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ABSTRACT
We present a new technique, failure-oblivious computing,
that enables programs to continue to execute through mem-
ory errors without memory corruption. Our safe compiler
for C inserts checks that dynamically detect invalid memory
accesses. Instead of terminating the execution or throw-
ing an exception, the generated code simply discards invalid
writes and manufactures values to return for invalid reads,
enabling the program to continue its normal execution.

We have applied failure-oblivious computing to a set of
widely-used programs that are part of the Linux-based open-
source interactive computing environment. Our results show
that our techniques 1) make these programs invulnerable
to known security attacks that exploit memory errors, and
2) enable the programs to continue to operate successfully
to service legitimate requests and satisfy the needs of their
users even after attacks trigger their memory errors.

1. INTRODUCTION
Memory errors such as out of bounds array accesses and

invalid pointer accesses are a common source of program
failures. Safe languages such as ML and Java use dynamic
checks to eliminate such errors — if, for example, the pro-
gram attempts to access an out of bounds array element,
the implementation intercepts the attempt and throws an
exception. The rationale is that an invalid memory access
indicates an unanticipated programming error and it is un-
safe to continue the execution without first taking some ac-
tion to recover from the error.

Recently, several research groups have developed compil-
ers that augment programs written in unsafe languages such
as C with dynamic checks that intercept out of bounds ar-
ray accesses and accesses via invalid pointers (we call such
a compiler a safe-C compiler) [25, 53, 47, 39, 49, 40]. These
checks use additional information about the (dynamic) lay-
out of the address space to distinguish illegal accesses from
legal accesses. If the program fails a dynamic check, it ter-
minates after printing an error message.
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1.1 Failure-Oblivious Computing
Note that it is possible for the compiler to automatically

transform the program so that, instead of throwing an ex-
ception or terminating, it simply ignores any memory access
errors and continues to execute normally. Specifically, if the
program attempts to read an out of bounds array element
or use an invalid pointer to read a memory location, the im-
plementation can simply (via any number of mechanisms)
manufacture a value to supply to the program as the result
of the read, and the program can continue to execute with
that value. Similarly, if the program attempts to write a
value to an out of bounds array element or use an invalid
pointer to write a memory location, the implementation can
simply discard the value (in effect, turning the write into a
nop) and continue to execute the program. We call a com-
putation that uses this execution strategy a failure-oblivious
computation, since it is oblivious to its failure to correctly
access memory.

One potential objection is that failure-oblivious comput-
ing cannot possibly work, because even if the program con-
tinues to execute through the memory error, it will generate
the wrong result. As discussed below in Section 4, many
important programs have characteristics that interact well
with continued execution through memory errors as long as
failure-oblivious computing prevents these errors from cor-
rupting the program’s address space or data structures. And
in fact, our experimental results show that failure-oblivious
computing can substantially improve the availability, ro-
bustness, and security of such programs.

Another potential objection is that the program should
stop at the first memory error so that a programmer can
find and eliminate the error. We agree that in many active
development scenarios it is better to stop at the first error.
But in the vast majority of usage scenarios debugging is
simply not a viable option — very few users have the skills,
program knowledge, access to source code, or time required
to effectively debug an error in one of the many programs
that they use. Moreover, our results indicate that failure-
oblivious computing enables many programs to provide per-
fectly acceptable service to their users even after they at-
tempt to commit one or more memory errors. Given the
choice between no execution (because the program stopped
or crashed at a memory error), corrupted execution (be-
cause the memory error corrupted the address space), and
continued failure-oblivious execution, it is clear to us that,
for the programs that we discuss in Section 4, almost all
users will prefer failure-oblivious execution because it will
usually enable them to continue to work productively.



1.2 Servers and Buffer-Overrun Attacks
Consider, for example, a server (such as a web server)

that processes incoming requests from a variety of clients.
Even if the server processes most requests successfully, some
requests may trigger latent memory errors. A common er-
ror occurs when the program allocates a fixed-size stack-
allocated buffer to hold input strings, then fails to check that
each input string actually fits in the buffer. An attacker can
exploit this error by passing in a long input string containing
executable code. The string overwrites the stack contents,
injecting the code into the stack. By including a pointer to
this code in the appropriate place in the input string, the
attacker can coerce the server into executing the (arbitrary)
injected code.

Such attacks are called buffer-overrun attacks. They are
currently the most common source of exploited security vul-
nerabilities in modern networked computer systems [2]. Rea-
sonable estimates place the total cost of such attacks in the
billions of dollars annually [3].

Failure-oblivious computing makes a server invulnerable
to buffer-overrun attacks: if an input string does not fit into
a buffer, the failure-oblivious server simply discards the ex-
cess characters, preserving the integrity of the stack. The
server typically recognizes the request as invalid, returns
some kind of error response, then continues to process the
next request. From the perspective of the server, failure-
oblivious computing has converted a dangerous, unantici-
pated attack into a benign, anticipated invalid input. For
this class of applications, failure-oblivious computing offers
the following advantages:

• Security: Failure-oblivious computing eliminates the
possibility that an attacker can exploit memory errors
to corrupt the address space of the server. The re-
sult is a more secure system that is immune to buffer-
overrun attacks in particular and memory-error-based
data structure corruption attacks in general.

• Availability: The combination of protection against
data structure corruption and continued execution in
the face of programming errors can dramatically in-
crease the availability of the computation. This com-
bination is especially valuable for servers because it
enables the server to continue to provide service to le-
gitimate users even in the face of repeated attacks (or,
for that matter, other infrequently-triggered program-
ming errors).

• Minimal Adoption Cost: The net adoption cost to
the developer is to recompile their program using a
compiler that generates failure-oblivious code. There
is no need to change programming languages, write ex-
ception handling code, or modify the software in any
way. Failure-oblivious computing can therefore be ap-
plied immediately and with almost no effort to today’s
software infrastructure.

1.3 Multiple Items or Outputs
Many programs (such as mail readers) process multiple

items (such as mail messages). Without failure-oblivious
computing, a memory error in the computation associated
with one of the items can cause the program to fail to process
the rest of the items. For unsafe languages the memory error
may cause the program to crash or corrupt data structures

required to process the rest of the items; for safe languages
the errors may generate exceptions that divert the execution
from processing subsequent items.

Failure-oblivious computing enables the program to con-
tinue to execute through errors to process all of the items.
And our experience with such programs indicates that be-
cause failure-oblivious computing prevents memory errors
from corrupting the data structures, the program is able
to process subsequent items successfully. Failure-oblivious
computing is therefore able to substantially increase the
availability of these kinds of programs. And once again, the
adoption cost is minimal: a simple recompile of the existing
program with no source code changes.

This basic class of applications generalizes to include ap-
plications that generate multiple outputs; in many cases
some of the outputs are more important than others. By
enabling the computation to execute through errors to gen-
erate all of its outputs, failure-oblivious computing can en-
able the program to produce its important outputs even if
the computations that generate other outputs would other-
wise fail because of memory errors.

1.4 Overview of Results
We have implemented a C compiler that generates failure-

oblivious code. We have obtained several widely-used public-
domain programs that contain known memory errors (which
usually make them vulnerable to a variety of remote attacks)
and used our compiler to obtain failure-oblivious versions of
these benchmarks. Our results show that these versions are
1) not vulnerable to the memory errors or the attacks that
these memory errors otherwise enable, and 2) continue to
correctly service legitimate requests and interactions even
after failed attacks trigger the errors. Using a safe-C com-
piler for these programs is either impractical (because the
programs have memory errors during initialization and fail
to operate at all) or suboptimal (because it causes the pro-
grams to unnecessarily deny service to legitimate users).

1.5 Benefits and Drawbacks
The primary characteristic of failure-oblivious computing

as compared with previous approaches is continued execu-
tion combined with the elimination of data structure cor-
ruption caused by memory errors. The potential benefits
include:

• Increased Resilience: Current computer systems
are notoriously brittle — all too often, a single er-
ror can cause an entire system to fail. In some cases,
failure-oblivious computing can eliminate the effect of
an error entirely; even when it is unable to do so, it of-
ten converts outright failure into graceful degradation
and enables the system to continue to operate success-
fully on most of its inputs. The net result is a dramatic
increase in the overall resilience of the system and its
ability to continue to operate acceptably in the face of
errors, unexpected inputs, and attacks.

• Increased Security: Failure-oblivious computing elim-
inates important security vulnerabilities by preventing
an attacker from exploiting buffer overruns and other
memory errors. Moreover, we expect failure-oblivious
computing to be more palatable to end users than safe
compilation approaches (which react to memory errors
by throwing an exception or terminating the program)



because it often enables the program to survive the
attacks to continue to execute productively.

• Reduced Development Costs: With current exe-
cution strategies, a single memory error in any part
of the program can cause the entire program to fail.
This fact generates enormous pressure to find and elim-
inate as many such errors as possible. The result is a
long, complicated development process characterized
by extensive testing (to find the errors), frequent code
changes (to fix the errors), and the potential for system
disruption (as the effect of the code changes propagate
to other parts of the system).

Because failure-oblivious computing reduces the con-
sequences of memory errors, it can reduce the need for
extensive testing and make it feasible to simply leave
more errors in place. The result may be a substantial
reduction in development costs.

• Reduced Administration Overhead: One of the
most challenging system administration tasks is ensur-
ing that systems are kept up to date with a constant
stream of patches and upgrades; this stream is driven,
in large part, by the need to eliminate memory errors
(and the associated security vulnerabilities) in other-
wise perfectly acceptable programs. Because failure-
oblivious computing eliminates this class of errors, it
promises to make it possible for system administrators
to safely ignore many of these patches and upgrade or
patch their systems primarily to obtain new function-
ality, not because they need to close security vulner-
abilities in programs that are otherwise fully serving
the needs of their users.

Detecting and recovering from successful attacks is also
a challenging and time-consuming system administra-
tion task. Failure-oblivious computing promises to re-
duce the frequency of successful attacks and therefore
reduce the administration effort required to detect and
recover from such attacks.

More generally, other kinds of program failures often
generate a similar need for human intervention to de-
tect and recover from the failure. Failure-oblivious
computing, because it enables programs to continue
to execute through otherwise fatal errors, promises to
eliminate many of these failures and therefore to re-
duce administration costs.

• Safer Integration: One of the potential hazards of
incorporating a foreign component into a program is
the potential that it may contain memory errors that
cause the program to fail, either directly within the
component itself or indirectly in another component
whose data structures it has corrupted. Because failure-
oblivious computing reduces the consequences of such
memory errors, it lowers the risks associated with the
use of such components. It may therefore improve the
availability and reliability of systems built out of mul-
tiple components from different sources and increase
the feasibility of aggressive code reuse.

In our view, the primary drawback of failure-oblivious
computing is the potential it has to take the program down
an execution path that was unanticipated by the program-
mer, with the prospect of this path producing unacceptable

results.1 This drawback is, in our view, an unavoidable con-
sequence of any mechanism that is intended to increase the
resilience of programs in the face of errors — errors occur
precisely because the program encountered a situation that
the programmer either did not anticipate or did not deem
worth handling correctly.

There are several ways that the programmer can ame-
liorate the impact of this unanticipated execution. First,
our results indicate that failure-oblivious computing often
has the effect of converting unanticipated situations into
anticipated error cases, which put the program back into
its anticipated set of executions fairly quickly. Second, the
programmer can analyze the characteristics of the program
(and the context in which it will be used) and decide if it is
appropriate for failure-oblivious computing.

1.6 Scope
We anticipate that failure-oblivious computing will be es-

pecially appropriate when users can easily determine if the
program is operating acceptably and enabling them to con-
tinue to work productively. This is the case for mailers,
servers, system administration tools, operating systems, doc-
ument processing systems, and many other programs that
are part of our standard interactive computing environment.
We also anticipate that failure-oblivious computing will be
appropriate when external intervention is impractical, fail-
ure has catastrophic results, and there is little or nothing to
lose from continuing to execute.

Until we develop technology that allows us to track re-
sults derived from computations with memory errors, we
anticipate that failure-oblivious computing will be less ap-
propriate for programs (such as many numerical computing
programs) for which the user must simply trust the output
because there is no easy way to determine by inspection if
the output is correct or not. We also anticipate that it will
be less appropriate for safety-critical applications in which
it is always safe to terminate the computation and external
intervention is readily available.

1.7 Contributions
This paper makes the following contributions:

• Failure-Oblivious Computing: It presents the con-
cept of failure-oblivious computing, in which the pro-
gram discards illegal writes, manufactures values for
illegal reads, and continues to execute through mem-
ory errors without address space or data structure cor-
ruption.

• Experience: It presents our experience using failure-
oblivious computing to enhance the security and avail-
ability of a range of widely used open-source programs.
Our results show that:

– Standard Compilation: With the standard un-
safe C compiler, the programs are vulnerable to
memory errors and attacks that exploit these mem-
ory errors.

– Safe Compilation: With a C compiler that gen-
erates code that exits with an error message when

1We note in passing that this potential is already present
in every program — the mere absence of memory errors
provides no guarantee that the program is, in fact, operating
correctly.



it detects a memory error, the programs exit ei-
ther during initialization (preventing users from
using them at all) or when presented with an in-
put that triggers a memory error (denying the
user access to the services that the program is
intended to provide).

– Failure-Oblivious Compilation: With our C
compiler that generates failure-oblivious code, all
of our programs execute successfully through mem-
ory errors and attacks to continue to satisfy the
needs of their users. Failure-oblivious comput-
ing substantially improves both the availability
and the security of all of the programs in our test
suite.

2. EXAMPLE
We next present a simple example that illustrates how

failure-oblivious computing operates. Figure 1 presents a
(somewhat simplified) version of a procedure from the Mutt
mail client discussed in Section 4.5. This procedure takes
as input a string encoded in the UTF-8 format and returns
as output the same string encoded in modified UTF-7 for-
mat. This conversion may increase the size of the string;
the problem is that the procedure fails to allocate sufficient
space in the return string for the worst-case size increase.
Specifically, the procedure assumes a worst-case increase ra-
tio of 2; the actual worst-case ratio is 7/2. When passed (the
very rare) inputs with large increase ratios, the procedure
attempts to write beyond the end of its output array.

With standard compilers, these writes succeed, corrupt
the address space, and the program crashes with a segmen-
tation violation. With safe-C compilers, Mutt exits because
of a memory error during initialization and does not even
start the user interface. With our compiler, which gener-
ates failure-oblivious code, the program discards all writes
beyond the end of the array and the procedure returns with
an incompletely translated (truncated) version of the string.

Mutt then uses the return value to tell the mail server
which mailbox it wants to open. Without failure-oblivious
computing, Mutt crashes or terminates before it issues the
request. With failure-oblivious computing, the mailbox name
is incorrect and the mail server responds with an error. Mutt
correctly handles the error and continues to execute, en-
abling the user to continue to read mail.

This example illustrates two key aspects of applying failure-
oblivious computing:

• Subtle Errors: Real-world programs can contain sub-
tle memory errors that can be very difficult to detect
by either testing or code inspection, and these errors
can have significant negative consequences for the pro-
gram and its users.

• Mostly Correct Programs: Testing usually ensures
that the program is mostly correct and works well ex-
cept for exceptional operating conditions or inputs.
Failure-oblivious computing can therefore be seen as
a way to enable the program to proceed past such ex-
ceptional situations to return back within its normal
operating envelope. And as this example illustrates,
failure-oblivious computing can actually facilitate this
return by converting unanticipated memory corruption
errors into anticipated error cases that the program is
designed to handle correctly.

static char *utf8_to_utf7 (const char *u8, size_t u8len) {
char *buf, *p;
int ch, int n, i, b = 0, k = 0, base64 = 0;

/* The following line allocates the return string.
The allocated string is too small; instead of
u8len * 2 +1, a safe length would be u8len * 4 + 1

*/
p = buf = safe_malloc (u8len * 2 + 1);

while (u8len) {
unsigned char c = *u8;
if (c < 0x80) ch = c, n = 0;
else if (c < 0xc2) goto bail;
else if (c < 0xe0) ch = c & 0x1f, n = 1;
else if (c < 0xf0) ch = c & 0x0f, n = 2;
else if (c < 0xf8) ch = c & 0x07, n = 3;
else if (c < 0xfc) ch = c & 0x03, n = 4;
else if (c < 0xfe) ch = c & 0x01, n = 5;
else goto bail;

u8++, u8len--;
if (n > u8len) goto bail;
for (i = 0; i < n; i++) {

if ((u8[i] & 0xc0) != 0x80) goto bail;
ch = (ch << 6) | (u8[i] & 0x3f);

}
if (n > 1 && !(ch >> (n * 5 + 1))) goto bail;
u8 += n, u8len -= n;

if (ch < 0x20 || ch >= 0x7f) {
if (!base64) {

*p++ = ’&’;
base64 = 1;
b = 0;
k = 10;

}
if (ch & ~0xffff) ch = 0xfffe;
*p++ = B64Chars[b | ch >> k];
k -= 6;
for (; k >= 0; k -= 6)

*p++ = B64Chars[(ch >> k) & 0x3f];
b = (ch << (-k)) & 0x3f;
k += 16;

} else {
if (base64) {

if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;
base64 = 0;

}
*p++ = ch;
if (ch == ’&’) *p++ = ’-’;

}
}

if (base64) {
if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;

}

*p++ = ’\0’;
safe_realloc ((void **) &buf, p - buf);
return buf;

bail:
safe_free ((void **) &buf);
return 0;

}

Figure 1: String Encoding Conversion Procedure



3. IMPLEMENTATION
A failure-oblivious compiler generates two kinds of ad-

ditional code: checking code and continuation code. The
checking code detects memory errors and can be the same
as in any memory-safe implementation. The continuation
code executes when the checking code detects an attempt
to perform an illegal access. This code is relatively simple:
it discards erroneous writes and manufactures a sequence of
values for erroneous reads.

3.1 Checking Code
Our implementation uses a checking scheme originally de-

veloped by Jones and Kelly [40] and then significantly en-
hanced by Ruwase and Lam [49]. The scheme is currently
implemented as a modification to the GNU C compiler (gcc).

3.1.1 Jones and Kelly’s Scheme
Jones and Kelly’s scheme maintains a table that maps

locations to data units (each struct, array, and variable is a
data unit). It uses this table to track intended data units
and distinguish in-bounds from out-of-bounds pointers as
follows:

• Base Case: A base pointer is the address of an array,
struct or variable allocated on the stack or heap, or
the value returned by malloc. All base pointers are in
bounds. The intended data unit of the base pointer is
the corresponding array, struct, variable, or allocated
block of memory to which it refers.

• Pointer Arithmetic: All pointer arithmetic expres-
sions contain a starting pointer (for example, a pointer
variable or the name of a statically allocated array)
and an offset. We say that the value of the expres-
sion is derived from the starting pointer. A derived
pointer is in bounds if and only if the corresponding
starting pointer is in bounds and the derived pointer
points into the same data unit as the starting pointer.
Regardless of where the starting and derived pointers
point, they have the same intended data unit.

• Pointer Variables: A pointer variable is in bounds if
and only if it was assigned to in-bounds pointer. It has
the same intended data unit as the pointer to which it
was assigned.

Jones and Kelly distinguish a valid out-of-bounds pointer,
which points to the next byte after its intended data unit,
from an invalid out-of-bounds pointer, which points to some
other address not in its intended data unit. They imple-
ment this distinction by padding each data item with an
extra byte. A valid out-of-bounds pointer points to this ex-
tra byte; all invalid out-of-bounds pointers have the value
ILLEGAL (-2). This distinction is designed to support code
that uses valid out-of-bounds pointers in the termination
condition of loops that use pointer arithmetic to scan ar-
rays.

Finally, Jones and Kelly instrument the code to check the
status of each pointer before they dereference it. Dereferenc-
ing an in-bounds pointer returns the referent value. Derefer-
encing an out-of-bounds pointer causes the program to halt
with an error.

3.1.2 Ruwase and Lam’s Enhancement
Jones and Kelly’s scheme does not support programs that

first use pointer arithmetic to obtain a pointer to a location
past the end of the intended data unit, then use pointer
arithmetic again to jump back into the intended data unit
and access data stored in this data unit. While the behav-
ior of programs that do this is undefined according to the
ANSI C standard, in practice many C programs use this
technique [49]. Ruwase and Lam’s extension uses an out-of-
bounds objects (OOBs) to support such behavior [49].

As in standard C compilation, in-bounds pointers refer di-
rectly into their intended data unit. Whenever the program
computes an out-of-bounds pointer, Ruwase and Lam’s en-
hancement generates an OOB object that contains the start-
ing address of the intended data unit and the offset from the
start of that data unit. Instead of pointing off to some arbi-
trary memory location outside of the intended data unit or
containing the value ILLEGAL (-2), the pointer points to
the OOB object. The generated code checks pointer deref-
erences for the presence of OOB objects and uses this mech-
anism to halt the program if it attempts to dereference an
out-of-bounds pointer. The generated code also uses OOB
objects to precisely track data unit offsets and appropriately
translate pointers derived from out-of-bounds pointers back
into the in-bounds pointer representation if the new pointer
jumps back inside the intended data unit. In practice, this
enhancement significantly increases the range of programs
that can execute without terminating because of a failed
memory error check [49].

3.2 Continuation Code
Our implementation of the write continuation code simply

discards the value. Our implementation of the read contin-
uation code redirects the read to a preallocated buffer of
values. In principle, any sequence of manufactured values
should work. In practice, these values are sometimes used
to determine loop conditions. We therefore generate a se-
quence that iterates through all small integers, increasing
the chance that, if the values are used to determine loop
conditions, the computation will hit upon a value that will
exit the loop (and avoid nontermination). Because zero and
one are by far the most common values in computer pro-
grams [24], the sequence is designed to return these values
more frequently than other, less common, values.

One potential concern is that failure-oblivious computing
may hide errors that would otherwise be detected and elim-
inated. To help make the errors more apparent, our com-
piler can optionally augment the generated code to produce
a log containing information about the program’s attempts
to commit memory errors. This log may help administrators
to detect and respond appropriately to the presence such er-
rors. Note, however, that hiding errors is one of the primary
goals of this research, and that any technique that makes
programs more resilient in the face of errors will reduce the
negative impact of the errors and therefore the incentive to
find and eliminate them.

4. CASE STUDIES
We have implemented a compiler that generates failure-

oblivious code, obtained several widely-used open-source pro-
grams with known memory errors, and evaluated the impact
of failure-oblivious computing on their behavior. Figure 2



presents the programs in our test suite. These programs im-
plement different system tasks such as reading and distribut-
ing email, serving content to remote clients, or supporting
a variety of administration tasks. Many of them are are
key components of the Linux-based open-source interactive
computing environment.

Program Purpose
Pine Mail User Agent
Midnight Commander File Manager
Sendmail Mail Transfer Agent
Mutt Mail User Agent
Samba File Server
WsMp3 mp3 Server
Apache http Server
Gzip compression utility

Figure 2: Programs in Test Suite

4.1 Methodology
We evaluate the behavior of three different versions of

each program: the standard version compiled with a stan-
dard C compiler (this version is vulnerable to any mem-
ory errors that the program may contain), the safe version
compiled with the CRED safe-C compiler [49] (this version
terminates the program with an error message at the first
memory error), and the failure-oblivious version compiled
with our compiler (this compiler is derived from CRED by
changing the generated code to discard illegal writes and
return a predetermined sequence of values for illegal reads).
For each program we chose a representative workload that
contains an input that triggers the memory error. In many
cases the workloads contain inputs that exploit known secu-
rity vulnerabilities documented by vulnerability-tracking or-
ganizations such as Security Focus [18] and SecuriTeam [17].
We ran all the programs on a Red Hat 8.0 Linux worksta-
tion with two 2.8 GHz Pentium 4 processors and 2 GBytes
of RAM.

4.2 Pine
Pine is a widely used mail user agent (MUA) that is dis-

tributed with the Linux operating system [13]. Pine allows
users to read mail, fetch mail from an IMAP server, compose
and forward mail messages, and perform other email-related
tasks. We used Pine 4.44, which is distributed with Red Hat
Linux version 8.0. This version of Pine has a memory er-
ror associated with a failure to correctly parse certain legal
From fields; it is possible for a remote attacker to exploit
this vulnerability to execute arbitrary code on the user’s ma-
chine [12]. Our workload contains a mail file with a From
field that triggers this memory error. In the standard ver-
sion, the memory error causes Pine to corrupt its heap so
that it crashes with an abort message. The safe version
detects the memory error and terminates the computation
with an error message identifying the memory error.

With both the standard and safe versions, the user is un-
able to use Pine to read mail because Pine aborts or ter-
minates during initialization as the mail file is loaded and
before the user has a chance to interact with the program.
The user must manually eliminate the From field from the
mail file (using some other mail reader or file editor) before
he or she can use Pine again. While the safe version protects

the user against injected code attacks, it prevents the user
from using Pine to read mail as long as the mail file contains
the problematic From field.2

The failure-oblivious version, on the other hand, contin-
ues to execute through the memory error, enabling the user
to process their mail. The user can even read and forward
the message with the problematic From field. Moreover, the
user can see the entire From field in the user interface —
the memory error involves internal data structures that are
not visible in the user interface. For this workload, failure-
oblivious computing enables Pine to exhibit completely cor-
rect behavior with no degradation whatsoever.

Because Pine is an interactive program, its performance is
acceptable as long as it provides good interactive responses
to its users. There were no perceptible differences in the
pause times when using Pine to read, forward, or compose
email between any of the versions — all versions responded
without perceptible delay during interactive use. The failure
oblivious version of Pine incurs a slight pause before start-
ing; the standard version starts almost instantaneously. The
startup times are not affected by the size of the mail file.

4.3 Midnight Commander
Midnight Commander is an open source file management

tool that allows users to browse their files and archives, copy
files from one folder to another, and delete files [8]. Midnight
Commander is vulnerable to a memory-error attack associ-
ated with accessing an uninitialized buffer when processing
symbolic links in tgz archives [7]. Our workload contains a
tgz archive designed to exploit this vulnerability.

On our workload, the standard version terminates with
a segmentation violation when the user attempts to open
the problematic tgz archive. Because Midnight Comman-
der has memory errors in its initialization code, the safe
version terminates with an error message before it finishes
initialization. The result is that the user is unable to use
this version of Midnight Commander at all.

The failure-oblivious version, on the other hand, starts
with no problems. When the user attempts to open the
problematic tgz archive, Midnight Commander correctly
displays the names of the two symbolic links in the archive.
Because these links point off to non-existent files, Midnight
Commander correctly displays an error message when the
user attempts to open them. Midnight Commander contin-
ues to execute successfully throughout the entire session; in
particular, the user can continue to use Midnight Comman-
der to browse, copy, or delete other files even after processing
the problematic tgz archive. For this workload (and for all
others that we know of) failure-oblivious computing enables
Midnight Commander to exhibit completely correct behav-
ior with no degradation at all.

Like Pine, Midnight Commander is an interactive pro-
gram. Also like Pine, we observed no perceptible difference
in the interactive response times of the different versions
— all versions responded without perceptible delay during
interactive use.

4.4 Sendmail
Sendmail is the standard mail transfer agent for Linux

and other Unix systems [20]. It is typically configured to

2Unlike several other of our programs, the safe version of
Pine initializes without memory errors and can successfully
process many mail files without memory errors.



run as a daemon which creates a new process to service
each new mail transfer connection. This process executes a
simple command language that allows the remote agent to
transfer email messages to the Sendmail server, which may
deliver the messages to local users or (if necessary) forward
some or all of the messages on to other Sendmail servers.
Versions of Sendmail earlier than 8.11.7 and 8.12.9 (8.11 and
8.12 are separate development threads) have a memory error
vulnerability which allows a remote attacker to inject and
execute arbitrary code on the machine running the Sendmail
server [19]. This code executes with the same permissions
as the Sendmail server (which is typically root).

We worked with Sendmail version 8.11.6. With standard
compilation, we were able to launch an attack that exploited
the memory error to provide the attacker with a root shell.
The safe version exits with a memory error during initializa-
tion and fails to operate at all. The failure-oblivious version
is not vulnerable to the attack — the process servicing the
remote connection does not provide the attacker with a shell
(root or otherwise). It instead prints an error message and
continues to execute successfully to process legitimate Send-
mail commands and appropriately deliver mail even after the
attack has attempted to exploit the vulnerability.

We measured the performance of the different versions by
developing a program that uses SMTP to interact with send-
mail to deliver 200 messages. We ran the two operational
versions (standard and failure-oblivious) five times, observ-
ing (each time) the time required to send the 200 messages.
The times were comparable at between six and seven sec-
onds for each trial; the differences between the two versions
were within the variance of each set of trials, indicating no
observable difference between the performance of the two
versions.

4.5 Mutt
Mutt is a customizable, text-based mail user agent that

is widely used in the Unix system administration commu-
nity [10]. It is descended from ELM [4] and supports a va-
riety of features including email threading and correct NFS
mail spool locking. We used Mutt version 1.4. As described
at [9] and discussed in Section 2, this version is vulnerable
to an attack that exploits a memory error in the conver-
sion from UTF-8 to UTF-7 string formats. We were able to
develop an attack that exploited this vulnerability to crash
Mutt. It is possible for a remote IMAP server to use this
attack to remotely crash Mutt; it may also be possible for
the IMAP server to exploit the vulnerability to inject and
execute arbitrary code.

The standard version of Mutt crashes when it attempts
to open a remote mailbox with a name chosen to trigger
the memory error. The safe version exits with a memory
error during initialization before the user interface comes
up. When the failure-oblivious version attempts to open
the mailbox, it generates an error message indicating that
the mailbox does not exist (because the translated name has
been truncated), then continues to execute successfully and
allow the user to process mail from other mailboxes.

Because Mutt is an interactive program, the relevant per-
formance metric is the response time. All of the versions
of Mutt are very responsive for interactive tasks, exhibiting
basically instantaneous response time. In our performance
tests, the failure-oblivious version of Mutt loads local mail-
boxes at the rate of approximately 300 microseconds per

message, while the standard version requires approximately
60 microseconds per message. To put these numbers in
perspective, the mailbox would need to contain over 3000
messages before the failure oblivious version of Mutt would
require more than a second to load the mailbox.

4.6 Samba
Samba is a widely-used file sharing utility that allows

machines running a variety of operating systems to share
files [41, 16]. We configured our Samba 2.2.5 server to serve
files to other Samba clients. This version of Samba has a
memory corruption error that (with standard compilation)
enables a remote user to obtain a root shell on the Samba
server machine [14, 15]. We were able to reproduce this
exploit and include it in our workload.

On our workload, the standard version is vulnerable to the
exploit and allows the remote attacker to obtain a root shell
on the Samba server. The safe version initializes success-
fully and correctly serves standard Samba requests without
memory errors until presented with the attack, at which
point the child process serving the connection exits. The
failure-oblivious version executes successfully through the
attack. Because the Samba server is multithreaded, both
the safe and failure-oblivious versions continue to success-
fully respond to requests on new Samba connections.

We measured the performance of the different versions
of Samba by transferring 10 files (comprising 610 MBytes
of data) between a Samba server and a Samba client on
the same machine. Both versions executed the transfer at
approximately 12 Mbytes per second, with no significant
difference in the transfer rates between the different versions.

4.7 WsMp3
WsMp3 is a streaming web server designed to distribute

MP3 files to remote clients [23]. WsMp3 version 0.0.5 con-
tains a memory-error vulnerability that, according to the
vulnerability reports, may enable a remote attacker to exe-
cute arbitrary code on the WsMp3 server [22]. Our workload
contains a request that triggers this memory error.

On our workload, the standard version terminates with
a segmentation violation when it processes the problematic
request. The safe version operates correctly without mem-
ory errors on normal requests, but terminates with an er-
ror message on the request that triggers the memory error.
Because the server is single threaded, the entire server ter-
minates and the service is completely unavailable until it is
restarted. The failure-oblivious version, on the other hand,
executes through the problematic request and continues to
correctly serve MP3 files without a problem.

We measured the amount of time it took for the different
versions of WsMp3 to serve a 60 Mbyte file 10 times to a
client on the same machine. There was no significant dif-
ference in the transfer times — all versions transfer data at
approximately 40 Mbytes per second. This result is consis-
tent with the results reported in [49]).

4.8 Apache
The Apache HTTP server is the most widely used web

server in the world; a recent survey found that 64% of the
web sites on the Internet use Apache (more than all other
web servers combined) [11]. To improve performance, it
maintains a pool of child processes that it dynamically as-
signs to process new connections [48]. The Apache 2.0.47



mod alias implementation contains a vulnerability that, un-
der certain circumstances, allows a remote attacker to trig-
ger a memory error [1]. The vulnerability reports indicate
that this error may enable the remote attacker to inject and
execute arbitrary code on the Apache server [1]. Our work-
load contains a request that triggers this vulnerability.

Each Apache request is handled by a child process as-
signed to service the connection carrying the request. With
standard compilation, the child process terminates with a
segmentation violation when presented with the attack. The
Apache parent process then creates a new child process to
take its place. With safe compilation, Apache correctly
processes legitimate requests without memory errors until
presented with the attack that triggers the error. At this
point the child process serving the connection detects the
memory and terminates. The parent Apache process then
creates a new child process to take its place. With failure-
oblivious compilation, the child process redirects the attack-
ing request to a non-existent URL (part of the functionality
of the mod alias module is to redirect web page requests).
The child process executes successfully through the attack
to correctly process subsequent requests.

We were able to observe no interactive response time dif-
ferences between the standard and failure-oblivious versions
of Apache. We also used measured the time required to
transfer a 19 Mbyte file from the Apache server to a client.
For a remote client, both versions transferred the file at ap-
proximately .8 Mbytes per second. For a local client, both
versions transferred at approximately 85 Mbytes per second.

4.9 Gzip
Gzip is a popular compression (and uncompression) util-

ity [6]. Gzip 1.2.4a has a memory error in its file name
processing code [5] that an attacker can exploit to execute
arbitrary code. This vulnerability may be of concern be-
cause many Internet servers and clients silently invoke gzip
as part of their normal execution.

Our workload uses gzip to compress several files; one of
the files triggers the memory error. The standard version
terminates with a segmentation fault when it attempts to
process the problematic file; the remaining files are not pro-
cessed. The safe version processes normal files without mem-
ory errors, but terminates when it attempts to process the
problematic file. Once again, the remaining files are not pro-
cessed. The failure-oblivious version prints an error message
when asked to process the problematic files, then proceeds
through the memory error to successfully process all of the
other files.

The standard version compresses files at a rate of approx-
imately 12 Mbytes per second; the failure-oblivious version
compresses files at a rate of approximately 1.2 Mbytes per
second. We attribute the unusual (for our test suite) per-
formance difference to the fact that gzip spends most of its
time in computation rather than processing files or commu-
nicating via the network.

4.10 Discussion
We chose the programs in our study largely based on sev-

eral factors: the availability of source code, the popularity
of the application, the presence of memory errors as docu-
mented on vulnerability-tracking web sites such as Security
Focus [18] and SecuriTeam [17], and our ability to reproduce
the documented memory errors. In every case in which we

were able to reproduce the memory error, failure-oblivious
computing successfully eliminated the negative impact of
the error — the programs were, without exception, able to
execute through the error and continue to successfully ser-
vice the needs of their users. Moreover, even after executing
the code containing the error, we observed no degradation in
service or incorrect behavior when the programs continued
to process their normal workload.

In our view, this continued execution without memory
corruption provides substantial advantages in comparison
with the alternatives. The standard versions offer continued
execution with memory corruption; the result is a constant
stream of memory errors that, at best, crash the program
and, at worst, enable attackers to execute arbitrary code.
The safe versions prevent memory corruption but terminate
the program at the first memory error. This premature ter-
mination often unnecessarily prevents users from using the
program and enables denial of service attacks.

All of the programs in our study are part of the broad
Linux desktop/laptop computing infrastructure. Conceptu-
ally, the basic structure of each computation is to accept,
then process, a stream of inputs. One reason that failure-
oblivious computing works so well for this class of applica-
tions is that the computations for different inputs are rela-
tively loosely coupled. Unless one input corrupts the data
structures or address space, it has a minimal effect on the
next input. While it is less clear how failure-oblivious com-
puting will work for other kinds of programs, several of our
programs give some indication of how it might work out
in practice. Failure-oblivious computing enables both Pine
and Midnight Commander, for example, to correctly process
inputs that otherwise trigger fatal memory errors — failure-
oblivious computing enables the programs to correctly pro-
cess inputs even though the computation associated with
these inputs has memory errors. These examples provide
encouraging evidence that failure-oblivious computing can
help computations generate acceptable results even in the
presence of otherwise fatal memory errors.

The error checks in failure-oblivious programs have the
potential to significantly degrade the performance [40, 53,
49]. But for all of the programs in our test suite except gzip,
this potential degradation is irrelevant, either because the
programs provide perfectly acceptable interactive response
in spite of the checks or because the execution times are
dominated by I/O in the form of file accesses or network
communication.

5. RELATED WORK
We discuss related work in the areas of memory-safe im-

plementations of unsafe languages, memory-safe languages,
traditional error recovery, and data structure repair.

5.1 Safe-C Compilers
Our work builds directly on previous research into imple-

menting memory-safe versions of C [25, 53, 47, 39, 49, 40].
As described in Section 3, our implementation uses tech-
niques originally developed by Jones and Kelly [40], then
significantly refined by Ruwase and Lam [49] (in fact, our
implementation is derived directly from Ruwase and Lam’s
CRED compiler). It would be perfectly feasible, however,
to implement failure-oblivious computing using any safe-
C compiler, specifically by modifying the compiler to dis-
card unsafe writes and manufacture an appropriate value



stream for unsafe reads. Building on Ruwase and Lam’s im-
plementation enabled us to apply failure-oblivious comput-
ing directly to legacy programs without modification (Yong
and Horwitz’s implementation also has this property); some
other implementations require source code changes [29, 42].

One of the key issues for safe-C compilers is the overhead
of performing the safety checks. Researchers have developed
language design and static analysis techniques that reduce
this overhead [36, 26]; the reported results tend to indicate
a slowdown factor of usually less than two, with some oc-
casional outliers of a factor of eight or more [53, 49]. The
acceptability of this slowdown depends on how the program
will be used. This overhead does not perceptibly degrade the
response times of the interactive programs in our test suite.
It also does not affect the performance of the I/O bound pro-
grams. It is visible only for gzip (the one compute-bound
program in our test suite).

5.2 Safe Languages
It is also feasible to apply failure-oblivious computing to

safe languages such as Java or ML by simply replacing the
generated code that throws an exception in response to a
memory error. As for safe-C implementations, the new code
would simply discard illegal writes and return manufactured
values for illegal reads.

5.3 Traditional Error Recovery
The traditional error recovery mechanism is to reboot the

system, with repair applied during the reboot if necessary to
bring the system back up successfully [35]. Mechanisms such
as fast reboots [50], checkpointing [44, 45], and partial sys-
tem restarts [28] can improve the performance of the reboot
process. Hardware redundancy is the standard solution for
increased availability.

Our techniques differ from these standard mechanisms in
that they are designed to keep the system operating through
errors instead of rebooting the system to restart it from a
new, clean state. The advantages include better availability
because of the elimination of down time and the elimina-
tion of vulnerabilities to persistent errors — restarting Pine
as described in Section 4.2, for example, does not enable
the user to read mail if the mail file still contains a prob-
lematic mail message. Rebooting, on the other hand, may
help ensure that the system stays more closely within the
anticipated operating envelope.

5.4 Data Structure Repair
Data structure repair, applied either manually [46, 38]

or automatically [31], has some conceptual similarity with
failure-oblivious computing in that it is designed to enable
the program to execute successfully through errors while
preserving key data structure consistency constraints. Failure-
oblivious computing differs in that 1) its goal is to prevent
corruption rather than recovering from corruption and 2) it
relies on the normal, uncorrupted operation of the program
to preserve the consistency constraints rather than actively
enforcing these constraints.

5.5 Static Analysis and Program Annotations
A combination of static analysis and program annotations

should, in principle, enable programmers to deliver pro-
grams that are completely free of memory errors. CSSV uses
programmer annotations to support an analysis that can

statically find all buffer-overrun errors in C programs [32].
Fahndrich and Leino present an extended type system that
enables the compiler to statically verify the absence of null
pointer dereferences in Java programs [34]. Xi presents a
type system that ensures the absence of array bounds er-
rors [52]. All of these techniques share the same advan-
tage (a static guarantee that the program will not exhibit
a specific kind of memory error) and drawbacks (the need
for programmer annotations and the possibility of conserva-
tively rejecting safe programs).

Researchers have also developed unsound, incomplete anal-
yses that heuristically identify potential errors; the advan-
tage is that such approaches typically require no annotations
and scale better to larger programs. Examples of such anal-
yses include Wagner [51], Engler [33], and Prefix [27].

5.6 Buffer-Overrun Detection Tools
Researchers have developed techniques that are designed

to detect buffer-overrun attacks after they have occurred,
then halt the execution of the program before the attack can
take effect. StackGuard [30] and StackShield [21] modify the
compiler to generate code to detect attacks that overwrite
the return address on the stack; StackShield also performs
range checks to detect overwritten function pointers.

It is also possible to apply buffer-overrun detection di-
rectly to binaries. Purify instruments the binary to detect
a range of memory errors, including buffer overruns [37].
Program shepherding uses an efficient binary interpreter to
prevent an attacker from executing injected code [43].

A key difference between these techniques and failure-
oblivious computing is that failure-oblivious computing pre-
vents the attack from performing the writes that corrupt
the address space, which enables the program to continue
to execute successfully.

6. CONCLUSION
The seemingly inherent brittleness, complexity, and vul-

nerability (to both errors and attacks) of computer programs
can make them frustrating or even dangerous to use. While
existing memory-safe languages and memory-safe implemen-
tations of unsafe languages may eliminate memory-error vul-
nerabilities, they can also decrease availability by aggres-
sively throwing exceptions or even terminating the program
at the first sign of an error.

Our results show that failure-oblivious computation en-
hances availability, resilience, and security by continuing to
execute through memory errors while ensuring that such er-
rors do not corrupt the address space or data structures of
the computation. In many cases failure-oblivious comput-
ing can automatically convert unanticipated and dangerous
inputs or data into anticipated error cases that the program
is designed to handle correctly. The result is that the pro-
gram survives the unanticipated situation, returns back into
its normal operating envelope, and continues to satisfy the
needs of its users.

One of the major long-term goals of computer science has
been understanding how to build more robust, resilient pro-
grams that can flexibly and successfully cope with unantic-
ipated situations. Our research suggests that, remarkably,
current systems may already have a substantial capacity for
exhibiting this kind of desirable behavior if we only provide
a way for them to ignore their errors, protect their data
structures from damage, and continue to execute.
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