
Efficient Specification-Assisted Error Localization
Brian Demsky Cristian Cadar Daniel Roy Martin Rinard

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
{ bdemsky, cristic, droy, rinard }@mit.edu

ABSTRACT
We present a new error localization tool, Archie, that accepts a spec-
ification of key data structure consistency constraints, then generates
an algorithm that checks if the data structures satisfy the constraints.
We also present a set of specification analyses and optimizations that
(for our benchmark software system) significantly improve the per-
formance of the generated checking algorithm, enabling Archie to
efficiently support interactive debugging.

We evaluate Archie’s effectiveness by observing the actions of two
developer populations (one using Archie, the other using standard er-
ror localization techniques) as they attempted to localize and correct
three data structure corruption errors in a benchmark software sys-
tem. With Archie, the developers were able to localize each error in
less than 10 minutes and correct each error in (usually much) less
than 20 minutes. Without Archie, the developers were, with one ex-
ception, unable to locate each error after more than an hour of effort.

1. INTRODUCTION
Error localization is a key prerequisite for eliminating program-

ming errors in software systems and, in many cases, the primary
obstacle to correcting the error — the fix is often obvious once the
developer locates the code responsible for the error.

The primary issue in error localization is minimizing the time be-
tween the error and its manifestation as observably incorrect behav-
ior. The greater this time, the longer the program executes in an
incorrect state and the harder it can become to trace the manifes-
tation back to the original error. This issue can become especially
problematic for data structure corruption errors — these errors of-
ten propagate from the original corrupted data structure to manifest
themselves in distant code that manipulates other derived data struc-
tures, obscuring the original source of the error.

This paper presents a new error localization tool, Archie1, de-
scribes the optimizations required to make Archie efficient enough
for practical use, and discusses the results of a case study we per-
formed to evaluate its effectiveness in helping developers to localize
and correct data structure corruption errors. Our results indicate that,
after optimization, Archie executes efficiently enough for interactive
use on our benchmark software system and that it can dramatically
improve the ability of developers to localize and correct injected data
structure corruption errors in this system.

1.1 Consistency Checking
Consistency checking is currently used as a technique for debug-

ging [17]. Developers sometimes hand-code consistency checks in
the same programming language as the rest of the system. The com-
plication is that developers must code data structure traversals and
implement any auxiliary data structures required to check the desired
properties. Developing this code can be especially difficult because

1Archie is named after Archie Goodwin, the assistant to Rex Stout’s
fictional detective Nero Wolfe. The idea is that, under Wolfe’s di-
rection, Archie does all the work required to localize the crime to a
specific suspect, then Wolfe uses his superior intelligence to solve
the crime.

the developer cannot assume that the data structures satisfy any prop-
erty at all — the whole point of the checker is to detect data structures
that may arbitrarily violate their invariants. For example, straightfor-
ward hand-coded tree traversals may fail to terminate on trees that
contain cycles.

Hand-coded consistency checkers are also vulnerable to anoma-
lies such as incomplete property coverage, unwarranted assumptions
about the input data structures, and increased development overhead.
Our experience indicates that hand-coded consistency checkers are
substantially larger and more difficult to develop than an equivalent
consistency specification.

1.2 Specification-Based Approach
Archie accepts a specification of key data structure consistency

properties (including sophisticated properties characteristic of com-
plex linked data structures), then periodically monitors the data struc-
tures to detect and flag violations of these properties. The developer
(potentially assisted by an automated tool) places calls to Archie into
the software system. If the system contains a data structure corrup-
tion error, Archie localizes the error to the region of the execution be-
tween the first call that detects an inconsistency and the immediately
preceding call (which found the data structures to be consistent).

Each Archie specification contains a set of model definition rules
and a set of consistency properties. Archie (conceptually) interprets
these rules to build an abstract model of the concrete data structures,
then examines the model to find any violations of the consistency
properties. The conceptual separation of the specification into the
model construction rules and consistency constraints simplifies the
expression of the consistency constraints and provides important ex-
pressibility benefits. Specifically, it enables the specification devel-
oper to 1) classify objects into different sets and apply different con-
sistency constraints to objects in different sets, 2) express the consis-
tency constraints at the level of the concepts in the domain rather than
at the level of the (potentially heavily encoded) realization of these
concepts in the concrete data structures, 3) use inverse relations to
express constraints on the objects that may refer (either directly or
conceptually) to a given object, 4) construct auxiliary relations that
allow the developer to express constraints between objects that are
separated by many references in the data structures, and 5) express
constraints involving abstract relationships such as object ownership.

1.3 Optimizations
It is clearly desirable to perform the consistency checks as fre-

quently as possible to minimize the size of the region of the execu-
tion that may contain the error. The primary obstacle is the check
execution overhead. We found that our initial implementation of
the consistency checking algorithm as described above was too in-
efficient for practical use. We therefore implemented the following
optimizations:
• Fixed-Point Elimination: The Archie compiler analyzes the

dependences in the specification to, when possible, replace the
fixed-point computation in the model construction phase with a
more efficient single-pass algorithm.

• Relation Elimination: The compiler analyzes the specification
to, when possible, replace the explicit construction of each re-

lation with a computation that efficiently generates, on the de-
mand, the required tuples in the relation.

• Set Elimination: The compiler analyzes the specification to,
when possible, integrate the consistency checking computation
for each set of abstract objects into the data structure traver-
sal that (in the absence of optimization) constructs that set. The
success of this optimization enables Archie to eliminate the con-
struction of that set.

Together, these optimizations make Archie run over 800 times
faster on our benchmark software system than the original compiled
version; the fully optimized instrumented version executes less than
6.2 times slower than the original uninstrumented version. For our
benchmark software system, the optimized version of Archie is ef-
ficient enough to be used routinely during development with more
than acceptable performance for interactive debugging.

1.4 Case Study
To evaluate Archie’s effectiveness in supporting error localization

and correction, we obtained a benchmark software system, used man-
ual fault injection to create three incorrect versions, then asked six
developers to localize and correct the errors. Three developers used
Archie; the other three used standard techniques.

With Archie, the developers were able to localize each error within
several minutes and correct the error in (usually much) less than
twenty minutes. Without Archie, the developers were (with a sin-
gle exception) unable to localize each error after more than an hour
of debugging. The key problem was that continued execution made
the errors manifest themselves far (in both code and data) from the
original source of the error. Although the developers eventually came
to understand what was going wrong, they were unable to trace the
manifestation back to its root cause within the allotted time.

To place these results in context, consider that our benchmark sys-
tem contains significant numbers of assertions designed to catch data
structure corruption errors, two of the three errors manifest them-
selves as assertion violations, but these assertions were still not enough
to enable the developers to locate the errors in a timely manner. These
results indicate that Archie can provide a substantial improvement
over standard error localization techniques.

1.5 Contributions
This paper makes the following contributions:
• Archie: It presents the design, implementation, and evaluation

of Archie, a new specification-based data structure consistency
checking tool for error localization and correction.

• Optimizations: It presents a set of optimizations (fixed point
elimination, relation elimination, and set elimination) that, to-
gether, increase the performance of Archie on our benchmark
software system by over a factor of 800, enabling Archie to be
used routinely during interactive development with more than
acceptable performance.

• Case Study: It presents a case study that evaluates the effec-
tiveness of Archie as an error localization and correctness tool.
With Archie, developers were able to quickly localize and cor-
rect errors in our benchmark software system; without Archie,
developers were unable to localize the errors even after they
spent significant amounts of time attempting to trace the mani-
festation of the errors back to their root causes.

2. EXAMPLE
We next present an example (inspired by the FreeCiv program dis-

cussed in Section 6) that illustrates how Archie works. The program
maintains a grid of tiles that implements the map of a multiple-player
game. Each tile has a terrain value (i.e. ocean, river, mountain, grass-
land, etc) and an optional reference to a city that may be built on that
tile. Figure 1 presents the relevant data structure definitions.

structure city { int population; }
structure tile { int terrain; city *city; }
tile grid[EDGE * EDGE];

Figure 1: Structure Definitions
set TILE of tile
set CITY of city
relation CITYMAP: TILE -> CITY
relation TERRAIN: TILE -> int

Figure 2: Set and Relation Declarations

for x=0 to EDGE*EDGE, true => grid[x] in TILE
for t in TILE, true => <t,t.terrain> in TERRAIN
for t in TILE, !t.city = NULL =>

<t,t.city> in CITYMAP
for t in TILE, !t.city = NULL => t.city in CITY

Figure 3: Model Definition Rules

grid[0]
terrain: 1 2 3 4

grid[3]grid[2]grid[1]

city:

10,000 Cpopulation:

Figure 4: Concrete Data Structure

TILE = {grid[0], grid[1], grid[2], grid[3]}
TERRAIN= {〈grid[0], 1〉, 〈grid[1], 2〉, 〈grid[2], 3〉, 〈grid[3], 4〉}
CITY={C}
CITYMAP={〈grid[2], C〉, 〈grid[3], C〉}

Figure 5: Model Constructed for Example

Even a data structure this simple has important consistency con-
straints; in this section we focus on the following constraints: the
terrain field of each tile contains a legal value, each city is referenced
by exactly one tile, and no city is placed on an ocean tile.

2.1 Expressing Consistency Properties
To express these constraints, the developer first identifies the sets

and relations that conceptually model the concrete data structures. In
our example there are two sets,TILE andCITY , and two relations,
CITYMAPandTERRAIN. Figure 2 presents the declarations of these
sets and relations. TheTILE set containstile structures, and the
CITY set containscity structures. Each relation consists of a set of
tuples with objects from two specified sets.

2.1.1 Model Definition Rules
The developer next provides a set of model definition rules that

define a translation from the concrete data structures to the sets and
relations in the model. Figure 3 presents the model definition rules
in our example. Each rule consists of a quantifier that identifies the
scope of the rule, a guard that must be true for the rule to apply, and
an inclusion constraint that specifies an object (or tuple) that must be
in a given set (or relation). Conceptually, Archie uses a least fixed-
point algorithm to repeatedly add objects to sets and tuples to re-
lations until the model satisfies all of the constraints. For the data
structure in Figure 4, Archie constructs the model in Figure 5.

2.1.2 Consistency Constraints
The developer next uses the sets and relations to state the consis-

tency constraints. Each constraint consists of a sequence of quanti-
fiers that identify the scope of the constraint and a predicate that the
constraint must satisfy.

Figure 6 presents the constraints in our example. The first con-
straint ensures that each tile has a valid terrain, the second ensures
that each city has exactly one location (i.e., exactly one tile references
each city), and the final constraint ensures that no city is placed on

for t in TILE, MIN <= t.TERRAIN and t.TERRAIN <= MAX
for c in CITY,sizeof(CITYMAP.c)=1
for c in CITY,!(CITYMAP.c).TERRAIN = OCEAN

Figure 6: Consistency Constraints

an ocean tile.2 As this example illustrates, the ability to freely use
inverses substantially increases the expressive power of the specifica-
tion language — it enables the expression of properties that navigate
backwards through the referencing relationships in the data structures
to capture properties that involve both an object and the objects that
reference it.

2.2 Instrumentation and Use
Finally, the developer (potentially with the aid of an automated

tool) instruments the code to periodically invoke Archie, which ex-
amines the data structures and reports any inconsistencies to the de-
veloper. When the instrumented program executes, Archie localizes
the error to the region of the execution between two subsequent calls
to Archie and identifies the violated constraint (which, in turn, iden-
tifies the corrupt data structure). Our results (as discussed in Sec-
tion 6) show that this approach can enable the developer to quickly
localize and correct the error that caused the inconsistency. With
standard approaches, the program typically continues its execution
for some period of time, with the error propagating through the data
structures. This combination of continued execution and error prop-
agation makes it difficult to understand and localize the error.

3. SPECIFICATION LANGUAGE
Our specification language consists of several sublanguages: a

structure definition language, a model definition language, and a model
constraint language.

3.1 Structure Definition Language
The structure definition language supports the precise specifica-

tion of heavily encoded data structures. It allows the developer to
declare structure fields that are 8, 16, and 32 bit integers; structures;
pointers to structures; arrays of integers, packed booleans, structures,
and pointers to structures. The array bounds can be either constants
or expressions over an application’s variables. The developer can de-
clare that a region of memory in a structure is reserved, indicating
that it is unused. Finally, the structure definition language supports
a form of structure inheritance. A substructure must have the same
size and contain all of the same fields as the superstructure, but it
may define new fields in areas that are unused in the superstructure.

3.2 Model Definition Language
The model definition language allows the developer to declare the

sets and relations in the model and to specify the rules that define the
model. A set declaration of the formset S of T: partition
S1, ...,Sn declares a setS that contains objects of typeT, whereT is
either a primitive type or astruct type declared in the structure
definition part of the specification. The setS hasn subsetsS1, ..., Sn
which together partitionS. Changing thepartition keyword to
subsets removes the requirement that the subsets partitionS but
otherwise leaves the meaning of the declaration unchanged. A re-
lation declaration of the formrelation R: S 1->S 2 specifies a
relation between the objects in the setsS1 andS2.

The model definition rules define a translation from the concrete
data structures into an abstract model. Each rule has a quantifier that
identifies the scope of the rule, a guard whose predicate must be true
for the rule to apply, and an inclusion constraint that specifies an

2Note that the notationCITYMAP.c denotes the inverse image of
c under the relationCITYMAP(the set of allt such that〈t,c 〉 in
CITYMAP).

C := Q∗, G ⇒ I

Q := for V in S | for 〈V, V〉 in R | for V = E .. E

G := G and G | G or G |!G | E = E | E < E | true |
(G) | E in S | 〈E, E〉 in R

I := E in S | 〈E, E〉 in R

E := V | number | string | E.field | E.field[E] |
E − E | E + E | E/E | E ∗ E

Figure 7: Model Definition Language

object (or tuple) that must be in a given set (or relation). Figure 7
presents the grammar for the model definition language.

In principle, the presence of negation in the model definition lan-
guage opens up the possibility of unsatisfiable model definition rules.
We address this complication by requiring the set of model definition
rules to have no cycles that go through rules with negated inclusion
constraints in their guards.

3.3 The Constraint Language
Figure 8 presents the grammar for the model constraint language.

Each constraint consists of a sequence of quantifiersQ1, ..., Qn fol-
lowed by bodyB. The body uses logical connectives (and, or, not)
to combine basic propositionsP that constrain the sets and relations
in the model. Developers use this language to express the key con-
sistency constraints.

C := Q, C | B

Q := for V in S | for 〈V, V〉 in R | for V = E .. E

B := B and B | B or B |!B | (B) | V E comp E |
V in SE | size (SE) comp C

comp := =|<|<=|>|>=

V E := V.R | R.V | (V E) | V E.R | R.V E

E := V | number | string | E + E | E − E | E/E |
E ∗ E | E.R | size (SE) | (E)

SE := S | V.R | R.V

Figure 8: Model Constraint Language

4. COMPILATION AND OPTIMIZATION
We implemented a compiler that processes Archie specifications

to generate C code that implements a basic consistency checking al-
gorithm. This algorithm first uses a work-list-based fixed point al-
gorithm to construct the model, then evaluates the consistency con-
straints to detect any possible inconsistencies. Unfortunately, this
straightforward compilation strategy generates checking algorithms
that are too slow for our purposes. We therefore implemented the
following optimizations.

4.1 Fixed Point Elimination
This optimization analyzes the model definition rules to replace,

when possible, the fixed point computation with a more efficient data
structure traversal. The compiler first performs a dependence anal-
ysis on the model definition rules to generate a dependence graph.
This graph captures the dependences between rules which create sets
and relations and the rules which use those sets and relations. For-
mally, the graph consists of a set of nodesN (one for each rule) and a
set of edgesE. There is an edgeE = 〈N1, N2〉 from N1 to N2 if N2

usesa set or relation thatN1 defines. A ruleusesa setS (or a relation
R) if the rule has a quantifier of the formfor V in S (or of the form
for 〈V1, V2〉 in R) or if the rule has a guard of the formE in S
(or 〈E1, E2〉 in R). A rule definesa setS (or relationR) if it has an
inclusion constraintI of the formE in S (or 〈E1, E2〉 in R).

The compiler topologically sorts the strongly connected compo-
nents in the dependence graph. For components that consist of a sin-
gle rule, the compiler generates efficient code that iterates through
all of the rule’s possible quantifier bindings, evaluates the guard for
each binding, and (if the guard is satisfied) executes the actions that
add the appropriate objects to sets or tuples to relations. For compo-
nents that consists of multiple rules, the compiler generates code that
performs a fixed point computation of the sets and relations that the
component produces. The generated code executes the computations
for the components in the topological sort order. This order ensures
that each set and relation is completely constructed before it is used
to construct additional sets and relations in other components.

4.2 Relation Elimination
Some of the relations constructed in our model correspond to par-

tial functions. For example, a fieldf may generate a relation that re-
lates each objecto to the value of the fieldo.f . Our compiler discov-
ers relations that implement partial functions and verifies that these
relations are used only in the forward direction (i.e., no expression
uses the inverse of the relation). The compiler recognizes that a rela-
tion R is a partial function if the model definition rules use a single
rule of the following form to defineR:

for V in S, G ⇒ 〈V, E〉 in R.

The compiler rewrites each expression that uses a partial function
by replacing the use with the computation ofG and (ifG is satisfied)
E. The compiler then removes the rule responsible for constructing
each such relation.

4.3 Set Elimination
Our final optimization attempts to transform the specification to

eliminate set construction and instead perform the checks directly on
the data structures in memory. We use two transformations:model
definition rule inliningandconstraint inlining. Model definition rule
inlining finds a model definition rule of the formQ∗, G1 ⇒ V1 in S,
a second model definition rule of the formfor V2 in S, G2 ⇒ I,
then eliminates the use of the setS in the second rule by transforming
it to Q∗, G1∧G2[V1/V2] ⇒ I[V1/V2]. To apply the transformation,
the first rule must be the only rule that definesS.

The constraint inlining transformation finds a model definition rule
of the form Q∗, G ⇒ V1 in S, a consistency constraint of the
form for V2 in S, C, then eliminates a use of the setS by trans-
forming the consistency constraint toQ∗, G ⇒ C[V1/V2]. To ap-
ply the transformation, the model definition rule must be the only
rule that definesS. Note that the new constraint has a predicate
(G ⇒ C[V1/V2]) that may involve both concrete values from the
data structures in memory and the sets and relations in the model.
We have extended the internal representation of our compiler so that
it can generate code to check these kinds of hybrid constraints.

Each transformation eliminates a use of the setS. If the transfor-
mations eliminate all uses, the compiler removes the set and the rule
that produces the set from the specification, eliminating the time and
space required to compute and store the set. This optimization can
be especially useful when (as is the case for our benchmark system)
the compiler is able to eliminate the largest sets or relations.

4.4 Performance Impact
Table 1 presents the execution times of our benchmark software

system with the consistency checks at different optimization levels.
As these numbers show, the optimizations produce dramatic perfor-
mance improvements. The final optimized version is more than effi-
cient enough for interactive debugging use.

5. ENVISIONED USAGE STRATEGY
Obtaining developer acceptance of a new tool can be difficult, es-

pecially when the tool requires the developers to use a new language

Version Time
No Instrumentation 0.234 sec
Baseline Compiled 20 min
Fixed point elimination 25.60 sec
Relation Elimination 10.66 sec
Set removal 1.45 sec

Table 1: Performance Results
such as our specification language. We expect that several aspects of
Archie will facilitate its acceptance within the developer community:
• Black Box Usage: The specifications can be developed by a

small number of developers who are familiar with the specifica-
tion language, while the remainder of the developers can sim-
ply use Archie as a black box. We anticipate no need for the
vast majority of the developers to learn the Archie specification
language. There is also no need to change the programming
language, coding style, or other development tools.

• Incremental Adoption: Archie supports incremental adoption
— the developer can start with a specification that captures a
small subset of the consistency properties, then incrementally
augment the specification to capture more properties. During
the specification development process the consistency checker
becomes more useful as more properties are added. Calls to
Archie can also be incrementally added to the system. The over-
all result is a smooth integration into the development process
with no major dislocations or disruptions.

• Ease of Development:Based on our experience developing
similar specifications in another project [7], we believe that
Archie specifications will prove to be relatively easy to develop
once the developer understands the relevant data structures.3

Because the specifications identify global data structure invari-
ants rather than specific properties of local computations, our
experience indicates that the resulting specifications are quite
small (the largest are several hundred lines long, with the ma-
jority of the lines devoted to structure definitions) in comparison
with the size of the software system as a whole.

We do anticipate that the use of Archie may wind up substantially
changing the testing, error localization, and error correction activ-
ities, but in a positive way — we anticipate that Archie will help
developers find errors earlier and provide them with substantially
improved error localization. The developers in our case study (see
Section 6) had no problem integrating Archie into their debugging
strategy and in fact used Archie almost immediately to eliminate te-
dious activities such as augmenting the code with print statements
or using a debugger to insert breakpoints and examine the values of
selected variables.

We expect that Archie will effectively support usage strategies in
which the initial specifications are developed as part of the software
design process before coding begins and usage strategies in which it
is integrated into a large existing software system. We also antici-
pate that, once integrated, the developers will be motivated to keep
the specification up to date to reflect changes to the data structures.
The division of the specification into model definition rules and con-
sistency constraints facilitates this specification maintenance — if
only the representation of the data changes, the developer can simply
update the model definition rules to reflect the new representation,
leaving the consistency constraints intact.

During development, we expect the program to be instrumented
with calls to the Archie consistency checker. We anticipate two kinds
3Specifically, we have developed specifications for the FreeCiv in-
teractive game, the CTAS air-traffic control system [1, 23] (this de-
ployed system consists of over 1 million lines of code), a simplified
version of the Linux ext2 file system [20], and Microsoft Word files.

of instrumentation: calls placed (potentially with the aid of an auto-
matic call placement tool) at standard locations such as procedure
entry and exit points as a routine part of the development process,
and calls placed at chosen locations by developers as they attempt to
localize a specific error.

6. CASE STUDY
Our case study attempts to answer the most basic question one

could ask about Archie’s potential effectiveness: Given a specifica-
tion and a data structure corruption error that causes the data struc-
tures to violate this specification, does Archie help developers lo-
calize and correct the error? To answer this question, we obtained
a benchmark software system and a population of developers, then
performed a study in which the developers attempted to localize and
correct errors in the system. By comparing the behavior and effec-
tiveness of the developers that used Archie with the developers that
did not, we are able to obtain an indication of how well Archie aided
the error localization and correction process for this class of errors.

6.1 Developer Population
We recruited six developers with relatively homogeneous back-

grounds: all developers had similar educational backgrounds, all rep-
resented their home country in international programming competi-
tions while they were in high school, and all are currently students at
MIT.

We separated the developers into two populations: the Tool popu-
lation, which used Archie during the debugging experiments, and the
NoTool population, which did not use Archie. To control for debug-
ging ability, we assigned each developer a pre-study calibration task
of locating and correcting an error in a heapsort implementation. We
ordered the developers by the time required to correct this error; the
times varied between 9 and 32 minutes. We then randomly assigned
one of the first two, the next two, and the last two developers to the
Tool population, with the others assigned to the NoTool population.

6.2 FreeCiv
We chose the FreeCiv interactive game program (available at

http://www.freeciv.org) as our benchmark software system. The
source code consists of roughly 65,000 lines of C in 142 files. It con-
tains four modules: a server module, a client module, an AI module,
and a common module. We have made all of the information required
to replicate our results available at
http://www.mit.edu/ ∼cristic/Archie .

6.2.1 Consistency Properties
FreeCiv maintains a map of tiles arranged as a rectangular grid.

Each tile contains a terrain value (plains, hills, ocean, desert, etc.)
and a reference to a bitmap which maintains additional information
(such as pollution levels) about the tile. Each tile may also contain a
reference to a city data structure. Our FreeCiv specification consists
of 199 lines (of which 180 contain structure definitions). This specifi-
cation identifies the following five consistency properties: each game
must have a single map, each game must have a single grid of tiles,
each tile must have a valid terrain value, exactly one tile must point
to each city, and no city may be located on an ocean tile.

6.2.2 Incorrect Versions
We used manual fault insertion to create three incorrect versions of

FreeCiv. The first version contains an error in the common module.
The incorrect procedure is 14 lines long (after error insertion); the
error causes the program to assign an invalid terrain value to a tile
(causing the data structures to violate the third constraint identified
above). The second version contains an error in the server module.
The incorrect procedure is 18 lines long and causes two tiles to refer
to the same city (causing the data structures to violate the fourth con-

straint). The third version also contains an error in the server module.
The incorrect procedure is 153 lines long; the error causes a city to
be placed on an ocean tile (violating the last constraint).

6.2.3 Experimental Setup
We first presented all of the developers with a FreeCiv tutorial,

which gave them an overview of the purpose and structure of the
program, an overview of Archie, and an overview of the FreeCiv
data structures and their consistency properties.

We gave both the Tool and NoTool populations identical instru-
mented copies of the three incorrect versions of FreeCiv. These
copies contain calls to the Archie consistency checker at the begin-
ning and end of each procedure, with the exception of small proce-
dures like structure field getters and setters and I/O procedures that
interface with the user or the network. For the NoTool population,
these calls immediately return without performing any consistency
checking; for the Tool population, each call uses the Archie speci-
fication to perform a complete consistency check. Consistent with
the expected usage strategy in Section 5, the Tool developers used
Archie as a black box — they simply compiled the pre-generated
consistency checker into their executables.

The instrumented versions of FreeCiv contain approximately 750
statements that invoke the Archie consistency checker. For the Tool
population, each call (whether it detects an inconsistency or not)
writes an entry to a log indicating the position in the code from which
it was invoked. For this study, we configured FreeCiv to use its auto-
game mode in which it plays against itself and set the random num-
ber generator seed to a fixed value (to ensure repeatability). In this
mode, the correct version of the program invokes the checker more
than 20,000 times when it executes.

We asked the developers to attempt to locate and eliminate the er-
rors in the three incorrect versions. We requested that they spend at
least one hour on each version and allowed them to spend more time
if they desired. For the NoTool population, each error manifested it-
self as either an assertion violation (the first two errors) or a segmen-
tation fault (the last error). For the Tool population, each error mani-
fested itself as an error message from the Archie consistency checker
— the consistency checker printed out the violated constraint, the lo-
cation of the call to the consistency checker, and an explanation of
the error provided by the developer of the specification.

All of the developers used a Linux workstation (RedHat 8.0 Linux)
with two 2.8 GHz Pentium 4 processors and 2 GBytes of RAM. We
provided all of the developers with scripts to compile and run the
three versions. The developers were able to use any development or
debugging tool available on this platform. The developers were all
familiar with this computational environment and comfortable using
it. We observed the developers during the experiment and maintained
a detailed record of their actions.

6.3 The Tool Population
Table 2 presents the number of minutes required for each member

of the Tool population to locate each error; Table 3 presents the total
number of minutes required to both locate and correct the error. As
these numbers show, the developers were able to locate and correct
the errors quite rapidly.

The developers in this population used Archie extensively in their
debugging activities. They all started by examining the Archie incon-
sistency message. If the message came from a call to the Archie con-
sistency checker at the start of a procedure, they examined the Archie
log to find the caller of this procedure and (correctly) attributed the
error to the caller. If the message came from a call to the Archie con-
sistency checker at the end of a procedure, they (once again correctly)
attributed the error to this procedure.

Participant Error 1 Error 2 Error 3
T1 1 2 1
T2 2 3 2
T3 5 1 5

Table 2: Localization Times (Tool)

Participant Error 1 Error 2 Error 3
T1 9 7 3
T2 8 6 8
T3 17 7 14

Table 3: Correction Times (Tool)

They then examined the message to determine which constraint
was violated, then examined the code of the procedure containing
the error to find the code responsible for the inconsistency. For the
third error (recall that the procedure containing this error is 153 lines
long) the developers inserted additional calls to the Archie consis-
tency checker to further narrow down the source of the inconsistency.
Eventually all of the developers found and eliminated the error.

6.4 The NoTool Population
Table 4 presents the number of minutes required for each member

of the NoTool population to locate each error; Table 5 presents the
total number of minutes required to both locate and correct the er-
ror. A dash (-) indicates that the developers were unable to locate or
correct the error; a number in parenthesis after the dash indicates the
number of minutes spent on the respective task before giving up. As
these tables indicate, only one of the developers was able to locate
and correct an error. Moreover, this correction was somewhat fortu-
itous: the developer spent the last 15 minutes of his attempt to locate
the second error examining the correct version of the procedure that
was modified to contain the third error. When he reexamined this
procedure during his attempt to locate the third error, he noticed that
the code was different and simply replaced the incorrect version with
the correct version that he had examined earlier!

Participant Error 1 Error 2 Error 3
NT 1 - - 10
NT 2 - - -
NT 3 - - -

Table 4: Localization Times (NoTool)

Participant Error 1 Error 2 Error 3
NT 1 - (95) - (65) 11
NT 2 - (90) - (70) - (60)
NT 3 - (70) - (60) - (60)

Table 5: Correction Times (NoTool)

For the first two versions of FreeCiv, the developers in the NoTool
population started by examining the code that triggered the assert
violation. For the third version, the developers started their examina-
tion with the code that triggered the segmentation fault. Once it be-
came clear to them that the code surrounding the assertion or segmen-
tation fault was not responsible for the inconsistency, they attempted
to trace the execution backwards to locate the code responsible for
the error. During this process, they made extensive use of gdb to set
break points and examine the values of the program variables. They
also inserted print statements to track the values of different variables
and augmented the program with additional assertions to check var-
ious consistency properties. Our observations indicate that all of the
developers in this group made meaningful progress towards localiz-

ing the error. But because of the complexity of the program and the
time between the generation of the inconsistency and its manifesta-
tion, they were unable to successfully localize the error within the
amount of time they were willing to spend.

After several days we asked the developers in the NoTool pop-
ulation to attempt to use Archie to localize and correct the errors.
Tables 6 and 7 present the localization and correction times, respec-
tively.4 As these results show, once the NoTool developers were
given access to Archie, they were able to quickly localize and cor-
rect the errors.

Participant Error 1 Error 2 Error 3
NT 1 1 2 -
NT 2 3 2 1
NT 3 3 1 8

Table 6: Localization Times (NoTool with Archie)

Participant Error 1 Error 2 Error 3
NT 1 2 3 -
NT 2 4 3 6
NT 3 4 3 19

Table 7: Correction Times (NoTool with Archie)

6.5 Discussion
Error localization was the crucial step for debugging the errors

in our study and Archie’s ability to detect and flag each inconsis-
tency immediately after it was generated was primarily responsible
for the divergent experiences of the two populations. Developers in
both populations had a clear manifestation of the error and started the
debugging process by examining the code that produced this mani-
festation. For the Tool population, Archie produced a manifestation
that quickly directed each developer to the procedure containing the
incorrect code. Once directed to this procedure, the developers were
able to quickly and effectively locate and correct the error.

Significant Procedure Calls Execution Time (%)
Error 1 12689 15%
Error 2 579 1%
Error 3 4142 8.5%

Table 8: Error to Manifestation Distance

Without Archie, the program executed for a substantial period of
time before the data structure inconsistency finally manifested itself
as an assertion violation or segmentation fault. Table 8 presents num-
bers that quantify this distance. The first column presents the number
of significant procedure calls (this number excludes getter, setter, and
I/O procedure calls) between each error and its manifestation as an
assertion violation or segmentation fault; the second column presents
this distance as a percentage of the running time of the correct ver-
sion.

Moreover, the inconsistency did not cause incorrect code to fail —
it instead caused distant correct code to fail, misleadingly directing
the developer to fruitlessly examine correct code instead of incorrect
code as the source of the error. Even though the NoTool population
was able to obtain a reasonably accurate understanding of each error,
their inability to localize the error (even given their understanding)
prevented them from correcting it. And once the NoTool population
was given access to Archie, they were able to use Archie to quickly
and effectively locate and correct the error.

4There are no results for developer NT 1 on error 3 because this de-
veloper localized and corrected this error in the previous experiment.

6.5.1 Comparison With Assertions
Our results reveal several limitations of assertions as a debugging

tool. Like Archie, assertions test basic consistency constraints and,
if a constraint is violated, tell the developer which property was vi-
olated and where in the execution the violation was detected. It is
therefore not clear that Archie should provide any benefit for a pro-
gram whose assertions successfully detect inconsistencies. But in our
study, Archie proved to be substantially more useful to the develop-
ers than the assertions,even though two out of the three data struc-
ture inconsistencies manifested themselves as assertion violations.
There are two (related) reasons for this (counterintuitive) result: 1)
the assertions in FreeCiv detected the inconsistencies long after their
generation, and 2) the assertions did not direct the developers to in-
consistencies in the initially corrupted data structures — they instead
directed them to inconsistencies in data structures derived from the
initially corrupted data structures.

The assertions in FreeCiv, as in many other programs, tend to test
easily available values accessed by the surrounding code. The asser-
tions therefore test only partial, local properties of the accessed parts
of the data structure, typically properties that the code containing the
assertion relies on for its correct execution. In particular, if a compu-
tation reads some data structures and produces others, the assertions
tend to test the read data structures, not the produced data structures.

It is therefore possible (and even likely) for a program to execute
successfully through many assertions after it corrupts its data struc-
tures. And when an assertion finally catches the inconsistency, the
execution may be very far away from the code responsible for the
inconsistency and the inconsistency may have propagated through
additional data structures. In our incorrect versions of FreeCiv, for
example, one phase of the program produces an inconsistent data
structure, but the assertions detect these inconsistencies only after a
distant phase attempts to read a data structure derived from the origi-
nal inconsistent data structure — the intervening phases either do not
attempt to access this data structure or fail to check for the violated
consistency property.

Because Archie comprehensively checks all of the consistency prop-
erties, it makes the developer aware of the inconsistency as soon as it
occurs. This immediate notification was crucial to its success in our
study, because (unlike the delayed notification characteristic of the
existing FreeCiv assertions) it immediately directed the developers
to the incorrect code and identified the data structure that it corrupted
(and not some other derived data structure).

6.5.2 Efficiency
The basic benefit of Archie is to localize each error to the region

of the execution between the failed consistency check and the im-
mediately preceding successful consistency check. It is therefore de-
sirable to perform the consistency checks as frequently as possible
so as to better localize the error. The primary obstacle to frequent
consistency checking is the overhead of executing the checks.

The optimizations discussed in Section 4 are therefore crucial to
the successful use of Archie. Without optimization, the consistency
checks increase the FreeCiv execution time from less than a second to
twenty minutes. While this kind of time dilation may be acceptable
for errors that would otherwise be very difficult to localize, we would
prefer to enable developers to use Archie routinely during all of their
executions.

Our optimizations enabled us to provide the developers in our
study with a checker that can execute frequently while maintaining
an interactive debugging environment. We believe that this level of
efficiency was crucial to the successful use of Archie in our study and
that our optimizations will prove to be at least as important for ob-
taining an acceptable combination of check frequency and response
time for other applications.

6.5.3 Applicability
Our study indicates that consistency checking in general and Archie

in particular can help developers locate and eliminate data structure
corruption errors that violate the checked consistency property. For
this class of errors, Archie provides the developer with information
that helps the developer to both localize the bug and understand the
violated consistency properties.

We believe that Archie is less likely to be useful for finding er-
rors that do not result in data structure corruption, although it could
still be useful for ruling out classes of errors. However, from our
experiences we believe that data structure corruption errors are a par-
ticularly difficult class to debug, and that Archie should prove useful
in practice for this class of errors.

6.5.4 Future Work
This study leaves many interesting questions unanswered. In par-

ticular, it provides no indication whether a specification-based ap-
proach provides any advantages or suffers from any disadvantages
as compared with an approach based on manually developing con-
sistency checkers in the standard implementation language. We an-
ticipate that in either case an expert would develop the specifica-
tion or consistency checker, most developers would use the consis-
tency checker as a black box, and the development of the consistency
checker would require a small fraction of the overall development
time. Potential advantages of the specification-based approach in-
clude reduced development time, a clearer and more explicit iden-
tification of the important consistency properties, and consistency
checkers with fewer errors that are amenable to static analysis and
targeted optimizations (such as those discussed in Section 4). It re-
mains to be seen if these potential advantages materialize in practice.

A second area of potential inquiry concerns the frequency, rela-
tive importance, and consistency violation properties of data struc-
ture corruption errors in practice. Our study leaves open questions
of whether data structure corruption errors are an important problem
in practice and whether developers are able to produce specifications
or consistency checkers that catch the kinds of data structure corrup-
tions that occur in practice.

7. RELATED WORK
Error localization and correction has been an important issue ever

since people began to develop software. Researchers have developed
a host of dynamic and static debugging tools; a small selection of
recent systems includes [9, 4, 25, 11, 2, 5, 26, 15, 16, 8]. We con-
fine our survey of related work to research in specification languages,
specification-based testing, and invariant inference systems.

7.1 Specification Languages
The basic concepts in our specification language (objects and rela-

tions) are the same as in object modeling languages such as UML [22]
and Alloy [13], and the specification language itself has many of the
same concepts and constructs as the constraint languages for these
object modeling languages, which are designed, in part, to be easy
for developers to use.

Standard object modeling approaches have traditionally been used
to help developers express and explore high-level design properties.
One of the potential benefits of our approach is that it may enable de-
velopers establish a checked connection between the high-level con-
cepts in the model and their low-level realization in the data struc-
tures in the program.

7.2 Specification-Based Testing
Specification-based testing (of which Archie is an instance) tests

the correctness of an execution by determining if it satisfies a speci-
fication written in some specification language. Specification-based

testing is usually implemented at the granularity of procedure pre-
conditions and postconditions. ADL [24], JML [14], Testera [18],
Korat [3], and several Eiffel [19] implementations, to name a few,
implement various forms of this kind of specification-based testing.

Archie, in contrast, implements a global invariant checker with no
attempt to verify any property of the execution other than the preser-
vation of the invariant. Advantages of Archie include reduced speci-
fication overhead and complete coverage of the global invariants (in-
stead of checking more targeted properties that are intended to char-
acterize procedure executions); the disadvantage is that it is not in-
tended to find errors that do not violate the invariant. Our evaluation
is that the two kinds of checkers address complementary properties
and that both provide valuable checking functionality.

7.3 Invariant Inference and Checking
Several research groups have developed systems that dynamically

infer likely invariants or other program properties; the same technol-
ogy can be easily used to check the inferred properties (or, for that
matter, any property expressed using the same formalism). Specific
systems include DAIKON [10], Carrot [21], DIDUCE [12], and au-
tomatic role inference [6].

An important difference between Archie and these previously ex-
isting systems is that Archie is designed to check the substantially
more sophisticated properties characteristic of complex linked data
structures that must satisfy important structural constraints. The (in
our view minimal) overhead is the need to provide a specification
of these properties instead of automatically inferring the properties.
And in fact, it would be feasible to use automatic property discov-
ery tools to generate Archie consistency constraints or to obtain an
initial set of properties that could be refined to obtain a more precise
specification.

8. CONCLUSION
Error localization is a necessary prerequisite for correcting soft-

ware errors and often the primary obstacle. Archie addresses this
problem by accepting a specification of key data structure consis-
tency properties, then automatically checking that the data structures
satisfy these properties. The Archie checker can help developers
quickly localize data structure corruption errors to the region of the
execution between two subsequent calls to Archie.

Our set of optimizations enables the Archie compiler to generate
checking code that executes more than efficiently enough to enable
an effective check frequency and support its routine use in an inter-
active debugging environment. Moreover, the results from our case
study indicate that developers can almost immediately use Archie to
substantially improve their ability to localize and correct errors in a
substantial software system. We believe that Archie therefore holds
out the potential to substantially improve the ability of developers to
first localize, then correct, data structure corruption errors.

Acknowledgements
This research was supported in part by DARPA Contract F33615-00-
C-1692, NSF Grant CCR00-86154, NSF Grant CCR00-63513, NSF
Grant CCR00-73513, NSF Grant CCR-0209075, NSF Grant CCR-
0341620, and NSF Grant CCR-0325283,

9. REFERENCES
[1] Center-tracon automation system.

http://www.ctas.arc.nasa.gov/ .
[2] T. Ball and S. K. Rajamani. Automatically validating temporal safety

properties of interfaces.Lecture Notes in Computer Science,
2057:103+, 2001.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on Java predicates. InProceedings of the International

Symposium on Software Testing and Analysis (ISSTA), pages 123–133,
July 2002.

[4] J.-D. Choi et al. Efficient and precise datarace detection for
multithreaded object-oriented programs. InProceedings of the
SIGPLAN ’02 Conference on Program Language Design and
Implementation, 2002.

[5] M. Das, S. Lerner, and M. Seigle. Path-sensitive program verification
in polynomial time, 2002.

[6] B. Demsky and M. Rinard. Role-based exploration of object-oriented
programs. InICSE02, May 2002.

[7] B. Demsky and M. C. Rinard. Automatic detection and repair of errors
in data structures. InOOPSLA, October 2003.

[8] M. Ducass. Coca: An automated debugger for c. InProceedings of the
21st International Conference on Software Engineering, 1999.

[9] D. Engler and K. Ashcraft. Racerx: Effective, static detection of race
conditions and deadlocks. InSOSP, October 2003.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In
International Conference on Software Engineering, pages 213–224,
1999.

[11] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for
building system-specific, static analyses. InPLDI, pages 69–82, 2002.

[12] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. InProceedings of the 24th International
Conference on Software Engineering, pages 291–301, May 2002.

[13] D. Jackson. Alloy: A lightweight object modelling notation. Technical
Report 797, Laboratory for Computer Science, Massachusetts Institute
of Technology, 2000.

[14] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. Technical
Report 98-06i, Iowa State University, 2000.

[15] R. Lencevicius, U. Hlzle, and A. K. Singh. Query-based debugging of
object-oriented programs. InOOPSLA97, October 1997.

[16] B. Lewis. Debugging backwards in time. InProceedings of the Fifth
International Workshop on Automated Debugging AADEBUG 2003,
2002.

[17] B. Liskov and J. Guttag.Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Addison-Wesley, 2000.

[18] D. Marinov and S. Khurshid. TestEra: A novel framework for
automated testing of Java programs. InProceedings of the 16th IEEE
International Conference on Automated Software Engineering (ASE),
Nov. 2001.

[19] B. Meyer.Eiffel: The Language. Prentice Hall, New York, NY, 1992.
[20] D. Poirier. Second extended file system.

http://www.nongnu.org/ext2-doc/ , Aug 2002.
[21] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated

fault localization using potential invariants. InProceedings of the 5th
International Workshop on Automated and Algorithmic Debugging,
September 2003.

[22] Rational Inc. The unified modeling language.
http://www.rational.com/uml .

[23] B. D. Sanford et al. Center/tracon automation system: Development
and evaluation in the field. In38th Annual Air Traffic Control
Association Conference Proceedings, October 1993.

[24] S. Sankar and R. Hayes. Specifying and testing software components
using ADL. Technical Report TR-94-23, Sun Microsystems, 1994.

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[26] A. Zeller. Isolating cause-effect chains from computer programs. In
Proceedings of the tenth ACM SIGSOFT symposium on Foundations of
software engineering, 2002.

