
Learning Component Interfaces with May and

Must Abstractions

Rishabh Singh1⋆, Dimitra Giannakopoulou2, and Corina Păsăreanu2

1 MIT CSAIL/ MCT Inc.
2 CMU/ NASA Ames

Abstract. Component interfaces are the essence of modular program
analysis. In this work, a component interface documents correct se-
quences of invocations to the component’s public methods. We present an
automated framework that extracts finite safe, permissive, and minimal
interfaces, from potentially infinite software components. Our proposed
framework uses the L* automata-learning algorithm to learn finite in-
terfaces for an infinite-state component. It is based on the observation
that an interface permissive with respect to the component’s must ab-
straction and safe with respect to its may abstraction provides a precise
characterization of the legal invocations to the methods of the concrete
component. The abstractions are refined automatically from counterex-
amples obtained during the reachability checks performed by our frame-
work. The use of must abstractions enables us to avoid an exponentially
expensive determinization step that is required when working with may
abstractions only, and the use of L* guarantees minimality of the gener-
ated interface. We have implemented the algorithm in the ARMC tool
and report on its application to a number of case studies including several
Java2SDK and J2SEE library classes as well as to NASA flight-software
components.

1 Introduction

Component interfaces are a central concept in component-based software en-
gineering. In current practice, interfaces typically describe the services that a
component provides and requires at a purely syntactic level. However, the need
has been identified for interfaces that document richer aspects of component
behavior. For example in this work, as in others [1, 5, 8, 11, 12, 16], interfaces
describe correct sequences of invocations to public methods of a component.
Richer interfaces can serve as a documentation aid to application programmers,
but can also be used by verification tools in checking that the components are
invoked correctly within a system. In fact, interfaces are key for modular pro-
gram analysis [8, 11, 12]. They reduce the task of verifying a system consisting of
a component and a client, to the more tractable task of verifying that the client
satisfies the component’s interface.

Given the source-code of a library component C, we address the problem of
extracting a precise component interface in the form of a deterministic finite-

⋆ Work done while the author, supported by MCT Inc., was visiting NASA Ames

state automaton (DFA)1, labeled with the public method names of C. By precise,
we mean safe and permissive. An interface is safe if it accepts no illegal sequence
of calls to C, and permissive if it includes all the legal sequences of calls to C [16].
In contrast to our previous work [12], we combine interface generation algorithms
with predicate abstraction techniques, that allows us to handle components with
very large or infinite state spaces. The novelty of our proposed algorithms lies
in the fact that we use a combination of under-, and over-approximations of the
component behavior, in the form of must and may abstractions, respectively. Our
approach is based on the observation that an interface that is safe with respect
to the may abstraction and permissive with respective to the must abstraction is
safe and permissive with respect to C itself. We use the L* learning algorithm [4]
to generate safe and permissive interfaces for C, by iteratively checking may and
must abstractions of C. These abstractions are gradually refined during the
learning process, based on counterexamples. If the algorithms terminate, then
the returned interface is the minimal DFA capturing the precise interface for C.

Extended interfaces can be difficult to characterize precisely without the help
of automated tools, making interface generation an area of active research [1, 5,
16]. The approaches closest to ours are those presented in [1, 16]. Both approaches
construct only over-approximations of the component behavior, which may be
non-deterministic. Checking permissiveness when (abstracted) components are
non-deterministic requires a potentially expensive determinization step. Alur et
al. [1] avoid this step by using heuristics, and therefore cannot guarantee per-
missiveness of the generated interfaces. On the other hand, Henzinger et al. [16]
build “abstract regions”, which is equivalent to performing a determinization
step. Their abstractions are subsequently checked for safety and permissiveness.
These steps cannot be combined in an on-the-fly algorithm, so the complete
abstract reachability graph needs to be constructed, even if a counterexample
exists early in the search.

Furthermore, the abstraction mechanisms in [16] cannot guarantee minimal
interfaces. Even if these interfaces were to be minimized, this approach would
suffer from potentially large intermediate interfaces that subsequently get com-
pacted. This latter problem is more pronounced in the presence of the deter-
minization step, which is exponential, in the worst case. In contrast, L*-based
approaches like ours and [1] directly generate minimal interfaces. Note however
that the technique by [1] does not provide criteria to automatically detect the
need for abstraction refinement. Their refinements are based on inspection of
the generated interfaces, and are performed manually.

Contributions. We present a framework for automated generation of mini-
mal, safe and permissive interfaces for large or infinite-state components. The
framework uses L* with automatically generated and refined may and must
abstractions of the component behavior. It guarantees permissiveness without
requiring determinization, and performs all checks on-the-fly. We present a basic
algorithm and also an optimized version that re-uses results across abstraction-

1 In this work, we assume that component interfaces have a regular language. We
therefore do not consider components methods with recursive invocations.

refinement iterations. We also describe the implementation of our algorithm in
ARMC, and the application to the benchmarks presented in [1, 16], as well as
new benchmarks including J2SEE classes and NASA software components.
Other related work. Work on predicate abstraction for modal transition sys-
tems, e.g. [13], similarly distinguishes between may and must transitions. How-
ever, to the best of our knowledge, the use of may and must abstractions for in-
terface generation is novel. Other approaches generate interfaces by using static
analysis [27], or a combination of static and dynamic analyses [28], or by extract-
ing information from sample execution traces [3]. All these techniques generate
approximate interfaces, as opposed to our work that aims at producing precise
interfaces that provide correctness guarantees.

Interface generation is related to assume-guarantee reasoning [2, 10, 18, 23],
since component interfaces can be used as assumptions in this context. Shoham et
al. [26] describe a compositional framework for modal transition systems, based
on techniques taken from the 3-valued game-based model checking for abstract
models [9, 14]. Those approaches do not use explicit interfaces (or assumptions).
Finally, recent work [15] uses may and must information in the form of procedure
summaries in a compositional framework that performs program analysis.

2 Example

void rel(){
a = NULL;
return;}

void relx(){
a = NULL;
x = 0;
return;}

void acq(){
if(a==NULL)

a=get lock();
else

e=1;

return;}

void read(){
if(a!=NULL)

m read(a);
else

e=1;

return;}

void acqx(){
if(a==NULL){

a=get lock();
x=1;}

else
e=1;

return;}

void write(){
if(x!=0)

m write(a);
else

e=1;

return;}

Fig. 1. Read-write-acq example

Our running example, taken from [16], is illustrated in Figure 1. It consists
of a component C with 3 static variables and 6 public library methods. Variable
e defines the error states in the component (e 6= 0), variable a denotes the
possession of lock and variable x enables method write. Methods acq/rel and their
variations acqx/relx are used to acquire/release a lock, respectively. Methods read
and write are used to access and update the shared memory, respectively.

It can be observed that C enforces several requirements such as read can
only be called after acq or acqx. Similarly write can be called safely only after
calling acqx. Once acq is called, it can only be called again after calling rel or relx.
The interface A for C should capture all such correct sequences of invocation of
public methods and reject the incorrect ones.

3 Preliminaries

Components and Interfaces. A component C = (Xs, F, s0, Perr, Σ) consists
of: a set Xs of static global variables shared across the methods ([[Xs]] denotes

the valuations of variables in Xs and represents the states of the component); a
set F of library methods ; initial state s0 of the component, s0 ∈ [[X]]; a global
set Perr of error predicates over variables in X; and a finite alphabet Σ of the
method names. The error predicates denote the error conditions in the library
such as runtime exceptions, assertion violations etc. A component state s ∈ [[Xs]]
is an error state if s satisfies an error predicate.

Example 1. The example component in Figure 1 can be expressed as C =
(X,F, s0, Perr, Σ) where X = {a, x, e}, F is the set of CFAs for methods (de-
scribed below), the start state s0 = {a = NULL, x = 0, e = 0}, the error
predicate Perr = {e 6= 0} and alphabet set Σ ={acq,read,rel,write,relx,acqx }.

Every library method f ∈ F is represented as a control-flow automaton (CFA)
f = (Xs, Xl, Q, qs, qr, T) consisting of a disjoint set of static variables (Xs) and
local variables (Xl), a set Q of control locations ; a start location qs ∈ Q, a return
location qr ∈ Q, and a finite set of method transitions T . Each transition τ ∈ T
is labeled with a from location qfrom ∈ Q, a to location qto ∈ Q and the method
statement operation represented as a guarded command, g(x) 7→ x = e(x) where
g(x) is a guard and e(x) are updates to variables in x ∈ (Xs ∪ Xl). We use a
special no-op skip transition to model multiple return locations with one return
location.

CFA and Component Semantics. We give the definition of CFA semantics
in terms of method transitions and of component semantics in terms of method
calls. A state in the CFA is modelled as (q, s) where q ∈ Q is a control location
and s ∈ [[(Xs∪Xl]] represents the valuation of (both global and local) variables in
that state, whereas a state in the component is represented by s where s ∈ [[Xs]]
denotes the valuation of (only global) variables in that state.

A binary transition relation ρτ ⊆ (Q × [[Xs ∪Xl]])
2 captures the semantics

of the transitions τ ∈ T in a CFA. ((q, s), (q′, s′)) ∈ ρτ if q = τ.qfrom, q′ = τ.qto,

s |= τ.g and s′ = τ.e(s). We write s
τ

−→ s′ for ((τ.qfrom, s), (τ.qto, s
′)) ∈ ρτ .

Let s ◦ t denote the combination of valuations s ∈ [[Xs]] (static variables)
and t ∈ [[Xl]] (local variables). The transition relation for the component δC ⊆
[[Xs]]×Σ× [[Xs]] denotes the successful termination of method f when applied
on some state s ∈ [[Xs]] resulting in state s′ ∈ [[Xs]]. It is defined as follows:
(s, f, s′) ∈ δC if ∃ sequence (q1, (s1 ◦ t1)), (q2, (s2 ◦ t2)), . . . , (qn, (sn ◦ tn)) such
that (qs, s) = (q1, s1) (q1 is the start location of f), (qr, s

′) = (qn, sn) (qn is the
return location of f), and ∀i

1≤i≤n−1
((qi, (si ◦ ti)), (qi+1, (si+1 ◦ ti+1))) ∈ fc.ρτ , si ∈

[[Xs]], ti ∈ [[Xl]] (every transition in the sequence is a valid transition in f.T). For
simplicity we assume error states have no outgoing method transitions, except

for return. We write s
f

−→ s′ for (s, f, s′) ∈ δC .
The semantics of the component C is captured by a (possibly infinite) de-

terministic transition system SC = ([[X]], Σ, s0, δC). A component sequence
Seq = f1, f2, . . . , fn is the sequence of method calls corresponding to a com-
putation s0, s1, . . . , sn of SC such that ∀i si ∈ [[X]], (si−1, fi, si) ∈ δC . An
error sequence is a component sequence that leads the component to an er-
ror state. The language L(SC) ⊆ Σ∗ denotes all the component sequences of C;

LE(SC) ⊆ L(SC) denotes the language of error sequences, and Lsafe(SC) denotes
the language of safe method sequences which is defined to be the complement of
LE(SC), i.e. L

safe(SC) = LE(SC). Note that while L(SC) and LE(SC) contain
only feasible traces, Lsafe(SC) may contain both feasible and infeasible compo-
nent sequences.

Safe and Permissive Interfaces. An interface for a library component C is
a prefix-closed regular set over the alphabet Σ of library method names. We
represent interfaces as (deterministic) finite state automata A = (Q,Σ, q0, δ)
where: Q is a finite non-empty set of accept states; Σ is a finite alphabet of
method names; q0 ∈ Q is the initial state; and the transition relation δ ⊆ Q ×
Σ×Q (the set of accepting states is Q). L(A) is the set of words accepted by A.
We let LE(A) = L(A) denote the set of error traces of A. LE(A) is the language
accepted by automaton Aerr, representing A completed with an error state which
is the only accepting state, i.e., Aerr = (Q′, Σ, q0, δ

′), where Q′ = Q ∪ {err} and
δ′ = δ ∪ (q, a, err) ∀q, q′ ∈ Q, a ∈ Σ : (q, a, q′) 6∈ δ.

Interface A is safe if every word w ∈ L(A) is a safe sequence of method calls in
C, i.e. L(A) ⊆ Lsafe(SC); equivalent to LE(SC) ⊆ LE(A) or L(A)∩LE(SC) = ∅.

Interface A is permissive if it accepts all safe sequences of method calls in C,
i.e. Lsafe(SC) ⊆ L(A); equivalent to LE(A) ⊆ LE(SC) or L

safe(SC)∩LE(A) = ∅.
From the above definitions, since LE(SC) ⊆ LE(A) and LE(A) ⊆ LE(SC),

it follows that LE(SC) = LE(A).
Example 2. For the component in Figure 1, the string σ1 = (acq,read,rel) ∈
Lsafe(SC) and σ1 ∈ L(SC) as the corresponding method sequence is safe for the
component. The string σ2 = (read,acq,rel) ∈ LE(SC) as the method sequence
causes the component to be in an error state.

Composition. Let SC = ([[X]], Σ, s0, δC) be the transition system capturing
the semantics of library component C, and A = (Q,Σ, q0, δ) be an interface au-
tomaton. The composite transition system G = SC ‖ A obtained by composing
SC and A is defined as G = (Q×, Σ, q×0 , δ×), where Q× = Q×[[X]], q×0 = (q0, s0),
and δ× = {((q, s), f, (q′, s′))|(q, f, q′) ∈ δ and (s, f, s′) ∈ δC}.

Abstraction. We build may and must abstractions of software components
using predicate abstraction – a special instance of abstract interpretation [7] that
maps a potentially infinite state transition system into a finite state transition
system via a finite set of predicates Preds = {p1, . . . , pn} over the program
variables. We require Perr ⊆ Preds. An abstract state a ⊆ Preds is an error state
if it satisfies an error predicate.

An abstraction function α maps a concrete program state s to a set of predi-
cates that hold in s: α(s) = {p ∈ Preds | s |= p}. For transition τ ∈ T of method
f , we define may and must transitions; a, a′ denote abstract states, s, s′ denote
concrete states:
– a

τ
−→must a

′ iff ∀s s.t. α(s) = a, ∃s′ s.t. α(s′) = a′ and s
τ

−→ s′.

a
f

−→must a
′ iff ∀s s.t. α(s) = a, ∃s′ s.t. α(s′) = a′ and s

f
−→ s′.

– a
τ

−→may a′ iff ∃s s.t. α(s) = a and ∃s′ s.t. α(s′) = a′ and s
τ

−→ s′.

a
f

−→may a′ iff ∃s s.t. α(s) = a and ∃s′ s.t. α(s′) = a′ and s
f

−→ s′.

Given component C with transition system SC , the must and may abstrac-
tions with respect to the set of abstract predicates Preds are defined as Smust

C,Preds =

(2Preds, Σ, α(s0),−→must) and Smay
C,Preds = (2Preds, Σ, α(s0),−→may), respectively.

We sometimes write Smust
C or Smay

C when Preds is clear from the context.
Algorithms for computing may and must abstractions with the help of a

theorem prover are given in e.g. [24]. Note that the set of may transitions is
a super-set of the must transitions. We also note from the above definitions
it follows that the may and must abstractions define simulations [21] between
Smust
C and SC , and between SC and Smay

C , respectively. Since simulation im-
plies trace inclusion, we have the following characterization of under- and over-
approximations (that we will use later):

Proposition 1. L(Smust
C) ⊆ L(SC) ⊆ L(Smay

C). Furthermore, LE(Smust
C) ⊆

LE(SC) ⊆ LE(Smay
C).

Weakest Precondition. For automated abstraction refinement, we use weak-
est precondition calculations over counterexample traces [24]. Let φ be a predi-
cate characterizing a set of states. The weakest precondition of φ with respect to
transition τ is wp(φ, τ) = ∀s′.(s

τ
→ s′ ⇒ φ(s′)), and it characterizes the largest

set of states whose successors by transition τ satisfy φ.

The L
∗ Algorithm. L* was developed by Angluin [4] and later improved

by Rivest and Schapire [25]. L* learns an unknown regular language U over
alphabet Σ and produces a minimal deterministic finite state automaton (DFA)
that accepts it. L* interacts with a Minimally Adequate Teacher that answers
two types of questions from L*. The first type is a membership query asking
whether a string σ ∈ Σ∗ is in U . For the second type, the learning algorithm
generates a conjecture A and asks whether L(A) = U . If L(A) 6= U the Teacher
returns a counterexample, which is a string σ in the symmetric difference of
L(A) and U . L* is guaranteed to terminate with a minimal automaton A for U .
If A has n states, L* makes at most n− 1 incorrect conjectures. The number of
membership queries made by L* is O(kn2 + n logm), where k is the size of Σ,
n is the number of states in the minimal DFA for U , and m is the length of the
longest counterexample returned when a conjecture is made.

4 Interface Generation

Let C be a component corresponding to a potentially infinite-state transition
system SC . From now on, for simplicity, we will use C to represent the component
and its transition system. Our proposed interface-generation algorithms operate
by analyzing finite-state abstractions of C. The essence of our approach lies in
the following observation:

Theorem 1. Let us assume a component C, a may abstraction Cmay for C
and a must abstraction Cmust for C. If an interface A for C is permissive with
respect to Cmust and safe with respect to Cmay, then A is safe and permissive
with respect to C.

Our approach for interface generation is therefore based on constructing may
and must abstractions for a concrete component C (Cmay and Cmust, respec-
tively). We first briefly describe a basic algorithm, followed by an optimized one;
both algorithms use a combination of automated learning and abstraction re-
finement techniques. These algorithms involve procedures for checking whether
an interface is safe and permissive, which we provide first.

CheckSafe. Checking that an interface A is safe for some component abstrac-
tion CAbst (corresponding to Cmay or Cmust), reduces to checking reachability
of a state (sa, sc) in A ‖ CAbst such that sc is an error state in CAbst. A coun-
terexample is returned if such a state is found.

CheckPermissive. The key to our approach is that our algorithms only
check permissiveness for Cmust. Must abstractions are always deterministic since
we assume that our concrete components are also deterministic. As a result,
checking permissiveness reduces to a simple reachability check. The interface
A is first completed with an error state err to get Aerr. C

must
sink is then built by

similarly completing Cmust with a new state sink, which is an accepting state
(see [12] for explanations of the need for such completions). The permissiveness
check then reduces to checking, in automaton Aerr ‖ Cmust

sink , reachability of some
state (err, sc), where sc is a non-error state in Cmust

sink . If such a state is detected,
A is not permissive, and a counterexample is returned. The counterexample
illustrates a correct sequence of invocations to the component that is rejected
by the interface.

4.1 Algorithms

Algorithm BuildInterface: The high-level steps of our basic approach to gener-
ating interfaces using may and must abstractions is illustrated in Algorithm 1.
Given that Cmust is finite-state, the L* algorithm is used to generate a safe and
permissive interface for Cmust, expressed as a DFA Amust over the alphabet of
the component. The procedure LearnInterface used for this purpose is similar
to the one presented in [12]. The interface Amust produced by LearnInterface
is subsequently checked for safety with respect to Cmay. If safe, then based
on theorem 1, Amust is a safe and permissive interface for C. Otherwise, the
counterexample t obtained from the safety check is used to guide the automatic
refinement of the predicate set used for building the component abstractions,
as described later in this section. Another iteration of the algorithm is then
performed, with the new set of predicates.

Algorithm LearnReuse: Despite its conceptual clarity, the basic algorithm needs
to restart the learning process every time an abstraction is refined. We would
ideally like to reuse information learned by L* across abstraction refinement
iterations. In contrast to the basic algorithm that uses learning on Cmust, the
optimized algorithm directly learns an interface for component C, meaning that
answers to queries and conjectures represent component C itself. As a result, the
learning process evolves in parallel with the abstraction refinements. Note that
the algorithm never actually uses C itself, but rather its finite-state abstractions
Cmust and Cmay. We use Preds to denote a global set of abstraction predicates.

Algorithm 1 BuildInterface(C)

1: Amust := LearnInterface(Cmust)
2: t := CheckSafe(Amust,Cmay)
3: if t == null then

4: return Amust

5: else

6: Preds := Preds
⋃

Refine(t)
7: Go to step 1.
8: end if

Algorithm 2 Query(σ, C)

1: if CheckSafe(ts(σ), Cmust)! = null

then

2: return no
3: else

4: t := CheckSafe(ts(σ),Cmay)
5: if t == null then

6: return yes
7: else

8: Preds := Preds
⋃

Refine(t)
9: invoke Query(σ, C) (new Preds)
10: end if

11: end if

Algorithm 3 Oracle 1

1: t := CheckSafe(A,Cmay);
2: if t == null then

3: invoke Oracle 2
4: else

5: σ := project(t)
6: result := Query(σ,C)
7: if result == no then

8: return σ to L*
9: else

10: invoke Oracle 1 (new Preds)
11: end if

12: end if

Algorithm 4 Oracle 2

1: t := CheckPermissive(A,Cmust)
2: if t == null then

3: return A as safe & permissive
4: else

5: σ := project(t)
6: result := Query(σ,C)
7: if result == yes then

8: return σ to L*
9: else

10: invoke Oracle 2 (new Preds)
11: end if

12: end if

Queries. The procedure for queries is illustrated by Algorithm 2. At a high
level, a query on σ must return no if σ ∈ LE(C) and yes otherwise. We briefly
explain here how we are able to determine to use Cmust and Cmay instead of C.
From Proposition 1, LE(Cmust) ⊆ LE(C) ⊆ LE(Cmay). Therefore, if a coun-
terexample is obtained at line 1, it means that σ ∈ LE(Cmust), which implies
that σ ∈ LE(C), so the query returns no. If no counterexample is obtained at
line 4, then it means that σ /∈ LE(Cmay), which implies that σ /∈ LE(C), so
the query returns yes. Otherwise, we know that the counterexample t obtained
belongs to Cmay but not to Cmust (if it did, then the check on line 1 would not
have returned null). t is then used to refine the abstraction.

Conjectures. We use Theorem 1 to answer the conjectures using two oracles,
as illustrated in Algorithms 3 and 4.

Oracle 1: Is the conjectured assumption A safe with respect to Cmay?

Oracle 2: Is A permissive with respect to Cmust?

Oracle 1 is invoked first. If it finds that A is safe with respect to Cmay, Oracle
2 gets invoked. If Oracle 2 finds that A is also permissive with respect to Cmust,
we conclude from Theorem 1 that A is a safe and permissive interface for C. All
remaining cases require either the refinement of A by L*, or the refinement of
the component abstractions. We use queries to help us determine what needs to
be refined. Our approach is described in detail below.

Oracle 1: If A is not safe with respect to Cmay, we obtain a counterexample
t, which leads to error in Cmay. We subsequently query σ = project(t) on the
component (lines 5 and 6, Algorithm 3); here project(t) denotes the sequence
of method calls corresponding to the sequence of transitions in t, so that σ
is over the interface alphabet that L* is learning. From line 1, we know that
σ ∈ L(A). The querying procedure may involve refinement of the abstraction;
let Cmay′

denote the may abstraction used in the last iteration of the query, when
it returns. If the query returns no, then it means that σ should not be in the
language of A, so σ is returned to L* for A to be refined. Otherwise, we invoke
Oracle 1 again, knowing that Preds have been updated. The reason is that, since
the result of the query is yes, σ is safe in Cmay′

, meaning σ /∈ LE(Cmay′

) (lines
4 and 5, Algorithm 2), but is unsafe in Cmay, meaning σ ∈ LE(Cmay) (line 1,
Algorithm 3).

Oracle 2: If A is not permissive with respect to Cmust, we obtain a coun-
terexample t, which leads to some state (err, sc) in Aerr ‖ Cmust

sink , where sc is
a non-error state in Cmust

sink . Therefore t does not lead to error in Cmust
sink . More-

over, σ = project(t) is not in L(A). We subsequently query σ on the component
(line 6, Algorithm 4). The querying procedure may involve refinement of the
abstraction; let Cmust′ denote the must abstraction used in the last iteration
of the query, when it returns. If the query returns yes, then it means that σ
should be in the language of A, so it is returned to L*. If the query returns
no, then we invoke Oracle 2 again, knowing that Preds have been updated. The
explanation is as follows. When the query returns no, it means that: 1) σ is
unsafe in Cmust′ (line 1, Algorithm 2); and 2) σ ∈ LE(C). On the other hand, σ
must be safe in Cmust; if σ were unsafe in Cmust, then the permissiveness check
of line 1 could not have returned t as a counterexample, since σ = project(t).
Therefore clearly, Cmust′ is more refined that Cmust. Note that since σ ∈ LE(C)
but σ /∈ LE(Cmust), t cannot be a trace of Cmust, but is rather a sink trace in
Cmust

sink .

4.2 Abstraction refinement
In the algorithms BuildInterface and LearnReuse presented above, the abstraction
refinement procedure is applied whenever a violating trace t is discovered that
belongs to Cmay but not to Cmust. Consequently, tmust contain amay transition
(ai

τ
→may ai+1) that is not amust transition. This means that there exists at least

another abstract state a′i+1 that is a successor of ai by τ via a may transition,

i.e. ai
τ
→may a′i+1. The reason is that ai does not distinguish between concrete

states of two types: those whose successors are abstracted to ai+1 and those
whose successors are abstracted to a′i+1.

Automated abstraction refinement consists in adding new abstraction pred-
icates (based on weakest pre-conditions). As a result, we split ai into two or
more new abstract states, corresponding to predicates in ai ∧ wp(ai+1, τ) and
ai ∧ ¬wp(ai+1, τ) respectively, that separate the concrete states of type (i) and
(ii) above. Note that this results in a finer partition of the concrete states. The
new abstraction will no longer contain τ as a may and non-must transition and
therefore we have the following proposition:

Proposition 2. If trace t has a transition τ that is of type may but not must,
the refined abstraction results in a strictly finer partition and does not contain
transition τ .

In practice, given a sequence of transitions as a counterexample Cex =
{τ1, τ2, . . . , τn}, we compute refinement predicates using wp computations re-
cursively wp(true,Cex) = wp(wp(true, τn), {τ1, τ2, . . . , τn−1}).

Our refinement algorithm uses weakest precondition calculations to compute
new abstraction predicates that are guaranteed to eliminate these may transi-
tions, and returns the newly discovered predicates. We note that unlike standard
approaches to counterexample-based abstraction refinement [6], we do not refine
solely based on “spurious” counterexamples. The counterexamples obtained from
failed safety checks may be feasible, but they may still lead to refinement since
they contain non-must transitions.

q0q1 q2 q3

rel, relx

acq

rel,relxread acqx

relx

read
write

rel

acq,acqx

rel

relx

Fig. 2. Read-Write-Acq Example Interface

Example 3. For the example of Figure 1, our algorithms generate the safe and
permissive interface A shown in Figure 2. The interface captures the enforcements
imposed by the library. Method read can only be called after calling acq (q1) or
acqx (q2). However, method write can only be called after calling acqx (q2).
Consecutive calls of acq or acqx are inhibited and acq once called can be called
again only after calling rel or relx.

The generated interface has one state more than the interface presented
in [16] for the same example. On closer inspection, we see that the automa-
ton accepts the string σ = acqx,write,rel,acq,write which is not accepted by their
interface. After calling the method acqx from the start state s0 = {x = 0, a =
NULL, e = 0}, the variable a becomes non-null and x is set to 1. The method
write does not modify a or x. The next method call rel only sets a to NULL but

leaves x unchanged (which remains 1). Now after the acq method a is again set
to non-null. Since a 6= NULL and x = 1, the write method can now be called
safely. When we contacted the authors of [16], they observed a discrepancy be-
tween the example as it appeared in their paper and their implemented case
study, which explains the difference in our respective results.

4.3 Correctness and Termination

In this section we argue the correctness and termination of our algorithms. We
will be using Alg to represent either BuildInterface or LearnReuse, when our
presented arguments hold for both algorithms.

Theorem 2 (Correctness). If algorithm Alg terminates (with final abstrac-
tions Cmust and Cmay), then the constructed interface A is safe and permissive
for C. Furthermore, LE(Cmust) = LE(Cmay) = LE(C).

Termination. For infinite-state components, the predicate abstraction refine-
ment used in Alg may not always terminate. However, we can make the following
termination argument:

Theorem 3. If Alg computes an abstraction such that LE(Cmust) = LE(Cmay) =
LE(C), then the Alg terminates.

Furthermore, from previous work on automatic abstraction refinement [22,
19], we know that if the component C has a finite bisimulation quotient [20],
then the refinement based on weakest precondition calculations is guaranteed to
converge to that finite quotient.

Theorem 4 (Bisimulation Completeness [22, 19]). If the component C has
a finite bisimulation quotient, then there exists a refinement iteration bound such
that the abstraction Cmay is bisimilar to C.

Since bisimulation implies trace equivalence [21] and from Proposition 1, it
follows that if C has a finite bisimulation quotient, then there exists a refine-
ment iteration bound such that for the obtained set of abstraction predicates,
LE(Cmust) = LE(Cmay) = LE(C). Therefore, together with Theorem 4 we
conclude the following:

Theorem 5 (Termination). If the component C has a finite bisimulation quo-
tient then Alg terminates.

We observe that this termination condition is not very tight as our algorithms
also terminate for systems for which predicate abstraction with refinement results
in an abstraction such as LE(Cmust) = LE(Cmay) = LE(C), which is a weaker
condition than the existence of a finite bisimulation quotient (see Theorem 3).

Let us finally note that although in general our algorithms may not terminate,
they can be made to return results “any time”. At any stage, we may use L*
to compute interfaces for Amay for Cmay and Amust for Cmust. The language of
the safe and most permissive interface A for component C is bounded between
the languages of Amay and Amust.

5 Implementation and Experiments

Implementation. We have implemented the algorithms presented in Section 4
in the ARMC tool [24]. ARMC already had support for may abstractions; we
extended it with support for must abstractions. Furthermore, ARMC provides
abstraction refinement algorithms based on Craig interpolation [17]. We have
integrated these algorithms in our approach, as an alternative to refinement
based on weakest preconditions.

We note that the algorithms presented previously use the explicit composition
of the abstraction with the interface. Instead of performing this explicit composi-
tion, our implementation builds the abstract graph of the composite automaton
implicitly, by method inlining. This helps us avoid un-necessary computation
and only constructs a part of component abstractions which are sufficient to
prove (or disprove) the safety and permissive checks.

We observe that in the basic algorithm, only feasible counterexample traces
can add error behaviors to the must abstraction Cmust. The spurious counterex-
amples only remove error behaviors from the may abstraction Cmay. Therefore
it suffices to restart learning only after refining feasible counterexamples. In the
case of spurious counterexamples, the CheckSafe algorithm is restarted after the
may abstraction is refined; it terminates when either a feasible counterexample
is found or the interface is discovered to be safe.

Experiments. We evaluate our interface generation algorithm on several sam-
ple Java2SDK library classes presented in [1, 17] as well as some benchmarks
from J2SEE and the NASA CEV 1.5 EOR-LOR mission profile case study [12].
A brief description about the modelling and generated interfaces follows. The
experiments were run on a dual core 1.80 GHz Intel Pentium processor with
3 GB of RAM. Table 1 presents the empirical results obtained from follow-
ing different algorithmic schemes: wp: BuildInterface with weakest precondition
refinement; wp+craig: BuildInterface with craig interpolation refinement for in-
feasible counterexamples (wp+craig); refine-may: BuildInterface with refining
only may abstraction for infeasible counterexamples (refine-may + craig); learn-
reuse: LearnReuse with craig. The table also presents the number of predicates
(#Preds) discovered, the number of learning iterations (#Iterations), the num-
ber of states in the final interface (#States) and the running times.

The primary purpose of our experiments is to assess the feasibility of our ap-
proach. We additionally provide, with a smaller emphasis, a comparison between
algorithms BuildInterface and LearnReuse. Our results show that the proposed
approach is feasible, and also quantify the expected improvement achieved by
LearnReuse. We can additionally use our experimental results as approximate
indications of the practical savings achieved by LearnReuse over previous ap-
proaches that perform learning and abstraction separately [1]. These approaches
are based on manual refinement, but if automated, their performance would be
similar to BuildInterface since they do not perform abstraction on demand during
the learning process.

For the Signature class we selected five methods as the alphabetΣ = {initSign,
initVerify, sign, update, verify}. The exception SignatureException was modelled

as the error predicate. The states in the generated interface correspond to the la-
bellings of uninitialized, sign and verify respectively. The ServerTableEntry class
is taken from the package com.sun.corba.se.internal.Activation. We selected six
methods as the alphabet Σ ={activate, register, registerPorts, install, uninstall,
holdDown} and modelled the exception INTERNAL as the error condition. The
generated interface only keeps track of three states: activated(register), run-
ning(install/uninstall) and other states as one state. The ListItr class is an inner
class of AbstractList from the package java.util. We selected five methods as the
alphabet Σ ={next, remove, previous, set, add} and the exception IllegalStateEx-
ception was modelled as the error predicate. The interface captures the inhibition
of calls of methods set and remove after calling methods remove or add.

The PipedOutputStream class is taken from the package java.io and is an
implementation of an abstract class OutputStream. We selected five methods
as the alphabet Σ ={close, (connect,0), (connect,1), flush, write }, where we
model invocations of connect method returning different values (0 or 1) as
different methods ((connect,0) or (connect,1)) similar to the approach taken
in [5]. The exception NullPointerException was modelled as the error predi-
cate. The interface captures precisely two states where sink = null and sink 6=
null. Only a successful connect call can enable flush and write methods. The
Socket class is part of java.net package which implements client sockets. We
considered seven methods as the alphabet Σ = {close, bind, getInputStream,
getOutputStream, shutdownInput, shutdownOutput } and the exception Socke-
tException was modelled as the error predicate. The interface enforces the re-
quirement that bind cannot be called after connect, shutdownInput can only be
called after calling connect, getInputStream can only be called after the con-
nect call and not after close or shutdownInput has been called. After calling
close no other method calls are allowed. The class TransactionManager is taken
from the package javax.transaction, and we selected six methods as the alphabet
Σ = {begin, suspend, resume, commit, rollback, setrollbackonly}. The exception
IllegalStateException was modelled as the error predicate. The generated inter-
face captures the precise sequence of method calls for performing a transaction
with appropriate handling of commit and rollback actions.

We also applied our technique to obtain the interface for the simplified state
machine for NASA CEV 1.5 EOR-LOR mission profile case study. It models
the Ascent,EarthOrbit,TransitEarthMoon and Entry phases of the space-craft, the
events (like srbIgnition,stage1separation etc.), the vehicle configuration and var-
ious failure modes. The Java model is avaiable with the JPF distribution under
examples/jpfESAS. We modelled the 22 events as the alphabet set for the inter-
face and the error predicate was modelled as the failure modes and the event calls
from inappropriate states. Events with parameters like abort(boolean controlMo-
torField) were modelled as two events one with controlMotorField parameter true
(abortctr) and the other with controlMotorField parameter false (abortnctr) which
increased the alphabet size to 26. The interface has 14 states and required 74
predicates. For such large interfaces, only the LearnReuse algorithm finished in
reasonable time. Table 1 also documents the results for NASA-Ascent interface

where only the Ascent phase of the space-craft was modelled. These interfaces in
addition to being helpful in verifying the space-craft code are also a useful tool
to help debug the system early in the designing process of such critical software.

Class name Algorithm #Preds #Iterations #States Running Time

wp 12 5 2 40.6s
ListItr wp+craig 7 6 2 42.2s

refine-may 8 4 2 39.3s
learn-reuse 6 1 2 12.7

wp 8 9 3 72.7s
Signature wp+craig 5 6 3 42.9s

refine-may 7 4 3 33.2s
learn-reuse 5 1 3 16.6s

wp 10 10 3 98.1s
ServerTableEntry wp+craig 6 7 3 64.9s

refine-may 10 5 3 51.3s
learn-reuse 7 1 3 19.2

wp 4 5 2 16.4s
PipedOutputStream wp+craig 2 3 2 11.4s

refine-may 2 3 2 11.6s
learn-reuse 2 1 2 7.4s

wp 6 6 4 122.8s
read-write-acq wp+craig 4 5 4 75.4s

refine-may 7 5 4 74.3s
learn-reuse 6 1 4 31.1

wp 25 5 6 468.5s
Socket wp+craig 13 5 6 272.9s

refine-may 13 5 6 228.0s
learn-reuse 12 1 6 65.8

wp 15 8 4 138.6s
TransactionManager wp+craig 9 7 4 103.5s

refine-may 9 4 4 76.9s
learn-reuse 9 1 4 30.4s

wp 34 14 5 1685.6s
NASA-Ascent wp+craig 20 14 5 1433.9s

refine-may 20 6 5 712.4s
learn-reuse 20 1 5 75.6s

NASA-Complete learn-reuse 74 1 14 3115.6s

Table 1. Experiment results on benchmark case studies

References

1. R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of interface specifica-
tions for java classes. In POPL, pages 98–109, 2005.

2. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. Mocha: Modularity in model checking. In CAV, pages 521–525, 1998.

3. G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. In POPL, pages
4–16, 2002.

4. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

5. D. Beyer, T. A. Henzinger, and V. Singh. Algorithms for interface synthesis. In
CAV, pages 4–19, 2007.

6. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, pages 154–169. Springer, 2000.

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

8. M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program verification in
polynomial time. In PLDI, pages 57–68, 2002.

9. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games:
Uncertainty, but with precision. In LICS, 2004.

10. C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-
memory programs. In ESOP, pages 262–277, 2002.

11. J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In PLDI,
pages 1–12, 2002.

12. D. Giannakopoulou and C. S. Pasareanu. Interface generation and compositional
verification in javapathfinder. In FASE, pages 94–108, 2009.

13. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking
using modal transition systems. In CONCUR, 2001.

14. P. Godefroid, M. Huth, and R. Jagadeesan. A game-based framework for ctl coun-
terexamples and 3-valued abstraction-refinement. In CAV, 2003.

15. P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali. Compositional may-
must program analysis: Unleashing the power of alternation. In POPL, 2010.

16. T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. In
ESEC/SIGSOFT FSE, pages 31–40, 2005.

17. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, pages 232–244, 2004.

18. C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332, 1983.

19. D. Lee and M. Yannakakis. Online minimization of transition systems. In ACM
Symposium on Theory of Computing, 1992.

20. D. Lee and M. Yannakakis. Online minimization of transition systems (extended
abstract). In STOC, pages 264–274. ACM, 1992.

21. R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
22. K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for auto-

matic abstraction. In CAV, 2000.
23. A. Pnueli. In transition from global to modular temporal reasoning about pro-

grams. Logics and models of concurrent systems, pages 123–144, 1985.
24. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model

checking with abstraction refinement. In PADL, pages 245–259, 2007.
25. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing se-

quences. Inf. Comput., 103(2):299–347, 1993.
26. S. Shoham and O. Grumberg. Compositional verification and 3-valued abstractions

join forces. In SAS, 2007.
27. O. Tkachuk and M. B. Dwyer. Adapting side effects analysis for modular program

model checking. In ESEC / SIGSOFT FSE, pages 188–197, 2003.
28. J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-oriented

component interfaces. In ISSTA, pages 218–228, 2002.

