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Abstract. We introducefield constraint analysisa new technique for verifying data struc-
ture invariants. A field constraint for a field is a formula si@ng a set of objects to which
the field can point. Field constraints enable the applicaticdecidable logics to data struc-
tures which were originally beyond the scope of these lodigsverifying the backbone
of the data structure and then verifying constraints ondigat cross-cut the backbone in
arbitrary ways. Previously, such cross-cutting fields darly be verified when they were
uniquely determined by the backbone, which significanttyits the range of analyzable
data structures.

Field constraint analysis permit®n-deterministidield constraints on cross-cutting fields,
which allows the verificiation of invariants for data stuets such as skip lists. Non-
deterministic field constraints also enable the verificatibinvariants between data struc-
tures, yielding an expressive generalization of statie typclarations.

The generality of our field constraints requires new techesq We present one such tech-
nigue and prove its soundness. We have implemented thisitgehas part of a symbolic
shape analysis deployed in the context of the Hob systenefdying data structure consis-
tency. Using this implementation we were able to verify datactures that were previously
beyond the reach of similar techniques.

1 Introduction

The goal of shape analysis [27, Chapter 4], [2,4-6, 22, 2532)6is to verify com-
plex consistency properties of linked data structures. vidrdication of such proper-
ties is important in itself, because the correct executiothe program often requires
data structure consistency. In addition, the informatiomputed by shape analysis is
important for verifying other program properties in progiawith dynamic memory
allocation.

Shape analyses based on expressive decidable logics [2B]Bte interesting for
several reasons. First, the correctness of such analysasier to establish than for
approaches based on ad-hoc representations; the use dflaldedogic separates the
problem of generating constraints that imply program proge from the problem of
solving these constraints. Next, such analyses can be nsbe icontext of assume-
guarantee reasoning because logics provide a languagedoifysng the behaviors of
code fragments. Finally, the decidability of logics leagl€dmpleteness properties for
these analyses, eliminating false alarms and making tHgsesaeasier to interact with.
We were able to confirm these observations in the context &f $ystem [16, 21] for
analyzing data structure consistency, where we have etiegjone such shape analysis
[26] with other analyses, allowing us to use shape analysihé context of larger
programs: in particular, Hob enabled us to leverage the poivghape analysis, while
avoiding the associated performance penalty, by apphiages analysis only to those
parts of the program where its extreme precision is necgssar



Our experience with such analyses has also taught us tha gbthe techniques
that make these analyses predictable also make them inablgito many useful data
structures. Among the most striking examples is the rea&non pointer fields in the
Pointer Assertion Logic Engine [26]. This restriction stwathat all fields of the data
structure that are not part of the data structure’s tree limok must be functionally
determined by the backbone; that is, such fields must befiggkby a formula that
uniquely determines where they point to. Formally, we have

Vry. f(z)=y < F(z,y) 1)

where f is a function representing the field, afdis the defining formula forf. The
relationship (1) means that, although data structures asdfoubly linked lists with
backward pointers can be verified, many other data structeraain beyond the scope
of the analysis. This includes data structures where thetexdue of pointer fields
depends on the history of data structure operations, aredsiiatctures that use ran-
domness to achieve good average-case performance, suklpdists [30]. In such
cases, the invariant on the pointer field does not uniquelgrdeéne where the field
points to, but merely gives a constraint on the field, of threnfo

Vo y. f(z)=y — F(z,y) 2)

This constraint is equivalent téz. F(x, f(x)), which states that the functiofiis a
solution of a given binary predicate. The motivation fosthaper is to find a technique
that supports reasoning about constraints of this, morergérform. In a search for
existing approaches, we have considered structure siimf&, 11], which, intuitively,
allows richer logics to be embedded into existing logics #ra known to be decidable,
and of which [26] can be viewed as a specific instance. Unfiattely, even the general
structure simulation requires definitions of the fovm y. r(z,y) < F(z,y) where
r(z,y) is the relation being simulated. To handle the general c2seaf alternative
approach therefore appears to be necessary.

Field constraint analysis. This paper presents field constraint analysis, our approach
for analyzing fields with general constraints of the form @gld constraint analysis is

a proper generalization of the existing approach and rexitacé when the constraint
formula F' is functional. It is based on approximating the occurrerafeg with F,
taking into account the polarity of, and is always sound. It is expressive enough to
verify constraints on pointers in data structures such asléwel skip lists. The appli-
cability of our field constraint analysis to non-determiicigield constraints is impor-
tant because many complex properties have useful nonrdigistic approximations.
Yet despite this fundamentally approximate nature of fieldstraints, we were able to
prove its completeness for some important special caselsl ¢onstraint analysis natu-
rally combines with structure simulation, as well as wittyebolic approach to shape
analysis [29, 33]. Our presentation and current implentemare in the context of the
monadic second-order logic (MSOL) of trees [13], but ounhessextend to other log-
ics. We therefore view field constraint analysis as a usefimonent of shape analysis
approaches that makes shape analysis applicable to a w&itge of data structures.



Contributions. This paper makes the following contributions:

— We introduce aralgorithm (Figure 9) that uses field constraints to eliminate de-
rived fields from verification conditions.

— We prove that the algorithm is bodound(Theorem 1) and, in certain casesm-
plete. The completeness applies not only to deterministic fieldeorem 2), but
also to the preservation of field constraints themselves loop-free code (Theo-
rem 3). Theorem 3 implies a complete technique for checkiagfteld constraints
hold, if the programmer adheres to a discipline of maintajrithem, for instance at
the beginning of each loop.

— We describe how to combine our algorithm with symbolic shapelysis [33] to
infer loop invariants.

— We describe aimplementation and experience in the context of the Hob sys-
tem for verifying data structure consistency. The impletaton of field constraint
analysis as part of the Hob system [16, 21] allows us to apm@yanalysis to mod-
ules of larger applications, with other modules analyzethbye scalable analyses,
such as typestate analysis [20].

Additional details (including proofs of theorems) are id]3

2 Examples

We next explain our field constraint analysis with a set ofnepkes. Note that our
analysis handles, as a special case, data structures tleabaek pointers constrained
by deterministic constraints. Such data structures (fstiaimce, doubly linked lists and
trees with parent pointers [34]) have also been analyzedéyiqus approaches [26].
To illustrate the additional power of our analysis, we firggent an example illustrating
inter-data-structure constraints, which are simple ardul$or high-level application
properties, but are often nondeterministic. We then piteseskip list example, which
shows how non-deterministic field constraints arise witthdtta structures, and illus-
trates how our analysis can synthesize loop invariants.

2.1 Students and Schools

The data structure in our first example contains two linkst$lione containing students
and one containing schools (Figure 2). E&tdm object may represent either a student
or a school; students have a pointer to the school which ttiega Both students and
schools use thaeext backbone pointer to indicate the next student or schoolén th
relevant linked list. An invariant of the data structuretiatt if an object is in the list of
students, then itattends  field points to an object in the schools list; that is, it canno
be null and it cannot point to an object outside the list ofosds. This invariant is an
example of a non-deterministic field constraint; titeends field has a non-trivial
constraint, but the target of the field is not uniquely defimetérms of existing fields;
instead, this field carries important new information akitbaetschool that each student
attends.

We implement our example as a module in the Hob system [21ihwddlows us
to specify and, using field constraint analysis, verify tlesiced data structure invari-
ants and interfaces of data structure operations. In gkrergdule in Hob consists of
three sections: 1) an implementation section (Figure 1jatoimg declarations of mem-
ory cell formats (in this casElem) and executable code for data structure operations



impl module Students {
format Elem {
attends : Elem;
next : Elem;
}
var students : Elem;
var schools : Elem;

attends

proc addStudent(st:Elem; sc:Elem) {
st.attends = sc;
st.next = students;
students = st;

next ™\ next ™\ next

}
} I
Fig. 1. Implementation for students example students  schools
Fig. 2. Students data structure instance

spec module Students {
format Elem;
specvar ST : Elem set;
specvar SC : Elem set;

proc addStudent(st:Elem; sc:Elem)
requires card(st)=1 & card(sc)=1 & (sc in SC) &
(not (st in ST)) & (not (st in SC))
modifies ST
ensures ST’ = ST + st;

Fig. 3. Specification for students example

abst module Students {
use plugin "Bohne decaf";

v2) students x" };
v2) schools x" };

{ x : Elem | "rtrancl (% v1 v2. next vl
{ x : Elem | "rtrancl (% v1 v2. next vl

ST =
SC =
invariant "ALL x y. (attends x = y) -->

x "= null -->

(C(rtrancl (% v1 v2. next vl = v2) students x) --> y = null) &

((rtrancl (% v1 v2. next vl = v2) students x) -->
(rtrancl (% v1 v2. next vl = v2) schools y))))"

invariant "ALL x.

(x "= null & (rtrancl (% v1 v2. next vl = v2) schools x) -->
“(rtrancl (% v1 v2. next vl = v2) students x))";

invariant "ALL x.

(x "= null & (rtrancl (% v1 v2. next vl = v2) students x) -->
“(rtrancl (% v1 v2. next vl = v2) schools x))";

Fig. 4. Abstraction for students example



(such amaddStudent ); 2) a specification section (Figure 3) containing declaret of
abstract sets of objects (such%iEfor the set of students ar®lCfor the set of schools
in the data structure) and interfaces of data structureatipeis expressed in terms of
these abstract sets; and 3) the abstraction section, whiek the abstraction function
specifying the definition of setSCandST) and specifies the representation invariants
of the data structure, including field constraints (in thase, on the fieldttends ).

The implementation in Figure 1 states that #edStudent procedure adds a
studentt to the student list and associates it (via#itiends field) with an existing
schoolsc , which is expected to be already in the list of schools. Fe@presents the set
interface for theaddStudents procedure, consisting of a preconditiarduires
clause), frame conditionr{odifies  clause), and postconditioerfsures clause).
The precondition states that must not already be in the list of studer83, and
thatsc must be in the list of schools. We represent parameters aobetardinality
at most one (the null object is represented as an empty degyefore, the conjuncts
card(st)=1  andcard(sc)=1 in the precondition indicate that the parametdrs
andsc are not null. The modifies clause indicates that only the SstudlentsST and
not the set of schoolSCis modified. The postcondition describes the effect of the
procedure: it states that the set of stud&¥s after procedure execution is equal to the
union (denoted) of the setST of student objects before procedure execution, and (the
singleton containing) the given student objstct

Our analysis automatically verifies that the data struotyerationaddStudent
conforms to its interface expressed in terms of abstrast Bebving the conformance
of a procedure to such a set interface is useful for seveasbres. First, the precondi-
tions indicate to data structure clients the conditionsaumdhich it is possible to invoke
operations. These preconditions are necessary to provénehéeld constraint is main-
tained: if it was not the case that the school paramstebelonged to the se$C of
schools, the insertion would violate the representatigariant. Similarly, if it was the
case that the student objextt was a member of the student list, insertion would intro-
duce cycles in the list and violate the implicit acyclicibyvariant of the data structure.
Also, the postcondition odddStudents communicates the fact that is in the list
after the insertion, preventing clients from executingligpe calls toaddStudents
with the same student object. Finally, the set interfaceesges an important partial
correctness property for theddStudent procedure, so that the verification of the
set interface indicates that the procedure is correctlgriitey an object into the set of
students.

Note that the interface of the procedure does not reveal ¢hailsl of procedure
implementation, thanks to the use of abstract set variaBiese the set variables in
the specification are abstract, any verification of a coedraplementation’s confor-
mance to the set interface requires concrete definitionthédabstract variables. The
abstraction section in Figure 4 contains this informatiéinst, the abstraction section
indicates which analysis (in this cadgohne decaf , which implements field con-
straint analysis) is to be used to analyze the module. Nestabstraction section con-
tains definitions for abstract variables: nam@y, is defined as the set @&lem ob-
jects reachable from the rostudents throughnext fields, andSCis the set of
Elem objects reachable frorachools . (The functionrtrancl is a higher-order
function that accepts a binary predicate on objects andrnetihe reflexive transitive



closure of the predicate.) The abstraction section alsoifsp® data structure invari-
ants, including field constraints. Field constraints asafiants with syntactic form
ALL x y. (f x = y) -> ---. Afield f for which there is no field constraint
invariant in the abstraction section is considered to bé gfathe data structurback-
bone which has an implicit invariant that it is a union of tree@mafly, the abstraction
section may contain additional invariants; our examplea&ios invariants stating dis-
jointness of the lists rooted atudents andschools

Our Bohne analysis verifies the conformance of a proceduite gpecification as
follows. It first desugars the modifies clauses into a frammmtda and conjoins it with
the ensures clause, then replaces abstract sets in préensdind postconditions with
their definitions from the abstraction section, obtainingreacedure contract in terms
of the concrete state variablasekt andattends ). It then conjoins representation
invariants of the data structure to preconditions and postitions. For a loop-free pro-
cedure such aaddStudents , the analysis can then generate a verification condition
whose validity implies that the procedure conforms to iteiiface.

The generated verification condition for our example cawlirgtctly be solved us-
ing decision procedures such as MONA.: it contains the fomctymbolkttends  that
violates the tree invariant required by MONA. Section 3 diéss how our analysis
uses field constraints in the verification condition to wetiife validity of such verifica-
tion conditions. Our analysis can successfully verify theperty that for any student,
attends points to some (undetermined) element of 8@set of schools. Note that
this goes beyond the power of previous analyses, which medjthat the identity of
the school pointed to by the student be functionally deteealiby the identity of the
student. The example therefore illustrates how our armlgiminates a key restric-
tion of previous approaches—certain data structures @éyriiperties that the logics in
previous approaches were not expressive enough to capture.

2.2 Skip List

We next present the analysis of a two-level skip list. Skspsl{30] support logarithmic
average-time access to elements by augmenting a linkegifissublists that skip over
some of the elements in the list. The two-level skip list ilgpdified implementation of

a skip list with only two levels: the list containing all elemts, and a sublist of this list.
Figure 5 presents an example two-level skip list. Our im@etation uses thaext
field to represent the main list, which forms the backbonbdeftata structure, and uses
the derivedchextSub field to represent a sublist of the main list. We focus onédtié
procedure, which inserts an elementinto an appropriatéqos the skip list. Figure 6
presents the implementation afld, which first searches througtextSub links to
get an estimate of the position of the entry, then finds theydnt searching through
next links, and inserts the element into the maiext -linked list. Optionally, the
procedure also inserts the element inextSub list, which is modelled using a non-
deterministic choice in our language and is an abstractidgheoinsertion with certain
probability in the original implementation. Figure 7 pretea specification foadd,
which indicates thaadd always inserts the element into the set of elements stored in
the list. Figure 8 presents the abstraction section fontloelével skip list. This section
defines the abstract sstas the set of nodes reachable fromot.next , indicating
thatroot is used as a header node. The abstraction section contedesitivariants.



The first invariant is the field constraint on the figldxtSub , which defines it as a
derived field.

Note that the constraint for this derived field is non-deierstic, because it only
states that ik.nextSub==y , then there exists a path of length at least one fxotm
y alongnext fields, without indicating whereextSub points. Indeed, the simplicity
of the skip list implementation stems from the fact that tlsifion of nextSub is
not uniquely given bynext ; it depends not only on the history of invocations, but
also on the random number generator used to decide whenadimte newnextSub
links. The ability to support such non-deterministic coaistts is what distinguishes
our approach from approaches that can only handle detestigifields.

The last two invariants indicate thettot is never null (assuming, for simplicity of
the example, that the state is initialized), and that aleotg not reachable fronoot
are isolated: they have no incoming or outgoimext pointers. These two invariants
allow the analysis to conclude that the object referenced toyadd(e) is not refer-
enced by any node, which, together with the preconditiotte in S) , allows our
analysis to prove that objects remain in an acyclic list glthrenext field 3

Our analysis successfully verifies thedd preserves all invariants, including the
non-deterministic field constraint arextSub . While doing so, the analysis takes ad-
vantage of these invariants as well, as is usual in assurgiee reasoning. In this
example, the analysis is able to infer the loop invariangid. The analysis constructs
these loop invariants as disjunctions of universally gifi@dtboolean combinations of
unary predicates over heap objects, using symbolic shapgsss[29, 33]. These unary
predicates correspond to the sets that are supplied in sSteaabion section using the
proc keyword.

3 Field Constraint Analysis

This section presents the field constraint analysis algordand proves its soundness as
well as, for some important cases, completeness.

We consider a logi€ over a signature’ whereX' consists of unary function sym-
bols f € Fld corresponding to fields in data structures and constant slgmbe Var
corresponding to program variables. We use monadic secoiet-logic (MSOL) of
trees as our working example, but in general we only regfiit@ support conjunction,
implication, and equality reasoning.

A XY-structureS is a first-order interpretation of symbols ¥i. For a formulaZ’ in
L, we denote byFields(F') C X the set of all fields occurring if'.

We assume thaf is decidable over some set of well-formed structures and we
assume that this set of structures is expressible by a fariin £. We call I the
simulation invarianf11]. For simplicity, we consider the simulation itself te given
by the restriction of a structure to the fieldshields(7), i.e. we assume that there exists
a decision procedure for checking validity of implicatiaishe form/ — F whereF
is a formula such thafields(F') C Fields(I). In our running example, MSOL of trees,
the simulation invariani states that the fields ifields(I) span a forest.

3 The analysis still needs to know thais not identical to the header node. In this example we hase as
explicit (assume "e # root") statement to supply this information. Such assume statsnoam
be automatically generated if the developer specifies thefsepresentation objects of a data structure,
but this is orthogonal to field constraint analysis itself.
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Fig. 5. An instance of a two-level skip list

impl module Skiplist {
format Entry {
v oint;
next, nextSub : Entry;

}

var root : Entry;

proc add(e:Entry) {

assume "e "= root";

int v =e.v;

Entry sprev = root, scurrent = root.nextSub;

while ((scurrent != null) && (scurrent.v < v)) {
sprev = scurrent; scurrent = scurrent.nextSub;

}

Entry prev = sprev, current = sprev.next;

while ((current != scurrent) && (current.v < v)) {
prev = current; current = current.next;

}

e.next = current; prev.next = e;

choice { sprev.nextSub = e; e.nextSub = scurrent; }

| { e.nextSub = null; }

Fig. 6. Skip list implementation

spec module Skiplist {
format Entry;
specvar S : Entry set;

proc add(e:Entry)
requires card(e) = 1 & not (e in S)
modifies S
ensures S’ = S + e

Fig. 7. Skip list specification

abst module Skiplist {
use plugin "Bohne";

S = {x : Entry | "rtrancl (% v1 v2. next vl = v2) (next root) x"};
invariant "ALL x y. (nextSub x =vy) --> ((x = null --=>y = null) &
(x "= null --> rtrancl (% vl v2. next vl = v2) (next x) y))"
invariant “"root "= null";
invariant "ALL x. x "= null &
“(rtrancl (% v1 v2. next vl
“EX y.y = null & nexty

v2) root x) -->
X) & (next x = null)";

proc add {
has_pred = {x : Entry | "EX y. next y = x"};
r_current = {x : Entry | "rtrancl (% v1 v2. next vl = v2) current
r_scurrent = {x : Entry | "rtrancl (% v1 v2. next vl = v2) scurre

r_sprev = {x : Entry | "rtrancl (% v1 v2. next vl
next_null = {x : Entry | "next x = null'};
sprev_nextSub = {x : Entry | "nextSub sprev = scurrent};
prev_next = {x : Entry | "next prev = current"};

v2) sprev X"}

Fig. 8. Skip list abstraction (including invariants)

X"}

nt x"};



We call a fieldf € Fields(I) abackbone fieldand call a fieldf € Fld \ Fields(T)
aderived field We refer to the decision procedure for formulas with fieldBields(7)
over the set of structures defined by the simulation invarfaasthe underlying de-
cision procedureField constraint analysis enables the use of the underigé@cision
procedure to reason about non-deterministically cormstrhiderived fields. We state
invariants on the derived fields using field constraints.

Definition 1 (Field constraints on derived fields).A field constrainD  for a simula-
tion invariant! and a derived field is a formula of the form

Dy = Voy. f(x) =y — FCy(z,y)

whereFC; is a formula with two free variables such that @iglds(FC¢) C Fields(1),
and (2)FC; is total with respect td, i.e.] = Va. 3y . FCs(x, y). We call the constraint
Dy deterministidf FC; is deterministic with respect b, i.e.

I =EVeyz FCy(z,y) NFCy(z,2) — y=12 .
We write D for the conjunction oD for all derived fieldsf.

Note that Definition 1 covers arbitrary constraints on a fielecaus® ; is equivalent
toVz. FCy(z, f(x)).

The totality condition (2) is not required for the soundnefssur approach, only for
its completeness, and rules out invariants equivalentaizéf. The condition (2) does
not involve derived fields and can therefore be checked aatioally using a single call
to the underlying decision procedure.

Our goal is to check validity of formulas of the forin\ D — G, whereG is a
formula with possible occurrences of derived fields=IHoes not contain any derived
fields then there is nothing to do, because we can answer #ry gging the under-
lying decision procedure. To check validity 6\ D — G, we therefore proceed as
follows. We first obtain a formul&”’ from G by eliminating all occurrences of derived
fields in G. Next, we check validity of’ with respect tol. In the case of a derived
field f that is defined by a deterministic field constraint, occuresoff in G can be
eliminated by flattening the formula and substituting e&etf (z) = y by FCy(z,y).
However, in the general case of non-deterministic field taigs such a substitution
is only sound for negative occurrences of derived fieldgesthe field constraint gives
an over-approximation of the derived field. Therefore, agrsmphisticated elimination
algorithm is needed.

Eliminating derived fields. Figure 9 presents our algorithBlim for elimination of
derived fields. Consider a derived fiefd The basic idea oElim is that we can re-
place an occurrend®g( f(x)) of f by a new variablg that satisfie$C(x,y), yielding

a stronger formuldfy. FC¢(z,y) — G(y). As an improvement, ity contains two
occurrenceg (x1) and f(z2), and ifz; andxs evaluate to the same value, then we at-
tempt to replace (x1) and f (z2) with the same valuélim implements this idea using
the setK of triples (z, f,y) to record previously assigned values f{tx). Elim runs

in time O(n?), wheren is the size of the formula, and produces an at most quadrati-
cally larger formulaElim accepts formulas in negation normal form, where all negatio



signs apply to atomic formulas. We generally assume thdt gaantifier@ z binds a
variablez that is distinct from other bound variables and distinctfrine free variables
of the entire formula. The algorithiElim is presented as acting on first-order formulas,
but is also applicable to checking validity of quantifieedrformulas because it only
introduces universal quantifiers which can be replaced lpjesk constants. The algo-
rithm is also applicable to multisorted logics, and, by tirasets of elements as a new
sort, to MSOL. To make the discussion simpler, we considestarchinistic version of
Elim where the non-deterministic choices of variables and temasesolved by some
arbitrary, but fixed, linear ordering on terms. We wilitém(G) to denote the result of
applyingElim to a formulaG.

S — aterm or a formula
Terms(S) — terms occurring i
FV(S) — variables free irt
Ground(S) = {t € Terms(S). FV(t) C FV(S)}
Derived(S) — derived function symbols iy

proc Elim(G) = elim(G, 0)
proc elim(G : formula in negation normal form
K : set of (variable,field,variable) triplgs
letT = {f(t) € Ground(G). f € Derived(G) A Derived(t) = 0}
if T# (0 do
choosef(t) € T
choosez, y fresh first-order variables
let It = FCy(z,y) A N(a, fryner(@ =20 — ¥y =1yi)
let Gy = G[f(t) :=y]
return Ve.z =t — Vy. (F1 — elim(Gi, K U{(z, f,y)}))
else casér of
| Qz. Gy whereQ € {v,3}:
return Qz. elim(G1, K)
| GiopGawhereop € {A,V}:
return elim(G1, K) op elim(G2, K)
| elsereturnG

Fig. 9. Derived-field elimination algorithm

The correctness dlim is given by Theorem 1. The proof of Theorem 1 relies on
monotonicity of logical operations and quantifiers in negranormal form of a formula.
(Proofs for the theorems stated here can be found in [34]).

Theorem 1 (Soundness)The algorithmElim is sound: if/ A D = Elim(G), then
IND E G.Whatis more] A D AElm(G) E G.

We now analyze the classes of formu@s$or which Elim is complete

Definition 2 (Completeness)We say thaElim is complete fof D, G) iff
IND = GimpliesI A D = Elim(G).

Note that we cannot hope to achieve completeness for asbitcastraintsD. Indeed,
if we let D = true, then D imposes no constraint whatsoever on the derived fields,
and reasoning about the derived fields becomes reasoning @hioterpreted function

10



symbols, that is, reasoning in unconstrained predicaie.l8gich reasoning is undecid-
able not only for monadic second-order logic, but also focmweaker fragments of
first-order logic [7]. Despite these general observatimeshave identified two cases
important in practice for whicklim is complete (Theorem 2 and Theorem 3).

Theorem 2 expresses the fact that, in the case where all bektraints are deter-
ministic, Elim is complete (and then it reduces to previous approacheg¢lihat are
restricted to the deterministic case). The proof of TheoPeuses the assumption that
F'is total and functional to concludér y. FCs(x,y) — f(z)=y, and then uses an
inductive argument similar to the proof of Theorem 1.

Theorem 2 (Completeness for deterministic fieldsElim is complete fof D, G) when
each field constraint itD is deterministic. Moreovel, A D A G |= Elim(G).

We next turn to completeness in the cases that admit nomrdlieiem of derived fields.
Theorem 3 states that our algorithm is complete for derivelddiintroduced by the
weakest precondition operator to a class of postconditftatsncludes field constraints.
This result is important in practice: a previous, incomg|efersion of our elimination
algorithm was not able to verify the skip list example in $@mt.2. To formalize our
completeness result, we introduce two classes of well\mhtormulasnice formulas
andpretty nice formulas

Definition 3 (Nice formulas). A formulaG is a nice formulaif each occurrence of
each derived field in G is of the formf(t), wheret € Ground(G).

Nice formulas generalize the notion of quantifier-free fakas by disallowing quanti-
fiers only for variables that are used as arguments to defigkts. We can show that
the elimination of derived fields from nice formulas is coetpl The intuition behind
this result is that if A D = G, then for the choice of; such thatC(x;, y;) we can
find an interpretation of the function symbplsuch thatf (x;) = y;, andI A D holds,
soG holds as well, an&lim(G) evaluates to the same truth value(as

Definition 4 (Pretty nice formulas). The set ofpretty nice formulass defined induc-
tively by 1) a nice formula is pretty nice; 2)d, andG-, are pretty nice, thelir; A G2
andG; V G- are pretty nice; 3) ifG is pretty nice and: is a first-order variable, then
Vx.G is pretty nice.

Pretty nice formulas therefore additionally admit unierguantification over argu-
ments of derived fields. We define the functigkolem, which strips (top-level) uni-
versal quantifiers, as follows: Ekolem(G; op G2) = skolem(G1) op skolem(Gs)
whereop € {V,A}; 2) skolem(Vz.G) = G; and 3)skolem(G) = G, otherwise. Note
that pretty nice formulas are closed undép (up to formula equivalence); the closure
property follows from the conjunctivity of the weakest ppedition operator.

Theorem 3 implies thdlim is a complete technique for checking preservation (over
straight-line code) of field constraints, even if they arejomed with additional pretty
nice formulas. Elimination is also complete for data stnoetoperations with loops as
long as the necessary loop invariants are pretty nice.

Theorem 3 (Completeness for preservation of field constrais). Let G be a pretty
nice formula,D a conjunction of field constraints, anda guarded command (Fig-
ure 10). Then

IND Ewlp(c, GAD) iff Ik Elim(wlp(c,skolem(G A D))) .
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x € Var — program variables f € FId — pointer fields
ecExpu==zlef F — quantifier free formula
c € Com = e1 := ez | assume(F) | assert(F)
| havoc(z) (non-deterministic assignment 9
| c1;ec2 ] ci0ce  (sequential composition and non-deterministic choice)

Fig. 10.Loop-free statements of a guarded command language (sd&]e.g

Example 1.The example in Figure 11 demonstrates the elimination af/eeérfields
using algorithnElim. It is inspired by the skip list module from Section 2.

Diestsuy = Yv1 va. nextSub(vi) = v2 — next™ (vi,v2)
G wlp((e.nextSub := root.nextSub ; e.next := root), Dpextsub)
Yoy ve. nextSuble := nextSub(root)](v1) = va — (next[e := root]) " (v, v2)

G’ = skolem(Elim(G)) =
x1 = root — nemt+(m17y1) —
zo=v1 — next’[e:=y1](z2, ) A(T2 =21 — Y2 =y1) —
Y2 = v2 — (next[e := root]) T (v1,vs)

Fig. 11.Elimination of derived fields from a pretty nice formula. Tinetationnezt™ denotes the
irreflexive transitive closure of predicatest(z) = y.

The formulaG expresses the preservation of field constr@ipt,:s., for updates
of fields next and nextSub that inserte in front of root. The formulaG is valid un-
der the assumption thate. nezt(z) # e. Elim first replaces the inner occurrence
nextSub(root) and then the outer occurrencemdfztSub. Theorem 3 implies that the
resulting formulakolem(Elim(G)) is valid under the same assumptions as the original
formulaG.

Limits of completeness. In our implementation, we have successfully uggieh in
the context of MSOL, where we encode transitive closuregisigcond-order quan-
tification. Unfortunately, formulas that contain trangiticlosure of derived fields are
often not pretty nice, leading to false alarms after the iappbn of Elim. This behav-
ior is to be expected due to the undecidability of transitikasure logics over general
graphs [10]. On the other hand, unlike approaches basediomatizations of tran-
sitive closure in first-order logic, our use of MSOL enablemplete reasoning about
reachability over the backbone fields. It is therefore udefbe able to consider a field
as part of a backbone whenever possible. For this purposenibe helpful to verify
conjunctions of constraints using different backboneslffierent conjuncts.

Verifying conjunctions of constraints. In our skip list example, the fieldextSub
forms an acyclic (sub-)list. It is therefore possible toifyethe conjunction of con-
straints independently, withextSub a derived field in the first conjunct (as in Sec-
tion 2.2) but a backbone field in the second conjunct. Theeetdthough the reasoning
about transitive closure is incomplete in the first conjuiiés complete in the second
conjunct.
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Verifying programs with loop invariants. The technique described so far supports the
following approach for verifying programs annotated witlbp invariants:

1. generate verification conditions using loop invariapte;, and postconditions;
2. eliminate derived fields from verification conditionsngsElim (andskolem);
3. decide the resulting formula using a decision proceduch as MONA [13].

Field constraints specific to program points. Our completeness results also ap-
ply when, instead of having one global field constraint, wieoiduce different field
constraints for each program point. This allows the dewalap refine data structure
invariants with information specific to particular programints.

Field constraint analysis and loop invariant inference Field constraint analysis is not
limited to verification in the presence of loop invariants.combination with abstract
interpretation [3] it can be used to infer loop invariantsomoatically. Our implementa-
tion combines field constraint analysis with symbolic shapalysis based on Boolean
heaps [29, 33] to infer loop invariants that are disjunctiaf universally quantified
Boolean combinations of unary predicates over heap objects

Symbolic shape analysis casts the idea of three-valuede<haglysis [32] in the
framework of predicate abstraction. It uses the machinépredicate abstraction to
automatically construct the abstract post operator; thiistruction proceeds solely by
deductive reasoning. The computation of the abstractioousns to checking valid-
ity of entailments that are of the forrl’AC — wlp(¢,p). Here I' is an over-
approximation of the reachable statés,is a conjunction of abstraction predicates
andp is a single abstraction predicate. We use field constraialyais to check va-
lidity of these formulas by augmenting them with the appiatersimulation invariant
I and field constraint® that specify the data structure invariants we want to pueser
INDANI'ANC —  wlp(c,p). The only problem arises from the fact that these ad-
ditional invariants may be temporarily violated during gram execution. To ensure
applicability of the analysis, we abstract complete logefpaths in the control flow
graph of the program at once. This means that we only rechatestmulation invariants
and field constraints are valid at loop cut points; effedyivtbese invariants are implicit
conjuncts in each loop invariant. This approach suppoetptbgramming model where
violations of invariants are confined to the interior of ledsliocks [26].

Amortizing invariant checking in loop invariant inference. A straightforward ap-
proach for combining field constraint analysis with abstraterpretation would do a
well-formedness check for global invariants and field crists at every step of the
fixed-point computation, invoking a decision procedureaatteiteration step. The fol-
lowing insight allows us to use a single well-formednessckhger basic blockthe
loop invariant synthesized in the presence of well-fornesdrtheck is identical to the
loop invariant synthesized by ignoring the well-formedngseckWe therefore specu-
latively compute the abstraction of the system under themagton that both the sim-
ulation invariant and the field constraints are preservétbrahe least fixed-poirifp™
of the abstract system has been computed, we generate fgrleop free path: with
start point/, a verification conditionZ A D A prfi — wlp(¢, IAD) wherelfpfi is
the projection offp™ to program locatiorf... We then use again oiilim algorithm to
eliminate derived fields and check the validity of thesefieaiion conditions. If they
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are all valid then the analysis is sound and the data strigtvariants are preserved.
Note that this approach succeeds whenever the straigtafdrapproach would have
succeeded, so it improves analysis performance withoutadatg precision. More-
over, when the analysis detects an error, it repeats the-fimgtt computation with the
simple approach to obtain an indication of the error trace.

4 Deployment as Modular Analysis Plugin

We have implemented our field constraint analysis and depldalyas theBohneand
Bohne decaf* analysis plugins of our Hob framework [16, 21]. We have seshdly
verified singly-linked lists, doubly-linked lists with anglithout iterators and header
nodes, insertion into a tree with parent pointers, twoilek® lists (Section 2.2), and
our students example from Section 2. When the developerlissppop invariants,
these benchmarks, including skip list, verify in 1.7 sec(fdr the doubly-linked list)
to 8 seconds (for insertion into a tree). Bohne automatidafers loop invariants for
insertion and lookup in the two-level skip list in 30 minutetal. We believe the running
time for loop invariant inference can be reduced using idrah as lazy predicate
abstraction [8].

Because we have integrated Bohne into the Hob framework,eve able to verify
just the parts of programs which require the power of fieldst@int analysis with the
Bohne plugin, while using less detailed analyses for theaieder of the program. We
have used the list data structures verified with Bohne as rfeedi larger examples,
such as the 900-line Minesweeper benchmark and the 1280véb server benchmark.
Hob’s pluggable analysis approach allowed us to use thestgeeplugin [20] and loop
invariant inference techniques to efficiently verify cliemode, while reserving shape
analysis for the container data structures.

5 Further Related Work

We are not aware of any previous work that provides compésteiguarantees for an-
alyzing tree-like data structures with non-deterministicss-cutting fields for expres-
sive constraints such as MSOL. TVLA [24, 32] was initiallysigmed as an analysis
framework with user-supplied transfer functions; subsequwork addresses synthesis
of transfer functions using finite differencing [31], whihnot guaranteed to be com-
plete. Decision procedures [18, 25] are effective at reilagpabout local properties, but
are not complete for reasoning about reachability. Pramgjsalthough still incomplete,
approachesinclude [23] as well as [19,28]. Some reaclapiibperties can be reduced
to first-order properties using hints in the form of ghostd#e]15, 25]. Completeness
of analysis can be achieved by representing loop invar@rtandidate loop invariants
by formulas in a logic that supports transitive closure P&, 29, 33,35-37]. These ap-
proaches treat decision procedure as a black box and, whdiercdpo MSOL, inherit
the limitations of structure simulation [11]. Our work caa biewed as a technique
for lifting existing decision procedures into decision pedures that are applicable to
a larger class of structures. Therefore, it can be incotpdriato all of these previous
approaches.

4 Bohne decaf is a simpler version of Bohne that does not doilo@giant inference.
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6 Conclusion

Historically, the primary challenge in shape analysis veengo be dealing effectively
with the extremely precise and detailed consistency ptmsethat characterize many
(but by no means all) data structures. Perhaps for this neasany formalisms were
built on logics that supportednly data structures with very precisely defined refer-
encing relationships. This paper presents an analysisstiggiorts both the extreme
precision of previous approaches and the controlled rémtuict the precision required
to support a more general class of data structures whosemnefag relationships may
be random, depend on the history of the data structure, grfeaisome other reason
that places the referencing relationships inherently héybe ability of previous logics
and analyses to characterize. We have deployed this asatytsie context of the Hob
program analysis and verification system; our results shawit is effective at 1) an-
alyzing individual data structures to 2) verify interfatkat allow other, more scalable
analyses to verify larger-grain data structure consist@naperties whose scope spans
larger regions of the program.

In a broader context, we view our result as taking an imporssp towards the
practical application of shape analysis. By supportingdatuctures whose backbone
functionally determines the referencing relationships/alt as data structures with in-
herently less structured referencing relationships,ahpses to be able to successfully
analyze the broad range of data structures that arise itiggalts integration within the
Hob program analysis and verification framework shows holgterage this analysis
capability to obtain more scalable analyses that build erdsults of shape analysis
to verify important properties that involve larger regiafshe program. Ideally, this
research will significantly increase our ability to effeelly deploy shape analysis and
other subsequently enabled analyses on important progrimtsrest to the practicing
software engineer.

Acknowledgements. We thank Patrick Maier, Alexandru Salcianu, and anonymous
referees for comments on the presentation of the paper.
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