare a deallocate access to a given object and all
other tasks that declare any access to the same object. It is an error for a task
to attempt to access an object after it has been deallocated.

—Combination Access Specification Statements: For convenience the implementa-
tion supports several combination access specification statements. For example,
the rd_wr (o) access specification statement declares that the task may read and
write o. The de_rd (o) access specification statement declares that the task may
read and deallocate o.

2.4 A Programming Example

In this section we show how to use Jade to parallelize a sparse Cholesky factoriza-
tion algorithm. This algorithm performs the numerical factorization of a sparse,

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

12 . Martin C. Rinard and Monica S. Lam

double *columns;

int *row_index;
int *start_column;
int num_columns;

Fig. 14. Data structure declarations for serial sparse Cholesky factorization.

. columns ’O‘O‘o‘o‘o‘o‘o‘o‘o‘
:. row_index ’0‘3‘4‘1‘2‘2‘3‘4‘4‘
: : 3 start_column ’0‘3‘5‘6‘8‘9‘

01 2 3 4 num_columns

Fig. 15. Data structures for serial sparse Cholesky factorization.

symmetric, positive-definite matrix. The algorithm runs after a symbolic factor-
ization phase has determined the structure of the final factored matrix [Rothberg
1993]. The example illustrates how to use Jade’s object and withonly constructs,
and it demonstrates how Jade programs can exploit dynamic concurrency.

2.4.1 The Serial Algorithm. The serial algorithm stores the matrix using the data
structures declared in Figure 14. Figure 15 shows a sample sparse matrix and the
corresponding data structures. Because the matrix is symmetric, the algorithm only
needs to store its lower triangle. The factorization algorithm repeatedly updates
the data structures that represent this lower triangle.

The columns of the matrix are packed contiguously into one long vector of dou-
bles. The columns global variable points to this vector. The start_column global
variable tells where in the vector each column of the matrix starts. The jth entry of
the start_column array gives the index (in the columns array) of the first element
of column j. The row_index global variable stores the row indices of the nonzeros
of the matrix. The ith element of row_index is the row index of the ith element
of the columns array.

Figure 16 contains the serial code for this algorithm. The algorithm processes the
columns of the matrix from left to right. It first performs an internal update on the
current column. This update reads and writes the current column, bringing it to
its final value in the computation. The algorithm then uses the current column to
update some subset of the columns to its right. For a dense matrix, the algorithm
would update all of the columns to the right of the current column. For sparse
matrices, the algorithm omits some of these updates because they would not change
the updated column.

2.4.2 The Jade Algorithm. The first step in parallelizing a program using Jade
is to determine the appropriate data granularity. In this case the programmer
decides that the parallel computation will access the matrix at the granularity of
the individual columns. The programmer must therefore decompose the columns

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 13

factor()
{
int i, j, first, last;
for (j = 0; j < num_columns; j++) {
/* update column j */

InternalUpdate(j);
first = start_column[j] + 1;
last = start_column[j+1] - 1;

for (i = first; i <= last; j++) {
/* update column row_index[i] with column j */
ExternalUpdate(j, row_index[i]);
}
}
}

Fig. 16. Serial sparse Cholesky factorization algorithm.

array so that each column is stored in a different shared object. The new matrix
is structured as an array of column objects. The programmer also decides that the
parallel computation will access the structuring data (the num_columns, row_index,
and start_column data structures) as a unit. The programmer allocates these data
structures as part objects of a single matrix object. Figure 17 gives the new data
structure declarations, while Figure 18 shows the sample matrix and the new data
structures.

The programmer next modifies the InternalUpdate and ExternalUpdate rou-
tines to use the new matrix data structure and then inserts the withonly constructs
that identify each update as a task and specify how each task accesses data. Figure
19 contains the new factor routine.

2.4.3 Dynamic Behavior. Conceptually, the execution of the factor routine on
our sample matrix generates the task graph in Figure 20. When the program exe-
cutes, the main task creates the internal and external update tasks as it executes
the body of the factor procedure. When the implementation creates each task,
it first executes the task’s access specification section to determine how the
task will access data. It is this dynamic determination of tasks’ access specifica-
tions that allows programmers to express dynamic, data-dependent concurrency
patterns. Given the access specification, the implementation next determines if the
task can legally execute or if the task must wait for other tasks to complete. The
implementation maintains a pool of executable tasks, and dynamically load bal-
ances the computation by assigning these tasks to processors as they become idle.
In a message-passing environment the implementation also generates the messages
required to move or copy the columns between processors so that each task accesses
the correct version of each column. As tasks complete, other tasks become legally
executable and join the pool of executable tasks. In effect, the Jade implementation
dynamically interprets the high-level task structure of the program to detect and
exploit the concurrency.

2.4.4 Modularity. The sparse Cholesky factorization example illustrates how Jade
supports the development of modular programs that execute concurrently. Each
access specification only contains local information about how its task accesses

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

14 . Martin C. Rinard and Monica S. Lam

typedef double shared *vector;
struct {
vector part *_column;
int part *_row_index;
int part *_start_row_index;
int _num_columns;
} shared matrix;
#define column matrix._column
#define row_index matrix._row_index
#define start_row_index matrix._start_row_index
#define num_columns matrix._num_columns

Fig. 17. Data structure declarations for Jade sparse Cholesky factorization.

Binlsio

column

lolsfafslz]z[a]ale]

ofs[s]ele]e] -~

[}

[}

[
EINN

o
[N
N
w
IN

matrix

Fig. 18. Data structures for Jade sparse Cholesky factorization.

data—each task is independent of all other tasks in the program. Even though the
tasks must interact with each other to correctly synchronize the computation, the
Jade implementation, and not the programmer, automatically generates the syn-
chronization using the access specifications and the original serial execution order.

2.4.5 Comparison with Task-Scheduling Systems. It is worth comparing the Jade
execution model to the execution model in other systems that have been used to
solve the sparse Cholesky factorization problem. One aspect of this problem is
that it is possible to construct the task graph for the entire factorization before the
execution of the factorization begins. In fact, the symbolic factorization must derive
information equivalent to this task graph before it can determine the structure of
the final factored matrix.

Several researchers have built two-phase systems that schedule a programmer-
provided task graph, then execute the scheduled task computation [Dongarra and
Sorensen 1987; Fu and Yang 1997]. Because these systems have the entire task
graph available when they schedule the computation, they may be able to generate
very efficient schedules. They also eliminate scheduling overhead during the exe-
cution of the computation. The primary limitation is that these systems are not
suitable for problems whose task graph structure depends on the results of compu-
tation performed in previous tasks. They also force the programmer to extract the

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 15

factor()
{
int i, j, first, last;
for (j = 0; j < num_columns; j++) {
withonly {
rd_wr(column[j]);
rd (&matrix);
} do (§) {
/* update column j */
InternalUpdate(j);
}
first = start_column[j] + 1;
last = start_column[j+1] - 1;
for (i = first; i <= last; j++) {
withonly {
rd_wr(column[row_index[i]]);
rd(column[j]);
rd(&matrix);
} do (i,3) {
/* update column row_index[i] with column j */
ExternalUpdate(j, row_index[i]);

Fig. 19. Jade sparse Cholesky factorization algorithm.

0 1 2 3 4

Fig. 20. Task graph for Jade sparse Cholesky factorization.

parallelism and present the parallelism to the scheduling system in the form of a
task graph. Jade’s online approach provides more programmer support (the Jade
implementation, not the programmer, extracts the concurrency) and is suitable for
a more general class of problems. The cost of this generality is a potentially less
efficient schedule and scheduling overhead during the execution of the task graph.

2.5 Programmer Responsibilities

Programmers and programming language implementations cooperate through the
medium of a programming language to generate computations. To achieve ac-
ceptable performance, programmers must often adjust their programming styles to
the capabilities of the language implementation. Any discussion of programmer

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

16 . Martin C. Rinard and Monica S. Lam

responsibilities must therefore assume an execution model that includes a quali-
tative indication of the overhead associated with the use of the different language
constructs. This discussion of programmer responsibilities assumes the dynamic
execution model outlined above in Section 2.1.5 in which all of the concurrency
detection and exploitation takes place as the program runs. Substantial changes to
the execution model would change the division of responsibilities between the pro-
grammer and the implementation and would alter the basic programming model.
For example, an aggressive implementation of Jade that statically analyzed the
code could eliminate almost all sources of overhead in analyzable programs. Such
an implementation would support the exploitation of finer-grain concurrency.

The most important programming decisions Jade programmers make deal with
the data and task decompositions. In this section we discuss how the decomposi-
tion granularities affect various aspects of the parallel execution and describe what
the programmer must do to ensure that the Jade implementation can successfully
parallelize the computation.

2.5.1 Data Decomposition. The decomposition of the data into shared objects is
a basic design decision that can dramatically affect the performance of the Jade
program. The current implementation performs the access specification, concur-
rency analysis, and data transfer at the granularity of shared objects. Each object
is a unit of synchronization. If one task declares that it will write an object, and
another task declares that it will read the same object, the implementation seri-
alizes the two tasks even though they may actually access disjoint regions of the
object. In the message-passing implementation, each object is also a unit of com-
munication. If a task executing on one processor needs to access an object located
on another processor, the implementation transfers the entire object even though
the task may only access a small part of the object.

Several factors drive the granularity at which the programmer allocates shared
objects. Because each object is a unit of synchronization, the programmer must
allocate shared objects at a fine enough granularity to expose an acceptable amount
of concurrency. Because each object is a unit of communication, the programmer
must allocate shared objects at a fine enough granularity to generate an acceptable
amount of communication.

There is dynamic access specification overhead for each shared object that the
task declares it will access. The programmer must allocate shared objects at a
coarse enough granularity to generate an acceptable amount of access specification
overhead. The message-passing implementation also imposes a fixed time overhead
for transferring an object between two processors (this comes from the fixed time
overhead of sending a message), and a fixed space overhead per object for sys-
tem data structures. The programmer must allocate objects at a coarse enough
granularity to profitably amortize both of these per-object overheads.

There is a natural granularity at which to allocate the data of any program. While
the programmer may need to change this granularity to effectively parallelize the
program, requiring extensive changes may impose an unacceptable programming
burden. In practice, programmers seem to use several standard reallocation strate-
gies. These include decomposing large aggregates (typically arrays) for more precise
access declaration, grouping several variables into a large structure to drive down

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 17

the access specification overhead, and replicating data structures used to hold in-
termediate results in a given phase of the computation. While determining which
(if any) reallocation strategy to apply requires a fairly deep understanding of the
computation, actually performing the modifications is often a fairly mechanical
process. It may therefore be possible to automate the more tedious aspects of the
modification process.

2.5.2 Task Decomposition. The task decomposition may also significantly affect
the eventual performance. The basic issue is the dynamic task management over-
head. The Jade programmer must specify a task decomposition that is coarse
enough to profitably amortize this overhead. But the issue cuts deeper than a sim-
ple comparison of the total Jade overhead relative to the total useful computation.
In the current implementation of Jade, each task creates its child tasks serially.
Serial task creation serializes a significant part of the dynamic task management
overhead. Even if the total Jade overhead is relatively small compared to the to-
tal useful computation, this serial overhead may artificially limit the performance.
There are two things the programmer can do to eliminate a bottleneck caused by
serial task creation: (1) parallelize the task creation overhead by creating tasks
hierarchically or (2) make the task granularity large enough to profitably amortize
the serial task creation overhead. In some cases the programmer can apply neither
of these strategies and must go elsewhere to get good performance.

2.6 Advanced Constructs

We next present several advanced constructs and concepts that allow the program-
mer to exploit more sophisticated concurrency patterns.

2.6.1 Task Boundary Synchronization. In the model of parallel computation de-
scribed so far, all synchronization takes place at task boundaries. A task does not
start its execution until it can legally perform all of the accesses that it will ever
perform. It does not give up the right to perform any of these accesses until it
completes. This form of synchronization wastes concurrency in two cases: when a
task’s first access to an object occurs long after it starts, and when a task’s last
access to an object occurs long before it finishes. Figure 21 contains an example of
both kinds of unnecessary synchronization (assuming that p, q, r, and s all point
to different objects).

In this example all three tasks execute serially. But the first task should be able
to execute concurrently with the statement *q = g(d) from the second task, since
there is no data dependence between these two pieces of code. The statement *r =
h(*q, *p) from the second task should also be able to execute concurrently with
the third task.

To support this kind of pipelining concurrency, Jade provides a more elaborate
notion of access specification, several new access specification statements, and a
construct, the with construct, that programmers can use to update a task’s access
specification as the task executes. Together, these enhancements allow program-
mers to more precisely specify when tasks perform their individual accesses to
shared objects. This additional timing information may expose additional con-
currency by enabling independent parts of tasks to execute concurrently even if
dynamic data dependence constraints exist between other parts of the tasks. In

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

18 . Martin C. Rinard and Monica S. Lam

extern double f(double d);
extern double g(double d);
extern double h(double d, double e);
void proc(double d, double shared *p, double shared *q,
double shared *r, double shared *s)
{
withonly { wr(p); } do (p, d) {
xp = £(d);
}
withonly {
rd(p); wr(q); rd(q); wr(r);
} do (p, q, r, d) {

*q = g(d);
*xr = h(*q, *p);

¥

withonly { rd(q); wr(s); } do (q, s) {
xs = g(*xq);

}

}
Fig. 21. Task boundary synchronization example.

the example in Figure 21, the programmer can use the new access specification
statements and the with construct to expose the available pipelining concurrency.

2.6.2 The with Construct. Programmers use the with construct to dynamically
update a task’s access specification to more precisely reflect how the remainder of
the task will access data. Here is the syntactic form of the with construct:

with { access specification } cont;

Like the access specification section in the withonly construct, the access
specification section in the with construct is an arbitrary piece of code con-
taining access specification statements. The difference between the two is that the
access specification section in the withonly construct establishes a new access
specification for a new task, while the access specification section in the with
construct modifies the current task’s access specification.

2.6.3 Advanced Access Specifications. An access specification is a set of access
declarations; each declaration declares how a task will access a given object. Dec-
larations come in two flavors: immediate declarations and deferred declarations.
An immediate declaration gives the task the right to access the object. The basic
access specification statements described in Section 2.3.5 generate immediate decla-
rations. A deferred declaration does not give the task the right to access the object.
Rather, it gives the task the right to change the deferred declaration to an imme-
diate declaration, and to then access the object. The deferred access specification
statements described in Section 2.6.4 generate deferred access declarations.

A task’s initial access specification can contain both deferred and immediate
declarations. As the task executes, the programmer can use a with construct to
update its access specification.

Deferred declarations may enable a task to overlap an initial segment of its execu-
tion with the execution of an earlier task in cases when the two tasks would execute

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 19

serially with immediate declarations. For example, if one task declares that it will
immediately write an object and another task declares that it will immediately
read that same object, the implementation completely serializes the execution of
the two tasks. If the second task (in the sequential execution order) declares a de-
ferred access, it can start executing before the first task finishes or even performs its
access. When the second task needs to perform its access, it uses a with construct
to change the deferred declaration to an immediate declaration. The second task
then suspends at the with until the first task finishes.

Deferred declarations do not allow the programmer to change the order in which
tasks access objects. In the above example the second task must perform its access
after the first task. If the first task declared a deferred access and the second task
declared an immediate access, the second task could not execute until the first task
finished.

2.6.4 Deferred Access Specification Statements. There is a deferred version of
each basic access specification statement; the programmer derives the deferred ver-
sion by prepending df to the original basic statement. Specifically, Jade provides
the following deferred access specification statements.

—df _rd(o): Specifies a deferred read declaration.
—df _wr(o): Specifies a deferred write declaration.
—df _de(o): Specifies a deferred deallocate declaration.

If used in a with construct, a deferred access specification statement changes
the corresponding immediate declaration to a deferred declaration. If used in a
withonly construct, it generates a deferred declaration in the access specification.

2.6.5 Negative Access Specification Statements. Jade programmers can use a with
construct and negative access specification statements to eliminate access declara-
tions from a task’s access specification. There is a negative version of each basic
access specification statement; the negative version is derived by prepending no
to the original basic statement. Specifically, Jade provides the following negative
access specification statements.

—no_rd(o): Eliminates read declarations.
—no_wr (0): Eliminates write declarations.
—no_de(o): Eliminates deallocate declarations.

Negative access specification statements may allow a task to overlap a final seg-
ment of its execution with the execution of later tasks in cases when the tasks would
otherwise execute sequentially. Consider, for example, a task that performs its last
write to an object, then uses a with construct and a negative access specification
statement to declare that it will no longer access the object. Succeeding tasks that
access the object can execute as soon as the with construct executes, overlapping
their execution with the rest of the execution of the first task. If the first task
failed to declare that it would no longer access the object, the succeeding tasks
would suspend until the first task finished.

2.6.6 Pipelined Concurrency. The programmer can use the with construct and
the advanced access specification statements to exploit the pipelining concurrency

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

20 . Martin C. Rinard and Monica S. Lam

extern double f(double d);
extern double g(double d);
extern double h(double d, double e);
void proc(double d, double shared *p, double shared *q,
double shared *r, double shared *s)
{
withonly { wr(p); } do (p, d) {
xp = £(d);
¥
withonly {
df _rd(p); wr(q); rd(q); wr(r);
} do (p, q, r, d) {
*q = g(d);
with { rd(p); no_wr(q); } cont;
*r = h(*q, *p);

}
withonly { rd(q); wr(s); } do (q, s) {
xs = g(*q);
}
}

Fig. 22. Pipelined concurrency example.

available in the example in Figure 21. The programmer first uses the df_rd(p)
access specification statement to inform the implementation that the second task
may eventually read p, but that it will not do so immediately. This gives the
implementation the information it needs to overlap the execution of the first task
with the statement *q = g(d) from the second task. When the second task needs
to read p, it uses a with construct and the rd(p) access specification statement to
convert the deferred declaration to an immediate declaration. At the same time,
the with construct uses the no_wr(q) statement to declare that the second task
will no longer write q. This gives the implementation the information it needs to
overlap the execution of the third task and the statement *r = h(*q, *p) from
the second task. Figure 22 contains the final version of the program.

3. DISCUSSION

In any programming language design there is a trade-off between the range of
computations that the language can express and how well the language supports its
target programming paradigm. Jade enforces high-level abstractions that provide
a safe, portable programming model for a focused set of applications. Tailoring
the language for this application set limits the range of applications that Jade
supports. In this section we discuss the scope of Jade, the advantages of using Jade
in its target application domain, and the limitations that supporting this domain
imposes.

3.1 Scope

We designed Jade as a focused language tailored for a specific kind of concurrency.
Within its intended domain it provides a safe, effective programming environment
that harmonizes with the programmer’s needs and abilities. We next describe the
kind of concurrency that we designed Jade to exploit.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 21

Because Jade requires the programmer to play a role in the parallelization process,
it is counterproductive to use Jade for forms of parallelism (such as instruction-level
parallelism or loop-level parallelism in programs that manipulate dense matrices)
that can be exploited automatically. Jade is instead appropriate for computations
that are beyond the reach of automatic techniques. Such computations may exploit
dynamic, data-dependent concurrency or concurrently execute pieces of code from
widely separated parts of the program. Jade is especially useful for coarse-grain
computations because it provides constructs that allow programmers to help the
system identify large parallel tasks.

Jade’s high-level abstractions hide certain aspects of the underlying parallel com-
puting environment. While hiding these aspects protects the programmer from
much of the complexity of explicit concurrency, it also narrows the scope of the
language by denying the programmer control over the corresponding aspects of the
parallel computation. It is therefore inappropriate to use Jade for programs that
demand highly optimized, application-specific synchronization and communication
algorithms.

Jade is designed to express deterministic parallel computations. There are,
however, task-level parallel computations (for example, many parallel search and
branch-and-bound algorithms) that are inherently nondeterministic. It would be
possible to extend Jade for such applications by providing access declarations that
allowed programmers to express how these nondeterministic computations accessed
data.

Jade forces programmers to express the basic computation in a serial language.
It is therefore counterproductive to use Jade for computations (for example, some
simulation applications) that are more naturally expressed in an explicitly parallel
language.

Because Jade is designed as an extension to an existing sequential language, the
question may arise as to whether Jade is intended primarily as a tool for porting
existing sequential programs to new parallel machines. While Jade may be useful as
a porting tool for existing programs, we believe that, within its application domain,
Jade’s fundamental advantages over explicitly parallel languages make it entirely
suitable for the development of new parallel programs. In fact, we designed Jade
primarily for this purpose.

3.2 Advantages

The sequential model of computation is in many ways much simpler than explicitly
parallel models. Jade preserves this sequential model and inherits many of its
advantages. Because Jade preserves the semantics of the original serial program,
programmers can develop the entire program using a standard serial language and
development environment. When the program works, the programmer can then
parallelize it using Jade, secure in the knowledge that adding Jade constructs cannot
change the program’s semantics.

Preserving the serial semantics also supports the process of developing a Jade
program from scratch. Jade programs execute deterministically. Deterministic ex-
ecution dramatically simplifies the debugging process by allowing programmers to
reliably reproduce incorrect program behavior. Deterministic execution also sim-
plifies the programming model. Jade programmers need not deal with the complex

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

22 . Martin C. Rinard and Monica S. Lam

phenomena such as deadlock, livelock, and starvation that characterize explicitly
parallel programming.

Serial programming languages promote modularity because they allow the pro-
grammer to focus on the dynamic behavior of the current piece of code. Jade
preserves the modularity advantages of serial languages because programmers only
provide local information about how each task accesses data. There is no code in
a Jade program that manages the interactions between tasks. Programmers can
function effectively with a detailed understanding of only a subset of the program;
changes are confined to the modified tasks. Jade’s locality properties also allow pro-
grammers to develop the abstractions required for modular parallel programming.
For example, Jade programmers can build abstract data types that completely en-
capsulate the Jade constructs required to guide the parallelization process [Rinard
1994b].

The Jade implementation encapsulates all of the concurrency management code
required to exploit task-level concurrency. Jade programmers can therefore concen-
trate on the semantics of the actual computation, rather than developing the low-
level synchronization and communication code required to coordinate the parallel
execution. Because the programmer does not directly control the parallel execu-
tion, the Jade implementation has the freedom it needs to apply machine-specific
optimizations and implementation strategies.

Jade preserves the abstraction of single address space. Even in message-passing
environments, Jade programs access data using a single flat address space with the
implementation automatically managing the movement of data. This abstraction
frees programmers from the complexity of managing the movement of data through
the machine.

Finally, Jade programs are portable. We have implemented Jade as an exten-
sion to C on a wide variety of computational environments: uniprocessors, shared-
memory multiprocessors, distributed-memory multiprocessors, message-passing ma-
chines and heterogeneous collections of workstations. Jade programs port without
modification between all of these platforms.

3.3 Limitations

Jade’s enforced abstractions maximize the safety and portability of Jade programs
but prevent the programmer from accessing the full functionality of the paral-
lel machine. This lack of control limits the programmer’s ability to optimize the
parallel execution. All Jade programs must use the general-purpose concurrency
management algorithms encapsulated inside the Jade implementation. Because
Jade denies the programmer control over many aspects of the process of exploiting
concurrency, programmers cannot use highly optimized, application-specific syn-
chronization, communication or task management algorithms.

41t would be straightforward to allow programmers to specify a customized synchronization proto-
col for each object or class of objects—the Jade implementation uses a table-driven synchronization
algorithm that would be trivial to extend for objects with different synchronization requirements.
In the message-passing implementation it would also be straightforward to allow programmers to
provide a customized communication package for each object or class of objects. The programmer
could use such a package, for example, to transfer only those parts of an object that a specific
task will access. With the current Jade implementation it would be straightforward to provide an

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 23

In some cases the programmer may need to use a lower-level programming system
to make the application perform acceptably.

It is always possible to execute any Jade program serially, in which case all data
and control flow forward in the direction of the sequential execution. Some parallel
computations, however, are most naturally or most efficiently structured as a set of
cooperating tasks that periodically interact to generate a solution. Jade does not
support the cyclic flow of data and control required to structure the computation
this way. While it is often possible to express the computation in Jade, the resulting
Jade program usually generates more tasks (and more task management overhead)
than the cyclic computation.

Consider, for example, a standard iterative grid relaxation algorithm such as
Successive Over Relaxation (SOR) [Golub and Loan 1989]. A programmer using
an explicitly parallel language could parallelize the algorithm by subdividing the
grid into blocks and assigning one task to each block. At every iteration each
task would communicate with its neighbor tasks to acquire the latest values of the
boundary elements, then recompute the values of the elements in its block. The
tasks would continue their computation, interacting until the algorithm converged
[Singh and Hennessy 1992].

In this parallel computation data flows cyclically through the tasks—over the
course of the computation each task both generates data that its neighbor tasks read
and reads data generated by its neighbor tasks. Jade’s serial semantics, however,
means that if one Jade task produces data that another Jade task reads, the first
task cannot also read data produced by the other task. To express computations
such as the parallel SOR computation described above in Jade, the programmer
must create one Jade task per block at every iteration, instead of one task per
block for the entire computation as in the explicitly parallel program. While it may
be more convenient to express the program in Jade (the Jade program is closer to
the original serial program), the additional task management overhead may impair
the performance of the Jade program if the task size is small relative to the task
management overhead. The task model of Cilk [Blumofe et al. 1995] also precludes
cyclic data flow between tasks, so similar issues would arise in a Cilk version of
SOR and similar applications.

Some parallel algorithms dynamically adjust their behavior to adapt to the vary-
ing relative execution times characteristic of parallel computation. The tasks in
a parallel branch and bound search algorithm, for example, may visit different
parts of the search tree in different executions depending on how fast the bound
is updated. Such algorithms nondeterministically access different pieces of data in
different executions. In some cases the program itself may generate different results.
Because Jade’s abstractions are designed to support deterministic computations, it
may be impossible to express such algorithms in the current version of Jade. In

application program interface (API) that would allow programmers to customize both the syn-
chronization and communication protocols. Programmers could use this API without accessing
the source code of the Jade implementation. It would, of course, be the responsibility of the
implementor of the customized synchronization or communication protocol to ensure the preser-
vation of the serial semantics. It would be much more difficult to customize the task management
algorithms. These are imbedded deeply into the Jade implementation, with no obvious way for
the programmer to extend the functionality without changing the Jade implementation.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

24 . Martin C. Rinard and Monica S. Lam

many cases, however, the nondeterminism arises from the way the different parts of
the computation access data. It would be possible to support many of these com-
putations by extending Jade to support the expression of their nondeterministic
data access patterns.

4. LANGUAGE DESIGN RATIONALE

We designed Jade to test the hypothesis that it is possible to preserve the sequential
imperative programming paradigm for computations that exploit task-level concur-
rency. In this section we first present the requirements and goals that drove the
language design. We then discuss the specific design decisions that determined the
final form of the language.

To preserve the sequential imperative programming paradigm, we structured Jade
as a declarative extension to a sequential language. We believed that to adequately
test the basic hypothesis, Jade had to preserve the following key advantages of the
sequential paradigm:

—Portability: It must be possible to implement Jade on virtually any MIMD
computing environment.

—Safety: Jade programs must not exhibit the complex failure modes (such as
deadlock and livelock) that characterize explicitly parallel programming. Jade
must preserve the serial semantics and provide guaranteed deterministic execu-
tion.

—Modularity: Jade must preserve the modularity benefits of the sequential pro-
gramming paradigm.

We also wished to maximize the utility of Jade as a parallel programming lan-
guage. The following goals structured this aspect of the design process:

—Efficiency: Because Jade was designed to exploit coarse-grain, task-level con-
currency, we expected the dynamic task management overhead to be profitably
amortized by the large task size. The important design goal was to minimize
(and hopefully eliminate) any performance overhead imposed on the sequential
computation of each task. The resulting design imposes almost no such overhead.

—Programmability: We wished to minimize the amount of programmer effort
required to express a computation in Jade.

—Expressive Power: We wished to maximize the range of supported parallel
applications. In particular, the programmer had to be able to express dynamic
concurrency.

In the following sections we discuss how these design goals and requirements
drove specific design decisions.

4.1 Implicit Concurrency

Jade is an implicitly parallel language. Rather than using explicitly parallel con-
structs to create and manage parallel execution, Jade programmers provide gran-
ularity and data usage information. The Jade implementation, and not the pro-
grammer, is responsible for managing the exploitation of the concurrency.

The implicitly parallel approach enables the implementation to guarantee safety
properties such as freedom from deadlock and, for programs that only declare reads

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 25

and writes, deterministic execution. Because the implementation controls the par-
allel execution, it can use concurrency management algorithms that preserve the
important safety properties.

Encapsulating general-purpose concurrency management algorithms inside the
Jade implementation makes it easier to develop parallel applications. These algo-
rithms allow every Jade programmer to build the parallel program on an existing
base of sophisticated software that understands how to exploit concurrency in the
context of the current hardware architecture. This software relieves programmers
of the cognitive and implementation burden of developing a new concurrency man-
agement algorithm for each parallel application.

The implicitly parallel approach also preserves the modularity benefits of the se-
quential programming paradigm. Jade programmers only provide local information
about how each task accesses data. There is no need for programmers to deal with
or even understand the global interactions between multiple tasks. This property
promotes modularity and makes it easier to maintain Jade programs.

4.2 Task Model

We believe that determining an appropriate task decomposition requires application-
specific knowledge unavailable to the implementation. The final solution, to have
the programmer identify blocks of code whose execution generates a task, gives
the implementation the task decomposition with a minimum of programmer effort.
Experience with Jade applications suggests that the task decomposition follows
naturally given the programmer’s high-level understanding of the problem.

4.3 Access Specifications

Jade requires the programmer to provide a specification of how each task will access
data. The alternative would be to generate the access specification sections of
the tasks automatically. This would have required the construction of sophisti-
cated program analysis software, which would have significantly complicated the
implementation of Jade. Given the programmer’s high-level, application-specific
knowledge, it is reasonable to assume that in general the programmer could gen-
erate more efficient and precise access specifications than an automatic program
analysis tool. Experience with Jade applications demonstrates that, given an ap-
propriate shared object structure, the programmer can easily generate the access
specifications.

Access specifications give the implementation advance notice of precisely which
objects a task will access. The implementation can exploit this information to
apply communication optimizations such as concurrently fetching multiple remote
objects for each task. Many other parallel systems [Bennett et al. 1990; Bershad
et al. 1993; Gelernter 1985; Li 1986] only discover when tasks will access data as
the tasks actually perform the access, and lack the advance information required
to apply sophisticated communication optimizations.

Having the programmer generate the access specification does complicate one
aspect of the implementation: the implementation cannot assume that the access
specifications are correct, and must detect violations of access specifications. This
imposed dynamic checking overhead, which in turn drove the design of local point-
ers.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

26 . Martin C. Rinard and Monica S. Lam

4.4 Local Pointers

The current Jade implementation dynamically checks every access that goes through
a shared pointer. It would have been possible to eliminate much of this overhead by
developing a front end that analyzed the program to eliminate redundant checks.
The development of such a front end would have complicated the implementation
of the language and extended the development time. We instead decided to provide
the local pointer mechanism. Although this mechanism requires programmer inter-
vention, it allows all but one dynamic check per object per task to be performed
statically and minimizes the amount of effort required to construct an effective
Jade front end. Experience with Jade applications suggests that using local point-
ers effectively is a fairly mechanical process that does not fundamentally affect the
difficulty of writing a Jade program.

4.5 Pointer Restrictions

In Jade, shared objects cannot contain local or private pointers. The restriction
on private pointers exists to prevent one task from accessing another task’s private
objects. The restriction on local pointers exists to prevent one task from using
another task’s dynamic access checks. Recall that all references to local pointers
are statically checked. Consider the following scenario. One task acquires a lo-
cal pointer (generating a dynamic access check) and stores it in a shared object.
Another task comes along, reads the shared object to get the local pointer and
dereferences the local pointer. The access via the local pointer goes unchecked, and
there would be a hole in the access checking mechanism. The restriction prevents
this scenario.

Requiring that shared pointers always point to the beginning of shared objects
promotes portability. The implementation can implement shared pointers using
globally valid identifiers and avoid the problems associated with transferring hard
pointers between machines.

4.6 Shared and Private Data

Jade segregates pieces of data that multiple tasks can access from pieces of data
that only one task can access. The alternative would be to eliminate the distinction
and have all data be potentially shared. There are two kinds of private data:
local variables allocated on the procedure call stack and dynamically allocated
memory. Allowing local variables to be shared would significantly complicate the
implementation. Consider the following scenario, which can only happen with
shared local variables. A procedure creates a task, which is given a shared pointer
to a local variable. The procedure then returns before the task runs. For the task
to access valid data, the local variable must be allocated on the heap rather than
on the procedure call stack. The implementation would then have to automatically
deallocate the local variable when no outstanding task could access the variable.
Allocating potentially shared local variables on the heap would complicate the
allocation and deallocation of local variables, which in turn could degrade the in-
herent performance of the system. Allowing shared local variables would not have
eased the implementation of any existing or envisioned Jade application. We de-
cided the best point in the design space was to make all local variables private.
The other kind of private data is dynamically allocated data. Making all dynami-

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 27

cally allocated data shared would have much less of an effect on the implementation.
Still, it would involve both unnecessary space overhead (for system data structures
used with shared objects), unnecessary time overhead (for dynamic access checks)
and unnecessary programming overhead (for declaring accesses to private data).
Because we wanted to preserve the serial execution performance of the system, we
decided to provide dynamically allocated private data.

4.7 Allocation Units and Access Specifications

Jade access specifications are declared in terms of shared objects; each shared object
is an allocation unit. Unifying the allocation and access declaration granularities
makes it difficult to express algorithms that concurrently read and write different
parts of a single object. In such algorithms the basic access granularity is finer than
the allocation granularity. The programmer may be able to express the algorithm
in Jade by reallocating the object so that the allocation granularity matches the
access declaration granularity. The problem is that the programmer must then
change all the code that accesses the object to reflect the new structure. Programs
that access the same data at different granularities in different parts of the program
exacerbate the problem by forcing the programmer to periodically reallocate the
data at the new granularity.

An early version of Jade [Lam and Rinard 1991] avoided this problem by de-
coupling the units of allocation and synchronization. The units of synchronization
(called tokens) were abstract, and their correspondence with the actual data was
completely conceptual. The lack of an enforced correspondence dramatically in-
creased the flexibility of the language. Programmers started dynamically modifying
the access declaration granularity of particular pieces of data, using tokens to rep-
resent abstract concepts like the right to change the access declaration granularity.

In some respects using the old version of Jade imposed less of a programming
burden than using the current version because the programmer never had to change
the way the program allocated and accessed data. A major drawback of the old
version was that it did not enforce the access specifications. Because the implemen-
tation was not aware of the correspondence between data and tokens, it could not
check the correctness of the data usage information. Another restriction associated
with the lack of an explicit correspondence between data and tokens was that the
implementation could not determine which pieces of data each task would access
just by looking at its access specification. The implementation could not auto-
matically implement the abstraction of a single address space on message-passing
machines by transferring the data at the access declaration granularity in response
to each task’s access specification.

Ideally, we would be able to combine many of the advantages of the two versions
of Jade by allowing the programmer to create multiple access declaration units per
object. The programmer would still allocate data at the original granularity, but
the language would allow the programmer to partition each object’s data into finer
granularity access declaration units. A problem with such an extension is that it
complicates the access checking. Each access to an object involves a pointer to
that object and an index into the object. In the current scheme only the pointer
is checked because all indices are equally valid. In a scheme that allowed a finer
access declaration granularity, the implementation would also have to check the

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

28 . Martin C. Rinard and Monica S. Lam

index against a data structure storing the valid regions of the object.

The problem would get worse for local pointers. In the current scheme, accesses
via local pointers involve no access checks and are as efficient as accesses via private
pointers. In the absence of sophisticated static analysis, the alternative scheme
would require the implementation to check the index on all local pointer accesses.
This would significantly degrade the performance of tasks that repeatedly accessed
shared objects.

It is worth noting that standard flat shared memory systems decouple the units of
allocation and synchronization [Amza et al. 1996; Lenoski 1992; Shoinas et al. 1994].
Communication takes place using a flat shared address space, and synchronization
takes place using locks and barriers. The locks and barriers are not explicitly
coupled to any memory location, although of course such a coupling exists implicitly
if the program is correctly synchronized. These systems provide the flexibility that
comes from decoupling the data from the units of synchronization, but leave the
program open to errors that come from unsynchronized accesses to shared data.

4.8 Allocation Units and Communication

In the message-passing implementation each object is a unit of communication.
Transferring the entire object wastes bandwidth when a task actually accesses only
a small part of the transferred object. Making each object a unit of communication
also requires that each object be fully resident in the accessing processor’s memory
module. Machines without virtual memory cannot execute programs that access
objects bigger than the physical memory associated with each processor. One of the
Jade applications (the Volume Rendering application) actually fails to run on one
platform because of this restriction. These problems highlight the advantages of sys-
tems that separate the units of allocation from the units of communication [Scales
et al. 1994; Shoinas et al. 1994].

One alternative is to distribute fixed-size pieces of objects across the memory
modules and transfer pieces of objects on demand as processors access them. The
shared-memory implementation does this implicitly by using the shared-memory
hardware, which distributes pieces of objects across the caches at the granularity
of cache lines. Page-based software shared-memory systems apply this principle at
the granularity of pages, using the page fault mechanism to detect references to
nonresident pieces of objects. Another strategy would have the front end augment
every access to a shared object with a software check to see if the accessed piece is
available locally. If not, the implementation would automatically fetch the accessed
piece from a remote memory module. These strategies would allow the system to
use the whole memory of the computing environment to store large objects. They
might also drive down the amount of wasted communication bandwidth.

While each of these strategies addresses a fundamental shortcoming of the cur-
rent Jade communication strategy, they all have drawbacks. Page-based approaches
require the implementation to interact with the paging system of the resident op-
erating system. In many operating systems the implementations of the user-level
fault handling primitives are inefficient [Appel and Li 1991], and some operating
systems do not provide these primitives at all. On the other hand, using a strategy
that dynamically checked each access would impose substantial overhead on each
access to a shared object.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 29

Another alternative is to decompose objects into finer communication units under
program control and associate an access declaration unit with each communication
unit. Each task would then declare precisely which communication units it would
access and the implementation would move and copy data at the access declaration
granularity.

Supporting multiple communication units per object would raise several memory
management issues. The key feature is that each object would occupy a contiguous
chunk of the address space, but each processor might only access several widely
separated communication units. The simplest way to store the communication
units would be to allocate local storage on the accessing processor for the entire
object and then store each accessed unit into this storage. The data in the accessed
units would then be valid, while the rest of the object would be invalid. The
approach has the advantage that it preserves the object’s original index space. The
generated parallel code would access the parts of the object using the same indices
that the serial program uses to access the complete object.

The disadvantage of this approach is that it wastes parts of the address space.
On machines with no support for sparse address spaces the unaccessed pieces of
the object could occupy a large part of physical memory, causing poor utilization
of physical memory. On systems that support sparse address spaces this is less of a
concern because the pages holding the unaccessed section of the object would remain
unmapped and not occupy physical memory. Even these systems could suffer from
internal page fragmentation if the communication units were significantly smaller
than the page size or if the communication units did not occupy contiguous parts of
the object. In a block decomposition of a matrix, for example, each block occupies
a noncontiguous part of the matrix’s index space.

Another way to implement multiple communication units per shared object would
be to allocate a separate piece of memory for each communication unit and store
the unit contiguously in this piece of memory. The pieces of memory could be
allocated on demand as the program accessed communication units. This approach
would promote good memory utilization, but require the implementation to trans-
late accesses from the object’s old index space to the communication unit’s new
index space. In some cases the implementation could apply sophisticated compiler
analysis to perform the translation statically, but in general the translation would
have to take place dynamically. Performing the translations dynamically would
degrade the performance of serial task code.

4.9 Language Evolution

We implemented two versions of Jade: Version 1 [Lam and Rinard 1991] and Version
2 [Rinard and Lam 1992]. As described in Section 4.7, in Version 1 the connection
between the data and the units of synchronization was completely conceptual. This
design made the language very flexible and minimized the effort required to develop
Jade programs starting from existing serial programs. But it made it difficult (if
not impossible) to implement Jade on message-passing machines and to verify that
Jade programs did not violate their access specifications.

The primary design goal of Version 2 was to eliminate these two limitations of Ver-
sion 1. We therefore developed the Jade object model as described in Section 2.2.1
and redesigned the constructs of the language so that access specifications are given

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

30 . Martin C. Rinard and Monica S. Lam

in terms of shared objects. This design change in turn drove a development of the
type system to better support shared objects. We developed the concept of part
objects (see Section 2.3) to give the programmer more flexibility when allocating
shared objects. We developed the concept of local pointers (see Section 2.3.1) to
allow the programmer to avoid the access checking overhead on every access.

The other change between Version 1 and Version 2 was a movement of func-
tionality from the Jade constructs to the access declaration statements. Version
1 had two task creation constructs, withth and withonly, two access declaration
statements, rd (o) and wr (o), and two constructs for updating a task’s access spec-
ification, with and without. The Version 1 withth had the same semantics as the
Version 2 withonly, with all of the access declaration statements interpreted as
immediate access declaration statements. The Version 1 withonly had the same
semantics as the Version 2 withonly, with all of the access declaration statements
interpreted as deferred access declaration statements. The Version 1 with had the
same semantics as the Version 2 with, with all of the access declaration statements
interpreted as immediate access declaration statements. The Version 1 without
had the same semantics as the Version 2 with, with all of the access declaration
statements interpreted as negative access declaration statements.

The construct change from Version 1 to Version 2 eliminated several limitations of
the Version 1 constructs. In Version 1, all tasks started out with either all immediate
access declarations or all deferred access declarations. The new access declaration
statements in Version 2 allowed programmers to create tasks with a mixture of
immediate and deferred access declarations. Several of the benchmark applications
described in Section 6 (String, Water, Search, and Volume Rendering) create these
kinds of tasks. In Version 1, it was impossible for one task to obtain immediate
access to an object, convert the immediate access to deferred access, then convert
the deferred access back to an immediate access. All of our benchmark applications
contain tasks that use this functionality.

Version 1 was inspired largely by our previous experience with explicitly parallel
programs, notably the applications in the SPLASH benchmark suite [Singh et al.
1992]. Version 1 already had all of the key concepts of Jade present. In particular,
we anticipated the need to exploit pipelined concurrency very early in the Version
1 design process. The constructs required to express pipelined concurrency were
therefore part of Version 1 from the beginning.

We had developed several Version 1 Jade applications by the time we designed
Version 2, but the design changes were, by and large, not made in response to
specific limitations of Version 1 that we experienced while developing Version 1
applications.> They were instead driven by a desire to make it possible to execute
Jade programs on message-passing machines, to verify that programs did not violate
their access specifications, and to improve the conceptual basis of the language.

5. IMPLEMENTATION

The Jade programmer and the Jade implementation each have particular strengths
that are best suited for performing different parts of the process of parallelizing the

5The Version 1 applications were developed by several Ph.D. students in the Stanford Computer
Science Department, including the first author of this article.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 31

computation. The programmer’s strength is providing the high-level, application-
specific knowledge required to determine an effective data and computation gran-
ularity. The implementation’s strength is performing the analysis required to dis-
cover parallel tasks, executing the detailed bookkeeping operations required to cor-
rectly synchronize the resulting parallel computation, and providing the low-level,
machine-specific knowledge required to efficiently map the computation onto the
particular parallel machine at hand.

The Jade language design partitions the responsibility for parallelizing a com-
putation between the programmer and the implementation based on this analysis
of their respective strengths. This division means that the Jade implementation
encapsulates algorithms that automatically perform many important parts of the
parallelization process. The programmer obliviously reuses these algorithms every
time he or she writes a Jade program.

We have demonstrated the viability and applicability of these algorithms by im-
plementing Jade on many different computational platforms. Jade implementations
currently exist for shared-memory machines such as the Stanford DASH machine
[Lenoski 1992] and the Silicon Graphics 4D/340 [Baskett et al. 1988], for message-
passing machines such as the Intel iPSC/860 [Berrendorf and Helin 1992], and for
heterogeneous networks of workstations. While no implementation currently exists
for shared-memory machines with incoherent caches such as the Cray T3D [Arpaci
et al. 1995; Karamcheti and Chien 1995], it would be possible to implement Jade
on such machines.

5.1 Overview

Strictly speaking, there are two Jade implementations: one for shared-memory
platforms and one for message-passing platforms. While each implementation is
tailored for its own specific computational environment, the implementations share
many basic responsibilities and mechanisms. Both implementations are completely
dynamic, consisting of a run-time system and a simple preprocessor which emits C
code. Both implementations perform the following activities to correctly execute a
Jade program in parallel.

—Concurrency Detection: The implementation analyzes access specifications
to determine which tasks can execute concurrently without violating the serial
semantics.

—Synchronization: The implementation synchronizes the parallel computation.
—Scheduling: The implementation assigns tasks to processors for execution.

—Access Checking: The implementation dynamically checks each task’s accesses
to ensure that it respects its access specification. If a task violates its access
specification, the implementation generates an error.

—Controlling Excess Concurrency: The implementation suppresses excessive
task creation to avoid overwhelming the parallel machine with tasks.

The message-passing implementation has several additional responsibilities asso-
ciated with implementing the abstraction of a single address space in a message-
passing environment,.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

32 . Martin C. Rinard and Monica S. Lam

—Object Management: The message-passing implementation moves or copies
objects between machines as necessary to implement the abstraction of a single
address space.

—Naming: The message-passing implementation maintains a global name space
for shared objects, including an algorithm that locates remote objects.

—Format Translation: In heterogeneous environments the implementation per-
forms the format conversion required to correctly transfer data between machines
with different data formats.

The scheduling algorithms for both the shared-memory and message-passing im-
plementations contain a dynamic load balancing algorithm [Rinard 1994a].

5.2 Object Queues

We next discuss the mechanism that the Jade implementation uses to extract con-
currency and synchronize the computation. We first describe the mechanism that
the implementation uses for read and write declarations, then generalize to include
deallocate declarations.

5.2.1 Read and Write Declarations. There is a queue associated with each object
that controls when tasks can access that object. The implementation uses these
queues to detect concurrency and synchronize the computation. Each task that
accesses an object has an entry in the object’s queue declaring the access. Entries
appear in the queue in the same order as the corresponding tasks would execute
in a sequential execution of the program. The implementation initializes a normal
object’s queue with an entry that declares all possible deferred accesses for the task
that created the object.

Immediate write entries are enabled when they reach the front of the queue.
Immediate read entries are enabled when there are only read entries before them
in the queue. Deferred entries are always enabled. The purpose of deferred entries
is to prevent later tasks from executing prematurely. A task is enabled (and can
legally execute) when all of its object queue entries are enabled.

When a task is created, it inserts an entry into the queue of each object that it
declares it will read or write. The new task inserts its entry just before the parent
task’s entry. This insertion strategy ensures that tasks’ entries appear in the object
queues in the sequential execution order.

A task may update its queue entries to reflect the changes in its access speci-
fication. These changes may cause the task to suspend, or they may cause other
tasks to become executable. When a task finishes its execution, it removes all of its
entries from the object queues. These removals may cause other tasks to become
executable.

The shared-memory implementation keeps each object queue consistent by giv-
ing each queue operation exclusive access to the queue. In the message-passing
implementation queue operations also execute sequentially. The queue migrates as
a unit on demand between processors.

5.2.2 Evaluation of the Object Queue Mechanism. The biggest drawback of the
object queue mechanism is its monolithic nature. Performing object queue opera-
tions sequentially may cause serialization that would not be present with a different

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 33

synchronization mechanism. Consider a set of tasks that all read the same object.
The object queue will serialize the insertion of their declarations into the object
queue. If the tasks have no inherent data-dependence constraints, the task queue
insertions may artificially limit the parallelism in the computation.

It is possible to break the artificial object queue serialization using a mechanism
that hierarchically numbers object versions. Each task could compute which version
of each object it would access given only the version numbers of the objects in the
parent task’s access declaration. A task would run only when the correct versions of
the objects it would access became available. This mechanism would allow multiple
parent tasks to create child tasks that accessed the same object with no additional
synchronization.

5.2.3 Correctness of Object Queue Mechanism. In this section we discuss why
the object queue mechanism correctly synchronizes the computation. There are
two aspects to the correctness of a synchronization mechanism for Jade programs:
(1) at every point of the computation there is at least one task that can execute
(i.e., the synchronization mechanism is deadlock free) and (2) no task reads the
wrong value from a shared object.

Tasks’ entries appear in the object queues in the same order that the tasks
would execute in a serial program (the serial entry order property). This is true
of the original state of an object queue, which contains one entry from the task
that created the object. Subsequent object queue operations preserve the serial
entry order property. If a task completes or eliminates an access declaration, the
implementation removes its entries from the object queue. The new sequence of
entries is then a subsequence of the original sequence of entries, and the property
holds.

The only other queue operation is the insertion of a new entry. The new entry
appears before the entry of its parent task. In the original sequence all entries
which appeared before the parent task entry belonged to tasks which executed
before the parent task. The child task’s entry appears after all of these entries,
which is correct because in the sequential execution the child task executes after
all of these tasks. Similarly, the child task’s entry appears before all of the entries
after its parent task’s entry, and the child task should execute before all these tasks.
Finally, the child task’s entry appears before its parent task’s entry. This is again
correct because the child task should execute before the remainder of its parent
task.

The serial entry order property implies the deadlock freeness of the object queue
mechanism. The sequential execution order is a total order on the tasks, so at every
point in the computation there is at least one task such that every one of that task’s
entries are at the front of their object queues. This task can execute.

To establish that no task reads the wrong value from a shared object, we establish
that all parallel executions preserve the relative order of reads and writes to the
same object. We establish that if a write occurs before a read to the same object in
a sequential execution, the write will occur before the read in all parallel executions.
A similar argument establishes that the read will take place before any subsequent
(in the sequential execution order) writes. We present a more formal treatment of
this argument elsewhere [Rinard and Lam 1992].

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

34 . Martin C. Rinard and Monica S. Lam

Consider a write that happens before a read in a sequential execution. There are
several cases: (1) the same task performs both the read and the write, (2) the task
that performs the write is an ancestor of the task that performs the read, (3) the
task that performs the read is an ancestor of the task that performs the write, and
(4) two different tasks perform the read and the write, and neither is an ancestor of
the other. We show that in all parallel executions the write occurs before the read.

In case 1, the operations of the task always execute in the same order as in the
serial execution, so the write occurs before the read. In case 2, the parent task
performs the write before it creates the reading task. In case 3, the first task on
the ancestor chain of tasks from the parent task to the writing task is created
before the read is performed. This child task and every task in the ancestor chain
inserts a write entry into the object queue. These entries occur before the parent
task’s entry. By the time the parent task attempts to perform the read, either the
write will have occurred, or there is, and will continue to be, a write entry from
the ancestor chain in the queue until the write is performed. This write entry will
prevent the parent task from performing the read before the write.

In case 4, the writing task and the reading task share at least one common
ancestor task. Find the least common ancestor task (the ancestor task with no
child task that is also a common ancestor task). This ancestor task has two child
tasks, one of which (the first task) either performs the write or is an ancestor of
the writing task. The second task either performs the read or is an ancestor of
the reading task. The first task inserts a write entry into the queue and is created
before the second task, which inserts a read entry into the queue. Because the two
tasks have the same parent, the write entry appears in the queue before the read
entry.

All of the ancestors of the writing task between the writing task and the first task
must insert write entries into the queue. By the time the reading task is created
and inserts its entry into the queue, either the write will have occurred, or there is
and will continue to be a write entry before it in the queue until the write occurs.
This write entry will prevent the read task from performing the read until the write
task performs the write.

5.2.4 Extensions for Deallocate Declarations. Deallocate declarations also insert
entries into the object queue. A deallocate entry is enabled when it is the first
entry in the queue. The correctness condition for deallocations is that all previous
tasks that access the object complete their accesses before the object is deallocated.
An argument similar to the one in Section 5.2.3 establishes that the object queue
mechanism preserves the serial execution order for deallocations relative to other
accesses to the same object.

5.3 The Shared-Memory Implementation

In this section we discuss the implementation of Jade for multiprocessors with
hardware support for shared memory. Because the hardware implements the Jade
abstraction of a single address space, the implementation is only responsible for
finding the concurrency, synchronizing the computation, and mapping the tasks
onto the processors.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 35

Fig. 23. Shared-memory state-transition diagram.

5.3.1 A Task Lifetime. In this section we summarize the dynamic behavior of
the shared-memory implementation by tracing the lifetime of a task. Figure 23
gives a state-transition diagram of a task’s lifetime. We describe the activities that
take place in each state in turn.

—The Specification State: To execute a withonly construct, the implementa-
tion first allocates a task data structure. This data structure contains a pointer
to the task body code, space for the task parameters, and an initially empty
access specification. The implementation executes the access specification
section to generate the new task’s initial access specification and copies the pa-
rameters into the task data structure. It then inserts the task’s entries into the
object queues according to the algorithm described in Section 5.2. If the task’s
access specification is enabled, it enters the enabled state. Otherwise, it enters
the waiting state.

—The Waiting State: A task in the waiting state cannot execute because its
initial access specification has yet to be enabled. When the access specification
is enabled, the task enters the enabled state.

—The Enabled State: A task in the enabled state is ready to execute, but is
waiting to be assigned to a processor for execution.

—The Executing State: The implementation executes a task by allocating a
stack for the task and starting a thread that runs the task body on this stack.
The task may change its access specification, causing the implementation to
update the object queue information. An executing task may suspend because
of excessive task creation, because of a conflicting child task access declaration,
or because it executes a with construct. In these cases the implementation saves
the state of thread executing the task and switches to another enabled or ready
task if one exists.

—The Suspended State: A task in the suspended state will eventually become
able to execute again, at which point it enters the ready state.

—The Ready State: A task in the ready state is ready to resume its execution.
In the current implementation the task will always resume on the processor that
first executed it.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

36 . Martin C. Rinard and Monica S. Lam

—The Finished State: Eventually the task finishes. The implementation removes
the task’s declarations from the object queues. These removals may enable other
tasks’ declarations, and some of the tasks may enter the enabled state. The
implementation then deallocates the task data structure and stack for use by
subsequently created tasks.

5.3.2 Extensions for Incoherent Caches. In this section we have assumed that
the hardware fully implements the abstraction of a single shared address space.
Machines with incoherent caches, however, only partially implement this abstrac-
tion [Arpaci et al. 1995; Karamcheti and Chien 1995]. These machines automat-
ically fetch and cache remote memory, but rely on software to keep the caches
consistent. While no Jade implementation currently exists for machines with in-
coherent caches, we believe that Jade could be a useful programming language for
such machines.

The most difficult programming problem in using these machines is determining
when to generate the cache flushes required to preserve consistency. Because the
Jade implementation knows how tasks access data, it can automatically generate
these cache flush operations. The programmer would simply use the Jade ab-
straction of a coherent shared address space, and be oblivious to the complexities
introduced by the lack of hardware support for coherent caches.

The Jade implementation could use the following cache flush algorithm to guar-
antee the consistency. When a task finished writing an object, the implementation
would flush the cache containing local copies of that object’s data. Before executing
a task that reads an object, the implementation would determine if the object was
written since the processor last read it or flushed its cache. If so, the implementation
would flush the processor’s cache before executing the task.

5.4 The Message-Passing Implementation

The responsibilities of the message-passing implementation are a superset of the
responsibilities of the shared-memory implementation. Like the shared-memory
implementation, the message-passing implementation must discover the concur-
rency, synchronize the computation, and map the tasks onto the processors. The
message-passing implementation must also implement the Jade abstraction of a
single address space. The fact that Jade runs in heterogeneous environments com-
plicates the implementation of this abstraction because the implementation must
perform the data format translation required to maintain a coherent representation
of the data.

5.4.1 A Task Lifetime. In this section we summarize the functionality of the
message-passing implementation by tracing the lifetime of a task. Figure 24 gives
a state-transition diagram of a task’s lifetime.

—The Specification State: When a task is created, it starts out in the speci-
fication state. The implementation executes its access specification and copies
the parameters into the allocated task data structure. It then inserts the task’s
entries into the object queues. See Section 5.4.2 for a description of the algorithm
that inserts access specifications into remote object queues. If the task’s access
specification is enabled, it enters the enabled state. If the task must wait to
access some of the objects, it enters the waiting state.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 37

specificatioﬁ

enabled

Fig. 24. Message-passing state-transition diagram.

—The Waiting State: A task is in the waiting state if its initial access specifi-
cation has yet to be enabled. Whenever the object queue enables a task’s access
declaration, it informs the task by sending it a message (if the task and object
queue are on different processors), or by performing the operation locally (if the
task and object queue are on the same processor). When all of the task’s access
declarations become enabled, the task enters the enabled state.

—The Enabled State: A task is in the enabled state if it has yet to execute, but
its initial access specification has been enabled. The scheduler will eventually
assign the task to a processor for execution. When the implementation assigns a
task to a processor for execution, it packs the task data structure into a message
and transfers the task to the executing processor. At this point the task enters
the activated state.

—The Activated State: An activated task’s synchronization constraints have
been enabled and the scheduler has assigned the task to a processor for execu-
tion. The implementation cannot yet execute the task, however, because the
task may need to access some objects that are not locally available. The imple-
mentation therefore fetches the nonlocal objects by sending request messages to
processors that have locally available copies of the objects. The processors re-
spond by sending a copy of the object to the requesting processors. When all of
the messages containing remote objects for the task arrive back at the processor,
the task enters the ready state. Section 5.4.5 describes how the implementa-
tion determines, for each object, which processor has a locally available copy of
that object. Because the implementation replicates mutable objects for concur-
rent read access, the Jade implementation must solve the consistency problem.
Section 5.4.5 presents the details of the Jade consistency mechanism.

—The Ready State: Each processor maintains a local queue of tasks that are
ready to execute. When the processor goes idle it fetches a task from this queue
and executes it. The task then enters the executing state.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

38 . Martin C. Rinard and Monica S. Lam

—The Executing State: An executing task may change its access specifica-
tion, causing the implementation to generate messages that update remote ob-
ject queue information. An executing task may suspend because of excessive
task creation, because it creates a child with a conflicting access specification, or
because it executes a with construct.

—The Suspended State: A task in the suspended state will eventually become
able to execute again, at which point it enters the activated state. In the current
implementation the task will always resume on the processor that first executed
it.

—The Finished State: When a task finishes, it must remove all of its access
declarations from the object queues. The implementation sends the completed
task back to the processor that created it and issues the queue operations there.
The hope is that the object queues will still be on the creating processor (the
creating processor fetched the queues when it created the task), and the queue
removals will take place locally.

5.4.2 The Object Queue Protocol. In the current Jade implementation each ob-
ject queue resides completely on one processor. When a processor must perform an
operation on a remote queue, the implementation can either move the queue to the
processor and perform the operation locally, or forward the operation to the pro-
cessor that owns the queue and perform the operation there. The implementation
currently moves the object queue only when it inserts a new entry into the queue.
The implementation performs the other queue operations remotely. Section 5.4.3
describes the precise algorithm the implementation uses to find a remote queue.

The implementation replicates access declaration information in both the task
data structure and the object queue data structure. The implementation keeps
this information coherent by passing messages between the processors that own the
task data structure and the object queue data structure. Conceptually, the task
and object queue send messages to each other when the information changes. We
define the specific protocol below.

When a task eliminates an access declaration, it sends a message to the object
queue informing it of the elimination. The task informs the object queue of no
other access declaration modifications.

When an object queue enables a declaration, it sends a message to the task.
The object queue also sends such a message when the task declares a deferred
access and the object queue enables the corresponding immediate or child access
declaration. The object queue must send these messages because the task does not
inform the object queue when it changes deferred access declarations to immediate
or child access declarations. In effect, the implementation takes advantage of the
access declaration semantics to use a relaxed consistency protocol for the replicated
access declaration information.

The object queue protocol must work for networks that reorder object queue
messages. This reordering does not affect messages from tasks to object queues.
Once a task has declared that it will access a given object, its access declaration
monotonically decreases for that object. The effects of messages from tasks to object
queues therefore commute. Because a child task’s access specification can conflict
with its parent task’s access specification, the parent task can lose an enabled access

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 39

declaration. This lack of monotonicity forces the implementation to recognize and
compensate for reordered operations or messages from object queues to tasks.

The potential problem arises with combinations of delayed messages that give a
task the right to perform an access and child task creations that revoke the task’s
right to perform the same access. If the system does not recognize and discard
out-of-date messages from object queues to tasks, it may prematurely execute a
task. For example, a task may declare a deferred write access to an object. A
remote object queue may give the task the right to write the object, so it sends the
task a message informing it of the change. The task may then create a child task
which declares that it will write the object. The creation of this child task revokes
the parent task’s right to write the object. The parent task may next convert its
deferred access declaration to an immediate access declaration and suspend waiting
for the child task to finish its write. Sometime later the network may finally deliver
the message granting the task the right to write the object. The implementation
must realize that the message is out of date, and not enable the parent task’s access
declaration.

The implementation recognizes out-of-date messages using sequence numbers.
Each object queue contains a counter. The implementation increments this counter
every time it performs an operation on the queue or sends a message from the queue
to a task. Each message from the queue to a task contains the current value of the
counter. For each declaration the task stores the value of the queue counter when
the queue last updated that declaration’s information. When the declaration gets a
message from a queue, it compares the counter in the message to its stored counter
value. If the message counter is less than the declaration counter, the message
is out of date and is discarded. In the example above, the insertion of the child
task’s declaration into the object queue would increment the queue counter. The
revocation of the right to write the object caused by the creation of the child
task would store the new counter value into the parent task’s access declaration.
The implementation would recognize the message’s out-of-date counter value and
discard the message.

5.4.3 Locating Remote Entities. The Jade implementation deals with several en-
tities (object queues and tasks) that can move from processor to processor. When
the implementation needs to perform an operation on a given entity, the entity
may reside on a remote processor. In this case the implementation must locate the
remote entity and perform the operation. There are two kinds of operations: po-
tentially remote operations that the implementation can perform on any processor
holding the entity, and local operations that the implementation must perform on
the processor that issued the operation. When a processor issues an operation on
an object that it holds, it just performs the operation locally. For a potentially
remote operation on an entity held by another processor, the implementation packs
the operation into a message and sends the message to the processor holding the
entity. For local operations on an entity held by another processor, the implemen-
tation sends out a request message for the entity. The processor holding the entity
will eventually receive the request and move the entity to the processor that issued
the request. When the entity arrives at the requesting processor it performs the
local operation.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

40 . Martin C. Rinard and Monica S. Lam

The implementation locates objects using a forwarding pointer scheme. At each
processor the implementation maintains a forwarding pointer for each entity that
the processor has ever held. This forwarding pointer points to the last processor
known to have requested the entity. The implementation locates an entity by
following these forwarding pointers until it finds the processor holding the entity. If
a processor with no forwarding pointer needs to locate an entity, the implementation
extracts the number of the processor that created the entity (this number is encoded
in the entity identifier) and forwards the operation or request to this processor (the
entity is initially located on that processor).

We first discuss the request protocol, which is designed to minimize the number
of hops required to locate an object. When a processor receives or issues a request
for an object held by another processor, it checks its forwarding pointer. If the
forwarding pointer points to another processor, it forwards the request to that
processor and changes its forwarding pointer to point to the requesting processor.
If the forwarding pointer points to itself, it has already requested the entity but the
entity has yet to arrive. In this case the implementation appends the request to a
local queue of requests for that entity.

When the request arrives at the processor holding the object, several things may
happen. If the processor is performing an operation on the object, the implemen-
tation appends the request to the entity’s request queue. If the processor has no
pending operations, it resets its forwarding pointer to point to the requester and
sends the entity to the requester.

When a processor finishes all of the operations that it can perform on an entity
(this includes potentially remote operations and its own local operations), it checks
the entity’s request queue. If it is not empty, it sends the entity and its request
queue to the first processor in the queue and resets its forwarding pointer to point
to that processor. If the request queue is empty the processor continues to hold the
object.

When an entity arrives at a processor that requested it, the processor performs all
of its pending potentially remote and local operations. It then appends its request
queue to the entity’s request queue, and either forwards or continues to hold the
entity as described above.

When a processor receives or issues a potentially remote operation on an entity
that it holds, it performs the operation. If it does not hold the entity, it checks
its forwarding pointer. If the forwarding pointer points to another processor, it
forwards the operation to that processor. If the forwarding pointer points to itself,
it has already requested the entity but the entity has yet to arrive. In this case
the implementation appends the operation to a local queue of potentially remote
operations. The implementation will perform these operations when the entity
arrives.

The algorithm outlined above is a general-purpose mechanism for locating entities
in a message-passing system. It could be used in other systems any time the
system must locate any piece of migrating state or information in the system. The
algorithm above has the drawback that once a processor has requested an entity, it
must maintain a forwarding pointer for that entity for the rest of the computation.
In the worst case each processor may have one forwarding pointer for each object
in the computation and the forwarding pointers may consume too much memory.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 41

It is possible to adjust the algorithm so that processors may discard forwarding
pointers. The system could then discard pointers when memory becomes tight, or
it could devote a fixed amount of space to the forwarding pointer table.

Here is the adjustment. Each entity maintains a counter. Every time the entity
moves from one processor to another, it increments the counter. Each forwarding
pointer contains a copy of the counter value when it forwarded the entity. Whenever
a processor wishes to discard a forwarding pointer, it sends a message to the pro-
cessor whose number is encoded in the entity identifier. This message informs the
processor that its forwarding pointer should point to the processor in the discarded
forwarding pointer. If the counter value of the home processor’s forwarding pointer
is less than counter value of the forwarding pointer in the message, the home pro-
cessor changes its forwarding pointer to the forwarding pointer in the message and
updates its counter. Otherwise, the implementation discards the message. If a pro-
cessor receives a request and has no forwarding pointer for the request, it forwards
the message to the home processor. When a processor forwards a request and resets
its pointer to point to the requesting processor, the counter on the pointer stays
the same. The only restriction is that the home processor must always maintain
its forwarding pointer. While this algorithm may lead to transient cycles if the
network reorders messages, eventually the cycles will resolve and all requests will
eventually locate the object queue.

5.4.4 The Consistency Problem. Any system that replicates mutable data must
solve the consistency problem. The consistency problem arises when a processor
writes a copy of a replicated object, generating a new version of the object. The
implementation must then ensure that no processor subsequently reads one of the
obsolete copies of the object.® Systems traditionally solve the consistency problem
using either an invalidate or an update protocol. Systems using invalidate protocols
keep track of all outstanding copies of an object. When a write occurs the system
sends out messages that eliminate all of the obsolete copies. Update protocols
work in a similar way, except that the writing processor generates messages that
contain the new version of the object. These messages then overwrite the obsolete
copies. At some point the writing processor must stall until it knows that all of
the invalidates or updates have been performed. The exact stall point depends on
the strength of the consistency protocol. Gharachorloo’s thesis contains a more
detailed treatment of consistency protocols [Gharachorloo 1996].

Update and invalidate protocols impair the performance of the system in several
ways. First, there is the bandwidth cost of the update or invalidate messages.
Second, there is the acknowledgment latency associated with stalling the writing
processor until it knows that all of the invalidates and updates have been performed.

5.4.5 The Jade Consistency Mechanism. The Jade consistency mechanism elim-
inates some of the performance overhead of invalidate and update protocols. It first
tags each copy of an object with a version number. The version number counts the
number of times the program wrote the object before it generated that version of
the object. For every task the implementation keeps track of which version of each

6More precisely, the system must ensure that no processor first observes that the writing processor
has proceeded past the write, then reads the obsolete copy of the object.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

42 . Martin C. Rinard and Monica S. Lam

object it must access, and the owner of that version (the processor that generated
that version). The first owner of an object is the processor in whose memory the
implementation initially allocated the object.

Before the implementation executes or resumes a task, it checks the objects that
the task will access. If there is no locally available copy of an object, or if the
locally available copy has an obsolete version number, the implementation fetches
the correct version from the owner. If the task will only read the object, the owner
sends a copy to the reading processor. If the task will write the object, the owner
moves the object. The writing processor then becomes the owner of the next version
of the object.

The implementation generates no messages if the task will only read the object
and the correct version is available locally. If the task will write the object and the
correct version is available locally, the implementation writes the local copy and
sends a message to the old owner telling it to deallocate its copy. Obviously, this
message is not sent if the owner and executor are the same.

If a system replicates objects, it must be able to deallocate obsolete or unneces-
sary copies for good memory utilization. The Jade implementation may deallocate
any copy of an object except the primary copy at the owner. The current imple-
mentation has a target amount of memory dedicated to objects, and deallocates
object replicas (using a least-recently-accessed policy) when the amount of memory
dedicated to objects rises above the target.

The implementation computes which version of an object each task should access
using the object queue mechanism. If a task accesses an object, its access declara-
tion must go through the object queue. The object queue can therefore compute
the version numbers and identities of owner processors by keeping track of both how
many tasks declared they would write the object and which processor executed the
last writing task. When the object queue gives a task the right to access an object,
it tells the task both which version of the object it should access and the owner of
that version.

There is a delicate implementation detail associated with fetching remote objects.
It is possible for one processor to create an object whose initial owner is another
processor. If a task on a third processor accesses the object, it will send a message to
the initial owner requesting the object. It is possible for the message requesting the
object to arrive at the owner before the message that tells the owner to allocate the
object. In this case the owner knows nothing about the object. The implementation
handles this race condition by maintaining a queue at each processor of requests
for unknown objects. When the object creation message arrives at the owner, the
implementation checks this queue and forwards the object to any processors that
need it.

5.4.6 Memory Management. The message-passing implementation has several
data structures (object queues, task data structures, and shared objects) that move
between processors. The implementation must allocate memory for these data
structures when the data structure arrives at a processor; the implementation must
deallocate this memory for reuse when the data structure leaves the processor. The
implementation uses the same memory management strategy for all data structures
that move between processors.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 43

When a data structure arrives at a processor it is stored in a message buffer. The
implementation allocates memory for the data from the local memory management
package, then copies the data out of the message buffer into the allocated memory.
The address of the memory holding the data structure can therefore be different
on different processors.

The implementation or the user program accesses each of these data structures
using globally valid identifiers. The implementation keeps track of the correspon-
dence between globally valid identifiers and the local addresses of the data struc-
tures using a table. There is one such table for each processor and each kind of
data structure. Each table maps the globally valid identifier of each locally resident
data structure to the address of the memory holding that data structure. When
the implementation needs to access a locally resident data structure, it uses the
table to find the data structure.

An alternative implementation strategy for homogeneous systems would allocate
each piece of data at the same address in each of the processors. The advantage of
this strategy is that the implementation could use the address of each piece of data
as its global identifier, and could eliminate the global to local translation. This
strategy has several drawbacks. First, the implementation would have to partition
the address space among processors and have each processor allocate memory from
a different part of the address space. This would waste physical memory on systems
with no support for sparse address spaces. Even for systems with such support,
this allocation strategy could result in poor memory utilization caused by internal
page fragmentation if the allocated objects were significantly smaller than the page
size. Finally, the implementation would have to come up with a mechanism for
determining if a given data structure was available locally.

For heterogeneous systems the strategy of allocating each data structure at the
same virtual address would require the compilers on all the machines to allocate
the same amount of space for each data type. This is totally impractical, because
if one vendor introduced a new machine that required more space per data type,
someone would have to change the memory layout strategy of the compilers on
all of the other machines. This allocation strategy would also waste memory on
machines that represented data more compactly than other machines.

5.5 Common Aspects

Many of the issues associated with executing Jade programs are the same for both
the shared-memory and the message-passing implementations. The two implemen-
tations often deal with these issues in the same way. In this section we discuss
several algorithms that the two implementations share.

5.5.1 The Front End. Both front ends translate Jade code into C code containing
calls to the Jade run-time library. For each withonly construct, the front ends
replace the withonly construct with calls to Jade library routines, emit code that
transfers the parameters from the parent task to the child task, and generate a
separate function containing the task body. For each with construct, the front
ends have only to replace the with construct with calls to Jade library routines.
The front ends also insert the dynamic access checks and convert the Jade variable
declaration syntax to legal C declarations. To perform these actions they do a

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

44 . Martin C. Rinard and Monica S. Lam

complete parse of the Jade code, including a complete type analysis.

There are two factors that complicate the construction of the message-passing
front end. First, all communication uses message-passing constructs. The message-
passing front end must therefore generate routines that interface with the message-
passing system. Specifically, it generates routines to pack and unpack objects and
task data from message buffers. The Jade run-time system calls these routines
when it transfers data between machines. Second, Jade programs run in heteroge-
neous environments. This means that the implementation must represent all data
and programming language constructs that cross machine boundaries in a machine-
independent way. In particular, the front end must perform program transforma-
tions that support the implementation’s use of globally valid identifiers for pointers
to shared objects and shared functions. The routines that the front end generates
must also perform the data format translations required to correctly transfer data
between machines with different data formats.

5.5.2 Access Checking. The implementation performs the dynamic access checks
using an access declaration table. To prepare for a task’s execution, the processor
inserts each of the task’s access declarations into a table indexed by the identifiers of
the objects that the task declared it would access. There is one table per processor,
and the task’s declarations are inserted into the table associated with the processor
that will execute the task. When the task executes, it performs the access checks
by looking up declarations in the access declaration table and checking the accesses
against the declarations. When programmers use the local pointer mechanism
discussed in Section 2.3.1, the implementation amortizes the lookup cost over many
accesses via the local pointer.

5.6 Basic Jade Overheads

In this section we present the basic time and space overhead of the Jade constructs.

5.6.1 withonly Time Quverhead. To a first approximation, the time to create and
execute a task depends on the number of objects the task declared that it would
access and whether a task is executed locally on the same processor that created it or
remotely on a different processor. The implementation may take longer to execute
a task if there is contention for the internal data structures or if the internal data
structures are migrating between processors.

We measured the overhead of task creation using a benchmark program that
creates and executes null tasks. By timing phases of these programs we can measure
how long it takes to execute the different kinds of tasks. In reality the precise
overhead in a given application can depend on complex interactions of different
parts of the system. The figures presented below should therefore be taken as a
rough indication of how large the overhead will usually be in Jade applications.

The benchmark program serially creates and serially executes many null tasks.
We divide the total execution time by the number of tasks to calculate the per-task
overhead. On DASH we measure three cases: (1) the tasks execute on the same
processor as the creator, (2) the tasks execute on a different processor but within
the same cluster as the creator, and (3) the tasks execute on a different cluster from
the creator. The benchmark program generates each case by explicitly placing each
task on the target processor. We plot the running times in microseconds for these

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 45

2500 r ¢ Remote Processor

2000 | & Same Cluster
® Same Processor

1500 +

1000 +

500 | g
0

0 2 4 6 8 10
Number of Declarations

Execution Time (microseconds)

Fig. 25. Task overhead on DASH.

2500 - ¢ Remote Processor

2000 | ® Same Processor
1500 |
1000 |
500 |-

0
0 2 4 6 8 10
Number of Declarations

Execution Time (microseconds)

Fig. 26. Task overhead on the iPSC/860.

three different cases in Figure 25. These curves graph the overhead as a function
of the number of objects the task declared that it would access. The differences in
the running times are caused by memory system effects.

For the iPSC/860 we measure two cases: (1) the tasks execute on the same
processor as the creator and (2) the tasks execute on a remote processor. Figure 26
plots the running times in microseconds for these two cases. The remote overhead
is substantially larger than the local overhead. We attribute this difference to the
message composition and transfer overhead on the iPSC/860.

5.6.2 Speedup Benchmarks. The task overhead limits the grain size that Jade
implementation can support. We created a benchmark program to measure how
the speedup varies with the task size. The program has a sequence of phases; each
phase serially creates and in parallel executes tasks of a given size. The sequence
of phases varies the task size. The program devotes one processor to creating tasks
and the other processors to executing tasks. Figure 27 presents the results of the
program running with 32 processors on DASH; Figure 28 presents the results of
the program running with 32 processors on the iPSC/860. Each figure plots the
measured speedup as a function of the task size in milliseconds.

In the benchmark program each task declares that it will access three objects.
Each phase serially creates 31 x 256 tasks that execute in parallel. The measured

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

46 . Martin C. Rinard and Monica S. Lam

o 32
g
24|
&
16|
8,
0

0 10 20 30 40 50
Task Size (milliseconds)

Fig. 27. Speedup on DASH for 32 processors.

o 3¢
g
24 |
&
16 |
8,
0,

0 10 20 30 40 50
Task Size (milliseconds)

Fig. 28. Speedup on the iPSC/860 for 32 processors.

speedup is the task size times 31 x 256 divided by the measured execution time to
create and execute the tasks.

5.6.3 with Time Overhead. There is also time overhead associated with exe-
cuting a with construct; to a first approximation the overhead is a function of
the number of access specification statements that the with construct’s access
specification section executes. Figures 29 and 30 present the overhead in mi-
croseconds on DASH and the iPSC/860, respectively.

5.6.4 Space Overheads. Both tasks and objects incur space overhead. In the
shared-memory implementation, each task incurs an overhead of 552 bytes. Each
object incurs an overhead of 84 bytes. Each access declaration incurs an overhead
of 28 bytes associated with the task data structure. The task data structure con-
tains space for 10 initial access declarations, so declarations do not start taking up
additional space until a task declares that it will access more than 10 objects.

In the message-passing implementation each task incurs an overhead of 800 bytes.
Each object incurs a total overhead of 400 bytes, with the object queue taking up
344 bytes and an object header taking up 56 bytes. There is one object header for
each replica of the object. Each access declaration takes up 48 bytes associated
with the task data structure and 28 bytes associated with the object queue data

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 47

250
200
150
100

50

0 ’ L ! L i
0 2 4 6 8 10
Number of Declarations

Execution Time (microseconds)

Fig. 29. with overhead on DASH.

250
200
150
100

50

0 ’ L ! L i
0 2 4 6 8 10
Number of Declarations

Execution Time (microseconds)

Fig. 30. with overhead on the iPSC/860.

structure. Each task and object queue contains space for 10 initial declarations, so
declarations do not start taking up space until a task declares that it will access
more than 10 objects or until more than 10 tasks at a given point in time declare
that they will access one object.

6. APPLICATIONS EXPERIENCE

As part of our evaluation of Jade, we obtained several complete scientific and en-
gineering applications and parallelized them using Jade. We then executed these
applications on several computational platforms. This experience gave us insight
into the Jade programming process and provided an initial indication of what hap-
pens when programmers use Jade to parallelize complete applications.

6.1 The Application Set

Choosing a set of benchmark applications to evaluate a language design and im-
plementation is a tricky business. On the one hand it is important to choose
applications that are within the target application domain. The benchmark set is
therefore inevitably filtered as applications viewed as outside the application do-
main are rejected. But filtering the applications too stringently, on the other hand,
can yield a sterile evaluation. How well the language deals with unforeseen appli-

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

48 . Martin C. Rinard and Monica S. Lam

cation properties will be an important factor in its overall success, and a balanced
benchmark set should include some programs that stretch the capabilities of the
language and its implementation.

Several factors influenced our choice of applications. One major factor was avail-
ability. Existing benchmark sets were one source of applications, and three of our
applications originally came from the SPLASH benchmark suite [Singh et al. 1992].
We also acquired three applications directly from the research groups that initially
developed them. Another factor was the engineering effort involved in manipulat-
ing the application. The engineering effort required to deal with large programs
restricted us to fairly small applications, but we did invest a substantial amount of
time and effort to be sure that we at least developed complete applications. A final
factor was our assessment of how well the application fit the target Jade applica-
tion domain. When possible we performed an initial assessment by analyzing the
properties of an existing parallel version before deciding to develop a Jade version.
For two of our applications, however, the Jade parallelization was the first (and so
far the only) parallelization to exist. We next describe each of our applications.

—Water: A program that evaluates forces and potentials in a system of water
molecules in the liquid state [Woo et al. 1995].

—String: A program that computes a velocity model of the geology between two
oil wells [Harris et al. 1990].

—Search: A program that simulates the interaction of electron beams with solids
[Browning et al. 1994; Browning et al. 1995].

—Volume Rendering: A program that renders a three-dimensional volume data
set for graphical display [Nieh and Levoy 1992].

—Panel Cholesky: A program that factors a sparse positive-definite matrix
[Rothberg 1993].

—Ocean: A program that simulates the role of eddy and boundary currents in
influencing large-scale ocean movements [Singh and Hennessy 1992].

To the best of our knowledge, six people have participated in the development of
complete Jade applications: the first author of this article, four other Ph.D. students
in the Stanford Computer Science Department, and one research scientist in the
Stanford Electrical Engineering Department. All of the benchmark applications
except Search were developed either by the first author or one of two other Ph.D.
students; Search was developed jointly by the first author and the research scientist
from the Stanford Electrical Engineering Department.

6.2 Application Characteristics

We next present some basic application properties and use these properties to
discuss several aspects of the Jade programming process. Table 1 presents some
static properties. A comparison of the number of lines of code in the serial version
(when available) with the number of lines of code in the Jade version indicates that
using Jade usually involves a modest increase in the number of lines of code in the
application. The number of Jade constructs required to parallelize the application
(and especially the number of withonly constructs) is usually quite small.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 49

Table 1. Static Application Characteristics

Object
Lines of Code Lines of Code withonly with Creation
Application Serial Version Jade Version Sites Sites Sites

Water 1219 1471 2 20 7
String 2587 2941 3 37 19
Search - 716 1 9 3
Volume Rendering - 5419 2 8 15
Panel Cholesky 2047 2484 2 15 18
Ocean 1274 3262 27 28 20

Table 2. Language Feature Usage

Uses Part Uses Private Uses Local Uses Nested Uses Pipelined

Application Objects Objects Pointers Concurrency Concurrency
Water no yes yes no yes
String yes yes yes no yes
Search no yes yes no no

Volume Rendering yes yes yes no yes
Panel Cholesky yes yes yes no no
Ocean no yes yes no yes

Table 2 shows which language features the applications use. Jade supports a rich
object model with a variety of different kinds of objects and pointers. The language
feature usage data shows that this richness is justified in practice—all of the different
kinds of objects and pointers are used by multiple applications. The applications
use less of the control functionality, however. In every Jade application there is
a single main thread of control that creates all of the parallel tasks. None of the
applications uses nested task creation to generate a tree-like pattern of concurrency.
This is an interesting result, especially in light of the fact that other researchers have
found it useful to exploit this form of concurrency [Blelloch et al. 1993; Blumofe
et al. 1995]. On the other hand, four of the six applications use the pipelined form
of concurrency discussed in Section 2.6.6. Three of the applications (Water, String
and Volume Rendering) use this form of concurrency in a stylized way to perform
a parallel reduction of values generated by a set of parallel tasks.

6.3 Programming Evaluation

As the data presented in the previous section suggest, using Jade did not usually
impose an onerous programming burden. For all of our applications, the key to a
successful parallelization was determining an appropriate structure for the shared
objects. Such a structure was always fairly obvious, given a high-level understand-
ing of the basic source of exploited concurrency. Once the structure was in place,
using Jade constructs to specify the task granularity and data usage information
was a straightforward process with no complications.

For all of the applications, implementing the correct object structure for the Jade
version involved some modification of the original data structures. But even though
all of the applications substantially modified some of the original data structures,
the programming overhead associated with performing the modifications varied

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

50 . Martin C. Rinard and Monica S. Lam

widely from application to application. For all of the applications except Ocean,
the modifications were confined to small, peripheral sections of the code, and there
was little programming overhead associated with the use of Jade. The key to the
success of these applications was the programmer’s ability to preserve the original
data indexing algorithm for the core of the computation.

The one exception to this pattern was Ocean. The parallel tasks in Ocean con-
currently write disjoint pieces of several key data structures. It is natural to make
each of these data structures a single shared object. But because in Jade all syn-
chronization takes place at the granularity of objects, this allocation strategy would
serialize the computation. The programmer was therefore forced to explicitly de-
compose the data structures into multiple objects. This decomposition enabled the
concurrent writes necessary to parallelize the application.

Unfortunately, the decomposition forced the programmer to change the data
structure indexing algorithm over large parts of the program. These changes im-
posed substantial programming overhead and dramatically increased the size of the
Jade program relative to the original serial program. Note that decomposing a
data structure to enable concurrent writes does not always generate such a large
amount of programming overhead. In Panel Cholesky, for example, the programmer
decomposed the data structure used to hold the factored matrix. This decomposi-
tion, however, had very little effect on the overall structure of the program. Again,
the key determining factor is whether or not the programmer has to change the
indexing algorithm in the core of the computation.

We found that several aspects of the Jade language design supported the de-
velopment of these parallel applications. Programmers came to rely on the fact
that the Jade implementation verified the access specification information. They
typically developed a working serial implementation with the data structured ap-
propriately for the Jade version, then inserted the Jade constructs. Programmers
became quite cavalier about this process, typically making changes quickly and re-
lying on the implementation to catch any bugs in the parallelization. This stands
in stark contrast to the situation with explicitly parallel languages. The possibility
of nondeterministic execution masking errors usually makes programmers paranoid
about changing a working program, and the parallelization proceeds much more
slowly.

Parallel program development proceeds most smoothly when the development
can proceed via a sequence of small, incremental modifications to a working pro-
gram, with the programmer checking the correctness of each modification before
proceeding on to the next. Because the parallelization often requires a major re-
structuring of some part of the program, the programmer often reaches a stage
where he or she must make several major modifications without being able to test
any modification until all are performed. If anything goes wrong with one of the
modifications it can be difficult to isolate the resulting bug because it could have
been caused by any one of the multiple changes.

Jade programmers typically develop a program in two stages. In the first stage,
they start with a serial program that performs the desired computation, then apply
the data structure modifications required for the Jade parallelization. They then
insert the Jade constructs required to parallelize the program. The major modifi-
cation stage, if there is one, occurs when the programmer makes the data structure

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 51

modifications. It is always possible to incrementally insert the Jade constructs with
no fear of changing the program’s behavior. Furthermore, deterministic execution
ensures that a single run completely characterizes a program’s behavior on a given
input, which supports the incremental development process by making it easier to
verify the correctness of each modification.

An important aspect of this program development process is that the poten-
tially troublesome phase takes place before the programmer ever deals with the
complication of parallel execution. The programmer can therefore use all of the
existing infrastructure for the development of serial programs and can count on de-
terministic execution to simplify the debugging process. Our experience developing
Jade applications combined with our previous experience developing explicitly par-
allel applications showed us that this approach can make it much easier to develop
working parallel programs.

6.4 Performance Evaluation

We next discuss the performance of the Jade applications. We ran each application
on a shared-memory platform (the Stanford DASH machine [Lenoski 1992]) and
on a message-passing platform (the Intel iPSC/860 [Berrendorf and Helin 1992]).
Table 3 presents some basic performance numbers for the iPSC/860 runs, while
Table 4 presents the corresponding results for the DASH runs. Volume Rendering
did not run on the iPSC/860—one of its shared objects was too large to fit in the
physical memory of any one node of the iPSC/860.

Figures 31 through 36 present the speedup curves for each application. These
curves plot the running time of the serial version of the application” divided by the
running time of the Jade version as a function of the number of processors executing
the Jade version.

To a first approximation there are two kinds of applications: coarse-grain appli-
cations with mean task sizes ranging from several seconds to well over a minute
and finer-grain applications with a mean task size measured in milliseconds. The
coarse-grain applications scale almost linearly to 32 processors while the finer-grain
applications do not scale as well. The scaling problems for the fine-grained appli-
cations are caused in large part by the serial task creation overhead discussed in
Section 2.5.2. The scaling problem is especially severe on the iPSC/860. On the
iPSC/860 the relatively large message-passing overhead makes it impossible to im-

"This serial version was derived from the Jade version by automatically removing all of the Jade
constructs to obtain a serial C program. Obviously, this serial version executes with no paral-
lelization overhead. We chose this version rather than the original serial version as the baseline
for the speedup curves because it was available for all applications (there is no serial version for
Search or Volume Rendering) and because for some of the applications we made performance
improvements to the application as part of the Jade conversion process. We have reported the
running times of the available serial versions elsewhere [Rinard 1994a]. For all combinations of
applications and machines, except Panel Cholesky on the iPSC/860 and DASH and Ocean running
on the iPSC/860, the original serial version is slower than the Jade version with all the constructs
automatically removed. For Panel Cholesky, the ratio of the running time of the Jade version
with all of the constructs automatically removed to the running time of the original serial version
is always less than 1.08. For Ocean on the iPSC/860, the ratio of the running time of the Jade
version with all of the constructs automatically removed to the running time of the original serial
version is less than 1.13.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

52 . Martin C. Rinard and Monica S. Lam

Table 3. Dynamic Application Characteristics for the iPSC/860

Sequential Execution Speedup on Mean Task Size on
Application Time (seconds) 32 Processors 32 Processors (seconds)
Water 2406.72 26.29 4.75
String 19629.42 28.93 74.30
Search 1284.07 27.90 42.61
Panel Cholesky 28.53 0.74 0.0020
Ocean 60.99 1.16 0.0033

Table 4. Dynamic Application Characteristics for DASH

Sequential Execution Speedup on Mean Task Size on
Application Time (seconds) 32 Processors 32 Processors (seconds)

Water 3285.90 27.50 6.53
String 19314.80 27.36 81.63
Search 1652.91 31.16 51.52
Volume Rendering 32.44 17.16 0.63

Panel Cholesky 28.91 5.02 0.0024

Ocean 100.03 9.34 0.0047

plement the basic Jade primitives as efficiently as on DASH, which supports much
finer-grain communication.

We next discuss the performance of each application in turn. For Panel Cholesky
and Ocean running on DASH, we quantify the performance cost of Jade’s high-level,
portable programming model by comparing the performance of the Jade versions
with versions written in lower level languages that run only on shared memory
machines.

6.5 Water, String, and Search

Water, String, and Search all exhibit very good performance, scaling almost per-
fectly up to 32 processors. The task sizes are large relative to the task creation and
communication overhead, which allows the implementation to profitably amortize
the overhead to negligible levels, and the load is evenly balanced.

6.6 Volume Rendering

As mentioned above, Volume Rendering does not run on the iPSC/860. The cur-
rent message-passing implementation of Jade requires an object to be completely
resident on a processor if that processor accesses the object. Volume Rendering
manipulates a large (approximately 58 Mbytes) object, which does not fit into the
16 Mbyte memory on each node of the iPSC/860. The Jade implementation is
therefore unable to allocate space for the 58 Mbyte object that Volume Rendering
needs to execute.

Although Volume Rendering scales reasonably well on DASH, it does not achieve
the performance of String, Water, or Search. We explored the performance of the
application using event logs. We instrumented the Jade implementation to generate
a log that records the time when specific events occur during the execution of the
application. The logs are stored in memory and written out at the end of the
execution. For Volume Rendering, recording the log information does not impose

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade

Qo Qo
§ §
& &
0
0 8 16 24 32 0 8 16 24 32
Processors

Processors

Speedup for Water on the iPSC/860 Speedup for Water on DASH

Speedups for Water.

Fig. 31.
/
& % p &
16
8
0 0
0 8 16 24 32 0 8 16 24 32
Processors Processors

Speedup for String on the iPSC/860 Speedup for String on DASH

Fig. 32. Speedups for String.

Speedup
Speedup

0 0
0 8 16 24 32 0 8 16 24 32
Processors Processors

Speedup for Search on the iPSC/860 Speedup for Search on DASH

Fig. 33. Speedups for Search.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

54

. Martin C. Rinard and Monica S. Lam

Speedup

Speedup

0
0 8

16

24 32

Processors

Fig. 34. Speedup for Volume Rendering on DASH.

32+

24
16

oo 0 o o o o o

0 8 16 24 32

Processors

Speedup

Speedup for Panel Cholesky on the iPSC/860

Speedup

Speedup for Ocean on the iPSC/860

32
24
16

32
/
24 ¢ 4
/
16 | 7
/
/
8
O‘ L L .

Processors

Speedup for Panel Cholesky on DASH

Fig. 35. Speedups for Panel Cholesky.

0
0 8 16 24 32

Processors

Speedup

0
0 8 16 24 32
Processors

Speedup for Ocean on DASH

Fig. 36. Speedups for Ocean.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 55

a significant performance overhead.

The logs primarily record information that deals with the execution of tasks. For
Volume Rendering the relevant events are the creation, execution, and termination
of tasks. A correlation of the logs with the structure of the application demonstrates
the sources of performance loss. The vast majority of the computation in the
application occurs during the primary parallel phase when the application renders
the dataset for a new view. At the end of the parallel phase, each task has computed
a set of contributions to the final view. The application then executes a serial phase
during which each task copies its contributions back into the data structure that
stores the view. The tasks write disjoint sections of the view data structure. A
separation of allocation and synchronization units as discussed in Section 4.7 would
allow the serial copy back phase to execute in parallel. An examination of the event
logs for this application running on DASH demonstrates that there are two primary
sources of performance loss: idle time during a serial copy back phase and poor load
balancing during the primary parallel phase [Rinard 1994a].

6.7 Panel Cholesky

Panel Cholesky performs poorly on the iPSC/860. We attribute the poor perfor-
mance to the fact that, on this platform, the mean task size is comparable to the
task overhead. In this situation parallel execution offers little or no performance
benefit.

Panel Cholesky performs much better on DASH than on the iPSC/860, although
the computation still does not scale very well—the maximum speedup is 3.8 on
16 processors. For DASH, we can compare the performance of the Jade version of
Panel Cholesky with the performance of the highly optimized, explicitly parallel,
hand-tuned version in the SPLASH benchmark set [Singh et al. 1992]. The SPLASH
version achieves a speedup of 9.8 out of 24 processors, with much of the performance
loss coming from an inherent lack of concurrency in the computation [Rothberg
1993]. We attribute the difference in performance between the Jade version and
the SPLASH version to the task management overhead in the Jade version and the
general scheduling algorithm in the Jade implementation, which generates a less
efficient assignment of tasks to processors than does the SPLASH version [Rinard
1994a].

6.8 Ocean

Ocean uses an iterative method to solve a set of spatial partial differential equa-
tions. It stores the state of the system in several two-dimensional arrays. On every
iteration the solver recomputes each element of the array using a standard five-
point stencil algorithm. The solve terminates when the differences between the old
values and the new values drop below a given threshold.

Ocean executes a sequence of parallel phases. At the start of each parallel phase,
the main thread creates a set of parallel tasks, each of which updates part of the
state of the system. When it finishes, each task writes a flag that indicates whether
its part of the system has converged. At the end of the parallel phase, the main
thread reads all of the flags to determine if the entire solve has converged. For both
the iPSC/860 and DASH, the main processor, which executes the main thread, is
devoted to task management. On the iPSC/860, we measured the amount of time

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

56 . Martin C. Rinard and Monica S. Lam

the main processor spends on task management, and found that, above 8 processors,
it spent almost all of its time managing tasks [Rinard 1994a]. We therefore attribute
the poor performance on the iPSC/860 to serialized task management on the main
processor.

On DASH, serialized task management also has a negative impact on the per-
formance. But there is another factor that has a significant impact—the scheduler
generates a suboptimal placement of tasks on processors. The computation suffers
from poor locality, and the parallel version takes significantly more time to perform
the stencil computation in the application than does the serial version [Rinard
1994a]. On DASH, these two factors make the Jade version perform significantly
worse than a version of the same computation written in the explicitly parallel lan-
guage COOL [Chandra et al. 1993]. The Jade version achieves a maximum speedup
of 7.57 on 28 processors, while the COOL version achieves a maximum speedup of
21.06 on 28 processors.

7. RELATED WORK

Researchers have developed an enormous number of parallel programming lan-
guages [America 1987; Bal et al. 1992; Burns 1988; Carriero and Gelernter 1989;
Chandra et al. 1993; Foster and Taylor 1990; Gregory 1987; Hoare 1985; INMOS
Limited 1984; Krishnamurthy et al. 1992; Reppy 1992; Yonezawa et al. 1986].
There is a fundamental difference between Jade and almost all of these languages:
Jade is a declarative language used to provide information about how a serial pro-
gram accesses data, while the vast majority of parallel programming languages are
control-oriented languages with constructs that programmers use to directly control
the parallel execution. The primary advantage of these languages is that they allow
programmers to directly control the parallel execution for maximum efficiency. We
have discussed the disadvantages of the control-oriented approach elsewhere in the
article (see Section 1).

7.1 Languages for Imperative Programs with Serial Semantics

We next focus on the relatively few languages that are designed to help a compiler
or runtime system effectively parallelize a serial, imperative program. Data-parallel
languages such as Fortran 90 [Metcalf and Reid 1990] and C* [Rose and Steele 1987]
provide a useful paradigm for programs with regular, data-parallel forms of con-
currency. Programmers using these languages view their program as a sequence of
operations on large aggregate data structures such as sets or arrays. The system
can execute each aggregate operation in parallel by performing the operation on the
individual elements concurrently. The more general data parallel language NESL
supports nested data parallel computations [Blelloch et al. 1993]. NESL preserves
the basic spirit of the data parallel paradigm (regular operations on large aggregate
data structures) while supporting a more general class of computations on aggre-
gate data structures. The data parallel approach preserves the advantages of the
sequential programming paradigm while exposing the concurrency available within
operations. It provides a simple interface that is ideal for expressing regular forms
of concurrency. Jade is designed to exploit an orthogonal source of concurrency: the
task-level concurrency available between operations on different data structures.
Other researchers have also developed languages that allow programmers to pro-

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 57

vide extra information about how the program structures and accesses data. The
goal is to expose more concurrency by improving the precision of the compiler’s
dependence analysis.

Refined C [Klappholz et al. 1990] and Refined Fortran [Dietz and Klappholz
1986; Klappholz 1989] allow programmers to create sets of variables that refer to
disjoint regions of memory. When pieces of code access disjoint subsets of such
variables, the compiler can statically verify that they can execute concurrently.
Typical operations are creating a set of names that refer to disjoint regions of an
array and creating an array of pointers that point to distinct data structures.

ADDS [Hendren et al. 1992] declarations for data structures containing point-
ers to dynamically allocated data allow programmers to describe the set of data
structures that can be reached by following different pointer chains. The compiler
combines this information with an analysis of the pointer-chain paths that different
parts of the computation follow to derive a precise estimate of how the computa-
tion will access data. The improved precision of the dependence analysis can expose
additional opportunities for parallel execution.

FX-87 [Gifford et al. 1987; Hammel and Gifford 1988; Lucassen 1987] contains
constructs that programmers use to specify how procedures access data. The system
statically analyzes the program, using this information to determine which proce-
dure calls can execute concurrently without violating the serial semantics. FX-87
programmers partition the program’s data into a finite, statically determined set
of regions. The access specification and concurrency detection take place statically
at the granularity of regions. The fact that regions are a static concept allows
the FX-87 implementation to check the correctness of the access specifications at
compile time. But regions also limit the precision of the data usage information.
In general, many dynamic objects may be mapped to the same region, limiting the
ability of the FX-87 implementation to exploit concurrency available between parts
of the program that access disjoint sets of such objects.

The Fx compiler (distinct from FX language discussed in the previous paragraph)
exploits programmer annotations to extract task-level parallelism from High Perfor-
mance Fortran Programs [Gross et al. 1994]. Each task corresponds to a subroutine
call; the programmer annotates the subroutine calls with information specifying how
the subroutine will read and write its parameters. All communication takes place
at subroutine boundaries. To ensure that it can extract the task graph at compile
time, the Fx compiler enforces a restricted model of computation. In particular,
there can be no conditionals within parallel phases. Jade presents a much more gen-
eral model of computation. The programmer can create tasks at arbitrary points
in the program (not just within conditional-free parallel regions), tasks can access
any shared object (not just the parameters), tasks can pipeline their accesses to
shared objects, and the task boundaries are decoupled from the subroutine bound-
aries. The cost for this generality is that the concurrency extraction and task and
data movement scheduling all take place at run time and generate run-time over-
head. The Fx compiler exploits its restricted model of computation to perform the
concurrency extraction and scheduling statically instead of dynamically.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

58 . Martin C. Rinard and Monica S. Lam

7.2 Parallel Libraries

Specialized libraries that implement a specific set of parallel algorithms provide a
simple, easy way to use parallel machines. The numerical analysis community has
developed fast parallel implementations of common linear algebra routines [Dayde
and Duff 1990]. Other researchers have developed a framework for implementing
common data usage patterns [Scales and Lam 1994]. In the best case these systems
provide the same advantages as data parallel languages. They preserve the ab-
straction of sequential execution by encapsulating the parallel computation inside
routines invoked from a serial program.

7.3 Functional Languages

Functional languages such as Id [Arvind and Thomas 1981] and Sisal [Feo et al.
1990] support a functional model of computation. From the perspective of someone
implementing Id or Sisal on a parallel machine, the important feature of these
languages is that they allow programs to define the value of a variable at most once.
Programs written in Id, Sisal, and other functional languages can therefore execute
in an inherently parallel data-driven fashion in which each computation can execute
as soon as the values it uses have been produced. Multilisp futures also support a
similar model of computation, although programs that use futures may not execute
deterministically if the computations encapsulated in futures imperatively update
externally visible data [Halstead 1985].

Despite the fact that Id and Multilisp programs execute deterministically, we do
not view them as having a serial semantics. Even on uniprocessors these languages
may require conceptually parallel execution [Mohr et al. 1990; Traub 1991].

The primary difference between Jade and functional languages is that Jade sup-
ports mutable data—Jade programs can update shared objects multiple times,
while programs written in functional languages can define each variable at most
once. The elimination of mutual data poses challenging storage management prob-
lems for functional languages, and the performance of programs written in these
languages has tended to suffer from copying and storage management overhead.

8. CONCLUSION

Developing programming paradigms that allow programmers to effectively deal with
the many different kinds of concurrency is a fundamental problem in computer sci-
ence. The goal of the Jade project was to develop an effective paradigm for a specific
purpose: the exploitation of task-level concurrency for performance. The concrete
results of this project demonstrate that Jade, with its high-level abstractions of
serial semantics and a single address space, satisfies this goal.

We have demonstrated Jade’s portability by implementing it on a diverse set
of hardware platforms. These machines span the range of computational plat-
forms from tightly coupled shared-memory machines through dedicated homoge-
neous message-passing multiprocessors to loosely coupled heterogeneous collections
of workstations.

We evaluated the Jade language design by implementing several complete sci-
entific and engineering applications in Jade. We obtained excellent performance
results for several applications on a variety of hardware platforms with minimal

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 59

programming overhead. We also obtained less satisfactory results for programs
that pushed the limits of the Jade language and implementation. Some applica-
tions would work well, given improvements in the implementation; others would be
best expressed in other languages.

Because Jade was designed to support a specific, targeted class of computations, it
is, by itself, unsuitable as a general-purpose parallel programming language. Jade’s
enforced abstractions mean that programmers cannot express certain kinds of par-
allel algorithms in Jade and cannot control the machine at a low level for optimal
efficiency. The ultimate impact of the Jade project will come from the integration
of basic concepts and implementation techniques from Jade into other program-
ming systems designed to support a wider range of applications. The advantage of
developing a focused language like Jade is that it isolates a clear, conceptually ele-
gant definition of the basic paradigm. Using the language therefore both allows and
forces programmers to explore the advantages and disadvantages of the paradigm.
With the Jade project behind us, we can identify how the basic concepts of Jade
are likely to live on in future languages and systems.

A fundamental idea behind Jade is to have programmers declaratively provide
information about how the program accesses data. This is in harmony with a long-
term trend in computer science to change the focus from control to data. In parallel
computing the need to efficiently manage the memory hierarchy for performance
will drive this change of focus. Future languages and systems will be increasingly
organized around the interaction of data and computation, with various declarative
mechanisms, such as access specifications, used to express the relevant information.
COOL’s locality hints [Chandra et al. 1993], Midway’s object usage declarations
[Bershad et al. 1993], shared region declarations [Sandu et al. 1993], and the CHICO
model of consistency [Hill et al. 1992] are all examples of this trend.

Access specifications give the implementation enough information to automat-
ically generate the communication without forcing the implementation to use a
specific communication mechanism. It is therefore possible to implement paral-
lel languages based on access specifications on a wide variety of machines. Each
implementation can use the native communication mechanism to implement the
underlying abstraction of a single address space, and applications will efficiently
port to all of the platforms.

Advance notice of how the program will access data gives the implementation
the information it needs to apply locality and communication optimizations ap-
propriate for the target hardware platform. In an explicitly parallel context the
implementation can also use access specifications to automatically synchronize the
computation.

Access specifications build on the programmer’s high-level understanding of the
program and mesh with the way the programmer thinks about its behavior. They
allow the programmer to express complex parallel computations simply, concisely,
and in a way that places minimal demands on the programmer’s cognitive abilities.
Because access specifications provide so many concrete benefits, we expect them to
appear increasingly often in future parallel language designs.

Jade supports the abstraction of a single shared address space with automatically
cached data. The programming benefits of this abstraction ensure that many future
languages and systems will support this approach (as many existing systems do).

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

60 . Martin C. Rinard and Monica S. Lam

We expect that many such systems will use some form of access specifications to
support the automatic generation of communication operations.

One of the unique features of Jade is its extreme portability. Jade currently
runs on a wide range of hardware platforms and in principle could be implemented
on almost any MIMD computing environment. We designed this portability into
the language by scrupulously eliminating any dependences on specific architectural
features. The speed with which specific computer systems become obsolete and the
need to preserve software investment in parallel programs will drive a trend towards
highly portable languages.

ACKNOWLEDGMENTS

We would like to thank Dan Scales, Jennifer Anderson, and Morry Katz for their
participation in many Jade language design discussions. Jennifer Anderson imple-
mented the first Jade front end; Dan Scales implemented the second (and final)
Jade front end. We would also like to thank the anonymous reviewers for their
helpful comments and suggestions.

REFERENCES

AMERICA, P. 1987. POOL-T: A parallel object-oriented language. In Object Oriented Con-
current Programming, A. Yonezawa and M. Tokoro, Eds. MIT Press, Cambridge, Mass.,
199-220.

Awmza, C., Cox, A., DWARKADAS, S., KELEHER, P., Lu, H., Rajamony, R., YU, W., AND
ZWAENEPOEL, W. 1996. TreadMarks: Shared memory computing on networks of worksta-
tions. IEEE Comput. 29, 2 (June), 18-28.

APPEL, A. AND L1, K. 1991. Virtual memory primitives for user programs. In Proceedings of
the 4th International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, New York.

Arpaci, R., CULLER, D., KRISHNAMURTHY, A., STEINBERG, S., AND YELICK, K. 1995. Em-
pirical evaluation of the CRAY-T3D: a compiler perspective. In Proceedings of the 22nd
International Symposium on Computer Architecture. ACM, New York.

ARVIND AND THOMAS, R. 1981. I-structures: An efficient data type for functional languages.
Tech. Rep. MIT/LCS/TM-210, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, Mass.

BaL, H., KAASHOEK, M., AND TANENBAUM, A. 1992. Orca: A language for parallel programming
of distributed systems. IEEE Trans. Softw. Eng. 18, 3 (Mar.).

BASkeTT, F., JERMOLUK, T., AND SOLOMON, D. 1988. The 4D-MP graphics superworkstation:
Computing + graphics = 40 mips + 40 mflops + 100,000 lighted polygons per second. In
Proceedings of COMPCON Spring 88. 468—471.

BENNETT, J., CARTER, J., AND ZWAENEPOEL, W. 1990. Munin: Distributed shared memory
based on type-specific memory coherence. In Proceedings of the 2nd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. ACM, New York.

BERRENDORF, R. AND HELIN, J. 1992. Evaluating the basic performance of the Intel iPSC/860
parallel computer. Concur. Pract. Ezper. 4, 3 (May), 223-240.

BERSHAD, B., ZEKAUSKAS, M., AND SAWDON, W. 1993. The Midway distributed shared memory
system. In Proceedings of COMPCON’93. 528-537.

BLELLOCH, G., CHATTERJEE, S., HARDWICK, J., SIPELSTEIN, J., AND ZAGHA, M. 1993. Im-
plementation of a portable nested data-parallel language. In Proceedings of the 4th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, New
York.

BrumMmoOFE, R., JOERG, C., KuszMAUL, B., LEISERSON, C., RANDALL, K., AND ZHOU, Y. 1995.
Cilk: An efficient multithreaded runtime system. In Proceedings of the 5th ACM SIGPLAN

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 61

Symposium on Principles and Practice of Parallel Programming. ACM, New York.

BrowNING, R., L1, T., Cuul, B., YE, J., PEASE, R., CzYZEWSKI, Z., AND Joy, D. 1994.
Empirical forms for the electron/atom elastic scattering cross sections from 0.1-30keV.
Appl. Phys. 76, 4 (Aug.), 2016-2022.

BrowNING, R., L1, T., Cuul, B., YE, J., PEASE, R., CzYZEWSKI, Z., AND Joy, D. 1995.
Low-energy electron/atom elastic scattering cross sections for 0.1-30keV. Scanning 17, 4
(July/August), 250-253.

BurNs, A. 1988. Programming in Occam 2. Addison-Wesley, Reading, Mass.

CARRIERO, N. AND GELERNTER, D. 1989. Linda in context. Commun. ACM 32, 4 (Apr.),
444-458.

CHANDRA, R., GUupTA, A., AND HENNESSY, J. 1993. Data locality and load balancing in COOL.
In Proceedings of the jth ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming. ACM, New York.

DAYDE, M. AND DUFF, 1. 1990. Use of parallel Level 3 BLAS in LU factorization on three vector
multiprocessors; the Alliant FX/80, the Cray-2, and the IBM 3090 VF. In Proceedings of
the 1990 ACM International Conference on Supercomputing. ACM, New York.

DieTz, H. AND KLAPPHOLZ, D. 1986. Refined Fortran: Another sequential language for parallel
programming. In Proceedings of the 1986 International Conference on Parallel Processing,
K. Hwang, S. M. Jacobs, and E. E. Swartzlander, Eds. 184-189.

DONGARRA, J. AND SORENSEN, D. 1987. SCHEDULE: Tools for developing and analyzing
parallel Fortran programs. In The Characteristics of Parallel Algorithms, D. Gannon,
L. Jamieson, and R. Douglass, Eds. The MIT Press, Cambridge, Mass.

FEo, J., CANN, D., AND OLDEHOEFT, R. 1990. A report on the Sisal language project. J. Parallel
Distrib. Comput. 10, 4 (Dec.), 349-366.

FoOSTER, I. AND TAYLOR, S. 1990. Strand: New Concepts in Parallel Programming. Prentice-
Hall, Englewood Cliffs, N.J.

Fu, C. AND YANG, T. 1997. Space and time efficient execution of parallel irregular computa-
tions. In Proceedings of the 6th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. ACM, New York.

GELERNTER, D. 1985. Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7, 1 (Jan.), 80-112.

GHARACHORLOO, K. 1996. Memory consistency models for shared memory multiprocessors.
Ph.D. thesis, Dept. of Electrical Engineering, Stanford Univ., Stanford, Calif.

GIFFORD, D., JOUVELOT, P., LUCASSEN, J., AND SHELDON, M. 1987. FX-87 reference manual.
Tech. Rep. MIT/LCS/TR-407, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, Mass. Sept.

GoOLUB, G. AND LoAN, C. V. 1989. Matriz Computations, 2nd ed. The Johns Hopkins Univ.
Press, Baltimore, Md.

GREGORY, S. 1987. Parallel Logic Programming in PARLOG: The Language and Its Imple-
mentation. Addison-Wesley, Reading, Mass.

GRoss, T., O’HALLORAN, D., AND SUBHLOK, J. 1994. Task parallelism in a high performance
Fortran framework. IEEE Parallel Distrib. Tech. 2, 3 (Fall), 16-26.

HAGERSTEN, E., LANDIN, A., AND HARIDI, S. 1992. DDM—A cache-only memory architecture.
Computer 25, 9 (Sept.), 44-54.

HALSTEAD, JR., R. 1985. Multilisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst. 7, 4 (Oct.), 501-538.

HAMMEL, R. AND GIFFORD, D. 1988. FX-87 performance measurements: Dataflow implemen-
tation. Tech. Rep. MIT/LCS/TR-421, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, Mass. Nov.

HARRIS, J., LAZARATOS, S., AND MICHELENA, R. 1990. Tomographic string inversion. In Pro-
ceedings of the 60th Annual International Meeting, Society of Ezploration and Geophysics,
Eztended Abstracts. 82—-85.

HENDREN, L., HUMMEL, J., AND NIicoLAU, A. 1992. Abstractions for recursive pointer data
structures: Improving the analysis and transformation of imperative programs. In Proceed-

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

62

. Martin C. Rinard and Monica S. Lam

ings of the SIGPLAN 92 Conference on Program Language Design and Implementation.
ACM, New York.

Hin, M., LArus, J., REINHARDT, K., AND WooD, D. 1992. Cooperative shared memory: Soft-
ware and hardware for scalable multiprocessors. In Proceedings of the 5th International
Conference on Architectural Support for Programming Languages and Operating Systems.
ACM, New York, 262-273.

HoARE, C. A. R. 1985. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,
N.J.

INMOS LIMITED. 1984. Occam Programming Manual. Prentice-Hall, Englewood Cliffs, N.J.

INTEL SUPERCOMPUTER SYSTEMS DIVISION. 1991. Paragon XP/S Product Overview. Intel Su-
percomputer Systems Division.

KARAMCHETI, V. AND CHIEN, A. 1995. A comparison of architectural support for messaging in
the TMC CM-5 and the Cray T3D. In Proceedings of the 22nd International Symposium
on Computer Architecture. ACM, New York.

KENDALL SQUARE RESEARCH CORPORATION. 1992. KSR-1 Technical Summary. Kendall Square
Research Corp., Cambridge, Mass.

KrApPHOLZ, D. 1989. Refined Fortran: An update. In Proceedings of Supercomputing ’89. IEEE
Computer Society Press, Los Alamitos, Calif.

KrappuoLz, D., KALLIS, A., AND KoONG, X. 1990. Refined C—An Update. In Languages and
Compilers for Parallel Computing, D. Gelernter, A. Nicolau, and D. Padua, Eds. The MIT
Press, Cambridge, Mass., 331-357.

KRISHNAMURTHY, A., CULLER, D., DUSSEAU, A., GOLDSTEIN, S., LUMETTA, S., VON EICKEN, T,
AND YELICK, K. 1992. Parallel programming in Split-C. In Proceedings of Supercomputing
’92. IEEE Computer Society Press, Los Alamitos, Calif., 262-273.

Lam, M. AND RINARD, M. 1991. Coarse-grain parallel programming in Jade. In Proceedings of
the 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, New York, 94-105.

LENOSKI, D. 1992. The design and analysis of DASH: A scalable directory-based multiprocessor.
Ph.D. thesis, Dept. of Electrical Engineering, Stanford Univ., Stanford, Calif.

LENOSKI, D., LAUDON, J., JOE, T., NAKAHIRA, D., STEVENS, L., GUPTA, A., AND HENNESSY, J.
1992. The DASH prototype: Implementation and performance. In Proceedings of the 19th
International Symposium on Computer Architecture. ACM, New York.

L1, K. 1986. Shared virtual memory on loosely coupled multiprocessors. Ph.D. thesis, Dept. of
Computer Science, Yale Univ., New Haven, Conn.

Lucassen, J. 1987. Types and effects: Towards the integration of functional and impera-
tive programming. Tech. Rep. MIT/LCS/TR-408, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, Mass. Aug.

Lusk, E., OVERBEEK, R., BoYLE, J., BUTLER, R., Disz, T., GLICKFIELD, B., PATTERSON,
J., AND STEVENS, R. 1987. Portable Programs for Parallel Processors. Holt, Rinehart and
Winston, Inc.

MARTONOSI, M. AND GUPTA, A. 1989. Tradeoffs in message passing and shared memory imple-
mentations of a standard cell router. In Proceedings of the 1989 International Conference
on Parallel Processing. 88—96.

METCALF, M. AND REID, J. 1990. Fortran 90 Ezplained. Oxford Science Publications.

MoOHR, E., KrRANZ, D., AND HALSTEAD, R. 1990. Lazy task creation: A technique for increasing
the granularity of parallel programs. In Proceedings of the 1990 ACM Conference on Lisp
and Functional Programming. ACM, New York, 185-197.

NIEH, J. AND LEVOY, M. 1992. Volume rendering on scalable shared-memory MIMD architec-
tures. Tech. Rep. CSL-TR-92-537, Computer Systems Laboratory, Stanford Univ., Stan-
ford, Calif. Aug.

REPPY, J. 1992. Higher-order concurrency. Ph.D. thesis, Dept. of Computer Science, Cornell
Univ., Ithaca, N.Y.

RINARD, M. 1994a. The design, implementation and evaluation of Jade, a portable, implicitly
parallel programming language. Ph.D. thesis, Dept. of Computer Science, Stanford Univ.,

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

The Design, Implementation, and Evaluation of Jade . 63

Stanford, Calif.

RINARD, M. 1994b. Implicitly synchronized abstract data types: Data structures for modular
parallel programming. In Proceedings of the 2nd International Workshop on Massive Paral-
lelism: Hardware, Software and Applications, M. Furnari, Ed. World Scientific Publishing,
259-274.

RINARD, M. AND LAM, M. 1992. Semantic foundations of Jade. In Proceedings of the 19th
Annual ACM Symposium on the Principles of Programming Languages. ACM, New York,
105-118.

RINARD, M., SCALES, D., AND LAM, M. 1992. Heterogeneous Parallel Programming in Jade. In
Proceedings of Supercomputing ’92. IEEE Computer Society Press, Los Alamitos, Calif.,
245-256.

RINARD, M., SCALES, D., AND LaM, M. 1993. Jade: A high-level, machine-independent language
for parallel programming. IEEE Comput. 26, 6 (June), 28-38.

ROSE, J. AND STEELE, G. 1987. C*: An extended C language for data parallel programming.
Tech. Rep. PL 87-5, Thinking Machines Corp., Cambridge, Mass. Apr.

ROTHBERG, E. 1993. Exploiting the memory hierarchy in sequential and parallel sparse cholesky
factorization. Ph.D. thesis, Dept. of Computer Science, Stanford Univ., Stanford, Calif.
SALMON, J. K. 1990. Parallel hierarchical N-body methods. Ph.D. thesis, California Institute

of Technology.

SANDU, H., GAMSA, B., AND ZHOU, S. 1993. The shared regions approach to software cache
coherence on multiprocessors. In Proceedings of the 4th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. ACM, New York, 229-238.

SCALES, D., GHARACHORLOO, K., AND THEKKATH, C. 1994. Shasta: A low overhead, software-
only approach for supporting fine-grain shared memory. In Proceedings of the 7th Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, New York.

ScALES, D. AND Lam, M. S. 1994. The design and evaluation of a shared object system for
distributed memory machines. In Proceedings of the 1st USENIX Symposium on Operating
Systems Design and Implementation. ACM, New York.

SHOINAS, I., FALSAFI, B., LEBECK, A., REINHARDT, S., LARUS, J., AND WooOD, D. 1994. Fine-
grain access control for distributed shared memory. In Proceedings of the 6th International
Conference on Architectural Support for Programming Languages and Operating Systems.
ACM, New York.

SINGH, J. 1993. Parallel hierarchical N-body methods and their implications for multiprocessors.
Ph.D. thesis, Dept. of Electrical Engineering, Stanford Univ., Stanford, Calif.

SINGH, J. AND HENNESSY, J. 1992. Finding and exploiting parallelism in an ocean simulation
program: Experiences, results, and implications. J. Parallel Distrib. Comput. 15, 1 (May),
27-48.

SINGH, J., WEBER, W., AND GUPTA, A. 1992. SPLASH: Stanford parallel applications for shared
memory. Comput. Arch. News 20, 1 (Mar.), 5-44.

SUNDERAM, V. 1990. PVM: A framework for parallel distributed computing. Concur. Pract.
Ezper. 2, 4 (Dec.), 315-339.

THINKING MACHINES CORPORATION. 1991. The Connection Machine CM-5 Technical Summary.
Thinking Machines Corp., Cambridge, Mass.

TRAUB, K. 1991. Implementation of Non-strict Functional Programming Languages. The MIT
Press, Cambridge, Mass.

Woo, S., OHARA, M., TORRIE, E., SINGH, J., AND GUPTA, A. 1995. The SPLASH-2 programs:
Characterization and methodological considerations. In Proceedings of the 22nd Interna-
tional Symposium on Computer Architecture. ACM, New York.

YONEZAWA, A., BrRIOT, J.-P., AND SHIBAYAMA, E. 1986. Object oriented concurrent program-
ming in ABCL/1. In Proceedings of the 1st Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications. ACM, New York, 258—268.

Received July 1996; revised September 1997; accepted November 1997

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998,

