
1

Automatic Extraction of Heap Reference Properties
in Object-Oriented Programs

Brian Demsky, Martin Rinard

Abstract— We present a new technique for helping developers
understand heap referencing properties of object-oriented pro-
grams and how the actions of the program affect these properties.
Our dynamic analysis uses the aliasing properties of objects to
synthesize a set of roles; each role represents an abstract object
state intended to be of interest to the developer. We allow the
developer to customize the analysis to explore the object states
and behavior of the program at multiple different and potentially
complementary levels of abstraction.

The analysis uses roles as the basis for three abstractions:
role transition diagrams, which present the observed transitions
between roles and the methods responsible for the transitions;
role relationship diagrams, which present the observed refer-
encing relationships between objects playing different roles; and
enhanced method interfaces, which present the observed roles of
method parameters.

Together, these abstractions provide useful information about
important object and data structure properties and how the
actions of the program affect these properties. We have imple-
mented the role analysis and have used this implementation to
explore the behavior of several Java programs. Our experience
indicates that, when combined with a powerful graphical user
interface, roles are a useful abstraction for helping developers ex-
plore and understand the behavior of object-oriented programs.

Index Terms— Program Understanding, Roles, Design Recov-
ery

I. INTRODUCTION

This paper presents a new technique to help developers
understand heap referencing properties (such properties cap-
ture constraints that involve references between objects in the
heap) of object-oriented programs and how the actions of
the program affect those properties. Our thesis is that each
object’s referencing relationships with other objects determine
important aspects of its purpose in the computation, and that
we can use these referencing relationships to synthesize a set
of conceptual object states (we call each state a role) that
captures these aspects. As the program manipulates objects and
changes their referencing relationships, each object transitions
through a sequence of roles, with each role capturing the
functionality inherent in its current referencing relationships.
To the best of our knowledge, the concept that an object’s
referencing relationships, in conjunction with other properties,
should determine its conceptual state was initially developed
by Kuncak, Lam, and Rinard [18].

We have built two tools that enable a developer to use
roles to explore the behavior of object-oriented programs: 1)
a dynamic role analysis tool that automatically extracts the
different roles that objects play in a given computation and
characterizes the effect of program actions on these roles, and
2) a graphical, interactive exploration tool that is intended to
present this information in an intuitive form to the developer.

By allowing the developer to customize the presentation of
this information to show the amount of detail appropriate for
the task at hand, these tools support the exploration of both
detailed properties within a single data structure and larger
properties that span multiple data structures. Our experience
using these tools indicates that they can provide substantial
insight into the structure, behavior, and key properties of the
program and the objects that it manipulates.

A. Role Separation Criteria
The foundation of our role analysis system is a set of

criteria (the role separation criteria) that the system uses
to separate objects of the same class into different roles.
Conceptually, we frame the role separation criteria as a set
of predicates that classify objects into roles. Note that this
classification of objects into roles can change with time as
the objects’ referencing relationships change. Each predicate
captures some aspect of the object’s referencing relationships.
Two objects play the same role if they have the same values for
these predicates. Our system supports predicates that capture
the following kinds of relationships:
• Referenced-By Relationships: The functionality of an

object often depends on the objects that refer to it. For
example, objects of the PlainSocketImpl class1 ac-
quire input and output capabilities when referenced by
a SocketInputStream or SocketOutputStream
object. The role separation criteria capture these distinc-
tions by placing objects that are referenced by different
fields in different roles. Formally, there is a role separation
predicate for each field of each class for a specific number
of references. An object o satisfies the role separation
predicate for the field f declared in the class C for i number
of references if the f field in exactly i objects that extend
C or implement C’s interface contains a reference to o.
The user can specify an upper bound on the number of
distinctions to make for a given field. If the upper bound
is i, then all objects with at least i such references satisfy
the same predicate.

• Reference-To Relationships: The functionality of an ob-
ject often depends on the objects to which it refers.
A Java Socket object, for example, does not support
communication until its file descriptor field refers to an
actual file descriptor object. To capture these distinctions,
our analysis contains role separation criteria that place
objects in different roles if they have different non-null

1The PlainSocketImpl class is the undocumented implementation
class for socket communications in the Java API. We used the version of
this class included with the Sun JDK version 1.1.8.

2

fields. Formally, there is a role separation predicate for
each non-primitive field of each class. An object o satisfies
the role separation predicate for the field f declared in
the class C if the object’s f field is non-null. Although
we could, in principle, use more complicated criteria, we
have found that the null value criterion usually captures the
important properties of the reference-to relation without
introducing extraneous distinctions. 2 Formally, there is a
predicate for each field of every class. An object satisfies
the predicate for the field f if the f field of the object is
not null.

• Reachability: The functionality of an object often depends
on the specific data structures in which it participates. For
example, a program may maintain two sets of objects:
one set that it has completed processing, and another
that it has yet to process. To capture such distinctions,
our role separation criteria identify the roots of different
data structures and place objects with different reachability
properties from these roots in different roles. Formally,
there is a predicate for each variable that may be a root
of a data structure. An object satisfies the predicate if it
is reachable from the variable. Additionally, we define a
unique garbage role for unreachable objects.

• Identity: To facilitate navigation, data structures often con-
tain reverse pointers. For example, the objects in a circular
doubly-linked list satisfy identity predicates corresponding
to the paths next.prev and prev.next. Formally,
there is a role separation predicate for each pair of fields.
The predicate is true if the path specified by the two fields
exists and leads back to the original object.

• History: In some cases, objects may change their concep-
tual state when a method is invoked on them, but the state
change may not be visible in the referencing relationships.
For example, the native method bind assigns a name
to objects of the PlainSocketImpl class, enabling
them to accept connections. But the data structure changes
associated with this change are hidden behind the operating
system abstraction. To support this kind of conceptual state
change, the role separation criteria include part of the
method invocation history of each object. Formally, there is
a predicate for each parameter of each method. An object
satisfies one of these predicates if it was passed as that
parameter in some invocation of that method.

B. Role Subspaces
To allow the developer to customize the role separation cri-

teria, our system supports role subspaces. Each role subspace
contains a subset of the possible role separation criteria. The
developer specifies a role subspace by choosing an arbitrary
subset of the role separation criteria. When operating within a
given subspace, the tools coarsen the separation of objects into
roles by only keeping the distinctions made by the criteria in

2If a developer finds that this criterion does not provide sufficient details
about the reference-to relationships, he or she can use the multiple object
data structure mechanism described in Section III-B to merge the entire role
description of a given class of objects into the roles of the objects that
reference them.

that subspace. We envision that developers will use subspaces
in a variety of ways:

• Focused Subspaces: As developers explore the behavior
of the program, they typically focus on different and
changing aspects of the object properties and referencing
relationships. By choosing a subspace that excludes irrele-
vant criteria, the developer can explore relevant properties
at an appropriate level of detail while ignoring distracting
distinctions that are currently irrelevant.

• Orthogonal Subspaces: Developers can factor the role
separation criteria into orthogonal subspaces. Each sub-
space identifies a current role for each object; when
combined, the subspaces provide a classification structure
in which each object can simultaneously play multiple
roles, with each role chosen from a different subspace.
These subspaces allow the developer to separate orthogo-
nal concerns into orthogonal subspaces.

• Hierarchical Subspaces: Developers can construct a hier-
archy of role subspaces, with child subspaces augmenting
parent subspaces with additional role separation criteria.
In effect, this approach allows developers to identify an
increasingly precise and detailed dynamic classification
hierarchy for the roles that objects play during their
lifetimes in the computation.

Role subspaces give the developer great flexibility in ex-
ploring different perspectives on the behavior of the program.
Developers can use subspaces to view changing object states
as combinations of roles from different orthogonal role sub-
spaces, as paths through an increasingly detailed classification
hierarchy, or as individual points in a constellation of rele-
vant states. Unlike traditional structuring mechanisms such
as classes, roles and role subspaces support the evolution
of multiple complementary views of the program’s behavior,
enabling the developer to seamlessly flow through different
perspectives as he or she explores different aspects of the
program at hand.

C. Static vs. Dynamic Analysis
The tool presented in this paper uses a dynamic analysis

to extract role information that reflects the observed actions
and states from a single execution of the program. Like all
dynamic analyses, the extracted information may therefore be
incomplete in that different executions of the program may
produce different actions and states. Sound static analyses,
on the other hand, compute information that reflects the
actions and states of all possible executions. The potential
drawback is that the information may be more difficult to
extract or less precise than the information from a dynamic
analysis with similar goals. In particular, we found it easier
to build a dynamic tool that extracts role information than to
build a static analysis that either verifies or discovers such
information [18]. The reasons range from simple engineering
issues (we found it is easier to instrument the program and
analyze the extracted information than to build a parser and
semantic analysis for a complete programming language) to
fundamental complexity issues (dynamic analyses only need
to deal with the concrete relationships that occur when the

3

program executes, while static analyses need some systematic
way to characterize uncertainty in these relationships).

D. Contributions

This paper makes the following contributions:

• Role-Based Program Understanding: It introduces the
concept that object referencing relationships and method
invocation histories can be used to synthesize a cognitively
tractable abstraction for understanding the changing roles
that objects play in the computation.

• Role Separation Criteria: It presents a set of criteria for
classifying objects of the same class into different roles. It
also presents an implemented tool that uses these criteria
to automatically extract information about the roles that
objects play.

• Role Subspaces: It shows how developers can use role
subspaces to structure their understanding and presentation
of the different aspects of the program state. Specifically,
the developer can customize the role subspaces to focus the
role separation criteria to hide (currently) irrelevant distinc-
tions, to factor the object state into orthogonal components,
and to develop object classification hierarchies.

• Graphical Role Exploration: It presents a tool that
graphically and interactively presents role information.
Specifically, this tool presents role transition diagrams,
which display the trajectories that objects follow through
the space of roles, and role relationship diagrams, which
display referencing relationships between objects that play
different roles. These diagrams are hyperlinked for easy
navigation.

• Role Exploration Strategy: It presents a general strategy
that we developed to use the tools to explore the behavior
of object-oriented programs.

• Experience: It presents our experience using our tools on
several Java programs. We found that the tools enabled us
to quickly discover and understand important properties of
these programs.

II. EXAMPLE

We next present a simple example that illustrates how a
developer can use our tools to explore the behavior of a web
server. We use a version of JhttpServer, a web server written
in Java. This program accepts incoming requests for files from
web browsers and serves the files back to the web browsers.

The code in the JhttpServer class first opens a port and
waits for incoming connections. When it receives a connection,
it creates a JhttpWorker object, passes the Socket control-
ling the communication to the JhttpWorker initializer, and
turns control over to the JhttpWorker object.

The code in the JhttpWorker class first builds input and
output streams corresponding to the Socket. It then parses the
web browser’s request to obtain the requested filename and
the http version from the web browser. Next, it processes the
request. Finally, it closes the streams and the socket and returns
to code in the JhttpServer class.

A. Starting Out
To use our system, the developer first compiles the program

using our compiler, then runs the program. The compiler
inserts instrumentation code that generates an execution trace.
This trace consists of a log of the important heap opera-
tions, local variable manipulations, and method calls that the
program performs. Note that it is not possible to use the
standard JVM profile interface [28] to obtain this information
— although this interface can generate a notification event for
many important operations, it does not generate notification
events for object or array field writes. We need this write event
information to track the object referencing relationships and
synthesize roles from this information.

The tool then reads the trace to extract the role information
and convert it into a form suitable for interactive graphical
display. The tool evaluates the roles of the objects at method
boundaries. We use four abstractions to present the observed
role information to the developer: 1) role transition diagrams,
which present the observed role transitions for objects of a
given class, 2) role relationship diagrams, which present ref-
erencing relationships between objects from different classes,
3) role definitions, which present the referencing relationships
that define each role, and 4) enhanced method interfaces,
which show the object referencing properties at invocation and
the effect of the method on the roles of the objects that it
accesses.

The graphical user interface runs in a web browser with
related information linked for easy navigation. We chose this
implementation platform because it satisfied all of our user
interface needs. The alternative, building our own custom
user interface platform, would have substantially increased
the engineering effort required to build the system without
a corresponding increase in the usability in the system.

B. Role Transition Diagrams
We expect that developers will typically start exploring the

behavior of a program by examining role transition diagrams
to get a feel for the different roles that objects of each class
play in the computation. In this example, we assume the
developer first examines the role transition diagram for the
JhttpWorker class, which handles client requests. Figure 1
presents this diagram.3 Note that our tool automatically gen-
erates initial names for roles. If the developer is unhappy with
the automatically generated names, he or she can rename the
roles. The initial names our tool generates consist of a list of
the fields that reference objects playing the role, followed by
the class name, followed by a list of fields that are non-null
in objects playing the role. Special names are generated for
the initial role for each class and the garbage role. Excessively
complex roles are simply assigned a name consisting of the
class followed by a unique number.

The ellipses represent roles and the arrows represent
transitions between roles. Each arrow is labeled with
the method that caused the object to take the transition.

3 In addition to graphically presenting these diagrams in a web browser,
our tool is capable of generating PostScript images of each diagram using the
dot tool [6]. All of the diagrams in this paper were automatically generated
using our tool.

4

Solid edges denote the execution of methods that
take JhttpWorker objects as a parameter; dotted
edges denote either methods that change the roles of
JhttpWorker objects but do not take JhttpWorker
objects as a parameter or portions of methods. From
the figure we can see that the JhttpWorker.method
method transitions JhttpWorker objects from the
Initialized JhttpWorker role to the JhttpWorker
with filename role. The role JhttpWorker with
methodType is an intermediate role that is made visible in
the middle of the execution of the JhttpWorker.method
when that method made a call to another method. Note
that methods may change the roles of objects that are not
parameters either indirectly, by changing a heap reference to
the object or the object’s reachability, or directly, by accessing
the object through a global variable or through another object.
The diagram always presents the most deeply nested (in the
call graph) method responsible for the role change.

Initialized
 JhttpWorker

JhttpWorker
 with methodType

JhttpWorker.method

JhttpWorker
 with filename

this arg of JhttpWorker.method
 and JhttpWorker.run

JhttpWorker.method

InitialJhttpWorker

this arg of JhttpWorker.<init>

this arg of Object.<init>

Garbage

JhttpServer.startWorker

Fig. 1
ROLE TRANSITION DIAGRAM FOR JhttpWorker CLASS

C. Role Definitions

Role transition diagrams show how objects transition be-
tween roles, but provide little information about the roles
themselves. Our graphical interface therefore links each role
node with its role definition, which specifies the properties
that all objects playing that role must have. Figure 2 presents
the role definition for the JhttpWorker with filename role,
which is easily accessible by using the mouse to select the
role’s node in the role transition diagram. This definition
specifies that objects of the JhttpWorker with filename role
have the class JhttpWorker, no references from other
objects, no identity relations, and reference objects using
the fields httpVersion, fileName, methodType, and
client.

Role: JhttpWorker with filename
Class: JhttpWorker
Referenced-by: none
non-null fields: httpVersion, fileName,

methodType, client
identity relations: none

Fig. 2
SAMPLE ROLE DEFINITION FOR JhttpWorker CLASS

D. Role Relationship Diagrams
After obtaining an understanding of the roles of important

classes, the developer typically moves on to consider relation-
ships between objects of different classes. These relationships
are often crucial for understanding the larger data structures
that the program manipulates. We believe that role relationship
diagrams are the primary tool that developers will use to
help them understand these relationships. Figure 3 presents
a portion of the role relationship diagram surrounding one of
the roles of the JhttpWorker class. The ellipses in this
diagram represent roles, and the arrows represent referencing
relationships between objects playing those roles.

Note that some of the groups of roles presented in Figure 3
correspond to combinations of objects that conceptually act as
a single entity. For example, the HashStrings object and
the underlying array of Pairs that it points to implement
a map from String to String. Developers often wish to
view a less detailed role relationship diagram that merges the
roles for these kinds of combinations.

In many cases, the analysis can automatically recognize
these combinations and represent them with a single role
node. 4 Figure 4 presents the role relationship diagram that
the tool produces when the developer turns this option on.
The analysis uses the heuristic that if only one heap reference
ever exists to an object, that is likely to be conceptually
part of the object that references it. Notice that this heuristic
enables the analysis to recognize the Socket object and the
httpVersion string as being part of the JhttpWorker
object. Also notice that it recognizes the Pair arrays, Pair
objects, and key strings as being part of the corresponding
HashStrings object, with the key strings disappearing in
the abstracted diagram because they are encapsulated within
the HashStrings data structure. The analysis allows the
developer to choose, for each class, a policy that determines
how (and if) the analysis merges roles of that class into larger
data structures.

An examination of Figures 3 and 4 shows that objects of
the PlainSocketImpl class play many different roles. To
explore these roles, the developer examines the role transi-
tion diagram for the PlainSocketImpl class. Figure 5
presents this diagram. The diagram contains two disjoint sets
of roles, each branching off of the Initial PlainSocket role. This
structure indicates that objects of the class have two distinct
purposes in the computation: PlainSocketImpl objects
that are referenced by Socket objects manage communica-
tion over a TCP/IP connection while PlainSocketImpl
objects that are referenced by ServerSocket objects accept

4Section III-B discusses the specific user-selected policies the analysis uses
to discover combinations of objects that conceptually act as a single entity.

5

JhttpWorker
 w/ filename

Socket

client

String

methodType fileName httpVersion

PlainSocket
 w/o output

impl

PlainSocket
 w/o fd

impl

PlainSocket
 w/ output

impl

PlainSocket
 w/ input

impl

PlainSocket
 w/ fd

impl

PlainSocket
 w/ address

impl

HashStrings

Array of Pairs

p

Pair

[]

key value

Fig. 3
PORTION OF ROLE RELATIONSHIP DIAGRAM FOR JHTTPSERVER

JhttpWorker
 w/ filename

String

methodTypefileName

PlainSocket
 w/o output

impl

PlainSocket
 w/o fd

impl

PlainSocket
 w/ output

impl

PlainSocket
 w/ input

impl

PlainSocket
 w/ fd

impl

PlainSocket
 w/ address

impl

HashStrings

value

Fig. 4
PORTION OF ROLE RELATIONSHIP DIAGRAM FOR JHTTPSERVER AFTER PART OBJECT ABSTRACTION

new incoming socket connections. We have used the name
ServerPlainSocketImpl to name the roles that serve the
latter purpose. This is an example of a common code reuse
pattern in which multiple distinct functionalities are merged
into a single object type. In this example, our analysis was
able to recover design information about two distinct usage
scenarios for the PlainSocketImpl class.

Each PlainSocketImpl object has a corresponding
file descriptor that the underlying operating system uses
to implement the socket communication. Even though the
state associated with these file descriptors is inaccessible to
Java, this state is conceptually part of the object and can
affect the object’s interface. We note that although the bind
and listen methods do not modify the heap referencing
properties of a PlainSocketImpl object, they do modify
the state associated with the corresponding file descriptor.
Moreover, they enable the accept method to be invoked
on the corresponding PlainSocketImpl object. To capture
this conceptual change in the object’s role, the developer can
specify that the invocation of certain methods on an object
changes the object’s role. Our implementation uses a set of
method invocation history predicates to capture these changes.
In this example, we configured the tool to include method
history predicates for both the bind and listen methods.

E. Enhanced Method Interfaces
Finally, our tool can present information about the roles

of parameters and the effect of each method on the roles
that different objects play. Given a method, our tool presents
this information in the form of an enhanced method inter-
face. The call context section of this interface provides the
roles of the parameters at method entry and exit. The write
effects section of this interface provides a list of regular
expressions summarizing the writes performed by the method.
These regular expressions give the path to an object from
the parameters of the method and the global variables in
terms of the heap at method invocation. The read effects
section provides a list of regular expressions summarizing the
references that the method reads. The role transitions section
provides a list of the role transitions the method has been
observed to perform and the corresponding regular expressions
specifying the path to the objects that have undergone the role
transition. The presence of the keyword NEW for a regular
expression indicates that the object was allocated within the
scope of the method. Figure 6 presents an enhanced method
interface for the SocketInputStream initializer. This in-
terface indicates that the SocketInputStream initializer
operates on objects that play the roles of Initial InputStream
and PlainSocket w/fd. When it executes, it changes the roles of

6

PlainSocket

PlainSocket w/address

FileDescriptor.<init>

this arg of
 PlainSocketImpl.close

PlainSocket w/fd

ServerSocket.implAccept

Garbage

JhttpServer.run

PlainSocket w/o fd

PlainSocket w/o output

BufferedReader.close

Socket.close

this arg of
 PlainSocketImpl.close

PlainSocket w/input this arg of
 getFileDescriptor

PlainSocket w/output

this arg of
PlainSocketImpl.getOutputStream,

1st arg of
 SocketOutputStream.<init>

this arg of
 PlainSocketImpl.close

this arg of
 PlainSocketImpl.available

ServerPlainSocket w/fd

bound ServerPlainSocket

this arg of
 PlainSocketImpl.bind

listening ServerPlainSocket

this arg of
 PlainSocketImpl.listen

this arg of
 PlainSocketImpl.getInputStream,

1st arg of
 SocketInputStream.<init>

this arg of SocketImpl.getFileDescriptor,
 1st arg of PlainSocketImpl.accept

Initial PlainSocket

Socket.<init>

this arg of
 Object.<init>

ServerPlainSocket

ServerSocket.<init>

this arg of
 PlainSocketImpl.create

this arg of
 PlainSocketImpl.accept

Fig. 5
ROLE TRANSITION DIAGRAM FOR THE PlainSocketImpl CLASS

these objects to InputStream w/impl and PlainSocket w/input,
respectively.

Enhanced method interfaces provide the developer with
additional information about the (otherwise implicit) assump-
tions that the method may make about its parameters and the
roles of the objects that it manipulates. This information may
help the developer better understand the purpose of the method
in the computation and provide insight for its successful use
in other contexts. 5

F. Role Information
In general, roles capture important properties of the objects

and provide useful information about how the actions of the
program affect those properties. 6

5For example, the method may require that one of its parameters play a
specific role. The enhanced method would reveal this to the developer.

6Section VI presents some examples of the tool being used to discover the
following properties for a set of benchmarks.

• Consistency Properties: Our analysis can discover
program-level data structure consistency properties. For
example, our analysis may discover that while an object
may participate in several data structures over its lifetime
in the program, at any given time, it participates in at
most one of those data structures. The analysis can also
discover fine-grained properties within an individual data
structure, for example that the next and prev references
in a doubly-linked list are inverses. Section VI provides
several examples of additional data structure properties that
occur in our set of benchmark applications.

• Enhanced Method Interfaces: In many cases, the inter-
face of a method makes assumptions about the referencing
relations of its parameters. Our analysis can discover
constraints on the roles of parameters of a method and
determine the effect of the method on the heap.

7

Method: SocketInputStream.<init>(this,
plainsocket)
Call Context: {
this: Initial InputStream ->

InputStream w/impl,
plainsocket: PlainSocket w/fd ->

PlainSocket w/input }
Write Effects:
this.impl=plainsocket
this.temp=NEW
this.fd=plainsocket.fd

Read Effects:
plainsocket
NEW
plainsocket.fd

Role Transition Effects:
plainsocket: PlainSocket w/fd ->

PlainSocket w/input
this: Initial InputStream ->

InputStream w/fd
this: InputStream w/fd ->

InputStream w/impl

Fig. 6
ENHANCED METHOD INTERFACE FOR SocketInputStream

INITIALIZER

• Multiple Uses: Code factoring minimizes code duplication
by producing general-purpose classes that can be used in
a variety of contexts. In some cases, a single class can
provide different functionality, but due to code duplication
these different pieces of functionality may be merged into
a single class. But this practice obscures the different
purposes that different objects of these classes serve in
the computation. Our analysis can rediscover these dis-
tinctions.

• Correlated Relationships: In many cases, groups of ob-
jects cooperate to implement a piece of functionality, with
the roles of the objects in the group changing together over
the course of the computation. Our analysis can discover
these correlated state changes.

III. DYNAMIC ANALYSIS

We implemented the dynamic analysis as several compo-
nents. The first component uses the MIT FLEX compiler 7

to instrument Java programs to generate execution traces.
Because our compiler accepts Java byte codes as input and
generates native code as output, it does not require source
code. The instrumented program assigns unique identifiers
to every object and records relevant heap and pointer op-
erations in the execution trace. Relevant operations in this
case include writing pointer values to arrays or fields, cloning
objects, creating new objects, reading pointer values, creating
or changing local variable references to objects, and method
calls and returns. The second component uses this trace to
replay the program’s manipulation of the heap. As part of this
computation, it also calculates reachability information and
records the effect of each method’s execution on the roles of
the objects that it manipulates.

A. Predicate Evaluation
The dynamic analysis uses the information it extracts from

the trace to apply the role separation criteria as follows:

7Available at http://flex-compiler.csail.mit.edu/.

• Referenced-By: In addition to reconstructing the heap, the
analysis also maintains a set of inverse references. There
is one inverse reference for each reference in the original
heap. For each reference to a target object, the inverse
reference enables the dynamic analysis to quickly find
the source of the reference and the field containing the
reference. To compute the referenced-by predicates for a
given object, the analysis examines the inverse references
for that object.

• Reference-To: The reconstructed heap contains all of the
references from the original program, enabling the analysis
to quickly compute all of the reference-to predicates for a
given object by examining its list of references.

• Identity: To compute the identity predicates for a given
object, the analysis traces all paths of length two from the
object to find paths that lead back to the object. These
predicates are designed to identify pairs of fields with an
inverse relation — these are commonly used to provide
the ability to traverse a data structure both forwards and
backwards.

• Reachability: There are two key issues in computing the
reachability information: using an efficient incremental
reachability algorithm and choosing the correct set of
variables to include in the role separation criteria. When-
ever the program changes a reference, the incremental
reachability algorithm finds the object whose reachability
properties may have changed, and then incrementally prop-
agates the reachability changes through the reconstructed
heap. We discuss the reachability algorithm in greater
detail in Section III-D.
Programs often use temporary variables to traverse or
manipulate a data structure. Using temporary variables to
separate objects into different roles would have the effect
of separating objects into different roles with meaningless
distinctions. Such roles would likely make navigating
the generated role abstractions more difficult. To avoid
undesirable separations caused by temporary variables,
we developed two rules to identify variables that are the
roots of data structures. We believe that the conceptually
important references to data structures are likely to be
older. Furthermore, the entire data structure is likely to
be reachable from these conceptually important references.
We designed the following two rules to eliminate refer-
ences which are not likely to be conceptually important:
If an object o is reachable from variables x and y that
point to objects ox and oy respectively, and ox is reachable
from y but oy is not reachable from x, then we exclude
x from the role separation criteria. Alternatively, if ox is
reachable from y, oy is reachable from x, and the reference
y was created before the reference x, we exclude x from
the criteria.
These rules keep temporary references used for traversing
heap structures from becoming part of the role definitions,
but allow long term references to the roots of data struc-
tures to be incorporated into role definitions. These rules
also have the property that if an object is included in

http://flex-compiler.csail.mit.edu/

8

two disjoint data structures with different roots, then the
object’s role will reflect this double inclusion.
In theory, these rules can fail to extract the conceptual
root reference of a data structure for cyclic data structures
if some extraneous reference to the data structure was
created before the root reference, or if some other data
structure references the same object that the conceptual
root variable references. Furthermore, these rules can lead
to extraneous roots if a temporary reference exists to the
root object. In practice, we believe that these rules will
rarely miss including a reference from root variable and
will not include many extraneous root variables.

• Method Invocation History: Whenever an object is
passed as a parameter to a method, the analysis records the
invocation as part of the object’s method invocation history.
This record is then used to evaluate method invocation
history predicates when assigning future roles to the object.

• Array Roles: We treat arrays as objects with a special []
field, which points to the elements of the array. Addition-
ally, we generalize the treatment of reference-to relations
to allow roles to specify the classes and the corresponding
number (up to some bound) of the array’s elements.

By default, the analyzer evaluates these predicates on every
object whose role may have changed since the last method
entry or exit point. Whenever an object is observed to tran-
sition from one role to another, the role change is recorded
along with the method that performed the change. This role
transition information is used to construct the role transition
diagram and is also presented in the enhanced method in-
terfaces. Furthermore, the roles of the objects that reference
or are referenced by the object are recorded whenever a
new reference is created or an object changes roles. This
referencing information between roles is used to construct the
role relationship diagram. When a method performs a write,
changes an object’s role, or obtains a reference to an object
this information is recorded for use in the enhanced method
interface.

We allow the developer to coarsen the granularity of role
evaluation by declaring methods atomic, in which case the
analysis attributes all role transitions that occur inside the
method to the method itself. When a method is declared
atomic, the analysis does not compute the roles of objects for
methods that the atomic method (transitively) invokes. This
is implemented by not checking for role transitions until the
atomic method returns. This mechanism hides temporary or
irrelevant role transitions that occur inside the method. This
feature is most useful for simplifying role transition diagrams.
In particular, many programs have a complicated process for
initializing objects. Once we use the role transition diagram to
understand this process, we often find it useful to abstract the
entire initialization process as atomically generating a fully
initialized object.

B. Multiple Object Data Structures
A single data structure often contains many component

objects. Java HashMap objects, for example, use an array of
linked lists to implement a single map. To enable the developer

to view such composite data structures as a single entity,
our dynamic analysis supports operations that merge multiple
objects into a single entity. Specifically, the dynamic analysis
can optionally recognize any object playing a given role (such
roles are called part roles) as conceptually part of the object
that refers to it. The user interface will then merge all of the
role information from the part role into the role of the object
that refers to it.

Depending on the task at hand, different levels of abstraction
may be useful to the developer. For example, the developer
may be attempting to understand the use of a particular class
and desire to see role information for just that class. Or the
developer may be interested in understanding how an object of
a particular class interacts with objects it references, and may
like to see role information for the combination of multiple
objects. On a per class basis, the developer can specify
whether to merge one object’s role into another object’s role.
Furthermore, the developer can specify a default policy for the
classes for which the developer does not explicitly specify a
policy. This default policy allows the developer to only specify
the policies for the classes in which the developer is currently
interested. This approach is especially important for large
programs, given the potential developer overhead associated
with explicitly specifying a policy for every class.

The analysis provides four different policies: never merge,
always merge, merge only if one heap reference to the object
ever exists, and merge only if at most one heap reference
at a time exists to the object. The analysis implements these
policies by examining the execution trace that the instrumented
application generates. Note that the merge policies are based
on properties that depend, in general, on the entire trace: any
partial examination of the trace will, in general, be unable to
determine that the unexamined part of the trace does not create
multiple or multiple simultaneous references to a given object.

The analysis therefore uses a two-pass approach to merge
multiple objects into a single entity. The first pass applies the
merge policies to determine which objects to merge into the
objects that refer to them; the second pass uses the list of
merged objects from the first pass to appropriately assign the
roles for merged objects.

C. Method Effect Inference
For each method execution, the dynamic analysis records

the reads, writes, and role transitions that the execution per-
forms. There is a method effect summary for each combination
of a method and an assignment of roles to the parameters of the
method. The analysis combines the results of all invocations of
a method with the same assignment of roles to the parameters.
Each method effect summary uses regular expressions to
identify paths to the accessed or affected objects. These paths
are identified relative to the method parameters or global
variables and specify edges in the heap that existed when the
method was invoked. Method effect inference therefore has
two steps: detecting concrete paths with respect to the heap at
method invocation and summarizing these paths into regular
expressions.

To detect concrete paths, we keep a path table for each
method invocation. This table contains the concrete path, in

9

terms of the heap that existed when the method was invoked,
to all objects that the execution of the method may affect. The
path table includes not only objects that the method may read
or write, but also any objects that the method may cause to
transition to a different role. Since reachability changes may
change the role assignment of an object, the table must include
a concrete path to any objects whose reachability information
may change. At method invocation, our analysis records the
objects to which the parameters and the global variables point.
Whenever the execution retrieves a reference to an object
or changes an object’s reachability information, the analysis
records a path to that object in the path table. 8 If the execution
creates a new object, the tool adds a special NEW token to
the path table; this token represents the path to that object.

The tool obtains the regular expressions in the method effect
summary by applying a set of rewrite rules to the extracted
concrete paths. These concrete paths consist of a starting point,
a parameter of the method or a global variable, and a list of
fields that give the concrete path to the object in terms of
the heap at invocation time. Figure 7 presents the current set
of rewrite rules. Given a concrete path f1.f2...fn, we apply
the rewrite rules to the tuple 〈ε, f1.f2...fn〉 to obtain a final
tuple 〈Q, ε〉, where Q is the regular expression that contains
the concrete path and ε represents an empty concrete path
or regular expression. We present the rewrite rules in the
order in which they are applied. We use the notation that
κ(f) denotes the class in which the field f is declared as
an instance variable, and τ(f) is the declared type of the field
f . In addition to these rules, our tool uses a set of rules to
determine whether two regular expressions can be merged.
If the regular expressions of two of the same effects can be
merged, the effects are merged.

Rules 1 and 2 simplify intermediate expressions generated
during the rewrite process. Rules 3 and 4 generalize concrete
paths involving similar fields such as paths through a binary
tree. Rules 5 and 6 generalize repeated sequences in concrete
paths. The goal is to capture paths generated in loops or
recursive methods and ensure that path expressions are not
overly specialized to any particular execution.

For example, consider the concrete path f.g.f.g.f.g where
field f is declared in the type G and references an object
of type F and fields g and h are declared in the type F
and references an object of type G. The initial state for the
rewrite algorithm is 〈ε, f.g.f.g.f.h〉. The algorithm begins by
applying rule 7 to this state four times to generate the state
〈f.g.f.g, f.h〉. The algorithm next applies rule 5 to generate
the state 〈(f.g)∗, f.h〉. The algorithm then applies rule 7 two
more times to generate the state 〈(f.g)∗.f.h, ε〉. Finally, the
algorithm applies rule 6 to generate the final state 〈(f.(g |
h))∗, ε〉.

8The tool calculates concrete paths by tracking how the method obtains
a reference to the objects in the heap. Whenever the method first obtains a
reference to an object, the tool records, in a table, the field and the object
that the method dereferenced. If a change to the heap affects an object’s
reachability, the tool records the path information for that object when the
tool updates the reachability information for that object. The tool uses this
table to efficiently generate paths from the parameters of the method and the
global variables to the objects. These paths refer to version of the heap that
existed when the method was invoked.

1. 〈Q.(q1...(e1 | f | e2 | f | e3)...qn)∗, Q′〉 ⇒
〈Q.(q1...(e1 | f | e2 | e3)...qn)∗, Q′〉

2. 〈Q.(q1...(e1 | f | e2 | f | e3)∗...qn)∗, Q′〉 ⇒
〈Q.(q1...(e1 | f | e2 | e3)∗...qn)∗, Q′〉

3. 〈Q.(f1), f2.Q′〉 ⇒ 〈Q.(f1 | f2)∗, Q′〉
if κ(f1) = κ(f2) and τ(f1) = τ(f2)

4. 〈Q.(f0 | ... | fn)∗, f ′.Q′〉 ⇒ 〈Q.(f0 | ... | fn | f ′)∗, Q′〉
if κ(fn) = κ(f ′) and τ(fn) = τ(f ′)

5. 〈Q.q1...qn.q′1...q′n, Q′〉 ⇒ 〈Q.(q1 ⊕ q′1...qn ⊕ q′n)∗, Q′〉
if ∀i, 1 ≤ i ≤ n, qi ≡ q′i, where q ≡ q′ if

(a) q = (f1 | ... | fj), q
′ = (f ′

1 | ... | f ′
k),

κ(f1) = κ(f ′
1) and τ(f1) = τ(f ′

1), or
(b) q = (f1 | ... | fj)

∗, q′ = (f ′
1 | ... | f ′

k)∗,
κ(f1) = κ(f ′

1) and τ(f1) = τ(f ′
1).

(f1 | ... | fj)⊕ (f ′
1 | ... | f ′

k) = (f1 | ... | fj | f ′
1 | ... | f ′

k)
(f1 | ... | fj)

∗ ⊕ (f ′
1 | ... | f ′

k)∗ =
(f1 | ... | fj | f ′

1 | ... | f ′
k)∗

6. 〈Q.(q1...qn)∗.q′1...q′n, Q′〉 ⇒ 〈Q.(q1 ⊕ q′1...qn ⊕ q′n)∗, Q′〉
if ∀i, 1 ≤ i ≤ n, (qi ≡ q′i).

7. 〈Q, f.Q′〉 ⇒ 〈Q.(f), Q′〉

Fig. 7
REWRITE RULES FOR PATHS

When a method performs a read operation on an object
or causes the role an object plays to change, the analysis
records the change as a read effect or a role transition effect.
The analysis also records an expression that identifies the
objects involved in the operation in terms of a path through
the heap. The expression gives the starting point of the path
(either a parameter of the method or a global variable) and
a regular expression that summarizes the sequence of fields
in the path. When a method performs a write, the analysis
records a write effect and similar path information as for a
read effect, specifically, the field the method wrote and the
path expressions for both object containing the field and the
object reference written to the field.

Finally, the inference algorithm must also recognize object
creations and writes of null references to object fields. We use
the NEW token to denote objects created during the method’s
invocation. We use the NULL token to denote writing a null
reference to an object’s field.

D. Incremental Reachability Algorithm
Our results indicate that most methods make relatively small

changes to the heap. An incremental approach to computing
reachability should therefore be more efficient than com-
pletely recomputing the reachability information whenever it
is needed. Our tool records a list of changes performed to the
heap since the last reachability computation.

When computing reachability, the tool starts by processing
the list of removed references in the heap. For each removed
reference, it marks the destination object as possibly unreach-
able from the set of local and global variables that both the
destination and origin objects were previously reachable from.
This set contains the root variables from which the destination
of the removed reference may no longer be reachable. After
processing the list of removed references, the tool propagates

10

the possibly unreachable sets of roots through the heap in the
direction of the references in the heap. During this propagation
step, the tool checks that the propagation step never marks an
object directly referenced by a local variable or global variable
as possibly unreachable from the same local or global variable.

The tool next adds any new references from local or global
variables to the reachability sets of the objects that they
reference. Finally, a work set algorithm propagates reachability
information through the heap. The work set initially includes
any objects that reference the previous destinations of any
removed references and any objects that are the sources of
any new references. The work set algorithm then propagates
the reachability information through the heap.

Formally, we represent the heap as a set of objects O, a
set of heap reference edges E ⊆ O × F × O where F is the
set of fields and array indices, and a set of variable references
L ⊆ V ×O where V is the set of local and global variables. We
represent the reachability information using the reachability
set R ⊆ O × V that maps an object to the set of variables
from which the object can be reached. We define R(o) = {v |
〈v, o〉 ∈ R}.

The incremental analysis takes as input a set of removed
heap references ER ⊆ O × F ×O; a set of removed variable
references LR ⊆ V ×O; a set of newly created heap references
ENew ⊆ O×F×O; a set of newly created variable references
LNew ⊆ V × O; a tuple containing the set of objects, the
current heap references, and the current variable references
〈O,E,L〉; and the reachability set R.

Figure 8 presents the incremental reachability algorithm.
The incremental reachability algorithm internally uses the
work set S ⊆ O to store the objects whose reachability
information may need to be propagated. The algorithm begins
by initializing this set to the empty set. The algorithm next
calls the ProcessRemovedReferences procedure. The Process-
RemovedReferences procedure internally uses a workset K ⊆
O × V of tuples comprised of an object and a label to
maintain a list of variables that an object may no longer
be reachable from. We define K(o) = {v | 〈o, v〉 ∈ K}.
The procedure initializes the set K in lines 2-5 using the
set of heap references and variable references that have been
removed since the last reachability computation. The algorithm
next loops through each object o that serves as a key in K.
The algorithm then adds any objects that reference o to the
set S of objects whose reachability information may need
to be propagated. The algorithm then looks up in K the
variables from which the object o may no longer be reachable.
The algorithm next loops through all of the objects that are
referenced by the object o and propagates this list of variables
from which the object may possibly be unreachable.

The incremental reachability algorithm next calls the Pro-
cessNewReferences procedure. This procedure propagates
reachability information for both new references and any refer-
ences that were mistakenly removed in the previous procedure.
Lines 1-4 process any newly created references from variables.
These lines add the destination of these references to the
workset S and the new reference to reachability information
set R. Lines 5-6 process the newly created heap references
in a similar manner. Finally, the algorithm loops through the

IncrementalReachability(ER, LR, ENew, LNew, R, E)
1 S := {}
2 ProcessRemovedReferences(ER, LR, R, E, S)
3 ProcessNewReferences(ENew, LNew, R, E, S)

ProcessRemovedReferences(ER, LR, R, E, S)
1 K := {}
2 for each tuple 〈osrc, f, odst〉 in ER do
3 K := K ∪ ({odst} ×R(osrc))
4 for each tuple 〈v, o〉 in LR do
5 K := K ∪ 〈o, v〉
6 while K is not empty
7 pick a key o in K
8 S := S ∪ {o′ | ∃f ∈ F, 〈o′, f, o〉 ∈ E}
9 SR := K(o), K := K − ({o} × SR)
10 R := R− ({o} × (SR − {v | {v, o} ∈ L}))
11 for each odst in {o′ | ∃f ∈ F, 〈o, f, o′〉 ∈ E}
12 if R(odst) ∩ SR 6= {}
13 K := K ∪ ({odst} ×R(odst))

ProcessNewReferences(ENew, LNew, R, E, S)
1 for each tuple 〈v, o〉 in LNew

2 if 〈o, v〉 is not in R
3 R := R ∪ 〈o, v〉
4 S := S ∪ {o}
5 for each tuple 〈o, f, o′〉 in ENew

6 PropagateReachability(o, o′, R, S)
7 while S is not empty, select o from S
8 remove object o from S
9 for each odst in {o′ | ∃f ∈ F, 〈o, f, o′〉 ∈ E}
10 PropagateReachability(o, odst, R, S)

PropagateReachability(o, o′, R, S)
1 if R(o) 6⊆ R(o′)
2 R := R ∪ (〈o′〉 ×R(o))
3 S := S ∪ {o′}

Fig. 8
INCREMENTAL REACHABILITY ALGORITHM

objects in set S to propagate their reachability information
to any objects they reference, and then adds these referenced
objects to S.

The overhead of incremental algorithm is determined by the
number of heap references through which the algorithm must
propagate the possibly unreachable set of variables and the
number of heap references through which the algorithm must
propagate the reachability information. In the worst case, the
incremental algorithm does not perform better than a standard
reachability algorithm — it can take time proportional to the
number of references in the heap times the number of global
and local variables that reference the heap. In practice, we
expect that many methods will make changes that require
propagating reachability information through only a small part
of the program’s heap and therefore that the algorithm will
perform much better than the worst case bound.

E. Multiple Executions
Our tool supports the analysis of traces from multiple

executions. We have architected our multiple trace support as
follows: the traces are processed individually by the analysis
and then the web frontend merges the analysis results for the
individual traces into a single merged result. The benefit of this
approach is that it enables our implementation to parallelize
the analysis of the traces. The basic approach is straightfor-
ward. Since the role transition diagrams capture the range of
possible behaviors of an object, the combined role transition

11

diagram is simply the union of the role transition diagrams for
the individual traces. Similarly, the combine role relationship
diagram is simply the union of the role relationship diagrams
for the individual traces. While the currently implemented web
interface does not currently process the enhanced method inter-
faces, it is conceptually straightforward to combine enhanced
method interfaces from different traces. The algorithm would
simply take the union of the enhanced method interfaces from
the individual traces. If the same enhanced method interface
appears in multiple traces, the algorithm would take the union
of the read and write effects from different instances of the
same enhanced method interface.

F. Role Subspaces
Our tool allows the developer to define multiple role sub-

spaces and to modify the role separation criteria for each
subspace as follows:

• Fields: The developer can specify fields to ignore for the
purpose of assigning roles. The analysis will show these
fields in the role relationship diagram, but the references in
these fields will not affect the roles assigned to the objects.

• Methods: The developer can specify which methods and
which parameters to include in the role separation criteria.

• Reachability: The developer can specify variables to
include or to exclude from the reachability-based role
separation criteria.

• Classes: The developer can collapse all objects of a given
class into a single role.

In practice, we have found role subspaces both useful
and usable — useful because they enabled us to isolate
the important aspects of relevant parts of the system while
eliminating irrelevant and distracting detail in other parts, and
usable because we were usually able to obtain a satisfactory
role subspace with just a small number of changes to the
default criteria.

IV. USER INTERFACE

The user interface presents four kinds of web pages9: class
pages, role pages, method pages, and the role relationship
page. Each class page presents the role transition diagram for
the class. From the class page, the developer can click on
the nodes and edges in the role transition diagram to see the
corresponding role and method pages for the selected node
or edge. Each role page presents a role definition, displaying
related roles and classes and enabling the developer to select
these related roles and classes to bring up the appropriate role
or class page. Each method page shows the developer which
methods called the given method and allows the developer
to configure method-specific abstraction policies. The role
relationship page presents the role relationship diagram. From
this diagram, the developer can select a role node to see the
appropriate role definition page.

9We chose a web interface because it provides a convenient, reliable, cross
platform mechanism for communicating the results of the analysis. The web
interface allows us to easily support viewing multiple pages at once, linking
nodes in graphs to descriptions of the underlying roles, and would enable us
to easily link analysis results to online resources.

The user interface allows the developer to create and ma-
nipulate multiple role subspaces. The developer can create
a new role subspace by selecting the set of predicates to
capture the desired role separation criteria. The developer can
then define a view, which allows the developer to see the
role transition diagrams, the role relationship diagrams, and
the enhanced method interfaces generated using one or more
role subspaces. Views with a single subspace use the role
separation criteria from that subspace. Views with multiple
subspaces use a cross product operator to combine the roles
from the different subspaces, with the set of roles appearing in
diagrams isomorphic10 to those obtained by taking the union of
the role separation criteria from all of the subspaces. Within
a view, the developer can identify additional role subspaces
to be used for labeling purposes. These role subspaces do not
affect the separation of objects into roles, but rather label each
role in the view with the roles that objects playing those roles
have in these additional labeling subspaces.

V. EXPLORATION STRATEGY

As we used the tool, we developed the following strategy
for exploring the behavior of a new program. We believe this
strategy is useful for structuring the process of using the tool
and that most developers will use some variant of this strategy.

When we started using the tool on a new program, we first
recompiled the program with our instrumentation package, and
then ran the program to obtain an execution trace. We then
used our graphical tool to browse the role transition diagrams
for each of the classes, looking for interesting initialization
sequences, splits in the role transition diagram indicating
different uses for objects of the class, and transition sequences
indicating potential changes in the purpose of objects of the
class in the computation.

During this activity, we were interested in obtaining a broad
overview of the actions of the program. 11 We therefore
often found opportunities to appropriately simplify the role
transition diagrams, typically by creating a role subspace
to hide irrelevant detail, by declaring initializing methods
atomic, or by utilizing the multiple object abstraction feature.
Occasionally, we found opportunities to include aspects of the
method invocation history into the role separation criteria. We
found that our default policy for merging multiple object data
structures into a single data structure for role presentation
purposes worked well during this phase of the exploration
process.

Once we had created role subspaces revealing roles at an
appropriate granularity, we then browsed the enhanced method
interfaces to discover important constraints on the roles of the
objects passed as parameters to the method. This information
enabled us to better understand the correlation between the
actions of the method and the role transitions, helping us to

10There exists a one-to-one and onto mapping between the roles appearing
in a view with multiple subspaces and the roles appearing in a subspace that
has the union of the role separation criteria from all the subspaces as its role
separation criteria.

11We expect that many developers will be interested in understanding or
debugging a particular aspect of the program. We believe that our tool will
be useful for this purpose. In fact, we believe that much of the information
we obtained when obtaining a broad overview would useful for developers
debugging or modifying very specific pieces of the applications.

12

isolate the regions of the program that performed important
modifications, such as insertions or removals from collec-
tions. It also helped us understand the (otherwise implicit)
assumptions that each method made about the states of its
parameters. We found this information useful in understanding
the program; we believe that maintainers will also find it
useful.

We next observed the role relationship diagram. This dia-
gram helped us to better understand the relationships between
classes that work together to implement a given piece of
functionality. In general, we found that the complete role
relationship diagram presented too much information for us
to use it effectively. We therefore adopted a strategy in which
we identified a starting class of interest, then viewed the region
surrounding the roles of that class. We found that this strategy
enabled us to quickly and effectively find the information we
needed in the role relationship diagram.

Finally, we sometimes decided to explore several roles in
more detail. We often returned to the role transition diagram
and created a customized role subspace to expose more detail
for the current class but less detail for less relevant classes.
In effect, this activity enabled us to easily adapt the system
to view the program from a more specialized perspective.
This multiple level approach to program understanding is well
known; developers often use bottom-up [23] and top-down [2]
approaches for understanding software. Given our experience
using this feature of our role analysis tool, we believe that
this ability will prove valuable for any program understanding
tool.

VI. EXPERIENCE

We next discuss our experience using our role analysis
tool to explore the behavior of several Java programs. We
report our experience for several programs: Jess, an expert
system shell in the SPECjvm98 benchmark suite; Direct-To,
a Java version of an air-traffic control tool; Tagger, a text
formatting program; Treeadd, a tree manipulation benchmark
in the JOlden benchmark suite 12; and Em3d, a scientific
computation in the JOlden benchmark suite.

A. Jess
Jess first builds a network of nodes, then performs a

computation over this network. While the network contains
many different kinds of nodes, all of the nodes exhibit a similar
construction and use pattern. To generate a trace to analyze,
we simply selected one of the Jess example problems included
with the Jess distribution and ran the instrumented version of
Jess on that problem to produce the trace. We analyzed the
trace for Jess with our tool, and then investigated the role
transition diagrams for the classes. From the quick overview
of role transition diagrams, it appeared to us that the Node
structures used by Jess would be the most interesting to a
developer.

Consider, for example, objects of the Node1TELN class.
Figure 9 presents the role transition diagram for objects of this
class. An examination of this diagram and the linked role def-
initions shows that during the construction of the network, the

12Available at ftp://ftp.cs.umass.edu/pub/osl/
benchmarks/jolden.tar.gz.

program represents the edges between nodes using a resizable
vector of references to Successor objects, each of which
is a wrapper around a node object. The succ field refers
to this vector. When the network is complete, the program
constructs a less flexible but more efficient representation in
which each node contains a fixed-size array of references to
other nodes; the succ field refers to this array. This change
occurs when the program invokes the freeze method on the
node. For this benchmark, we used two different test cases to
generate two different execution traces. We discovered in the
second execution trace that Jess can create node objects, but
not freeze them. We used the multiple execution functionality
of our tool to combine the traces from the two executions to
generate Figure 9. Due to the fact that the names of the fields
in the program were informative, the automatically generated
role names were very helpful. Only minimal renaming was
done for the purpose of aesthetics.

The generated extended method interfaces provide infor-
mation about the assumptions that several key methods make
about the roles of their parameters. Specifically, they show
that the program invokes the CallNode method (this method
implements the primary computation on the network) on
a node only after the freeze method has converted the
representation of the edges associated with the node to the
more efficient form. This invocation sequence constraint could
also be determined using specification mining techniques[1].

The role definitions also provide information about the
network’s structure, specifically that all of the nodes in
the network have either one or two incoming edges. Each
fully constructed object of the Node1TELN, Node1TECT,
Node1TEQ, NodeTerm, or Node1TMF class has exactly
one Successor object that refers to it, indicating that these
kinds of nodes all have exactly one incoming edge. Each fully
constructed object of the Node2 class, on the other hand, has
exactly two references from Successor objects, indicating
that Node2 nodes have exactly two incoming edges.

B. Direct-To
Direct-To is a prototype Java implementation of a compo-

nent of the Center-Tracon Automation System (CTAS) [13].
The tool helps air-traffic controllers streamline flight paths by
eliminating intermediate points; the key constraint is that these
changes should not cause new conflicts, which occur when
aircraft pass too close to each other. We ran Direct-To on a
short input file consist of a few aircraft to generate a trace.
We looked at the role transition diagrams for the different
classes and identified the Flight class as a central class in
the computation.

We first discuss our experience with the Flight class,
which represents flights in progress. Figure 10 presents the role
transition diagram for the Flight class. Each Flight object
contains references to other objects, such as FlightPlan ob-
jects and Route objects, that are part of its state. Our analysis
recognized these other objects as part of the corresponding
Flight object’s state, and merged all of these objects into a
single multiple object data structure.

Roles helped us understand the initialization sequence and
subsequent usage pattern of Flight objects. An examination of

ftp://ftp.cs.umass.edu/pub/osl/benchmarks/jolden.tar.gz
ftp://ftp.cs.umass.edu/pub/osl/benchmarks/jolden.tar.gz

13

 Node1TELN w/ engine & succ

 node Node1TELN w/ engine & succ

1st arg of Successor.<init>

 Garbage

Jess.run_jess Node1TELN w/ engine, succ, & _succ

this arg of Node.freeze

 InitialNode1TELN

this arg of Node1TELN.<init>, Node1.<init>, and Node.<init>

this arg of Object.<init>

Jess.run_jess

this arg of Node1TELN.CallNode

Fig. 9
ROLE TRANSITION DIAGRAM FOR THE Node1TELN CLASS

the role transition diagram reveals that an initialized Flight
object has been inserted into the flight list; various fields
of the object refer to the objects that implement the flight’s
identifier, type, aircraft type, and flight plan. Once initialized,
the flight is ready to participate in the main computation of the
program, which repeatedly acquires a radar track for the flight
and uses the track and the flight plan to compute a projected
trajectory. The initialization sequence is clearly visible in the
role transition diagram, which shows a linear sequence of role
transitions as the flight object acquires references to its part
objects and is inserted into the list of flights. The acquisition
and computation of the tracks and trajectories also show up as
transitions in this diagram. Due to the fact that the initialization
of Flight class objects is performed by the combined actions
of several methods from different classes, discovering the
initialization sequence by simply examining the code is not
straightforward.

Roles also enabled us to untangle the different ways in
which the program uses objects of the Point4d class.
Specifically, the program uses objects of this class to represent
aircraft tracks, trajectories, and velocities. This distinction is
useful, because the operations that are valid on Point4d
object used in a velocity are different from the operations
that are valid on a Point4d object used by a trajectory. For
example, multiplying a Point4d object used as a velocity by
time is a legal operation while the same operation performed
on a Point4d object used as a position in a trajectory is
nonsensical. The role transition diagram makes these different
uses obvious: each use corresponds to a different region
of roles in the diagram. No transitions exist between these
different regions, indicating that the program likely uses the
corresponding objects for disjoint purposes.

C. Tagger

Tagger is a document layout tool written by Daniel Jackson.
It processes a stream of text interspersed with tokens that
identify when conceptual components such as paragraphs
begin and end. Tagger works by first attaching action objects
to each token, and then processing the text and tokens in order.
Whenever it encounters a token, it executes the attached action.
To generate a trace for Tagger, we simply ran the instrument
version on the example file included with Tagger.

It turns out that there are dependencies between the op-
erations of the program and the roles of the actions and
tokens. For example, one of the tokens causes the output of the
following paragraph to be suppressed. Tagger implements this
output suppression with a matched pair of actions: a suppress
action and a corresponding unsuppress action. Figures 11
and 12 give the role transition diagrams for the unsuppress
action and the suppress action, respectively. When the suppress
action executes, it places an unsuppress action at the end
of the paragraph, ensuring that only one paragraph will be
suppressed. These actions are reflected in role transitions as
follows. When the program binds the suppress action to a
token, the action takes a transition because of the reference
from the token. When the suppress action executes, it binds the
corresponding unsuppress action to the token at the end of the
paragraph, causing the unsuppress action to take a transition
to a new state. Roles therefore enabled us to discover an
interesting correlation between the execution of the suppress
action and data structure modifications required to undo the
action later. This is visible in role transition diagram for the
unsuppress action class — the unsuppress object transitions
from the unbound role (STANDARD unsuppress action
StandardEngine$16 w/ generator & this) to the

14

FlightList.f Flight w/
 flightID & aircraftType

FlightList.f Flight w/
 flightID, aircraftType, & flightType

this arg of setFlightType

 FlightList.f Flight w/
 flightID, aircraftType,

 flightType, & fPlan

this arg of setFlightPlan
FlightList.f Flight w/

 flightID, aircraftType,
 flightType, & fPlan

this arg of setFlightPlan

FlightList.f cList flight2 Flight w/
 flightID, aircraftType,

 fightType, fPlan, track, & traject
1st and 2nd arg of findConflict

FlightList.f Flight w/
 flightID, aircraftType,

 flightType, fPlan, track, & traject

clear3rd arg of newConflict

this arg of toString and hasID; 1st arg of newVerticalCoord, newHorizCoords,
 getTrajectoryPoint, println, print, findConflict, and setInitialParametrs; 2nd arg

 of updateTrajectory and findConflict

FlightList.f flight1 Flight w/
 flightID, aircraftType,

 flightType, fPlan, track, & traject

3rd arg of Conflict.<init>

FlightList.f cList flight1 Flight w/
 flightID, aircraftType,

 fightType, fPlan, track, & traject

2nd arg of newConflict
FlightList.f Flight w/

 flightID, aircraftType,
 fightType, fPlan, track, & traject

2nd arg of updateTrajectory

FlightList.f flight2 Flight w/
 flightID, aircraftType,

 fightType, fPlan, track, & traject

3rd arg of Conflict.<init>

add

clear

1st arg of findConflict

FlightList.f cList flight1(2) Flight w/
 flightID, aircraftType,

 fightType, fPlan, track, & traject

2nd arg of Conflict.<init> and newConflict

FlightList.f Flight w/
 flightID

this arg of setAircraftType

this arg of hasID

FlightList.f Flight w/
 flightID, aircraftType,

 fightType, fPlan, & track

this arg of setTrack

InitialFlight this arg of Object.<init>

 Flight w/ flightID

this arg of Flight.<init>

1st arg of add

2nd arg of updateTrajectory

1st arg of newVerticalCoord, newHorizCoords,
 getTrajectoryPoint, and setInitialParameters

FlightList.f Flight w/
 flightID, aircraftType,

 flightType, fPlan, track, & traject

2nd arg of updateTrajectory

2nd arg of updateTrajectory

this arg of hasID and to String; 1st arg
 of setInitialParameters, newVerticalCoord, newHorizCoords,

 println, getTrajectoryPoint, and print

1st arg of findConflict, newVerticalCoord,
 getTrajectoryPoint, newHorizCoords, and

 setInitialParameters; 2nd arg of
 findConflict and updateTrajectory

add

setRoute

this arg of hasID

clear

Fig. 10
ROLE TRANSITION DIAGRAM FOR THE Flight CLASS

bound role (STANDARD element unsuppress action
StandardEngine$16 w/ generator & this) when
the suppress action is performed and transitions back to the
unbound role when the unsuppress action is performed. We
were also able to observe a role-dependent interface 13 — the
method that executes actions always executes actions that are
bound to tokens.

D. Treeadd
Treeadd builds a tree of TreeNode objects; each such

object has an integer value field. It then calculates the sum of
the values of the nodes. The role analysis tool extracted some
interesting properties of the data structure and gave us insight
into the behavior of the parts of the program that construct and

13A role-dependent interface is a method that expects its parameters to have
a certain role.

use the tree. To generate a trace file for Treeadd, we simple
ran the Treeadd benchmark.

Figure 14 presents the region of the role relationship dia-
gram that contains the roles of TreeNode objects. By exam-
ining this diagram, enhanced method interfaces, and the linked
role definitions, we were able to determine that the structure
returned by the tree construction method did in fact comprise a
tree — the tree construction method returns a root TreeNode
object playing the role TreeNode w/ right & left,
which according to the role definition has no references from
left or right fields of other TreeNode objects. The other
TreeNode roles have exactly one reference from the left
or right field of another TreeNode. Combining these two
pieces of information, allows us to infer that the structure
returned by the tree construction method is a tree.

15

STANDARD element unsuppress_action
 StandardEngine$16 w/ generator & this

STANDARD unsuppress_action
 StandardEngine$16 w/ generator & this

this arg of StandardEnginer$16.perform
1st arg of Engine.register_by_type, LinkedList$Entry.<init>,

 Engine.register_by_type_front, LinkedList.addFirst,
 and LinkedList.addBefore

 InitialStandardEngine$16
1st arg of Object.<init>

 and Action.<init>

StandardEngine$16 w/ generator & this

this arg of StandardEngine$16.<init>

unsuppress_action StandardEngine$16
 w/ generator & this

3rd arg of StandardEngine$17.<init>

StandardEngine.<init>

Fig. 11
ROLE TRANSITION DIAGRAM FOR THE UNSUPPRESS ACTION CLASS

Initial
 TreeNode

this arg of Object.<init>,
 this arg of TreeNode.<init>

TreeNode
 w/ right & left

this arg of
 TreeNode.<init>

left
 TreeNode

TreeNode.<init>

right
 TreeNode

TreeNode.<init>TreeNode
 w/ left

TreeNode.<init>

this arg of
 TreeNode.addTree

right
 TreeNode

w/ right & left

TreeNode.<init>

left
 TreeNode

w/ right & left

TreeNode.<init>

Garbage

TreeAdd.main
this arg of

 TreeNode.addTree

TreeAdd.main

this arg of
 TreeNode.addTree

TreeAdd.main
this arg of

 TreeNode.addTree

TreeAdd.main

TreeNode.<init>

this arg of
 TreeNode.addTree

TreeAdd.main

Fig. 13
ROLE TRANSITION DIAGRAM FOR THE TreeNode CLASS

Figure 13 presents the role transition diagram for
TreeNode objects. This diagram, in combination with the
linked role definitions, clearly shows a bottom-up initialization
sequence in which each TreeNode acquires a left child and
a right child, then a reference from the right or left
field of its parent. Alternative initialization sequences produce
TreeNode objects with no children. Note that the automati-
cally generated role names in this figure are intended to help

the developer understand the referencing relationships that de-
fine each role. The role name right TreeNode w/right
& left, for example, indicates that objects playing the role
have 1) a reference from the right field of an object, and 2)
non-null right and left fields. The role name TreeNode
w/left indicates that an object playing this role has a non-
null left field.

16

InitialStandardEngine$17
this arg of Object.<init>

 and Action.<init>

StandardEngine$17 w/
 unsuppress_action & generator

this arg of StandardEngine$17.<init>

element StandardEngine$17
 w/ unsuppress_action & generator

1st arg of LinkedList.addFirst, Engine.register_by_type,
 LinkedList$Entry.<init>, Engine.register_by_type_front,

 and LinkedList.addBefore

STANDARD StandardEngine$17
 w/ unsuppress_action & generator

StandardEngine.<init>

this arg of
 StandardEnginer$17.perform

Fig. 12
ROLE TRANSITION DIAGRAM FOR THE SUPPRESS ACTION CLASS

TreeNode
 w/ right & left

left TreeNode
 w/ right & left

left

right TreeNode
 w/ right & left

right

left TreeNode

left

right TreeNode

right

left

right

leftright

left

right

leftright

TreeNode
 w/left

left

left

Fig. 14
ROLE RELATIONSHIP DIAGRAM FOR THE TreeNode CLASS

E. Em3d

Em3d simulates the propagation of electromagnetic waves
through objects in three dimensions. It uses enumerators
extensively in two phases of the computation. The first phase
builds a graph that models the electric and magnetic fields; the
second phase traverses the graph to simulate the propagation
of these fields. Figure 15 gives the role transition diagram
for the Node1Enumerate class. The role transition diagram
for the enumerator objects contains roles corresponding to
an initialized enumerator, an enumerator with remaining el-
ements, and an enumerator with no remaining elements. As
expected, the program never invokes the next method on an
enumerator object that has no remaining elements, enabling the
developer to verify that the program uses enumerator objects
in a standard way.

Enumerate w/ elements
this arg of

 Node1Enumerate.hasMoreElements
 and Node1Enumerate.nextElement

Enumerate w/o elements

this arg of Node1Enumerate.nextElement

this arg of
 Node1Enumerate.hasMoreElements

Garbage

Bigraph.create, Bigraph.compute

Initial Enumerate

this arg of Node1Enumerate.<init>

this arg of Object.<init>

Fig. 15
ROLE TRANSITION DIAGRAM FOR THE Node.Enumerate CLASS

F. Utility of Roles
In general, roles helped us to discover key data structure

properties and understand how the program initialized and
manipulated objects and data structures. The combination
of the role relationship diagram and linked role definitions
typically provided the most useful information about data
structure properties. Examples of these properties include the
referencing properties of TreeNode objects in the Treeadd
benchmark and the correspondence between Successor
nodes and network nodes in Jess.

The role transition diagram typically provided the most
useful information about object initialization sequences and
usage patterns. Examples of object initialization sequences
include the initialization of Flight objects in the Direct-
to benchmark and of TreeNode objects in the Treeadd
benchmark. Jess provides an interesting example of a con-
ceptual phase transition in a data structure — the program
uses a more flexible but less efficient data structure during
a construction phase, then replaces this data structure with a
more efficient frozen version for a subsequent computation
phase. The Point4d class in Direct-to provides a good
example of how a program can use objects of a single class
for several different purposes in the computation. In all of
these cases, the role analysis enabled us in a matter of minutes
to understand the underlying initialization sequences or usage
patterns.

Finally, we found that the information about the roles of
method parameters helped us to understand the otherwise
implicit expectations that methods have about the states of
their parameters and the effects of methods on these states.
Examples of methods with important expectations or effects
include the freeze and CallNode methods in Jess and the
next method in Em3d. In general, we expect the role analysis
tool to be useful in the software development process in the
following ways:

• Program Understanding: Developers have to understand
programs to modify or reuse them. In object-oriented lan-
guages, we believe that understanding heap allocated data
structures is key to understanding the program. Roles help

17

developers discover potential key data structure invariants
and understand how programs initialize and manipulate
these data structures, thus aiding program comprehension.

• Maintenance: To safely modify programs, developers
need to understand the data structures these programs
build, the referencing relations methods assume, and the
effects of methods on these data structures. We expect that
the diagrams and enhanced method interfaces that our tool
generates will prove useful for this purpose.

• Verifying Expected Behavior: We expect that developers
could use our tool as a debugging aid. Developers write
programs with certain invariants about heap structures
in mind. If the role relationships our tool discovers are
inconsistent with these invariants, the developer knows that
a bug exists. The enhanced method interfaces and role
transition diagrams can also help the developer quickly
isolate the bug.

• Documentation: Developers often need to document high-
level properties of the program. We believe that roles may
provide an effective documentation mechanism, because
they come with a set interactive graphical representations,
because they can often capture key properties of the
program in a concise, cognitively tractable representation,
and because (at least for the roles that our analysis tool
discovers) they are guaranteed to faithfully reflect some of
the behaviors of the program. Role subspaces may prove
to be especially useful in presenting focused, orthogonal,
or hierarchical perspectives on the purposes of the objects
in the program.

• Design: High-level design formalisms often focus on the
conceptual states of objects and the relationships between
objects in these states. For instance, use cases can be
thought of as executing a state transition on the objects
involved to update information in the system. UML class
diagrams and state charts are more obvious instantiations
of such design formalisms. Our role analysis can extract
information that is often similar to this design information,
helping the developer to establish the connection between
the design and the behavior of the program. Furthermore,
the role abstraction suggests several concrete ways of
realizing high-level design patterns in the code. As de-
velopers become used to working with roles, they may
very well adopt role-inspired coding styles that facilitate
the verification of a guaranteed connection between the
high-level design and its realization in the program.

G. Analysis Overhead
We measured the instrumentation and analysis overheads

for our tool on the benchmark applications. We ran each
on benchmark on a 2.2 GHz Core 2 Duo with 1 GB of
RAM. Table I presents the overhead measurements for our
benchmarks. For each benchmark, we report: (1) the time
for the normal, un-instrumented version to execute, (2) the
time for the instrumented version to execute and store the
trace, (3) the time for our analysis to process the trace, and
(4) the size of the trace. We compute that the slowdown due
to instrumentation ranges from a low of 16x for the Direct-

Bench- Normal Instrumented Analysis Trace
mark Execution Execution Time Size
Jess 0.07s 8.6s 20m32s 286.6 MB

Direct-To 0.59s 9.5s 3m3s 292.7MB
Tagger .08s 4.9s 5m13s 153.3MB
Treeadd .003s .059s 0.38s 1.8MB
Em3d .006s .23s 60s 7.3MB

TABLE I
OVERHEAD MEASUREMENTS

To benchmark to a high of 122x for Jess benchmark with
an average of 51.6x. Note that because the instrumentation
primarily records changes to heap referencing properties, the
instrumentation overhead varies depending on how much data
structure manipulation the application performs.

We next compute the time taken to analyze the trace in
seconds per megabyte of trace file. We found that Em3d took
the most time per megabyte with a time of 8.2 seconds/MB.
We found that Treeadd took the least time per megabyte with
a time of 0.211 seconds/MB. We noted that Jess and Direct-
To have similar sized trace files, but significantly different
analysis times. We profiled the role inference analysis on these
two benchmark applications to help understand the difference
in analysis times. We found that computing the reachability
information took 55.5 % of the analysis time for the Jess
benchmark while it only took 26.6 % of the analysis time
for the Direct-To benchmark.

The reachability computations dominate the worst-case
analysis time. In the worst case, the incremental reachability
algorithm can take time proportional to the number of edges
in the heap times the number of possible root variables. Since
the tool recomputes reachability at every method boundary,
the worst case analysis time is proportional to the worst case
reachability bound times the number of method calls.

In practice, we believe that the incremental reachability
algorithm will yield significant performance improvements for
many benchmarks as it will only recompute reachability for
small portions of the heap. In this case, the analysis time
should be approximately proportional to the execution time
of the program.

The multiple object data structure functionality can theoret-
ically affect the complexity of the analysis. If the developer
were to use the always merge policy for classes that are
instantiated many times to build large linked data structures,
the analysis could potentially have to propagate a role change
for an object through many other objects. In practice this is
unlikely to pose a problem as this would generate a huge
of number of roles for such classes and the resulting graphs
would be very difficult to interpret.

VII. RELATED WORK

We survey related work in three fields: design formalisms
that involve the concept of abstract object states, program
understanding tools that focus on properties of the objects
that programs manipulate, and static analysis for automatically
discovering or verifying properties of linked data structures.
A. Design Formalisms

Early design formalisms identified changes in abstract ob-
ject or component states as an important aspect of the design

18

of the program [26]. Our tool also focuses on abstract state
changes as a key aspect, but uses the role separation criteria to
automatically synthesize a set of abstract object states rather
than relying on the developer to specify the abstract state space
explicitly.

Object models enable a developer to describe relationships
between objects, both at a conceptual level and as realized
in programs. Object modeling languages such as UML [25]
and Alloy [12] can describe the different states that objects
can be in, the constraints that these states satisfy, and the
transitions between these states. One can view our role analysis
tool as a way of automatically extracting an object model that
captures the important aspects of the objects that the program
manipulates. In this sense our tool establishes a connection
between the abstract concepts in the object model and the
concrete realization of those concepts in the objects that the
program manipulates.

The concept of objects playing different roles in the com-
putation while maintaining their identity often arises in the
conceptual design of systems [11], and researchers have pro-
posed several methodologies for realizing these roles in the
program [11], [10], [15]. Our role analysis tool can recognize
many of the design patterns used to implement these roles, and
may therefore help developers establish a connection between
an existing conceptual system design and its realization in
the program. Conversely, our role separation criteria may
also suggest alternate ways to implement conceptual roles. In
particular, previously proposed methodologies tend to focus on
ways to tag objects with (potentially redundant) information
indicating their roles, while the role separation criteria identify
data structure membership (which may not be directly observ-
able in the state of the object itself) as an important property
that helps to determine the roles that the object plays.

B. Program Understanding Tools
Daikon [8] extracts likely algebraic invariants from infor-

mation gathered during the program’s execution. For example,
Daikon can infer invariants such as “y = 2x”. Daikon handles
heap structures in a limited fashion by linearizing them into
arrays under some specific conditions [9]. Our work differs
in that we handle heap structures in a much more general
fashion, and focus on referencing relationships as opposed
to algebraic invariants. Furthermore, our tool can discover
and communicate the changes that occur to an object’s state
during a program’s execution. As a result, our tool allows the
developer to discover a rich new class of program invariants.
This class of program invariants relate an object’s state and
changes to the object’s state to the program’s actions.

Jinsight [4] also extracts information from a program’s
execution. Jinsight allows the developer to see a histogram
view, which shows a program’s use of space and memory
on a class by class basis. It also provides two different
views showing method invocation information. Jinsight also
provides pattern views for references and invocations of the
execution. Jinsight appears to be most useful for understanding
how a program uses computational resources and identifying
opportunities for optimization. Furthermore, Jinsight may be
useful for identifying coding errors that leak computational

resources. Our tool is more useful for understanding deeper
properties of the objects in a program, and how these objects
interact with the program’s code. We believe that our tool is
useful for finding subtle bugs in the use of objects.

Womble [14] and Chava [16] both use a static analysis to
automatically extract object models for Java programs. Both
tools use information from the class and field declarations;
Womble also uses a set of heuristics to generate conjectures
regarding associations between classes, field multiplicities, and
mutability. These tools statically group all objects of the same
class into the same category of objects in the object model,
ignoring any conceptual state changes that may occur because
of method invocations, changes to the object referencing
relationships, or reachability changes. Since our role analysis
tool utilizes an abstraction that can capture an object’s state
changes, our tool can discover and communicate program
properties that depend on the state of the object.

Lackwit [22] uses a static type inference algorithm to
automatically refine the C type system. This refinement allows
abstract datatypes to be separated at a finer granularity than the
standard C type system provides. Various extensions allow the
system to find memory locations that are statically guaranteed
to not be written to, read from, or freed. However, these
extensions cannot detect objects that might not be written
to, read from, or freed. Although Lackwit statically refines
the C type system, it does not capture the changes an object
undergoes during a program’s execution. Therefore, it cannot
discover properties that relate an object’s state to the actions
of the program.

Ajax [21] uses a static alias analysis to automatically
generate object models. The tool uses alias information to
generate object models that refine what can be generated
from the Java type system alone. The object models Ajax
generates are similar to our role relationship diagrams, but our
tool provides the capability to represent multiple object data
structures as a single conceptual entity. Furthermore, our tool
allows an object’s role (and thus the set the object is associated
with in an object model) to change during the execution of the
program.

Engler et al. [7] developed a technique that uses patterns
to infer specifications for programs. These patterns can infer
temporal rules such as lock x is acquired before accessing b
and no reads after a free. They implemented this technique
and used it to find bugs in Linux kernel. Kremenek et al. [17]
generalizes this approach to infer returns ownership or claims
ownership annotations for functions. Li and Zhou [19] gener-
alize the technique of Engler et al. to support a wider variety
of programming rules and to eliminate the need for templates
that describe the possible forms of rules. Their technique is
based on the frequent itemset data mining technique. The
CHRONICLER tool extends this work with path sensitivity
to discover condition checks [24]. Our work differs in that is
able to discover more complex ordering interface constraints in
the form of finite state machines and that it is able to discover
relations between an object’s interface and the object’s heap
reference properties.

Shoham et al. [27] use an abstract trace collection technique
to build finite state machines of events for an object. Nanda et

19

al. [20] present a static analysis that infers typestate properties.
Their approach does not require test cases, but only scales to
small examples. They use an emulation technique to emulate
client actions on data structure components. We expect that
these techniques complement our technique: these techniques
guarantee that their generated finite state machines contain a
conservative approximation of all legal transitions while our
technique guarantees that our generated finite state machines
only contain legal transitions. We expect that depending the
task at hand, software developers need to know both types of
information.

Ammons et al. [1] present a dynamic analysis that monitors
function calls to a component to automatically extract finite
state machines that describe the component interface. Their
technique requires the user to write function attributes that
describe whether a function defines or uses an abstract object
value. Our work differs in that it relates heap reference
properties to an object’s interface.

Wasylkowksi et al. [29] presents a static analysis that can
extract and check finite state automata for method calls on
individual objects.

Whaley et al. [30] use a combination of static analysis and
dynamic analysis to discover finite state machine component
interface models. Their approach uses static analysis to iden-
tify side effect free methods and to identify possible illegal
transitions.

Cook and Wolf [3] explore the problem of generating finite
state machines for traces of uninterpretted events.

A previous version of this paper appeared in ICSE 2002 [5].
This version of the publication adds more details on the gener-
ation of role names, method effect inference, the incremental
reachability algorithm, measurements of the analysis overhead,
and our experiences using the tool. Furthermore, we have
extended the tool to support the analysis of multiple execution
traces from a single program.

C. Verifying Data Structure Properties
The analysis presented in this paper extracts role informa-

tion for a set of execution traces of the program. The tool
is not designed to extract or verify role information that is
guaranteed to fully characterize all executions.

Statically extracting or verifying the detailed object ref-
erencing properties that roles characterize is clearly beyond
the capabilities of standard pointer analysis algorithms. Re-
searchers in our group have, however, been able to leverage
techniques from precise shape analysis algorithms to develop
an augmented type system and analysis algorithm that is
capable of verifying that all executions of a program respect a
given set of role declarations [18]. In this context, our dynamic
tool could generate candidate role declarations for existing
programs. Such a candidate generation system would have to
be designed carefully — we expect the dynamic role analysis
to be capable of extracting properties that are beyond the
verification capabilities of the static role analysis.

VIII. CONCLUSION

We believe that roles are a valuable abstraction for helping
developers to understand the objects and data structures that
programs manipulate. We have implemented a dynamic role

analysis tool and a flexible interactive graphical user interface
that helps developers navigate the information that the anal-
ysis produces. Our experience with several Java applications
indicates that our tools can help developers discover important
object initialization sequences, object usage patterns, potential
data structure invariants, and constraints on the states and ref-
erencing relationships of method parameters. Other potential
applications include documenting high-level properties of the
program (and especially properties that involve orthogonal or
hierarchical object and data structure classification structures),
discovering correlated state changes between objects that
participate in the same data structure, providing specifications
for a static role analysis algorithm, verifying or refuting a
debugger’s hypotheses about important data structure invari-
ants, and providing a foundation for establishing a guaranteed
connection between the high-level design and its realization
in the program.

IX. ACKNOWLEDGMENTS

We would like to thank Michael Ernst, Daniel Jackson, and
Viktor Kuncak for useful feedback and discussions concerning
this paper and dynamic role analysis in general. An earlier
version of the article appeared in the Conference Record of
the 24th International Conference on Software Engineering.

REFERENCES

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In
Proceedings of the 29th Annual ACM Symposium on the Principles of
Programming Languages, 2002.

[2] R. Brooks. Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies, 18:543–554,
1983.

[3] J. E. Cook and A. L. Wolf. Discovering models of software processes
from event-based data. ACM Transactions on Software Engingeering
and Methodology, 7(3):215–249, 1998.

[4] W. De Pauw, G. Sevitsky, and E. Jensen. Jinsight: A tool
for visualizing the execution of java programs. http://www-
106.ibm.com/developerworks/java/library/j-jinsight/.

[5] B. Demsky and M. Rinard. Role-based exploration of object-oriented
programs. In ICSE02, May 2002.

[6] J. Ellson, E. Gansner, E. Koutsofios, and S. North. Graphviz. http:
//www.research.att.com/sw/tools/graphviz.

[7] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behavior:
A general approach to inferring errors in systems code. In Symposium
on Operating Systems Principles, pages 57–72, 2001.

[8] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. In International Conference on
Software Engineering, pages 449–458, 2000.

[9] M. D. Ernst, Y. Kataoka, W. G. Griswold, and D. Notkin. Dynamically
discovering pointer-based program invariants. Technical Report UW-
CSE-99-11-02, University of Washington, November 1999.

[10] R. Familiar. Adaptive role playing. http://www.ccs.
neu.edu/research/demeter/adaptive-patterns/
arp-bofam-checked.html.

[11] M. Fowler. Dealing with roles. http://www.martinfowler.
com/apsupp/roles.pdf, July 1997.

[12] D. Jackson. Alloy: A lightweight object modelling notation. Technical
Report 797, Laboratory for Computer Science, Massachusetts Institute
of Technology, 2000.

[13] D. Jackson and J. Chapin. Redesigning air-traffic control: A case study
in software design, 2000.

[14] D. Jackson and A. Waingold. Lightweight extraction of object models
from bytecode. In International Conference on Software Engineering,
pages 194–202, 1999.

[15] B. Jacobs. Patterns using Procedural/Relational Paradigm. http://
www.geocities.com/tablizer/prpats.htm.

[16] J. Korn, Y.-F. Chen, and E. Koutsofios. Chava: Reverse engineering and
tracking of Java applets. In Proceedings of the Sixth Working Conference
on Reverse Engineering, pages 314–325, October 1999.

http://www.research.att.com/sw/tools/graphviz
http://www.research.att.com/sw/tools/graphviz
http://www.ccs.neu.edu/research/demeter/adaptive-patterns/arp-bofam-checked.html
http://www.ccs.neu.edu/research/demeter/adaptive-patterns/arp-bofam-checked.html
http://www.ccs.neu.edu/research/demeter/adaptive-patterns/arp-bofam-checked.html
http://www.martinfowler.com/apsupp/roles.pdf
http://www.martinfowler.com/apsupp/roles.pdf
http://www.geocities.com/tablizer/prpats.htm
http://www.geocities.com/tablizer/prpats.htm

20

[17] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From
uncertainty to belief: Inferring the specification within. In Proceedings
of the 7th conference on USENIX Symposium on Operating Systems
Design and Implementation, 2006.

[18] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In Proceedings of
the 29th Annual ACM Symposium on the Principles of Programming
Languages, 2002.

[19] Z. Li and Y. Zhou. Pr-miner: Automatically extracting implicit pro-
gramming rules and detecting violations in large software code. In
Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005.

[20] M. G. Nanda, C. Grothoff, and S. Chandra. Deriving object typestates
in the presence of inter-object references. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object Priented Programming,
Systems, Languages, and Applications, 2005.

[21] R. O’Callahan. Generalized Aliasing as a Basis for Program Analysis
Tools. PhD thesis, ”Carnegie Mellon School of Computer Science”,
2002.

[22] R. O’Callahan and D. Jackson. Lackwit: A program understanding
tool based on type inference. In International Conference on Software
Engineering, pages 338–348, 1997.

[23] N. Pennington. Comprehension strategies in programming. In Empirical
Studies of Programmers: Second Workshop, pages 100–112, 1987.

[24] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive
inference of function precedence protocols. In Proceedings of the
29th International Conference on Software Engineering, pages 240–250,
2007.

[25] Rational Inc. The unified modeling language.
http://www.rational.com/uml.

[26] W. E. Riddle, J. Sayler, A. Segal, and J. Wileden. An introduction to
the dream software design system. volume 2, pages 11–23, July 1977.

[27] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specification
mining using automata-based abstractions. In Proceedings of the 2007
International Symposium on Software Testing and Analysis, 2007.

[28] Sun Microsystems. Java Virtual Machine Profiler Interface (JVMPI).
http://java.sun.com/products/jdk/1.2/docs/guide/
jvmpi/.

[29] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage
anomalies. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 35–44, New York, NY,
USA, 2007. ACM.

[30] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of
object-oriented component interfaces. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2002.

http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/
http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/

	Introduction
	Role Separation Criteria
	Role Subspaces
	Static vs. Dynamic Analysis
	Contributions

	Example
	Starting Out
	Role Transition Diagrams
	Role Definitions
	Role Relationship Diagrams
	Enhanced Method Interfaces
	Role Information

	Dynamic Analysis
	Predicate Evaluation
	Multiple Object Data Structures
	Method Effect Inference
	Incremental Reachability Algorithm
	Multiple Executions
	Role Subspaces

	User Interface
	Exploration Strategy
	Experience
	Jess
	Direct-To
	Tagger
	Treeadd
	Em3d
	Utility of Roles
	Analysis Overhead

	Related Work
	Design Formalisms
	Program Understanding Tools
	Verifying Data Structure Properties

	Conclusion
	Acknowledgments
	References

