
Automated Techniques for Surviving

(Otherwise) Fatal Software Errors

Martin Rinard

Department of Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139
rinard@csail.mit.edu

1 Fatal Software Errors

Many errors in software systems do not manifest themselves until the system
has been deployed into production use. Fatal errors can have especially severe
consequences in such situations as they may completely deny the user any of
the service that the program is designed to supply. The standard approach to
dealing with errors is to notify the organization that produced the system of the
problm, have a developer investigate the problem to discover and correct the
error, then issue a patch or new release with the error corrected. A host of issues
make this approach suboptimal:

– Error Notification: In many cases the software may be executing au-
tonomously with no connection to the organization that produced it; in other
cases the users of the software may be reluctant to notify the organization
that produced the software of the error (for example, because notifying the
organization of the error may reveal information that the users prefer to
keep private). In these cases, and others, the organization that produced the
software may never even become aware of the error.

– Error Correction Delays: Any process that involves developers maintain-
ing software incurs inevitable delays as the developers investigate the error,
correct the code that contains the error, and validate the correction. In the
meantime the users of the system must wait for the maintenance process to
complete. These delays can be especially intolerable, for example, in real-
time systems that control unstable physical phenomena and in commercial
applications that cannot tolerate substantial downtime.

– Distribution Difficulties: Once the error is corrected, the corrected ver-
sion must be distributed to its users. This distribution can be especially
problematic in embedded systems with no connectivity to the organization
that corrected the error or if the deployment of the new version involves
substantial system administration activities.

– Error Reproduction: The error may manifest itself only in certain oper-
ating contexts, making it difficult for the developer investigating the error
to reproduce the error.



– New Errors or Anomalies: Attempts to correct the error may introduce
new errors or change the behavior of the software in ways that disable other
parts of the system or other uses of the system.

Together, all of these issues provide a strong incentive to develop and deploy
techniques that enable systems to continue to execute through otherwise fatal
errors. In many cases this incentive is strong enough to make users willing to take
the risk of of impaired functionality or even unacceptable execution in return for
the certainty of continued execution that may satisfy their needs.

2 Surviving (Otherwise) Fatal Software Errors

We have developed several techniques that, together, eliminate the possibility of
certain kinds of fatal errors:

– Forced Loop Termination: Infinite loops are one source of fatal errors —
they can prevent flow of control from proceeding past the loop to execute
other crucial parts of the program. Our infinite loop elimination technique
simply learns reasonable bounds for the number of iterations that each loop
may execute by observing successful executions, then exits each loop if it
attemps to substantially exceed its reasonable iteration bound. The potential
drawback of this technique is that it may exit the loop prematurely; the
advantage is that it completely eliminates the possibility of an infinite loop.

– Forced Recursion Termination: Infinite recursions are another potential
source of fatal errors because they can exhaust the stack space. Our infinite
recursion elimination technique simply bounds the size of the stack, then
immediately returns back out of any procedure call that attempts to ex-
ceed this bound. The potential drawback is that it may terminate recursions
prematurely; the advantage is that it can eliminate otherwise fatal infinite
recursions.

– Deadlock Elimination: Our deadlock elimination technique simply goes
around releasing locks until any deadlock is eliminated. The potential draw-
back is the introduction of race conditions because of unsynchronized ac-
cesses to shared data; the advantage is the elimination of deadlock.

– Memory Leak Elimination: Memory leaks can cause a program to fail be-
cause it exhausts its address space. Our memory leak elimination algorithm
simply allocates a fixed size buffer for allocation sites that may leak allocated
memory. It then allocates data cyclically out of that buffer. The potential
drawback is that the technique may overlay live data; the advantage is the
elimination of any memory leak at that site.

– Resource Leak Elimination: Memory is only one of the many resources
that a system may need to successfully execute. Systems may also require
file handles, mutual exclusion locks, condition variables, and other resources.
Our resource leak elimination algorithms apply a generalization of our mem-
ory leak elimination idea — they allocate a conceptually unbounded number
of resources out of fixed size pools by applying some policy for reallocating



resources out of the pools when the system exhausts its resources. Potential
policies include least-recently-used reallocation and policies that attempt to
estimate importance and reallocate resources in reverse importance order.

– Invalid Addressing Elimination: Out of bounds writes can cause fatal
address space corruption; out of bounds reads can cause the program to at-
tempt to access an invalid part of the address space. Our invalid addressing
elimination technique (also known as failure-oblivious computing) performs
bounds checks to discard out of bounds writes and manufacture arbitrary
values for out of bounds reads. The potential disadvantage is that the pro-
gram may be unprepared to operate with the manufactured read values;
the advantage is the elimination of out of bounds accesses as the immediate
cause of fatal errors.

Because all of these techniques change the execution of the program in po-
tentially unpredictable ways, it seems that an empirical investigation is the only
productive way to explore the potential effects they may have on the execution.
We have performed such an investigation for several of these techniques. Our re-
sults indicate that software systems usually tolerate the perturbation that these
techniques can introduce. The overall result is usually acceptable execution with,
in some cases, a relatively graceful degradation in service.

References

1. H. Nguyen and M. Rinard. Using cyclic memory allocation to eliminate memory
leaks. Technical Report MIT-LCS-TR-1008, MIT Laboratory for Computer Science,
October 2005.

2. M. Rinard. Acceptability-oriented computing. In 2003 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications Companion
(OOPSLA ’03 Companion) Onwards! Session, Anaheim, CA, October 2003.

3. M. Rinard, C. Cadar, D. Dumitran, D. Roy, and T. Leu. A dynamic technique for
eliminating buffer overflow vulnerabilities (and other memory errors). In Proceed-
ings of the 2004 Annual Computer Security Applications Conference, Tucson, AZ,
December 2004.

4. M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and Jr. W. Beebee. Enhancing
server availability and security through failure-oblivious computing. In Proceed-
ings of the 6th Symposium on Operating Systems Design and Implementation, San
Francisco, CA, December 2004.

5. M. Rinard, C. Cadar, and H. Nguyen. Exploring the acceptability envelope. In 2005
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications Companion (OOPSLA ’05 Companion) Onwards! Session, San
Diego, CA, October 2005.


