Efficient Specification-Assisted Error Localization

Brian Demsky  Cristian Cadar Daniel Roy  Martin Rinard
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139
{ bdemsky, cristic, droy, rinard }@mit.edu

ABSTRACT the developer cannot assume that the data structures satisfy any prop-
We present a new error localization tool, Archie, that accepts a specserty atall — t_he v_vhol_e point of_th_e chgcker Is to detect data st_ructures
ification of key data structure consistency constraints, then generateg‘at may arbitrarily violate their |nvar|ants: For example, straightfor-
an algorithm that checks if the data structures satisfy the cons’[raints\."’ard _hand-coded tree traversals may fail to terminate on trees that
We also present a set of specification analyses and optimizations th&entain cycles. .
(for our benchmark software system) significantly improve the per- _Hand-coded consistency checkers are also vulnerable to anoma-
formance of the generated checking algorithm, enabling Archie toIles such as incomplete property coverage, unwarranted assumptions
efficiently support interactive debugging. about the |.nput dgtq structures, and increased deyelopment overhead.
We evaluate Archie’s effectiveness by observing the actions of twoOur experience indicates that ha_nd-coded consistency chec_kers are
developer populations (one using Archie, the other using standard er'§UbS,tant'ally 'arg.ef an.d more difficult to develop than an equivalent
ror localization techniques) as they attempted to localize and correcEONSIStENcy specification.
three data structure corruption errors in a benchmark software sysl.2 SpeC|flcat|on-Based Approach

tem. With Archie, the developers were able to localize each error in  Archie accepts a specification of key data structure consistency
less than 10 minutes and correct each error in (usually much) lesgroperties (including sophisticated properties characteristic of com-
than 20 minutes. Without Archie, the developers were, with one ex-plex linked data structures), then periodically monitors the data struc-
ception, unable to locate each error after more than an hour of effortiyres to detect and flag violations of these properties. The developer
(potentially assisted by an automated tool) places calls to Archie into
1. INTRODUCTION the software system. If the system contains a data structure corrup-
Error localization is a key prerequisite for eliminating program- tion error, Archie localizes the errorto the.region of the exgcutioq be-
ming errors in software systems and, in many cases, the primaereen t_he first call_that detects an inconsistency and the |n_1med|ately
obstacle to correcting the error — the fix is often obvious once thePreceding call (which found the data structures to be consistent).
developer locates the code responsible for the error. Each Archie specification contains a set of model definition rules

The primary issue in error localization is minimizing the time be- @nd & set of consistency properties. Archie (conceptually) interprets
tween the error and its manifestation as observably incorrect behaythese rules to build an abstract model of the concrete data structures,
ior. The greater this time, the longer the program executes in anthen examines the model to find any violations of the consistency
incorrect state and the harder it can become to trace the manifesroPerties. The conceptual separation of the specification into the
tation back to the original error. This issue can become especially0del construction rules and consistency constraints simplifies the
problematic for data structure corruption errors — these errors of-€XPression of the_ consistency constraints and provndgg important ex-
ten propagate from the original corrupted data structure to manifesPressibility benefits. Specifically, it enables the specification devel-

themselves in distant code that manipulates other derived data stru@Per to 1) classify objects into different sets and apply different con-
tures, obscuring the original source of the error. sistency constraints to objects in different sets, 2) express the consis-

This paper presents a new error localization tool, Arghite- tency constraints at the Ie\_/el ofthe qonceptsinthe dqma_in rather than
scribes the optimizations required to make Archie efficient enough@t the level of the (potentially heavily encoded) realization of these
for practical use, and discusses the results of a case study we pep_oncepts in the _concrete data_ structures, 3) use inverse rglatlons to
formed to evaluate its effectiveness in helping developers to localize®XPress constraints on the objects that may refer (either directly or
and correct data structure corruption errors. Our results indicate thatconceptually) to a given object, 4) construct auxiliary relations that
after optimization, Archie executes efficiently enough for interactive allow the developer to express constraints between objects that are
use on our benchmark software system and that it can dramaticallpeParated by many references in the data structures, and 5) express
improve the ability of developers to localize and correct injected dataConstraints involving abstract relationships such as object ownership.
structure corruption errors in this system. 1.3 Optimizations

1.1 Consistency Checking It is clearly d(_asirable @o_ p(_erform the consistenc_y checks as fre-
quently as possible to minimize the size of the region of the execu-

_Consistency checking is cu_rrently used as a tech_nique for debugfion that may contain the error. The primary obstacle is the check
ging [17]. Developers sometimes hand-code consistency checks Rxecution overhead. We found that our initial implementation of

the same programming language as the rest of the system. The Cor?gre consistency checking algorithm as described above was too in-

pllcatlon is that de\_/glopers must code data_structure traversals_an fficient for practical use. We therefore implemented the following
implement any auxiliary data structures required to check the desire ptimizations:

properties. Developing this code can be especially difficult because "y Fixed-Point Elimination: The Archie compiler analyzes the

Archie is named after Archie Goodwin, the assistant to Rex Stout’s dependences in the specification to, when possible, replace the
fictional detective Nero Wolfe. The idea is that, under Wolfe's di- flxed-p?fl_m cc;mputlatlon In tkl'e ”.‘t‘;]de' construction phase with a
rection, Archie does all the work required to localize the crime to a mare efncient single-pass algorithm. o
specific suspect, then Wolfe uses his superior intelligence to solve ® Relation Elimination: The compiler analyzes the specification
the crime. to, when possible, replace the explicit construction of each re-




; : : - _structure city { int population; }
lation with a computation that efficiently generates, on the de structure tile { int terrain; city *city; }

mand, the required tuples in the relation. tile grid[EDGE * EDGE];
e Set Elimination: The compiler analyzes the specification to,

when possible, integrate the consistency checking computation

for each set of abstract objects into the data structure traver-Sét TILE of tile

sal that (in the absence of optimization) constructs that set. Thef;;ti(élr;wm?rfws/:gp- TILE > CITY
S?CC?SS offtmstoptltmlzatlon enables Archie to eliminate the con- g ation TERRAIN: TILE -> int

struction of that set.

Together, these optimizations make Archie run over 800 times
faster on our benchmark software system than the original compiledo, x=0 to EDGE*EDGE, true => grid[x] in TILE
version; the fully optimized instrumented version executes less tharfor t in TILE, true => <ttterrain> in TERRAIN
6.2 times slower than the original uninstrumented version. For ourfor t in TILE, !t.city = NULL =>

Figure 1: Structure Definitions

Figure 2: Set and Relation Declarations

benchmark software system, the optimized version of Archie is ef- <ttcity> in CITYMAP o

ficient enough to be used routinely during development with morefor t in TILE, ltcity = NULL => tcity in CITY

than acceptable performance for interactive debugging. Figure 3: Model Definition Rules

1.4 Case Study erid(0]  grid[1]  grid2]  grid[3]
To evaluate Archie’s effectiveness in supporting error localization terrain: 1 2 3 4

and correction, we obtained a benchmark software system, used man- city: | |

ual fault injection to create three incorrect versions, then asked six L [

developers to localize and correct the errors. Three developers used \/

Archie; the other three used standard techniques. population: C

With Archie, the developers were able to localize each error within
several minutes and correct the error in (usually much) less than
twenty mir}utes. Without Archie, the developers were (with a sin- TILE = {grid[0], grid[1], grid[2], grid[3]}
gle exception) unable to localize each error after more than an houRERRAIN= {(grid[0], 1), (grid([1], 2), (grid[2], 3), (grid[3], 4)}
of debugging. The key problem was that continued execution madec|Ty ={C}
the errors manifest themselves far (in both code and data) from theCITYMAP={(grid[2], C), (grid[3],C)}
original source of the error. Although the developers eventually came
to understand what was going wrong, they were unable to trace the

manifestation back to its _root cause wnthl_n the allotted time. Even a data structure this simple has important consistency con-
To place these results in context, consider that our benchmark sySgyaints: in this section we focus on the following constraints: the

tem contains significant numbers of assertions designed to catch daig ain field of each tile contains a legal value, each city is referenced
structure corrup_tlon errors, two of the three errors mannfest them'b)hexactly one tile, and no city is placed on an ocean tile.

selves as assertion violations, but these assertions were still not enou . . .

to enable the developers to locate the errors in a timely manner. Thesg-l Expressing Consistency Properties

results indicate that Archie can provide a substantial improvement To express these constraints, the developer first identifies the sets
over standard error localization techniques. and relations that conceptually model the concrete data structures. In
1.5 Contributions our example there are two sefdLE andCITY, and two relations,
CITYMAPandTERRAIN Figure 2 presents the declarations of these

e Archie: It presents the design, implementation, and evaluation sets and relatio_ns._ THBILE set containsile structures, and the
fArcHie A New s ecification-'based data struc’ture consistenc CITY seF contf'ilnmty structures: 'Each relation consists of a set of

0 L P o . y[uples with objects from two specified sets.
checking tool for error localization and correction. o

« Optimizations: It presents a set of optimizations (fixed point 2-1.1 Model Definition Rules
elimination, relation elimination, and set elimination) that, to-  The developer next provides a set of model definition rules that
gether, increase the performance of Archie on our benchmarkdefine a translation from the concrete data structures to the sets and
software system by over a factor of 800, enabling Archie to be relations in the model. Figure 3 presents the model definition rules
used routinely during interactive development with more than in our example. Each rule consists of a quantifier that identifies the
acceptable performance. scope of the rule, a guard that must be true for the rule to apply, and

e Case Study: It presents a case study that evaluates the effec-an inclusion constraint that specifies an object (or tuple) that must be
tiveness of Archie as an error localization and correctness tool.in a given set (or relation). Conceptually, Archie uses a least fixed-
With Archie, developers were able to quickly localize and cor- point algorithm to repeatedly add objects to sets and tuples to re-
rect errors in our benchmark software system; without Archie, lations until the model satisfies all of the constraints. For the data
developers were unable to localize the errors even after theystructure in Figure 4, Archie constructs the model in Figure 5.
spent significant amounts of time attempting to trace the mani- 2 1 2 Consistency Constraints
festation of the errors back to their root causes.

Figure 4: Concrete Data Structure

Figure 5: Model Constructed for Example

This paper makes the following contributions:

The developer next uses the sets and relations to state the consis-
2. EXAMPLE tency constraints. Each constraint consists of a sequence of quanti-
We next present an example (inspired by the FreeCiv program disfiers that identify the scope of the constraint and a predicate that the
cussed in Section 6) that illustrates how Archie works. The programconstraint must satisfy.
maintains a grid of tiles that implements the map of a multiple-player Figure 6 presents the constraints in our example. The first con-
game. Each tile has a terrain value (i.e. ocean, river, mountain, grassstraint ensures that each tile has a valid terrain, the second ensures
land, etc) and an optional reference to a city that may be built on thathat each city has exactly one location (i.e., exactly one tile references
tile. Figure 1 presents the relevant data structure definitions. each city), and the final constraint ensures that no city is placed on



for t in TILE, MIN <= tTERRAIN and tTERRAIN <= MAX

for c in CITY,sizeof(CITYMAP.c)=1 ¢ = QLE=I ,
for ¢ in CITY,|(CITYMAP.c).TERRAIN = OCEAN Q = for Vin S{[for (V,V)in R|for V=FE.E

. . . = ! =

Figure 6: Consistency Constraints G G and G |[Gor & |'G_ |E=E|E<E]|tue |
(G)|Ein S|(E,E)in R

an ocean tile.? As this example illustrates, the ability to freely use I := Ein S|(E,E)in R
inverses substantially increases the expressive power of the specifica- g .= V| number | string | E.field | E.field[E] |
tion language — it enables the gxpressipn of .pro.perties that navigate E-E|E+E|E/E|E+E
backwards through the referencing relationships in the data structures
to capture properties that involve both an object and the objects that Figure 7: Model Definition Language
reference it.
2.2 Instrumentation and Use object (or tuple) that must be in a given set (or relation). Figure 7

Finally, the developer (potentially with the aid of an automated presen_ts t_he grammar for the model ‘?'ef”.““o” Ianguage._ -
In principle, the presence of negation in the model definition lan-

tool) instruments the code to periodically invoke Archie, which ex- S o ——
amines the data structures and reports any inconsistencies to the d uage opens up the possibility of unsatisfiable model definition rules.
e address this complication by requiring the set of model definition

veloper. When the instrumented program executes, Archie Iocalizesules to have no cveles that go throuah rules with negated inclusion
the error to the region of the execution between two subsequent call L <y 9 9 9
constraints in their guards.

to Archie and identifies the violated constraint (which, in turn, iden- ]
tifies the corrupt data structure). Our results (as discussed in Sec3.3 The Constraint Language

tion 6) show that this approach can enable the developer to quickly - Figyre 8 presents the grammar for the model constraint language.
localize and correct the error that caused the inconsistency. Withgach constraint consists of a sequence of quanti@iers.., Q. fol-
standard approaches, the program typically continues its executiofipywed by bodyB. The body uses logical connectives (and, or, not)
for some period of time, with the error propagating through the datayg compine basic propositiorfthat constrain the sets and relations
structures. This combination of continued execution and error prop-in the model. Developers use this language to express the key con-

agation makes it difficult to understand and localize the error. sistency constraints.
3. SPECIFICATION LANGUAGE C = Q,C|B
Our specification language consists of several sublanguages: a Q := for Vin S|for (V,V)in R|for V=FE.FE
structure definition language, a model definition language, and a model B = Band B|Bor B|!B|(B)|VE comp E |
constraint language. Vin SE|size (SE)comp C
3.1 Structure Definition Language comp = =|<|<=[>|>=
The structure definition language supports the precise specifica- VE = V.R|RV|(VE)|VER|RVE
tion of heavily encoded data structures. It allows the developer to E = V|number|string| E+E|E—-E|E/E|
declare structure fields that are 8, 16, and 32 bit integers; structures; ExFE|E.R|size (SE)|(E)
pointers to structures; arrays of integers, packed booleans, structures, SE = S|V.R|RV
and pointers to structures. The array bounds can be either constants
or expressions over an application’s variables. The developer can de- Figure 8: Model Constraint Language

clare that a region of memory in a structure is reserved, indicating

that it is unused. Finally, the structure definition language supportsy  COMPILATION AND OPTIMIZATION

a form of structure inheritance. A substructure must have the same ) . . I

size and contain all of the same fields as the superstructure, but it W& implemented a compiler that processes Archie specifications

may define new fields in areas that are unused in the superstructure!© 9enerate C code that implements a basic consistency checking al-
gorithm. This algorithm first uses a work-list-based fixed point al-

3.2 Model Definition Language gorithm to construct the model, then evaluates the consistency con-
The model definition language allows the developer to declare thestraints to detect any possible inconsistencies. Unfortunately, this
sets and relations in the model and to specify the rules that define th&traightforward compilation strategy generates checking algorithms
model. A set declaration of the forset S of T: partition that are too slow for our purposes. We therefore implemented the
Si, ...,Sa declares a se8 that contains objects of typE whereT is following optimizations.
eith.e.r.a primitive type or .ez.;trugt type declared in the structure 4 1 Fixed Point Elimination
definition part of the specification. The sehasn subsets;, ..., S,
which together partitiors. Changing thepartition keyword to
subsets removes the requirement that the subsets partiitut
otherwise leaves the meaning of the declaration unchanged. A re
lation declaration of the formelation R: S ;->S, specifies a

This optimization analyzes the model definition rules to replace,
when possible, the fixed point computation with a more efficient data
structure traversal. The compiler first performs a dependence anal-
ysis on the model definition rules to generate a dependence graph.
relation between the objects in the sgtsands,. This graph captures the depenc_iences between rules which _create sets

The model definition rules define a translation from the concreteand relations and the rules which use those sets and relations. For-

data structures into an abstract model. Each rule has a quantifier thé‘?a"y' the graph consists of a set of nodégone for each rule) and a

identifies the scope of the rule, a guard whose predicate must be truggggigggﬁ é;;Tiifti;aifn Zi%ﬁe: A<\]I'\ill|7e]|.\li ;é;oggl(;? eja\]feirai%n
for the rule to apply, and an inclusion constraint that specifies an—>" L -
bRl P R) if the rule has a quantifier of the forfar Vin S (or of the form

?Note that the notatio€ITYMAP.c denotes the inverse image of for (Vi,V2)in R)orif the rule has a guard of the forl in S
c under the relatiolCITYMAP (the set of allt such that(t,c ) in (or (E1, Eq) in R). Arule definesa setS (or relationR) if it has an
CITYMAB. inclusion constrainf of the formE in S (or (E1, E2) in R).




The compiler topologically sorts the strongly connected compo-
nents in the dependence graph. For components that consist of a sin-
gle rule, the compiler generates efficient code that iterates through
all of the rule’s possible quantifier bindings, evaluates the guard for
each binding, and (if the guard is satisfied) executes the actions that
add the appropriate objects to sets or tuples to relations. For compo-
nents that consists of multiple rules, the compiler generates code that
performs a fixed point computation of the sets and relations that the

\ersion Time

No Instrumentation 0.234 sec|
Baseline Compiled 20 min
Fixed point elimination| 25.60 sec
Relation Elimination 10.66 sec|
Set removal 1.45 sec

Table 1: Performance Results

component produces. The generated code executes the computatioR4ch as our specification language. We expect that several aspects of
for the components in the topological sort order. This order ensuregArchie will facilitate its acceptance within the developer community:
that each set and relation is completely constructed before it is used ® Black Box Usage: The specifications can be developed by a

to construct additional sets and relations in other components.
4.2 Relation Elimination

Some of the relations constructed in our model correspond to par-
tial functions. For example, a fielfimay generate a relation that re-
lates each objeetto the value of the field. f. Our compiler discov-
ers relations that implement partial functions and verifies that these
relations are used only in the forward direction (i.e., no expression
uses the inverse of the relation). The compiler recognizes that a rela-
tion R is a partial function if the model definition rules use a single
rule of the following form to defingv:

for Vin S, G = (V,E)in R.

The compiler rewrites each expression that uses a partial function
by replacing the use with the computation®and (if G is satisfied)

E. The compiler then removes the rule responsible for constructing
each such relation.

4.3 Set Elimination

Our final optimization attempts to transform the specification to
eliminate set construction and instead perform the checks directly on
the data structures in memory. We use two transformatioredel
definition rule inliningandconstraint inlining Model definition rule
inlining finds a model definition rule of the for@*, G1 = Viin S,

a second model definition rule of the fofior V2 in S, G2 = 1,
then eliminates the use of the $in the second rule by transforming
itto Q*, G1AG2[V1/Va] = I[V1/V5]. To apply the transformation,
the first rule must be the only rule that defirtes

The constraint inlining transformation finds a model definition rule
of the formQ@Q*, G = V7 in S, a consistency constraint of the
formfor V1, in S, C, then eliminates a use of the sg¢thy trans-
forming the consistency constraint@*, G = C[Vi/V2]. To ap-
ply the transformation, the model definition rule must be the only
rule that definesS. Note that the new constraint has a predicate
(G = C[V1/V2]) that may involve both concrete values from the
data structures in memory and the sets and relations in the mode
We have extended the internal representation of our compiler so thal
it can generate code to check these kinds of hybrid constraints.

Each transformation eliminates a use of theSetf the transfor-
mations eliminate all uses, the compiler removes the set and the ru

space required to compute and store the set. This optimization ca
be especially useful when (as is the case for our benchmark syste

small number of developers who are familiar with the specifica-
tion language, while the remainder of the developers can sim-
ply use Archie as a black box. We anticipate no need for the
vast majority of the developers to learn the Archie specification
language. There is also no need to change the programming
language, coding style, or other development tools.

Incremental Adoption: Archie supports incremental adoption

— the developer can start with a specification that captures a
small subset of the consistency properties, then incrementally
augment the specification to capture more properties. During
the specification development process the consistency checker
becomes more useful as more properties are added. Calls to
Archie can also be incrementally added to the system. The over-
all result is a smooth integration into the development process
with no major dislocations or disruptions.

Ease of Development:Based on our experience developing
similar specifications in another project [7], we believe that
Archie specifications will prove to be relatively easy to develop
once the developer understands the relevant data struétures.
Because the specifications identify global data structure invari-
ants rather than specific properties of local computations, our
experience indicates that the resulting specifications are quite
small (the largest are several hundred lines long, with the ma-
jority of the lines devoted to structure definitions) in comparison
with the size of the software system as a whole.

We do anticipate that the use of Archie may wind up substantially
changing the testing, error localization, and error correction activ-
ities, but in a positive way — we anticipate that Archie will help
developers find errors earlier and provide them with substantially
improved error localization. The developers in our case study (see
Section 6) had no problem integrating Archie into their debugging
strategy and in fact used Archie almost immediately to eliminate te-
pious activities such as augmenting the code with print statements
(EJI‘ using a debugger to insert breakpoints and examine the values of
selected variables.

We expect that Archie will effectively support usage strategies in
Ié(vhich the initial specifications are developed as part of the software
qdesign process before coding begins and usage strategies in which it
Is integrated into a large existing software system. We also antici-

ate that, once integrated, the developers will be motivated to keep

the compiler is able to eliminate the largest sets or relations. € sp_e_ci_fication up to d_a_te t_o re_zflect changes_ t(.) _the data structures.
The division of the specification into model definition rules and con-
4.4 Performance Impact sistency constraints facilitates this specification maintenance — if
Table 1 presents the execution times of our benchmark softwareonly the representation of the data changes, the developer can simply
system with the consistency checks at different optimization levels.update the model definition rules to reflect the new representation,
As these numbers show, the optimizations produce dramatic perforleaving the consistency constraints intact.
mance improvements. The final optimized version is more than effi- During development, we expect the program to be instrumented
cient enough for interactive debugging use. with calls to the Archie consistency checker. We anticipate two kinds
3Specifically, we have developed specifications for the FreeCiv in-
5. ENVISIONED USAGE STRATEGY tergctive ga¥ne, the CTAS air-}tjrafﬁce:ontrol system [1, 23] (this de-

Obtaining developer acceptance of a new tool can be difficult, es-ployed system consists of over 1 million lines of code), a simplified
pecially when the tool requires the developers to use a new languageersion of the Linux ext2 file system [20], and Microsoft Word files.




of instrumentation: calls placed (potentially with the aid of an auto- straint). The third version also contains an error in the server module.
matic call placement tool) at standard locations such as procedur@ he incorrect procedure is 153 lines long; the error causes a city to
entry and exit points as a routine part of the development processbe placed on an ocean tile (violating the last constraint).

and calls placed at chosen locations by developers as they attempt i 2.3 Experimental Setup

localize a specific error. i . . .
We first presented all of the developers with a FreeCiv tutorial,

6. CASE STUDY which gave them an overview of the purpose and structure of the
rogram, an overview of Archie, and an overview of the FreeCiv
ata structures and their consistency properties.
We gave both the Tool and NoTool populations identical instru-
ented copies of the three incorrect versions of FreeCiv. These
opies contain calls to the Archie consistency checker at the begin-
ing and end of each procedure, with the exception of small proce-
ures like structure field getters and setters and I/O procedures that
nterface with the user or the network. For the NoTool population,
hese calls immediately return without performing any consistency
hecking; for the Tool population, each call uses the Archie speci-
fication to perform a complete consistency check. Consistent with
i the expected usage strategy in Section 5, the Tool developers used
6.1 Developer Population Archie as a black box — they simply compiled the pre-generated

We recruited six developers with relatively homogeneous back-consistency checker into their executables.
grounds: all developers had similar educational backgrounds, all rep- The instrumented versions of FreeCiv contain approximately 750
resented their home Country in international programming Competi_statements that invoke the Archie COnSiStenCy checker. For the Tool
tions while they were in high school, and all are currently students atPopulation, each call (whether it detects an inconsistency or not)
MIT. writes an entry to a log indicating the position in the code from which

We Separated the deve|0pers into two popu|ations: the Tool popu]t was invoked. For this Study, we Conﬁgured FreeCiv to use its auto-
lation, which used Archie during the debugging experiments, and thedame mode in which it plays against itself and set the random num-
NoTool population, which did not use Archie. To control for debug- Per generator seed to a fixed value (to ensure repeatability). In this
ging ability, we assigned each developer a pre-study calibration tasknode, the correct version of the program invokes the checker more
of locating and correcting an error in a heapsort implementation. Wethan 20,000 times when it executes.
ordered the developers by the time required to correct this error; the We asked the developers to attempt to locate and eliminate the er-
times varied between 9 and 32 minutes. We then randomly assigne#Prs in the three incorrect versions. We requested that they spend at
one of the first two, the next two, and the last two developers to theléast one hour on each version and allowed them to spend more time

Tool population, with the others assigned to the NoTool population. if they desired. For the NoTool population, each error manifested it-
2 E Ci self as either an assertion violation (the first two errors) or a segmen-
6. reeCiv tation fault (the last error). For the Tool population, each error mani-
We chose the FreeCiv interactive game program (available at  fested itself as an error message from the Archie consistency checker
http://www.freeciv.org ) as our benchmark software system. The— the consistency checker printed out the violated constraint, the lo-
source code consists of roughly 65,000 lines of C in 142 files. It con-cation of the call to the consistency checker, and an explanation of
tains four modules: a server module, a client module, an Al module,the error provided by the developer of the specification.

and a common module. We have made all of the information required  All of the developers used a Linux workstation (RedHat 8.0 Linux)

Our case study attempts to answer the most basic question on
could ask about Archie’s potential effectiveness: Given a specifica-
tion and a data structure corruption error that causes the data stru%
tures to violate this specification, does Archie help developers lo-
calize and correct the error? To answer this question, we obtaine
a benchmark software system and a population of developers, the
performed a study in which the developers attempted to localize aan
correct errors in the system. By comparing the behavior and effec-,
tiveness of the developers that used Archie with the developers tha
did not, we are able to obtain an indication of how well Archie aided
the error localization and correction process for this class of errors.

to replicate our results available at with two 2.8 GHz Pentium 4 processors and 2 GBytes of RAM. We
http:/iwww.mit.edu/ ~cristic/Archie . provided all of the developers with scripts to compile and run the
6.2.1 Consistency Properties three versions. The developers were able to use any development or

FreeCiv maintain m £ til rranaed rectanaular r.ddebugging tool available on this platform. The developers were all
ee~lv maintains a map of tiles arranged as a rectanguiar gnde, iiar with this computational environment and comfortable using

Eagh tllef contalnts a tbe{raln vaLgeh(pla[nf, .hllls,dgigan,l (.1efsert, ?tc']t. We observed the developers during the experiment and maintained
and a reference to a bitmap which maintains additional information ;"4 +-iiad record of their actions.

(such as pollution levels) about the tile. Each tile may also contain a .
reference to a city data structure. Our FreeCiv specification consist§-3 The Tool Populatlon
of 199 lines (of which 180 contain structure definitions). This specifi-  Table 2 presents the number of minutes required for each member
cation identifies the following five consistency properties: each gameof the Tool population to locate each error; Table 3 presents the total
must have a single map, each game must have a single grid of tilespumber of minutes required to both locate and correct the error. As
each tile must have a valid terrain value, exactly one tile must pointthese numbers show, the developers were able to locate and correct
to each city, and no city may be located on an ocean tile. the errors quite rapidly.
6.2.2 Incorrect Versions The d_evelope.r_s in this population used Arc_hi_e extensivel_y i_n their
. . . . ebugging activities. They all started by examining the Archie incon-

We l_Jsed ma_nual fau!t |nsert|or_1 to create th_ree incorrect versions Ogistency message. If the message came from a call to the Archie con-
FreeCiv. The first version contains an error in the common module.qjgsency checker at the start of a procedure, they examined the Archie
The incorrect procedure is 14 lines long (after error insertion); the 4 4 find the caller of this procedure and (correctly) attributed the
error causes the program to assign an invalid terrain value to a til ., 1 the caller. If the message came from a call to the Archie con-

(causing the data structur_es to viol_ate the third_ constraint identifiedsistency checker at the end of a procedure, they (once again correctly)
above). The second version contains an error in the server mOdu'eattributed the error to this procedure

The incorrect procedure is 18 lines long and causes two tiles to refer
to the same city (causing the data structures to violate the fourth con-



Participant| Error 1 | Error 2 | Error 3 ing the error. But because of the complexity of the program and the
T1 1 2 1 time between the generation of the inconsistency and its manifesta-
T2 2 3 2 tion, they were unable to successfully localize the error within the
T3 5 1 5 amount of time they were willing to spend.
After several days we asked the developers in the NoTool pop-
Table 2: Localization Times (Tool) ulation to attempt to use Archie to localize and correct the errors.
_ Tables 6 and 7 present the localization and correction times, respec-
Participant| Error1 | Error 2 | Error 3 tively.* As these results show, once the NoTool developers were
T1 9 7 3 given access to Archie, they were able to quickly localize and cor-
T2 8 6 8 rect the errors.
T3 17 7 14
Participant| Error 1 | Error 2 | Error 3
Table 3: Correction Times (Tool) NT1 1 2 -
NT 2 3 2 1
They then examined the message to determine which constraint NT 3 3 1 8

was violated, then examined the code of the procedure containing
the error to find the code responsible for the inconsistency. For the
third error (recall that the procedure containing this error is 153 lines

Table 6: Localization Times (NoTool with Archie)

long) the developers inserted additional calls to the Archie consis- Pa’r\};(_:li)ant Err;r 1 Erré)r 2| Error 3
tency checker to further narrow down the source of the inconsistency. _
Eventually all of the developers found and eliminated the error. m$ g j g 169

6.4 The NoTool Population

Table 4 presents the number of minutes required for each member Table 7: Correction Times (NoTool with Archie)
of the NoTool population to locate each error; Table 5 presents the . .
total number of minutes required to both locate and correct the er-6.5  Discussion
ror. A dash (-) indicates that the developers were unable to locate or Error localization was the crucial step for debugging the errors
correct the error; a number in parenthesis after the dash indicates thig our study and Archie’s ability to detect and flag each inconsis-
number of minutes spent on the respective task before giving up. Asency immediately after it was generated was primarily responsible
these tables indicate, only one of the developers was able to locateor the divergent experiences of the two populations. Developers in
and correct an error. Moreover, this correction was somewhat fortu-hoth populations had a clear manifestation of the error and started the
itous: the developer spent the last 15 minutes of his attempt to locatelebugging process by examining the code that produced this mani-
the second error examining the correct version of the procedure thafestation. For the Tool population, Archie produced a manifestation
was modified to contain the third error. When he reexamined thisthat quickly directed each developer to the procedure containing the
procedure during his attempt to locate the third error, he noticed thaincorrect code. Once directed to this procedure, the developers were
the code was different and simply replaced the incorrect version withable to quickly and effectively locate and correct the error.
the correct version that he had examined earlier!

_ Significant Procedure Calls Execution Time (%)
Participant| Error 1 | Error 2 | Error 3 Error 1 12689 15%
NT 1 - - 10 Error 2 579 1%
NT 2 - - - Error 3 4142 8.5%
NT 3 - - -

o ) Table 8: Error to Manifestation Distance
Table 4: Localization Times (NoTool)
Without Archie, the program executed for a substantial period of

Participant| Error 1 | Error 2 | Error 3 time before the data structure inconsistency finally manifested itself
NT 1 -(95) | -(65) 11 as an assertion violation or segmentation fault. Table 8 presents num-
NT 2 -(90) | -(70) | -(60) bers that quantify this distance. The first column presents the number
NT 3 -(70) | -(60) | -(60) of significant procedure calls (this number excludes getter, setter, and

I/0 procedure calls) between each error and its manifestation as an
Table 5: Correction Times (NoTool) assertion violation or segmentation fault; the second column presents

' . . . this distance as a percentage of the running time of the correct ver-
For the first two versions of FreeCiv, the developers in the NoTool _; P g g

population started by examining the code that triggered the assert
violation. For the third version, the developers started their examina-i; instead caused distant correct code to fail, misleadingly directing

tion with the code that triggered the segm_entatlon fault_. Once it be'the developer to fruitlessly examine correct code instead of incorrect
came clear to them that the code surrounding the assertion or segmecﬁ/

Moreover, the inconsistency did not cause incorrect code to fail —

) : . . ode as the source of the error. Even though the NoTool population
tation fault was not responsible for the inconsistency, they attempte as able to obtain a reasonably accurate understanding of each error.
to trace the execution backwards to locate the code responsible fO{ '

h During thi h d . t adb heir inability to localize the error (even given their understanding)
the error. During this process, they made extensive use of gdb 10 Sl e anted them from correcting it. And once the NoTool population
break points and examine the values of the program variables. The

. . ) ' Yvas given access to Archie, they were able to use Archie to quickly
also inserted print statements to track the values of different vanablesémd effectively locate and correct the error

and augmented the program with additional assertions to check var-

ious consistency properties. Our observations indicate that all of the*There are no results for developer NT 1 on error 3 because this de-
developers in this group made meaningful progress towards localizveloper localized and corrected this error in the previous experiment.




6.5.1 Comparison With Assertions 6.5.3 Applicability

Our results reveal several limitations of assertions as a debugging Our study indicates that consistency checking in general and Archie
tool. Like Archie, assertions test basic consistency constraints andin particular can help developers locate and eliminate data structure
if a constraint is violated, tell the developer which property was vi- corruption errors that violate the checked consistency property. For
olated and where in the execution the violation was detected. It isthis class of errors, Archie provides the developer with information
therefore not clear that Archie should provide any benefit for a pro-that helps the developer to both localize the bug and understand the
gram whose assertions successfully detect inconsistencies. But in owiolated consistency properties.
study, Archie proved to be substantially more useful to the develop- We believe that Archie is less likely to be useful for finding er-
ers than the assertionsyen though two out of the three data struc- rors that do not result in data structure corruption, although it could
ture inconsistencies manifested themselves as assertion violationstill be useful for ruling out classes of errors. However, from our
There are two (related) reasons for this (counterintuitive) result: 1)experiences we believe that data structure corruption errors are a par-
the assertions in FreeCiv detected the inconsistencies long after theiicularly difficult class to debug, and that Archie should prove useful
generation, and 2) the assertions did not direct the developers to inin practice for this class of errors.
consistencies in the initially corrupted data structures — they instead
directed them to inconsistencies in data structures derived from the6'5'.4 Future Work ) ) )
initially corrupted data structures. _ This §tudy I(_eaves many interesting questions u_ljangwered. In par-

The assertions in FreeCiv, as in many other programs, tend to tedlicular, it provides no indication whether a specification-based ap-
easily available values accessed by the surrounding code. The assdt0ach provides any advantages or suffers from any disadvantages
tions therefore test only partial, local properties of the accessed part§S compared with an approach based on manually developing con-
of the data structure, typically properties that the code containing theSistency checkers in the standard implementation language. We an-
assertion relies on for its correct execution. In particular, if a compu-ticipate that in either case an expert would develop the specifica-
tation reads some data structures and produces others, the assertid#a OF consistency checker, most developers would use the consis-
tend to test the read data structures, not the produced data structure€NCy checker as a black box, and the development of the consistency

It is therefore possible (and even likely) for a program to execute checker would require a small fraction of the overall development
successfully through many assertions after it corrupts its data structime. Potential advantages of the specification-based approach in-
tures. And when an assertion finally catches the inconsistency, th&lude reduced development time, a clearer and more explicit iden-
execution may be very far away from the code responsible for thetification of the important consistency properties, and consistency
additional data structures. In our incorrect versions of FreeCiv, for targeted optimizations (such as those discussed in Section 4). It re-
structure, but the assertions detect these inconsistencies only after a A _second area of poten_tlal inquiry concerns the_ frequency, rela-
distant phase attempts to read a data structure derived from the origiive importance, and consistency violation properties of data struc-
nal inconsistent data structure — the intervening phases either do ndiiré corruption errors in practice. Our study leaves open questions
attempt to access this data structure or fail to check for the violated®f Whether data structure corruption errors are an important problem
consistency property. in practice and whether developers are a_lble to produce specifications

Because Archie comprehensively checks all of the consistency prot consistency c_hecker§ that catch the kinds of data structure corrup-
erties, it makes the developer aware of the inconsistency as soon as#ons that occur in practice.
occurs. This immediate notification was crucial to its success in our
study, because (unlike the delayed natification characteristic of the/. RELATED WORK
existing FreeCiv assertions) it immediately directed the developers Error localization and correction has been an important issue ever
to the incorrect code and identified the data structure that it corruptedsince people began to develop software. Researchers have developed
(and not some other derived data structure). a host of dynamic and static debugging tools; a small selection of

6.5.2 Ef‘ficiency recent systems includes [9, 4, 25, 11, 2, 5, 26, 15, 16, 8]. We con-

. ) o . ._fine our survey of related work to research in specification languages,
The basic benefit of Archie is to localize each error to the region specification-based testing, and invariant inference systems.

of the execution between the failed consistency check and the im- o
mediately preceding successful consistency check. Itis therefore de7.1  Specification Languages

sirable to perform the consistency checks as frequently as possible The hasic concepts in our specification language (objects and rela-
S0 as to better localize the error. The primary obstacle to frequentjons) are the same as in object modeling languages such as UML [22]
consistency checking is the overhead of executing the checks. ~ and Alloy [13], and the specification language itself has many of the
The optimizations discussed in Section 4 are therefore crucial toggme concepts and constructs as the constraint languages for these

the successful use of Archie. Without optimization, the consistencyobject modeling languages, which are designed, in part, to be easy
checks increase the FreeCiv execution time from less than a second g, developers to use.

twenty minutes. While this kind of time dilation may be acceptable  standard object modeling approaches have traditionally been used
for errors that would otherwise be very difficult to localize, we would g help developers express and explore high-level design properties.
prefer to enable developers to use Archie routinely during all of their one of the potential benefits of our approach is that it may enable de-
executions. velopers establish a checked connection between the high-level con-

Our optimizations enabled us to provide the developers in Ourcepts in the model and their low-level realization in the data struc-
study with a checker that can execute frequently while maintainingyyres in the program.

an interactive debugging environment. We believe that this level of . . .

efficiency was crucial to the successful use of Archie in our studyand /-2~ SPecification-Based Testing

that our optimizations will prove to be at least as important for ob-  Specification-based testing (of which Archie is an instance) tests
taining an acceptable combination of check frequency and responsthe correctness of an execution by determining if it satisfies a speci-
time for other applications. fication written in some specification language. Specification-based



testing is usually implemented at the granularity of procedure pre- Symposium on Software Testing and Analysis (IS$Bges 123-133,

conditions and postconditions. ADL [24], JML [14], Testera [18], July 2002. N ‘ ‘
Korat [3], and several Eiffel [19] implementations, to name a few, [4] J.-D. Choi et al. Efficient and precise datarace detection for
implement various forms of this kind of specification-based testing. multithreaded object-oriented programsHroceedings of the

. . . - - SIGPLAN '02 Conference on Program Language Design and
Archie, in contrast, implements a global invariant checker with no Implementation2002.

attc_empt to Ve_rify a_ny property of the execut_ior_] other than the prese_r- [5] M. Das, S. Lerner, and M. Seigle. Path-sensitive program verification
vation of the invariant. Advantages of Archie include reduced speci- in polynomial time, 2002.

fication overhead and complete coverage of the global invariants (in- [6] B. Demsky and M. Rinard. Role-based exploration of object-oriented
stead of checking more targeted properties that are intended to char-  programs. INCSE02 May 2002.

acterize procedure executions); the disadvantage is that it is not in-[7] B. Demsky and M. C. Rinard. Automatic detection and repair of errors
tended to find errors that do not violate the invariant. Our evaluation in data structures. IDOPSLA October 2003.

is that the two kinds of checkers address complementary properties[8] M. Ducass. Coca: An automated debugger for d>faceedings of the

and that both provide valuable checking functionality. 21st International Conference on Software Engineerirgpo.
[9] D. Engler and K. Ashcraft. Racerx: Effective, static detection of race

7.3 Invariant Inference and Checking conditions and deadlocks. BOSP October 2003.
Several research groups have developed systems that dynamically©) (';’i'échv'er?nSt'I}Jke(focféeuéynv'ir%aﬁgﬁgot?’Sﬁ”doDrt' Nrgtk:g'mDé’\’/‘;m:gi”)I'n
infer likely invariants or other program properties; the same technol- g 1kely prog bport prog :

. . ; International Conference on Software Engineeripgges 213224,
ogy can be easily used to check the inferred properties (or, for that 1999 gineeripgg

matter, any property expressed using the same formalism). Specifig11] s. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for

systems include DAIKON [10], Carrot [21], DIDUCE [12], and au- building system-specific, static analysesPInDI, pages 69-82, 2002.
tomatic role inference [6]. [12] S.Hangal and M. S. Lam. Tracking down software bugs using
An important difference between Archie and these previously ex- automatic anomaly detection. Rroceedings of the 24th International

isting systems is that Archie is designed to check the substantially _ Conference on Software Engineeripgges 291-301, May 2002.
more sophisticated properties characteristic of complex linked datd3] D- Jackson. Alloy: A lightweight object modelling notation. Technical

e . ) Report 797, Laboratory for Computer Science, Massachusetts Institute
structures that must satlsfy important structural constraints. The (|n of Technology, 2000.

our view minimal) overhead is the need to provide a specification [14] G.T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:

of these properties instead of automatically inferring the properties.” * a pehavioral interface specification language for Java. Technical
And in fact, it would be feasible to use automatic property discov- Report 98-06i, lowa State University, 2000.

ery tools to generate Archie consistency constraints or to obtain arf15] R. Lencevicius, U. Hizle, and A. K. Singh. Query-based debugging of
initial set of properties that could be refined to obtain a more precise  object-oriented programs. MOPSLA97October 1997.

specification. [16] B. Lewis. Debugging backwards in time. Rroceedings of the Fifth
International Workshop on Automated Debugging AADEBUG 2003
2002.
8. CON_CL_US_ION o _ [17] B. Liskov and J. Guttag?rogram Development in Java: Abstraction,
Error localization is a necessary prerequisite for correcting soft- Specification, and Object-Oriented Desigvdison-Wesley, 2000.

ware errors and often the primary obstacle. Archie addresses thi§18] D. Marinov and S. Khurshid. TestEra: A novel framework for
problem by accepting a specification of key data structure consis-  automated testing of Java programsPhoceedings of the 16th IEEE
tency properties, then automatically checking that the data structures :\’l‘temzaotbolnm Conference on Automated Software Engineering (ASE)
1 : : oVv. .
satisfy these properties. The Archie checker can help developer?lg] B. Mever Eiffel: The LanquagePrentice Hall New York. NY. 1992
quickly localize data structure corruption errors to the region of the 20 D. Poi);iel: Secénd extengedgﬁle svstem ' D :
execution between two subsequent calls to Archie. [20] hitp://www.nongnu org/extz-docly " Aug 2002
Our' set of optimizations enables the Archl_e compiler to generate 21] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated
checking code that executes more than efficiently enough to enable " faylt localization using potential invariants. Froceedings of the 5th
an effective check frequency and support its routine use in an inter- International Workshop on Automated and Algorithmic Debugging
active debugging environment. Moreover, the results from our case  September 2003.
study indicate that developers can almost immediately use Archie td22] Rational Inc. The unified modeling language.
substantially improve their ability to localize and correct errors in a - gttrl;//vsvwv;/.r::\jt|onall.ccom/un/1l _  Devel
substantial software system. We believe that Archie therefore holdd23] o év:IE;tironeitnat e ﬁgfg'ggfﬁggg;‘;“:;‘?# ;%it?:rghtro?ve opment
out the potential to substantially improve the ability of developers to ,

. . . Association Conference Proceedingstober 1993.
first localize, then correct, data structure corruption errors. [24] S. Sankar and R. Hayes. Specifying and testing software components

using ADL. Technical Report TR-94-23, Sun Microsystems, 1994.
ACknOWIedgementS [25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.

; ; _00- Eraser: A dynamic data race detector for multithreaded programs.
This research was supported in part by DARPA Contract F33615-00 ACM Transactions on Computer Systefr(4):391-411, 1997,
C-1692, NSF Grant CCR00-86154, NSF Grant CCR00-63513, NSF[ZG] A. Zeller. Isolating cause-effect chains from computer programs. In
Grant CCR00-73513, NSF Grant CCR-0209075, NSF Grant CCR-

Proceedings of the tenth ACM SIGSOFT symposium on Foundations of
0341620, and NSF Grant CCR-0325283, software engineering2002.

9. REFERENCES

[1] Center-tracon automation system.
http://www.ctas.arc.nasa.gov/ .

[2] T.Balland S. K. Rajamani. Automatically validating temporal safety
properties of interface&.ecture Notes in Computer Science
2057:103+, 2001.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on Java predicates Aroceedings of the International



