
Predicting a Correct Program in Programming
By Example

Rishabh Singh and Sumit Gulwani

Microsoft Research, Redmond

We study the problem of efficiently predicting a correct program from a large
set of programs induced from few input-output examples in Programming-by-
Example (PBE) systems. This is an important problem for making PBE systems
usable so that users do not need to provide too many examples to learn the
desired program. We first formalize the two classes of sharing that occurs in
version-space algebra (VSA) based PBE systems, namely set-based sharing and
path-based sharing. We then present a supervised machine learning approach for
learning a hierarchical ranking function to efficiently predict a correct program.
The key observation of our learning approach is that ranking any correct program
higher than all incorrect programs is sufficient for generating the correct output
on new inputs, which leads to a novel loss function in the gradient descent based
learning algorithm. We evaluate our ranking technique for the FlashFill PBE
system on over 175 benchmarks obtained from the Excel product team and help
forums. Our ranking technique works in real-time, reduces the average number
of examples required for learning the desired transformation from 4.17 to 1.48,
and learns the transformation from just one input-output example for 74% of
the benchmarks. The ranking scheme played a pivotal role in making FlashFill
usable for millions of Excel users.

1 Introduction

Millions of computer end users need to perform repetitive tasks, but unfortu-
nately lack the programming expertise required to do such tasks automatically.
Example-based program synthesis techniques have the potential to enhance the
productivity of such end users by enabling them to create small scripts using
examples [8,9]. These techniques have been developed for a wide variety of do-
mains including repetitive text-editing [14], syntactic string transformations [7],
semantic string transformations [23], table transformations [11], and number
transformations [24]. FlashFill [1,7] is a recent system in Excel 2013 that learns
syntactic string transformation programs from examples.

Many recent Programming-By-Example (PBE) techniques use version-space
algebra (VSA) [14] based methodology of computing the set of all programs in
an underlying domain-specific language (DSL) that are consistent with a given
set of input-output examples. The number of such programs is huge; but they
are all succinctly represented using appropriate data-structures that share com-
mon program fragments. Given a representative set of input-output examples
for a task, all synthesized programs would be correct, i.e. the programs would

2

correspond to the intended task. However, if only a few input-output examples
are given (i.e. the task is under-specified), the set of synthesized programs will
include both correct and incorrect programs. The user would then need to refine
the specification by providing additional input-output examples to avoid learn-
ing an incorrect program. The number of representative input-output examples
required to learn a desired task is a function of the underlying DSL and has also
been referred to as the learning dimension [6] of the DSL. A more expressive
DSL makes the synthesizer more useful (since it can assist users with a larger
variety of tasks), but it also makes the synthesizer less usable (since users now
need to provide more examples).

We study the problem of predicting a correct program from a huge set of
programs in an expressive DSL that have been induced by a small number of
examples. We propose a machine learning based ranking technique to rank the
induced programs by assigning them a likelihood score based on their features.
While machine learning has been used in the past to improve the efficiency
of heuristic-based enumerative search in program synthesis [17], we leverage
machine learning in a different manner: the VSA based programming-by-example
techniques set up the space of programs (that are consistent with the user-
provided examples) over which machine-learning based ranking is performed
to predict a correct program. There are two key challenges that our technique
addresses, namely that of automatically learning the ranking function, and that
of efficiently identifying the highest ranked program from a large set of induced
programs in a VSA representation.

We formalize the problem of learning a ranking function as a machine learn-
ing problem and present a novel solution to it. Traditional learning-to-rank ap-
proaches [2,3,4,12] either aim to rank all relevant documents over all non-relevant
documents or rank the most relevant document at the top. We, instead, study
the problem of ranking some correct program over all incorrect programs as
any correct program would be sufficient to generate the desired outputs on new
inputs. Our solution involves two key ideas: (a) we present a gradient descent
based approach to learn the coefficients (weights) of a linear ranking function
with the goal of ranking some correct program over all incorrect programs. (b)
we also provide an automated method to obtain the labeled training data for
our learning algorithm from training benchmark tasks.

A key challenge in using any ranking methodology for VSA based PBE sys-
tems is that of efficiency. The näıve approach of explicitly computing the rank
for each induced program does not scale because the number of induced pro-
grams is often huge (more than 1020 [23]). These programs are represented
using succinct data structures that allow sharing of expressions across differ-
ent levels. We formalize two general classes of sharing that occurs in these
data-structures [7,11,23,24], namely set-based sharing and path-based sharing.
We learn a separate ranking function for each level of sharing—this enables us
to apply the ranking methodology efficiently in practice.

We instantiate our ranking technique for the FlashFill synthesis algorithm [7].
The VSA based data-structure in FlashFill involves two levels of sharing. We

3

learn a separate ranking function for each level over corresponding efficient fea-
tures (§5). We present the evaluation of our ranking technique on over 175 string
manipulation tasks obtained from Excel product team and help-forums. The
ranking scheme works in real-time and reduces the average number of examples
required per benchmark to 1.48 as compared to 4.17 examples needed by a man-
ually defined ranking scheme based on Occam’s razor [7]. Our machine-learning
based ranking scheme played a pivotal role in making FlashFill successful and
usable for millions of Excel users.

This paper makes the following contributions.

• We formalize the two different classes of sharing used in VSA based represen-
tations, namely set-based sharing and path-based sharing(§3).

• We describe a machine-learning based technique to rank some correct program
over all incorrect programs for most benchmarks in the training set (§4.3).

• We demonstrate the efficacy of our ranking technique for FlashFill on over
175 real-world benchmarks (§5.2).

2 Motivating Examples

In this section, we present a few motivating examples from FlashFill that show
three observations: (i) there are multiple correct programs in the set of programs
induced from an input-output example, (ii) simple features such as size are not
sufficient for preferring a correct program over incorrect programs, and (iii) there
are huge number of programs induced from a given input-output example.

Example 1. An Excel user had a series of names in a col-
umn and wanted to add the title Mr. before each name.
She gave the input-output example as shown in the ta-
ble to express her intent. The intended program concate-
nates the constant string "Mr." with the input string in
column v1.

Input v1 Output

1 Roger Mr. Roger

2 Simon

3 Benjamin

4 John

The challenge for FlashFill to learn the desired transformation in this case is
to decide which substrings in the output string “Mr. Roger” are constant strings
and which are substrings of the input string “Roger”. We use the notation s[i..j]
to refer to a substring of s of length j − i + 1 starting at index i and ending
at index j. FlashFill infers that the substring out1[0..0] ≡ “M” has to be a
constant string since “M” is not present in the input string. On the other hand,
the substring out1[1..1] ≡ “r” can come from two different substrings in the
input string (in1[0..0] ≡ “R” and in1[4..4] ≡ “r”). FlashFill learns more than
103 regular expressions to compute the substring “r” in the output string from
the input string, some of which include: 1st capital letter, 1st character, 5th

character from end, 1st character followed by a lower case string etc. Similarly,
FlashFill learns more than 104 expressions to extract the substring “Roger”
from the input string, thereby learning more than 107 programs from just one
input-output example. All programs in the set of learnt programs that include
an expression for extracting “r” from the input string are incorrect, whereas

4

programs that treat “r” as a constant string are correct. Some hints than can
help FlashFill rank constant expressions for “r” higher are:

• Length of substring: Since the length of substring “r” is 1, it is less likely to
be an input substring.

• Relative length of substring: The relative length of substring “r” as compared
to the output string is small 1

9 .

• Constant neighboring characters: The neighboring characters “M” and “.” of
“r” are both constant expressions.

Example 2. An Excel user had a list of names
consisting of first and last names, and wanted
to format the names such that the first name is
abbreviated to its first initial and is followed by
the last name as shown in the table.

Input v1 Output

1 Mark Sipser M.Sipser

2 Louis Johnson

3 Edward Davis

4 Robert Mills

This example requires the output substring out1[0..0] ≡ “M” to come from
the input string instead of it being the constant string “M”. The desired behavior
in this example of preferring the substring “M” to be a non-constant string is in
conflict with the desired behavior of preferring smaller substrings as constant
strings in Example 1. Some hints that can help FlashFill prefer the substring
expression for “M” over the constant string expression are:

• Output Token: The substring “M” of the output string is a Capital token.

• String case change: The case of the substring does not change from input.

• Regular expression Frequency: The regular expression to extract 1st capital
letter occurs frequently in practice.

Example 3. An Excel user had
a series of addresses in a col-
umn and wanted to extract the
city names from them. The user
gave the input-output example
shown in the table.

Input v1 Output

1 243 Flyer Dr,Cambridge, MA 02145 Cambridge

2 512 Wir Ave,Los Angeles, CA 78911

3 64 128th St,Seattle, WA 98102

4 560 Heal St,San Mateo, CA 94129

FlashFill learns more than 106 different substring expressions to extract the
substring “Cambridge” from the input string “243 Flyer Drive,Cambridge,

MA 02145”, some of which are listed below.

• p1: Extract the 3rd alphabet token string.

• p2: Extract the 4th alphanumeric token string.

• p3: Extract substring between 1st and 2nd comma tokens.

• p4: Extract substring between 3rd capital and the 1st comma.

• p5: Extract substring between 1st and last comma tokens.

The problem with learning the substring expression p1 is that on the in-
put string “512 Wright Ave, Los Angeles, CA 78911”, it produces the out-
put string “Los” that is not the desired output. On the other hand, the ex-

5

pression p3 (or p5) generates the desired output string “Los Angeles”. Some
features that can help FlashFill rank the expression p3 higher are:

• Same left and right position logics: The regular expression tokens for left and
right position logics for p3 are similar (comma).

• Match Id: The match count of substring between two comma tokens is 1 as
compared to 3 for the alphabet token of p1.

3 Domain-Specific Languages (DSLs) for PBE in VSA

Expr e := v | c
| ef | eh

Fixed Arity Expr ef := f(e1, · · · , en)

Associative Expr eh := h(e1, · · · , ek)

Union Expr ẽ := {ci, vj , · · · , ẽf , ẽh}
Join Expr ẽf := f(ẽ1, · · · , ẽn)

DAG Expr ẽh := D(η̃, ηs, ηt,W),where

W : (η1, η2)→ ẽ, |η̃| = k + 1
(a) (b)

Fig. 1. (a) Syntax for a general abstract language La for a VSA based PBE system,
and (b) a data structure for succinctly representing a set of La expressions.

There have been many recent proposals for DSLs for PBE systems in the
domains of string [1,7], table [23], numbers [24], and layout manipulations [11].
The key idea in designing these DSLs is to make them expressive enough to
capture majority of the desired tasks, but concise enough for amenable learning
from examples. Since the specification mechanism of input-output examples is
inherently incomplete and ambiguous, there are typically a huge number of ex-
pressions in these expressive languages that conform to the provided examples.
These large number of consistent expressions are represented succinctly using
VSA based data structures that allow for sharing expressions. In this section,
we describe an abstract language La that captures two major kinds of expres-
sions that allow for such sharing, namely fixed arity expressions and associative
expressions. We then present the syntax and semantics of the VSA based data
structure and the algorithm to efficiently compute the highest ranked expression.

3.1 An Abstract Language La for PBE Systems

An abstract language La that captures the major kinds of expression sharing in
DSLs of several VSA based PBE systems is shown in Figure 1(a). The top-level
expression e in La can either be a constant string c, a variable v, a fixed arity
expression ef , or an associative expression eh.

Definition 1 (Fixed Arity Expression). Let f be any constructor for n in-
dependent expressions (n ≥ 1). We use the notation f(e1, . . . , en) to denote a
fixed arity expression with n arguments.

6

Example 4. The position pair expression in the FlashFill language SubStr(vi, p1, p2)
is a fixed arity expression that represents the left and right position logic ex-
pressions p1 and p2 independently. The Boolean expression predicate (C1 =
et ∧ · · · ∧ Ck = et) for a candidate key of size k in the lookup transformation
language [23], and the decimal and exponential number formatting expressions
Dec(u, η1, f) and Exp(u, η1, f, η2) in the number transformation language [24] are
also examples of fixed arity expressions with independent arguments.

Definition 2 (Associative Expression). Let h be a binary associative con-
structor for independent expressions. We use the simplified notation h(e1, . . . , ek)
to denote the associative expression h(e1, h(e2, h(e3, . . . , h(ek−1, ek) . . .))) for any
k ≥ 1 (where h(e) simply denotes e).

Example 5. The Concatenate(f1, .., fn) expression in FlashFill is an an asso-
ciative expression with Concatenate as the associative constructor. The top-
level select expression et := Select(C, T,Ci = et) in the lookup transformation
language [23] and the associative program Assoc(F, s0, s1) in the table layout
transformation language [11] are also examples of associative expressions.

Associative expressions involve applying an associative operator with input
and output type T to an unbounded sequence of expressions of type T . They
differ from the fixed arity expressions in two ways: (i) they have unbounded
arity, and (ii) their input and output types are restricted to be the same.

JcKσ := c

JvKσ := σ(v)

JẽKσ := {ej | ej ∈ JeiKσ, ei ∈ ẽ}
Jẽf Kσ := {f(e1, · · · en) | ei ∈ JẽiKσ}
JẽhKσ := {h(e1, · · · , ek) | (η0, · · · , ηk) ∈ η̃,

η0 = ηs, ηk = ηt,

ei ∈ JW (ηi−1, ηi)Kσ}

R({ẽ1, · · · , ẽn}, σ) := ru(e1, · · · , en, σ)

ei = R(ẽi, σ)

R(f({ẽ11, · · · , ẽ1n}, := rf (e11, · · · , e2m, σ)

{ẽ21, · · · , ẽ2m}), σ) eij = R(ẽij , σ)

R(D(η̃, ηs, ηt,W), σ) := rg(e12, · · · , eij , · · · , σ)

eij = R(W (ηi, ηj), σ)

(a) (b)

Fig. 2. (a) Semantics of the VSA based data structure for La expressions, and (b)
Ranking functions for efficiently identifying the top-ranked expressions.

3.2 Data Structure for Representing a Set of La Expressions

The data structure to succinctly represent a huge number of La expressions
is shown in Figure 1(b). The Union Expression ẽ represents a set of top-level
expressions as an explicit set without any sharing. The Join Expression ẽf rep-
resents a set of fixed arity expressions by maintaining independent sets for its

7

arguments e1, · · · , en. The DAG expression ẽh represents a set of associative
expressions using a DAG D, where the edges correspond to a set of expressions ẽ
and each path from the start node ηs to the end node ηt represents an associative
expression. The semantics of the data structure is shown in Figure 2(a).

Join Expressions (Set-based Sharing): There can often be a huge num-
ber of fixed-arity expressions that are consistent with a given example(s). Con-
sider the input-output example pair (u, v). Suppose v1, v2, v3 are values such
that v = f(v1, v2, v3). Suppose E1, E2, and E3 are sets of expressions that are
respectively consistent with the input-output pairs (u, v1), (u, v2), and (u, v3).
Then, f(e1, e2, e3) is consistent with (u, v) for any e1 ∈ E1, e2 ∈ E2, and e3 ∈ E3.
The number of such expressions is |E1|× |E2|× |E3|. However, these can be suc-
cinctly represented using the data-structure f(E1, E2, E3), which denotes the
set of expressions {f(e1, e2, e3) | e1 ∈ E1, e2 ∈ E2, e3 ∈ E3}, using space that is
proportional to |E1|+ |E2|+ |E3|.

Example 6. The position pair expressions SubStr(vi, {p̃j}j , {p̃k}k) in Flash-
Fill represents the set of left and right position logic expressions {p̃j}j and
{p̃j}j independently. The generalized Boolean conditions in the select expres-
sion Select(C,T,B) of the lookup transformation language [23] also exhibit
set-based sharing. The data structure for representing a set of decimal and ex-
ponential number formatting expressions in the number transformation language
Dec(u, η̃1, f̃) and Exp(u, η̃1, f̃ , η̃2) represents integer formats (η̃1), fractional for-
mats (f̃), and exponent formats (η̃2) as independent sets.

M r . R o g e rφ

(StartTok, ε, 1)
(StartTok, CapitalTok, 1)
(ε, CapitalTok, 1)
(ε, AlphaTok, 1)
(ε, AlphaNumTok, 1)
…….

(ε, EndTok, 1)
(AlphaTok, EndTok, 1)
(AlphaNumTok, EndTok, 1)
(AlphaTok, EndTok, -1)
(AlphaTok, ε, 1)
…….

ff = Substr(v1,p1,p2)

{ {

{{

Fig. 3. The DAG data structure for representing the induced programs in Example 1.

DAG Expressions (Path-based Sharing): There can often be a huge
number of associative expressions that can be consistent with a given example(s).
Consider the input-output example pair (u, v). Suppose v1, . . . , vn are n values
such that v = h(v1, . . . , vn) and let ei,j be an expression that evaluates to the
value vi,j ≡ h(vi, . . . , vj) on input u (1 ≤ i < j ≤ n). Let σ = [σ0, . . . , σm] be a
subsequence of [0, . . . , n] such that σ0 = 0 and σm = n and eσ be the expression
h(e′1, . . . , e

′
m), where e′i = eσi−1,σi

. Note that the number of such subsequences σ
is exponential in n, and for any such subsequence σ, eσ evaluates to v1,n. Such

8

an exponential sized set of associative expressions can be represented succinctly
as a DAG whose nodes correspond to 0, . . . , n and an edge between two nodes i
and j corresponds to the value vi,j and is labeled with ei,j . A path in the DAG
from source node 0 to sink node n is some subsequence [σ1, . . . , σm] of [0, . . . , n]
where σ1 = 0 and σm = n, and it represents the expression F (e′1, . . . , e

′
m) = v,

where e′i = eσi−1,σi
. An example DAG data structure representing all programs

consistent with the input-output example in Example 1 is shown in Figure 3.
The graph data structure for generalized expression nodes for representing select
expressions [23] also uses such path-based sharing for succinctly representing
exponential number of expressions.

3.3 Ranking the Set of La Expressions

Given an input-output example, the PBE system learns a huge number of con-
forming expressions and represents them succinctly using the data structure
shown in Figure 1(b). Some of these learnt expressions are correct (desired) and
others are incorrect (undesired). A user typically needs to provide more input-
output examples to refine their intent until the set of expressions learnt by the
system consists of only correct expressions. Our goal is to learn the desired ex-
pression from minimal number of examples (preferably 1). We formulate this
problem as learning a ranking function that can rank the correct expression as
the highest ranked expression.

We need to define the ranking function such that it can identify the top-
ranked expression without explicitly enumerating the constituent sets. The rank-
ing function R (shown in Figure 2(b)) takes a set of La expressions and the set
of input-output examples σ as input, and returns the highest ranked expression.
For maintaining the version-space algebra based sharing, the ranking function is
defined hierarchically in terms of individual ranking functions at different levels,
namely ru, rf , and rh. The ranking function ru computes the highest ranked ex-
pression from a Union Expression. It first recursively computes the top-ranked
expression ei for each of its constituent expression ẽi, and then computes the
highest ranked expression amongst them.

The ranking function rf computes the highest-ranked expression from a
Join expression f(E1, .., En). Since we assume the ranking function to be a lin-
ear weighted function of features, if all features depended on only one column
(say Ei), we can easily enumerate the expressions individually for each column
(e ∈ Ei) and compute the highest ranked expression f(e1, .., en) by selecting
the highest ranked expression ei for each individual column Ei. But often times
the features depend on multiple columns, which leads to challenges in efficiently
identifying the highest ranked expression. A key observation we use for comput-
ing such features is that these features typically do not depend on all concrete
values of other columns, but only on a few abstract values (defined as the ab-
stract dimension of the feature). For a given set of features, the columns can be
extended to a set whose size is bounded by the product of abstract dimensions
of features such that a feature now depends on only one column.

9

The ranking function rh efficiently computes the highest ranked expression
from a DAG Expression by exploiting the notion of associative features. A fea-
ture g over associative expressions is said to be associative if there exists an
associative monotonically increasing binary operator ◦ and a numerical feature
h over expressions ei such that g(F (e1, . . . , en)) = g(F (e1, . . . , en−1)) ◦ h(en).
The ranking function uses a dynamic programming algorithm similar to the Di-
jkstra’s shortest path algorithm for computing the highest-ranked expression,
where each DAG node maintains the highest-ranked path from the start node
to itself, together with the corresponding edge feature values.

The key challenge now is to learn these ranking functions automatically at
different levels. We present a supervised learning-to-rank approach for learning
the ranking functions.

4 Learning the Ranking Function

Most previous approaches for learning to rank [3,12,4,2] aim at ranking all rele-
vant documents above all non-relevant documents or ranking the most relevant
document as highest. However, in our case, we want to learn a ranking function
that ranks any correct program higher than all incorrect programs. We use a
supervised learning approach to learn such a function, but it requires us to solve
two main challenges. First, we need some labeled training data for the supervised
learning. We present a technique to automatically generate labeled training data
from a set of input-output examples and the corresponding set of induced pro-
grams. Second, we need to learn a ranking function based on this training data.
We use a gradient descent based method to optimize a novel loss function that
aims to rank any correct program higher than all incorrect programs.

4.1 Preliminaries

The training phase consists of a set of tasks T = {t1, · · · , tn}. Each task ti
consists of a set of input-output examples Ei = {ei1, · · · , ein(ti)}, where example

eij = (inij , out
i
j) denotes a pair of input (ini) and output (outi). We assume that

for each training task ti, sufficiently large number of input-output examples Ei

are provided such that only correct programs are consistent with the examples.
The task labels i on examples eij are used only for assigning the training labels,
and we will drop the labels to refer the examples simply as ej for notational
convenience. The complete set of input-output examples for all tasks is obtained
by taking the union of the set of examples for each task E = {e1, · · · , en(e)} =
∪tEt. Let pi denote the set of synthesized programs that are consistent with

example ei such that pi = {p1i , · · · , p
n(i)
i }, where n(i) denotes the number of

programs in the set pi. We define positive and negative programs induced from
an input-output example as follows.

Definition 3 (Positive and Negative Programs). A program p ∈ pj is
said to be a positive (or correct) program if it belongs to the set intersection of

10

the set of programs for all examples of task ti, i.e. p ∈ p1 ∩ p2 ∩ · · · ∩ pn(ti).
Otherwise, the program p ∈ pj is said to be a negative (or incorrect) program i.e.
p 6∈ p1 ∩ p2 ∩ · · · ∩ pn(ti).

4.2 Automated Training Data Generation

We now present a technique to automatically generate labeled training data from
the training tasks specified using input-output examples. Consider a training
task ti consisting of the input-output examples Ei = {(e1, · · · , en(ti)} and let pj
be the set of programs synthesized by the synthesis algorithm that are consistent
with the input-output example ej . For a task ti, we construct the set of all
positive programs by computing the set p1∩p2∩· · ·∩pn(ti). We compute the set
of all negative programs by computing the set {pk \ (p1 ∩ p2 ∩ · · · ∩ pn(ti)) | 1 ≤
k ≤ n(ti)}. The version-space algebra based representation allows us to construct
these sets efficiently by performing intersection and difference operations over
corresponding shared expressions.

We associate a set of programs pi = {p1i , · · · , p
n(i)
i } for an example ei with

a corresponding set of labels yi = {y1i , · · · , y
n(i)
i }, where label yji denotes the

label for program pji . The labels yji take binary values such that the value yji = 1

denotes that the program pji is a positive program for the task, whereas the label

value 0 denotes that program pji is a negative program for the task.

4.3 Gradient Descent based Learning Algorithm

From the training data generation phase, we obtain a set of programs pi asso-
ciated with labels yi for each input-output example ei of a task. Our goal now
is to learn a ranking function that can rank a positive program higher than all
negative programs for each example of the task. We present a brief overview of
our gradient descent based method to learn the ranking function for predicting
a correct program by optimizing a novel loss function.

We compute a feature vector xji = φ(ei, p
j
i) for each example-program pair

(ei, p
j
i), ei ∈ E, pji ∈ pi. For each example ei, a training instance (xi, yi) is

added to the training set, where xi = {x1i , · · · , x
n(i)
i } denotes the list of fea-

ture vectors and yi = {y1i , · · · , y
n(i)
i } denotes their corresponding labels. The

goal now is to learn a ranking function f that computes the ranking score

zi = (f(x1i), · · · , f(x
n(i)
i)) for each example such that a positive program is

ranked as highest.
This problem formulation is similar to the problem formulation of listwise

approaches for learning-to-rank [2,25]. The main difference comes from the fact
that while previous listwise approaches aim to rank most documents in accor-
dance with their training scores or rank the most relevant document as highest,
our approach aims to rank any one positive program higher than all negative
programs. Therefore, our loss function counts the number of examples where a
negative program is ranked higher than all positive programs, as shown in Equa-
tion 1. For each example, the loss function compares the maximum rank of a

11

L(E) =

n(e)∑
i=1

L(yi, zi) =

n(e)∑
i=1

sign(Max({f(xji) | y
j
i = 0})− Max({f(xki) | yki = 1}))

(1)

L(yi, zi) = tanh(c1× (
1

c2
× log(

∑
yji=0

ec2×f(x
j
i))− 1

c2
× log(

∑
yki =1

ec2×f(x
k
i)))) (2)

negative program (Max({f(xji) | y
j
i = 0})) with the maximum rank of a positive

program (Max({f(xki) | yki = 1})), and adds 1 to the loss function if a negative
program is ranked highest (and subtracts 1 otherwise).

The presence of sign and Max functions in the loss function in Equation 1
makes the function non-continuous. The non-continuity of the loss function
makes it unsuitable for gradient descent based optimization as the gradient of the
function can not be computed. We, therefore, perform smooth approximations
of the sign and Max functions using the hyperbolic tanh function and softmax
function respectively (with scaling constants c1 and c2) to obtain a continuous
and differentiable loss function in Equation 2.

We assume the desired ranking function f(xji) = w ·xji to be a linear function

over the features. Let there be m features in the feature vector xji = {g1, · · · , gm}
such that f(xji) = w0+w1g1+· · ·+wmgm. We use the gradient descent algorithm
to the learn the weights wi of the ranking function that minimizes the loss
function from Equation 2. Although our loss function is differentiable, it is not
convex, and therefore the algorithm only achieves a local minima. We need to
restart the gradient descent algorithm from multiple random initializations to
avoid getting stuck in non-desirable local minimas.

5 Case Study: FlashFill

We instantiate our ranking method for the FlashFill synthesis algorithm [7].
We chose FlashFill because of the availability of several real-world benchmarks.
FlashFill uses a version-space algebra based data-structure shown to succinctly
represent a huge set of programs. The expressions in FlashFill are shared at
three different levels: (i) set-based sharing of position pair expressions at the
lowest level, (ii) union expressions for atomic expressions on the DAG edges,
and (iii) path-based sharing of concatenate expressions at the top level. We
describe efficient features for expressions at each of the levels.

12

Fixed Arity Abs.
Feature Dim.

g1 : ν(rl1), g2 : ν(rl2) 1

g3 : ν(cl), g4 : ν((rl1, r
l
2)) 1

g5 : ν(|rl1|), g6 : ν(|rl2|) 1

g7 : ν(rr1), g8 : ν(rr2) 1

g9 : ν(cr), g10 : ν((rr1, r
r
2)) 1

g11 : ν(|rr1|), g12 : ν(|rr2|) 1

g13 : rl2 = rr1 |p̃k|
g14 : rl2 = ε ∧ rr1 = ε 2

g15 : rl1 = ε ∧ rr2 = ε 2

Associative Binary Numerical
Feature Operator ◦ Feature h

g1 : NumArgs + c(1)

g2 : SumWeights + weight

g3 : ProdWeights × weight

g4 : MaxWeight Max weight

g5 : MinWeight Min weight

(a) (b)

Fig. 4. (a)The set of features for ranking position pair expression
SubStr(vi, {p̃j}j , {p̃k}k), where p̃j = Pos(rl1, r

l
2, c

l), p̃k = Pos(rr1, r
r
2, c

r). (b)The
set of associative features for ranking a set of Concatenate(f1, .., fn) expressions.

5.1 Efficient Expression Features

Position Pair Expression Features: The binary position pair expressions
take two position logic expressions as arguments. The features used for ranking
the position pair expressions are shown in Figure 4(a) together with their low
abstract-dimensions. These features include frequency-based features denoting
frequencies of: token sequences of left and right position logic expression argu-
ments (g1, g2, g7, g8), occurrence Id and the position logics (g3,g4, g9, g10),and
length of token sequences of position logics (g5, g6, g11, g12). In addition to
frequency-based features, there are also Boolean features that include whether
the right token sequence of left position logic is equal to the left token sequence
of the right position logic (g13), the right token sequence (resp. left) of left posi-
tion logic and left token sequence (resp. right) of right position logic are empty
(g14, g15).

Atomic Expression Features: An atomic expression corresponds to a
substring of the output string, which can come from several positions in the
input string in addition to being a constant string. This leads to multiple atomic
expression edges between any two nodes of the DAG, which are represented
explicitly using a Union expression. The features for ranking these expressions
are: whether the left and right positions of output (input resp.) substring matches
a token (g1, g2, g3, g4), expression is a constant string or a position pair (g5,
g6), there is a case change (g7), absolute and relative lengths of the substring as
compared to input and output strings (g8, g9, g10),the left and right expressions
of the output substring are constant expressions or not (g11, g12), and the rank
of position pair expression obtained from the previous level (g13).

Concatenate Expression Features: At the top-level of DAG, we use
associative features to compute the ranking of paths. The set of associative
features together with their corresponding binary operator and numerical feature
are shown in Figure 4(b). These features include number of arguments in the

13

Concatenate expression (g1), the sum of weights of edges on the path (g2),
the product of weights of edges on the path (g3), and the maximum (g4) and
minimum (g5) weights of an edge on the path.

5.2 Experimental Evaluation

We now present the evaluation of our ranking scheme for FlashFill on a set of
175 benchmark tasks obtained from Excel product team and help forums. We
evaluate our algorithm on three different train-test partition strategies, namely
20-80, 30-70 and 40-60. For each partition strategy, we randomly assign the
corresponding number of benchmarks to the training and test set. For each
benchmark problem, we provide 5 input-output examples. The experiments were
performed on an Intel Core i7 3.20 GHz CPU with 32 GB RAM.

Training phase: We run the gradient descent algorithm 1000 times with
different random values for initialization of weights, while also varying the value
of the learning rate α from 10−5 to 105 (in increments of multiples of 10). We
learn the weights for the ranking functions for the initialization and α values for
which best ranking performance is achieved on the training set.

0

1

2

3

4

5

6

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

N
u

m
b

e
r

o
f

Ex
am

p
le

s

Benchmarks

Number of Examples for Learning the Test Task

No Ranking LearnRank

1.00

10.00

100.00

1000.00

10000.00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

R
u

n
n

in
g

Ti
m

e
(i

n
 m

s)

Benchmarks

Efficiency of LearnRank

No Ranking LearnRank

(a) (b)

Fig. 5. Comparison of LearnRank with the Baseline scheme for a random 30-70 parti-
tion on (a) number of examples required for learning and (b) running time.

Test phase: We compare the following two ranking schemes on the basis of
number of input-output examples required to learn the desired task.

• Baseline: The manual ranking algorithm that chooses smallest and simplest
program [7]. The algorithm prefers lesser number of arguments for the con-
catenate expressions, prefers simpler token expressions (such as Alphabets
over AlphaNumeric), and ranks regular expression based position expression
higher than constant position expressions.

• LearnRank: Our ranking scheme that uses the gradient descent algorithm
to learn the ranking functions for position pair, atomic, and concatenate ex-
pressions in DAG.

14

Train-Test Average Examples
Partition Baseline LearnRank

20-80 4.19 1.52 ± 0.07
30-70 4.17 1.49 ± 0.06
40-60 4.18 1.44 ± 0.07

Comparison with Baseline: The
average number of input-output exam-
ples required to learn a test task for
10 runs of different train-test partitions
is shown in the table. The LearnRank
scheme performs much better than Base-
line in terms of average number of examples required to learn the desired task
(1.49 vs 4.17). For a random 30-70 partition run, the number of input-output
examples required to learn the 123 test benchmark tasks under the two ranking
schemes is shown in Figure 5(a). The LearnRank scheme learns the desired task
from just 1 example for 91 tasks (74%) as compared to 0 for Baseline, and from
at most 2 examples for 110 tasks (89%), as compared to only 18 tasks (14%) for
Baseline. Moreover, Baseline is not able to learn any program for 72 benchmarks
(needing all 5 examples) as compared to 4 such benchmarks for LearnRank.

Efficiency of LearnRank: For evaluating the overhead of LearnRank
scheme, we compare the running times of FlashFill with the Baseline ranking
and FlashFill augmented with the LearnRank scheme over the same number of
input-output examples for each test task. The running times of the two FlashFill
versions is shown in Figure 5(b). We observe that the overhead of LearnRank
is small. The average overhead of LearnRank over Baseline is about 20 millisec-
onds (ms) per benchmark task whereas the median overhead is about 8 ms. This
translates to an average overhead of about 29% and a median overhead of 25%
in running times as compared to Baseline.

6 Related Work

In this section, we describe several work related to our technique which can be
broadly divided into two areas: ranking techniques for program synthesis and
machine learning for program synthesis.

Ranking in Program Synthesis: There have been several related work
on using a manual ranking function for ranking of synthesized programs (or
expressions). Gvero et. al. [10] use weights to rank the expressions for efficient
synthesis of likely program expressions of a given type at a given program point.
These weights depend on the lexical nesting structure of declarations and also
on the statistical information about the usage of declarations in a code corpus.
PROSPECTOR [16] synthesizes jungloid code fragments (chain of objects and
method calls from type τin to type τout) by ranking jungloids using the primary
criterion of length, and secondary criteria of number of crossed package bound-
aries and generality of output type. Perelman et. al. [20] synthesize hole values in
partial expressions for code completion by ranking potential completed expres-
sions based on features such as class hierarchy of method parameters, depth of
sub-expressions, in-scope static methods, and similar names. PRIME [18] uses
relaxed inclusion matching to search for API-usage from a large collection of
code corpuses, and ranks the results using the frequency of similar snippets.
The SemFix tool [19] uses a manual characterization of components in differ-

15

ent complexity levels for synthesizing simpler expression repairs. Our ranking
scheme also uses some of these features, but we learn the ranking function au-
tomatically using machine learning unlike these techniques which need manual
definition and parameter tuning for the ranking function.

SLANG [22] uses the regularities found in sequences of method invocations
from large code repositories to synthesize likely method invocation sequences for
code completion. It uses alias and history analysis to extract precise sequences of
method invocations during the training phase, and then trains a statistical lan-
guage model on the extracted data. CodeHint [5] is an interactive and dynamic
code synthesis system that also employs a probabilistic model learnt over ten
million lines of code to guide and prune the search space. The main difference
in our technique is that it is based on a VSA based representation where it is
possible to compute all conforming programs.

Machine Learning for Programming by Example: A recent work by
Menon et al. [17] uses machine learning to bias the search for finding a composi-
tion of a given set of typed operators based on clues obtained from the examples.
Raychev et. al. [21] use A∗ search based on a heuristic function of length of cur-
rent refactoring sequence and estimated distance from target tree for efficient
learning of software refactorings from few user edits. On the other hand, we use
machine learning to identify an intended program from a given set of programs
that are consistent with a given set of examples. Our technique is applicable to
domains where it is possible to compute the set of all programs that are consis-
tent with a given set of examples [9,8]. SMARTedit [14] is a PBD (Programming
By Demonstration) text-editing system where a user presents demonstration(s)
of the text-editing task and the system tries to generalize the demonstration(s) to
a macro by extending the notion of version-spaces to model plausible macro hy-
potheses. The macro language of SMARTedit is not as expressive as FlashFill’s,
and furthermore the task demonstrations in SMARTedit reduce a lot of ambigu-
ity in the hypothesis space. Liang et al. [15] introduce hierarchical Bayesian prior
in a multi-task setting that allows sharing of statistical strength across tasks.
Our underlying language and representation of string manipulation programs is
different from the combinatory logic based representation used by Liang et al.,
which requires us to use a different learning approach.

7 Conclusion

Learning programs from few examples is an important problem to make PBE
systems usable. In this paper, we presented a general approach for efficiently
predicting a correct program from a large number of programs induced by few
examples. Our solution of using gradient descent based algorithm for learning
the ranking function for VSA representations is at the intersection of machine
learning and formal methods. We show the efficacy of our ranking technique for
the FlashFill system. This machine-learning based ranking technique played a
pivotal role in making FlashFill successful and usable for millions of Excel users.

16

References

1. Flash Fill (Microsoft Excel 2013 feature).
http://research.microsoft.com/users/sumitg/flashfill.html.

2. Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise
approach to listwise approach. In ICML, 2007.

3. D. Cossock and T. Zhang. Subset ranking using regression. Learning Theory,
4005:605–619, 2006.

4. Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm
for combining preferences. The Journal of machine learning research, 4:933–969,
2003.

5. J. Galenson, P. Reames, R. Bod́ık, B. Hartmann, and K. Sen. Codehint: dynamic
and interactive synthesis of code snippets. In ICSE, pages 653–663, 2014.

6. S. A. Goldman and M. J. Kearns. On the complexity of teaching. Journal of
Computer and System Sciences, 50:303–314, 1992.

7. S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In POPL, 2011.

8. S. Gulwani. Synthesis from examples: Interaction models and algorithms. 14th In-
ternational Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, 2012.

9. S. Gulwani, W. Harris, and R. Singh. Spreadsheet data manipulation using exam-
ples. Communications of the ACM, Aug 2012.

10. T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete completion using types
and weights. In PLDI, pages 27–38, 2013.

11. W. R. Harris and S. Gulwani. Spreadsheet table transformations from examples.
In PLDI, 2011.

12. R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for
ordinal regression. Advances in Neural Information Processing Systems, pages
115–132, 1999.

13. S. Jha, S. Gulwani, S. Seshia, and A. Tiwari. Oracle-guided component-based
program synthesis. In ICSE, 2010.

14. T. Lau, S. Wolfman, P. Domingos, and D. Weld. Programming by demonstration
using version space algebra. Machine Learning, 53(1-2), 2003.

15. P. Liang, M. I. Jordan, and D. Klein. Learning programs: A hierarchical bayesian
approach. In ICML, 2010.

16. D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman. Jungloid mining: helping to
navigate the api jungle. In PLDI, pages 48–61, 2005.

17. A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai. A machine learning
framework for programming by example. In ICML, 2013.

18. A. Mishne, S. Shoham, and E. Yahav. Typestate-based semantic code search over
partial programs. In OOPSLA, pages 997–1016, 2012.

19. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: program
repair via semantic analysis. In ICSE, 2013.

20. D. Perelman, S. Gulwani, T. Ball, and D. Grossman. Type-directed completion of
partial expressions. In PLDI, pages 275–286, 2012.

21. V. Raychev, M. Schäfer, M. Sridharan, and M. T. Vechev. Refactoring with syn-
thesis. In OOPSLA, pages 339–354, 2013.

22. V. Raychev, M. T. Vechev, and E. Yahav. Code completion with statistical lan-
guage models. In PLDI, 2014.

http://research.microsoft.com/users/sumitg/flashfill.html

17

23. R. Singh and S. Gulwani. Learning semantic string transformations from examples.
PVLDB, 5, 2012.

24. R. Singh and S. Gulwani. Synthesizing number transformations from input-output
examples. In CAV, 2012.

25. F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning
to rank: theory and algorithm. In ICML, 2008.

	Predicting a Correct Program in Programming By Example

