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Abstract
Cleaning spreadsheet data types is a common problem faced by
millions of spreadsheet users. Data types such as date, time, name,
and units are ubiquitous in spreadsheets, and cleaning transforma-
tions on these data types involve parsing and pretty printing their
string representations. This presents many challenges to users be-
cause cleaning such data requires some background knowledge
about the data itself and moreover this data is typically non-
uniform, unstructured, and ambiguous. Spreadsheet systems and
Programming Languages provide some UI-based and program-
matic solutions for this problem but they are either insufficient for
the user’s needs or are beyond their expertise.

In this paper, we present a programming by example method-
ology of cleaning data types that learns the desired transforma-
tion from a few input-output examples. We propose a domain
specific language with probabilistic semantics that is parameter-
ized with declarative data type definitions. The probabilistic se-
mantics is based on three key aspects: (i) approximate predicate
matching, (ii) joint learning of data type interpretation, and (iii)
weighted branches. This probabilistic semantics enables the lan-
guage to handle non-uniform, unstructured, and ambiguous data.
We then present a synthesis algorithm that learns the desired pro-
gram in this language from a set of input-output examples. We have
implemented our algorithm as an Excel add-in and present its suc-
cessful evaluation on 55 benchmark problems obtained from online
help forums and Excel product team.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; 1.2.2 [Artificial Intelligence]:
Program Synthesis

General Terms Algorithms, Human Factor

Keywords Program Synthesis, Probabilistic Synthesis, Spread-
sheet Programming, Programming By Examples, Noisy Examples

1. Introduction
Nowadays more and more business organizations and users are
maintaining spreadsheets that contain data collected from multiple
sources. The heterogeneity of data present in these sources often
requires users to format the data into a consistent format to make
it usable [2, 13]. This problem of data cleaning presents many

challenges for users as cleaning such data requires some semantic
background knowledge about the data itself, and moreover this
data is typically non-uniform1, unstructured2, and ambiguous3. In
this paper, we consider an important subset of the data cleaning
problem, namely spreadsheet data type cleaning. Some common
spreadsheet data types include date, time, name, address, and phone
number. These data types are also prevalent in databases and log
files, and many modern programming languages provide support
for parsing and formatting them.

Programming languages like C# and SQL provide custom for-
mat strings for formatting these data types. These format strings
are quite rich and can handle a wide variety of data type represen-
tations. There are two main drawbacks of using format strings for
data cleaning. First, the format strings are complicated and vary a
lot across different languages, which makes it hard even for expe-
rienced developers to quickly understand and use them. Second, if
the data types are present in many different formats which are not
known a priori, parsing them using format strings becomes impos-
sible as a developer can not guess all possible formats.

Spreadsheet systems like Microsoft Excel offer an alternate UI-
based approach for data type formatting. It provides a collection
of predefined custom formats for each data type from which users
can select and visualize the resulting format. This makes life easier
for end-users but this approach also falls short on two accounts.
First, users often want to transform data types in formats that are
not present in the finite list of predefined formats. Second, this
approach only works if the spreadsheet column consists of data
types in a single format. Excel fails to even recognize the data types
if they are present in different formats. To perform such formatting
in Excel, users currently need to write macros or VB(.NET) scripts.

We present a programming-by-example (PBE) framework of
cleaning data types that learns the desired cleaning transformation
automatically from a set of input-output examples, and handles
non-uniform, unstructured, and ambiguous data. There are two
kinds of users of our framework: 1) end-users (e.g. Excel users),
and 2) data type designers (e.g. Excel product team). The end-users
perform data cleaning transformations by providing only input-
output examples whereas the data type designers use the framework
to easily add new data type definitions. PBE has been a successful
paradigm for spreadsheet transformations, e.g., FlashFill [9, 10]
learns syntactic regular expression based string transformations
from few input-output examples, but it fails on transformations that
require semantic knowledge about the strings.

We propose a domain specific language (DSL) with probabilis-
tic semantics, which is inspired from the work on random interpre-
tation [8, 11]. The DSL has two novel features: (i) declarative pars-
ing, and (ii) transformation functions. The DSL allows data type
designers to declaratively specify the data type descriptions and

1 data present in multiple formats.
2 data not recognizable with syntactic logic based on regular expressions.
3 data with multiple interpretations.



the corresponding transformation functions associated with them.
From this description, our framework automatically generates a
parser and pretty printer for the data type. These parsers encode
the semantic knowledge of the data types, which helps in parsing
unstructured data type strings. Our framework is parameterized by
data type definitions, which allows data type designers to easily
add support for more data types (end-users need not worry about
these descriptions). A program in the DSL consists of a set of con-
ditional statements. Our DSL, unlike FlashFill DSL, has a prob-
abilistic semantics, which has three key aspects: (i) approximate
predicate matching, (ii) joint learning of data type interpretation,
and (iii) weighted branches. The first aspect of approximate predi-
cate matching in branches of a program enables the program to ex-
ecute on non-uniform data by assigning real-valued interpretations
to conditional predicates. The second aspect of joint learning helps
in disambiguating interpretations of ambiguous data type strings
using other strings present in the spreadsheet. The third aspect of
weighted branches allows the program to generate a set of weighted
output strings, which are used for ranking the output.

We present a synthesis algorithm for learning the desired pro-
gram in this DSL efficiently from few examples. Given a set of
input-output examples, the algorithm first learns the set of all pro-
grams in the DSL that conform to the individual examples. Unlike
previous work [9, 25, 26] that uses intersection to compute com-
mon programs for a set of examples and heuristics to learn condi-
tionals and ranking, our algorithm performs a weighted union of the
programs to obtain the resulting program conforming to the set of
examples. The intersection approach works well when the dataset
is uniform and when there is a large hypothesis space (e.g. as in
FlashFill), whereas weighted conditions and union work well in
the cases of unstructured and non-uniform datasets and when the
hypothesis space is relatively smaller. We also show that our syn-
thesis algorithm is sound and complete for regular data type strings
(Definition 5).

This paper makes the following key contributions:
• We present a DSL with probabilistic semantics that allows for

learning transformations on non-uniform, unstructured, and am-
biguous data.
• We present a sound and complete synthesis algorithm that effi-

ciently learns the desired program in the DSL from a few input-
output examples.
• We evaluate our algorithm on 55 real-world benchmark prob-

lems obtained from help forums and Excel product team. Our
system requires at most 2 input-output examples to learn the de-
sired transformation for 89% (49/55) of the benchmarks.

2. Motivating Examples
In this section, we present a few examples taken from online help-
forums and Excel product team to motivate our system.

EXAMPLE 1. An Excel user copied data obtained from three office
locations and as a result had dates in three different formats (US,
UK, and Chinese)4 as shown in Figure 1. Because of different
formats, the user was struggling to write a macro for converting
these dates into a consistent format.

This data is an example of non-uniform structured data as there
exist syntactical features (delimiters) in the input to distinguish
them. In our system, a user only needs to provide the output for the
first row (“08/21/2010”) and the system then generates the corre-
sponding outputs for the remaining rows (shown in bold for empha-
sis) by running the synthesized program over the input strings. The

4 A simplified version of http://stackoverflow.com/questions/6642140/unifying-
different-date-formats-in-excel-including-periods-duration

Input v1 Output
1 08/21/2010 08/21/2010
2 07/24/2010 07/24/2010
3 20.08.2010 08/20/2010
4 23.08.2010 08/23/2010
5 2010-06-07 07/06/2010
6 2010-24-08 08/24/2010

Figure 1. Formatting dates into a consistent mm/dd/yyyy format.
The bold entries are generated by executing the synthesized pro-
gram on the remaining input strings.

system learns that the user is trying to print the month field of the
date followed by the day and year fields with “/” as the delimiter
string between the fields.

At a high level, our system learns a weighted conditional pro-
gram to transform input dates of the format mm-dd-yyy to an output
format mm-dd-yyyy. The system performs the correct transforma-
tion on the input string “20.08.2010” even though it hasn’t seen
an input-output example for the input format dd.mm.yyyy as the
string has a single unambiguous interpretation. It assigns a low non-
zero weight to the match of the two input parses mm-dd-yyyy and
dd.mm.yyyy (using approximate predicate matching) and formats
the input string to the desired output “08/20/2010”. Similarly,
the system is able to perform the desired transformation on input
strings “23.08.2010” (row 4) and “2010-24-08” (row 6) using
approximate predicate matching. The input date “2010-06-07” in
row 5 illustrates another interesting aspect of our system. The date
is ambiguous and has two possible parses yyyy-mm-dd (7 June
2010) and yyyy-dd-mm (6 July 2010). The synthesis algorithm
assigns a higher weight to the parse yyyy-dd-mm than the parse
yyyy-mm-dd because of the presence of input “2010-24-08” in
row 6 that has a common parse yyyy-dd-mm (using joint learning).
As a result, the synthesized program assigns a higher weight to the
output string “07/06/2010” than the output string “06/07/2010”.

Since the output format for the given input-output example is
also ambiguous (mm/dd/yyyy or mm/d/yyyy), the synthesized pro-
gram generates another output string “07/6/2010” but it assigns a
slightly higher weight to the output string “07/06/2010” because
of the data type constraint (encoded by the data type designer) that
the day and month fields are more likely to be in similar format (2-
digit format). Our system highlights output cells where the weights
of corresponding output strings differ by a small threshold value,
so that the user can further inspect the generated output and select
an alternate output choice if it is not the desired output.

In comparison, FlashFill requires three input-output examples
(one for each different date format) to learn a program of the
following form:

if “/” ∈ v1 then (num1, “/”, num2, ”/”, num3)
if “.” ∈ v1 then (num2, “/”, num1, ”/”, num3)
if “-” ∈ v1 then (num3, “/”, num2, ”/”, num1)

where numi denotes the ith number token in the input string.
Since FlashFill interprets input strings as a sequence of char-

acters, it is impossible for it to learn a transformation that in-
volves some computation. For example, consider the case where
a user wants to format the first date to a format that requires
computing the corresponding day of the week: “08/21/2010”→
“Sat, 21st Aug 2010”. Our system can handle such transforma-
tions as it interprets the input string as a date data type (together
with its corresponding day, month, and year values) and supports
transformation functions such as getting day of the week from the
date value.



EXAMPLE 2. An Excel user had dates imported in various for-
mats (mdyy,mmdyy,mddyy,mmddyy,mdyyyy,mddyyyy,mmddyyyy)
as shown in Figure 2 and needed to format them in a uniform
format (mmddyyyy) for exporting them to another program5.

Input Output
1 3179 03011979
2 30179 03011979
2 030179 03011979
2 311979 03011979
2 3011979 03011979
2 03011979 03011979

Figure 2. Formatting dates to mmddyyyy format.

An expert on the forum first replied that it is an impossible task,
because there is no one way to parse dates of the form 12523 as
it has two interpretations 12-5-23 or 1-25-23, and asked the user
to instead standardize the data collection method. The user replied
that the data was coming from a third party and as a result can
not be standardized. Finally, the expert wrote a script that returned
check on ambiguous data types. The user tested the script on a
spreadsheet of 900 entries and only 20 of them returned check,
and this made the user ecstatic. Since we did not have access to
the original user spreadsheet, we created a set of 910 random input
date strings uniformly distributed in the seven different formats and
tested our system on it. We found 62 of them (7%) resulted in high-
lighting because of multiple similarly weighted output strings. This
higher number of highlighted (check) entries in our case is because
of the fact that our generated data was uniformly distributed which
was possibly not the case with the user’s spreadsheet data. The in-
put data in this example is unstructured, and can not be handled by
any previous PBE work that we are aware of (including FlashFill).

EXAMPLE 3. An Excel user was struggling with formatting names
in different forms to a uniform format of initial of first name fol-
lowed by the last name as shown in Figure 3. Since names are oc-
curring with titles, pedigree, and degree, no simple macro suffices
in this case.

Input Output
1 Sam H. Cook S. Cook
2 Dr. S. R. Barua PhD S. Barua
3 Andrew Hudson A. Hudson
4 Mr. Anand Sagar A. Sagar
5 Dale McDermott Jr. D. McDermott
6 Mrs. Jessie Simpson J. Simpson

Figure 3. Formatting names to initial and last name.

This is another example of unstructured data where no syntactic
logic can extract the initial of first name. Our framework lets data
type designers define the fields, the regular expressions for match-
ing the fields, as well as field order constraints to enable parsing of
many different name formats. For the name data type, the designer
describes which strings are likely to be used as titles, pedigrees,
and degrees, and that middle names are more likely to occur be-
tween first and last names. From this description, the system is able
to learn a program that prints a prefix of length 1 of the first name
followed by a constant string “. ” and the last name.

5 http://www.excelforum.com/excel-formulas-and-functions/500884-
converting-dates-to-8-digits.html

EXAMPLE 4. An Excel user received time punch data from a client
in multiple formats as shown in Figure 4. Some entries were in 12-
hour format and some were in 24-hour format with different time
zones. The user wanted to format the times in hh:mm:ss AM/PM
EST format to conduct various calculations on it afterwards.

Input Output
1 1:34:00 PM CST 02:34:00 PM EST
2 10.06 EST 10:06:00 AM EST
3 12:45 PST 03:45:00 PM EST
4 7:25:00 AM MST 09:25:00 AM EST

Figure 4. Formatting times in different formats and timezones to
hh:mm:ss EST format.

For formatting time in different timezones, the data type de-
signer models the hour, minutes, seconds, AM/PM, and timezone
fields of the time data type. The system then learns the correspond-
ing computation for AM/PM and time zone conversion.

3. Data Types Descriptions
We now describe our framework for data type designers to define
the data type descriptions in a declarative manner. A data type de-
scription consists of: i) a set of regular expressions for recognizing
its constituent fields, ii) its canonical representation, and iii) ToCan
and FromCan functions that convert a data type instance to and from
its canonical instance respectively, from which the framework au-
tomatically generates the corresponding parsers and pretty printers.

DEFINITION 1 (Spreadsheet Data Type). A spreadsheet data type
e is defined to be a collection of fields {f1, · · · , fn}. A field f is
called a source field if it can not be calculated from other fields,
and is called a derived field otherwise.

For example, the Date data type consists of four fields: day,
month, year, and dayOfWeek, which we refer to as d, m, y, and
dow respectively for brevity. The fields day, month, and year are
source fields whereas the dayOfWeek field is a derived field as it
can be computed from the values of the source fields.

3.1 Field Representation
A field f in a data type is represented using a finite set of sub-
fields fs. The set of sub-fields for the Date data type is shown in
Figure 5, where the month field for example is represented using
the following three sub-fields:

• m1: single-digit format, e.g. 5 and 11.
• m2: two-digit format, e.g. 08 and 12.
• m3: full month name, e.g. january and april.

Each sub-field fs is associated with a regular expression that de-
fines the set of values the sub-field can take, e.g. the regular ex-
pression for the m2 sub-field defines the set of possible values
as {01,· · · ,12}. A sub-field fs is associated with a function
MatchSF : fs → double, which encodes the likelihood of a field f
being in a sub-field fs representation. These functions define equal
likelihood values for all sub-fields by default but can be overrid-
den by data type designers to specify additional constraints. For
example, we override the likelihood values for the y sub-field such
that MatchSF(y2) > MatchSF(y1), which encodes the constraint
that the year field is more likely to be in four-digit y2 sub-field
representation than the two-digit y1 representation.

A data type is associated with two functions FieldOrder :
f ∗ f → double and InitField : f → double. The value



Date: {d, m, y, dow }
d: {(d1, [1-31]), (d2, 0[1-9]|[10-31]),

(d3, [2-3]?1st|2?2nd|2?3rd|[1-2]?[4-9]th|1[1-3]th)}
m: {(m1, [1-12]), (m2, 0[1-9]|[10-12]),

(m3, january|· · · |december)}
y: {(y1, 0[0-9]|[10-99]), (y2, [0-9][0-9][0-9][0-9]))}
dow: {(dow1, monday|· · · |sunday)}

Figure 5. The definitions of fields and sub-field regular expres-
sions for the Date data type.

FieldOrder(fs1 , fs2) encodes the likelihood of sub-field fs2 oc-
curring right after the sub-field fs1 in a data type string. We make
a simplifying assumption that the field order likelihood depends
only on the preceding field. The value InitField(f) encodes the
likelihood of the field f being the first field in a data type string.
Similar to the MatchSF function, these functions also define equal
likelihood values by default and can be overridden for specifying
additional constraints. For example for the Name data type, we use
the FieldOrder function to encode the fact that the middleName
field is likely to follow the firstName field and the pedigree field
is likely to follow the lastName field.

3.2 Canonical Representation
Each field of a data type is associated with a canonical sub-field
(underlined in the figure) that denotes the canonical representation
of the field. For example, the sub-field m1 is defined as the canonical
sub-field for the month field.

DEFINITION 2 (Canonical Instance). A data type instance v is
said to be in its canonical form vc if the constituent fields have
values in their corresponding canonical sub-fields.

A data type e supports three functions: ToCan : v → vc,
FromCan : vc ∗ {fs1 , · · · , fsn} → v, and isValidE : v → Bool.
The ToCan function converts a data type instance to its canoni-
cal form by converting each of its sub-field values to the corre-
sponding canonical sub-field values. It also computes the derived
field values for which the required source fields are available. The
FromCan function performs the inverse operation of converting a
data type instance in its canonical form to an instance where the
fields take values from a given set of sub-fields. For example, the
ToCan function for the Date data type converts a date instance cor-
responding to the string “24th Aug 2011” to its canonical form
vC ≡ Date(d 7→ 24, m 7→ 8, y 7→ 2011, dow 7→ wednesday).
The FromCan function on the set of sub-fields {d1, m2, y2} converts
vC to the date instance v1 ≡ Date(d 7→ 24, m 7→ 08, y 7→ 11).
The Boolean function isValidE checks whether a data type in-
stance is a valid data type interpretation. The isValidE function
for the Date data type returns false for a date instance corre-
sponding to the date string “30 Feb 2011”.

3.3 Format Descriptors
A format descriptor assigns an interpretation to a data type string by
pattern matching the string to obtain the corresponding field values.

DEFINITION 3 (Format Descriptor). A format descriptor π is de-
fined as a sequence of pairs (fs, δ) (sub-field and delimiter pair)
together with an initial delimiter string δ0.

Consider the format descriptor π1 ≡ (ε, 〈(d2, /), (m2, /), (y1, ε)〉)
of the date string “04/05/08”. It interprets the string as the instance
v1 ≡ Date(d 7→ 04, m 7→ 05, y 7→ 08). The format descriptors
are similar to the custom format strings used in programming
languages to format common data types, e.g. the format descriptor
π1 is equivalent to the date format string “dd/mm/yy” in C# (.NET).

A format descriptor π is associated with a weight w(π) that
denotes its likelihood, where w(π) is computed as:

w(π) = InitField(f1)×
i=(n−1)∏
i=1

FieldOrder(fsi , fsi+1)×

i=(n)∏
i=1

MatchSF(fsi), where π ≡ (δ0, 〈(fs1 , δ1) · · · (fsn , δn)〉).

We now define the class of regular data type strings, which we
will use afterwards for proving the completeness of the synthesis
algorithm (Section 6).

DEFINITION 4 (Regular Format Descriptor). A format descriptor
π is defined to be a regular format descriptor if there exists no
substring of the delimiter strings of the format descriptor that
matches any sub-field regular expression of the data type.

In other words, a regular format descriptor does not interpret
a data type string in a way that results in interpreting a potential
field value as a delimiter string. For example, the date string “1
24-09-1998” is not associated with any regular format descrip-
tor as a substring of the initial delimiter string “1 ” matches d1
and m1 sub-fields of Date. On the other hand, the string “Date!
21--11/2010.” has a regular format descriptor interpretation
given by π ≡ (“Date! ”, 〈(d1, --), (m1, /), (y2, .)〉).

DEFINITION 5 (Regular Data Type String). A data type string s is
defined to be a regular data type string if there exists a regular
format descriptor π for interpreting the string s.

4. Parsing and Printing Data types
In this section, we describe the getAllParses and printFD
functions for parsing and pretty printing data type strings. The
getAllParses function computes the set of all parses of a given
data type string using the data type description. The printFD func-
tions pretty prints a data type instance to a data type string accord-
ing to an output format descriptor.

4.1 Parsing Data types
The getAllParses function, shown in Figure 7, first computes the
set of all field matchesM for the data type string. It then constructs
the parse graph G from the matches M and computes the set of
format descriptors corresponding to all valid paths in G. It finally
returns the set of pairs of data type instances and format descriptors
{(vi, πi)}i. We now present a brief description of each one of these
components of the getAllParses function.

4.1.1 Field Matches
A field match is defined as a 3-tuple (i, j, fs) that corresponds to
a match between the substring of data type string s[i..j] and the
regular expression associated with the sub-field fs, where s[i..j]
denotes the substring si · · · sj−1. The set of all field matches in
a data type string s is denoted by M(s) such that M(s) =
{(i, j, fs) | MatchF(s[i..j], fs)}.

The MatchF function performs regular expression based match-
ing and (optional) prefix matches for specified string valued fields.
The matches for string valued fields are associated with two addi-
tional parameters p and c that respectively denote the length of the
prefix match and the type of casing performed (upper, proper,
or iden) to match a string with the sub-field’s regular expression.
For example, the data type string “Jul” matches the m3 sub-field
with parameters p = 3 and c = proper, and is denoted as
(m3, 3, proper). A value of∞ for p means that the string matches
completely with the sub-field regular expression. The set of field
matches for the date string s1 = “01/10/99” shown in Figure 6(a)
is given by:



M(s1) = {(1, 2, d1), (3, 4, d1), (3, 5, d1), (6, 7, d1), (7, 8, d1),
(0, 2, d2), (3, 5, d2), (1, 2, m1), (3, 4, m1), (3, 5, m1), (6, 7, m1),
(7, 8, m1), (0, 2, m2), (3, 5, m2), (0, 2, y1), (3, 5, y1), (6, 8, y1)}.

The ComputeMatches function computes the set of all field
matches of a data type string s. It performs matching of sub-field
regular expressions with substrings of s in O(k|s|2) time, where
k is the number of sub-fields in the data type and |s| denotes the
length of the data type string s.

4.1.2 Parse Graphs
A parse graph G is a directed acyclic graph (DAG) that succinctly
encodes the set of all possible parses (interpretations) of a data
type string s. The ConstructParseGraph function constructs the
parse graph of s in the following manner. For each field match
(i, j, fs) ∈ M(s), the graph consists of a node n with a label
L(n) = (i, j, fs). There are two additional nodes in the graph: the
start node n0 with L(n0) = (−1,−1, ε) and the final node n∞
with L(n∞) = (∞,∞, ε). There exists an edge from node n1 to
n2 in G with L(n1) = (i1, j1, fs1) and L(n2) = (i2, j2, fs2) if
∀ (i, j, fs) ∈M(s): (i) n2 represents one of the first field matches
that occur after n1 ((i ≥ j1) =⇒ (i ≥ i2)), and (ii) there exists
no other field match that starts before j1 and overlaps in the interval
j1 to i2 ((i < j1) =⇒ (j ≤ j1 ∨ j1 = i2)). The complexity of
constructing a parse graph from a set of matches of size O(k|s|2)
is O(k2|s|4).

The parse graph G for the date string s1 = “01/10/99” is
shown in Figure 6(b). There is no edge between nodes (−1,−1, ε)
and (1, 2, d1) since node (1, 2, d1) is not amongst the set of first
field matches that occur after the node (−1,−1, ε) (violates con-
dition (i), e.g. node (0, 2, d2) occurs before). Similarly, there is no
edge between nodes (3, 4, d1) and (6, 7, d1) as there exists a node
(3, 5, d1) that overlaps in the interval (4, 6) (violates condition (ii)).

DEFINITION 6 (Valid Data Type Path). We define a path p in the
parse graph G to be a valid data type path if the following holds:

1. p starts from start node n0 and ends at final node n∞.
2. no field f is repeated in the field matches of the nodes in p, i.e.
∀n1, n2 ∈ p : L(n1) = (i, j, fs),L(n2) = (i′, j′, f′s), we
have f 6= f′, where f and f′ denote the fields of sub-fields fs
and f′s respectively.

The path p1 ≡ [(−1,−1, ε) → (0, 2, d2) → (3, 5, m1) →
(6, 8, y1) → (∞,∞, ε)] in the parse graph in Figure 6(b) rep-
resents a valid date path. On the other hand, the path p2 ≡
[(−1,−1, ε)→ (0, 2, d2)→ (3, 5, d1)→ (6, 8, y1)→ (∞,∞, ε)]
does not represent a valid date path as the field d occurs twice on the
path. The GetValidPaths function computes the set of all valid
data type paths in a parse graph G by performing a DFS traversal on
the graph while checking for the valid path conditions on-the-fly.

4.1.3 Format Descriptors from Valid Data Type Paths
A valid data type path p ≡ [n0 → · · · (ik, jk, fsk ) → · · ·n∞]
for a data type string s is converted to its corresponding format
descriptor πp = (δ0, 〈(fsk , δk)〉k) using the ConvertFD function
in the following way. The function sets the initial delimiter string
δ0 to the substring of s before the start index of the first field match
on the path, i.e. δ0 = s[0..i1]. For each field match (ik, jk, fsk )
on the path p (1 ≤ k < m), it adds (fsk , δk) to πp, where
δk = s[jk..ik+1]. It finally sets the delimiter string of the final
delimiter string δm of πp to the substring s[jm..len(s)]. Before
returning the format descriptor, the function also checks if the entity
instance vp corresponding to the format descriptor is a valid data
type interpretation by applying the isValidE function.

getAllParses(s:string) : {(vi, πi)}i
M := ComputeMatches(s)
G := ConstructParseGraph(M)
P := GetValidPaths(G)
parses := ∅
foreach path p ∈ P :

πp := ConvertFD(p)
parses := parses ∪ (GetInstance(πp), πp)

return parses

Figure 7. The getAllParses function to compute the set of all
parses of a data type string s.

printFD(v,π = (δ0, 〈(fsi , δi)〉i)): string

outString := δ0
foreach (fsi , δi) ∈ π :

if fi ∈ v :
outString += Format(fieldVal, fsi) + δi

else return ε
return outString

Figure 8. The printFD function for pretty printing a data type
instance v in terms of π.

THEOREM 1. The getAllParses function in Figure 7 is complete
for regular format descriptors, i.e. it returns the set of all regular
format descriptors of a data type string.

Proof Sketch: The ComputeMatches function finds all possible
regular expression matches in the string and the GetValidPaths
function finds all valid format descriptors. These functions do not
lose any match/path for regular format descriptors by definition. So,
we now need to show that the ConstructParseGraph function
constructs a parse graph that does not miss any edge belonging to
a regular format descriptor. Let us consider three nodes n1, n2,
and n3 in the parse graph G with labels L(n1) = {i1, j1, fs1},
L(n2) = {i2, j2, fs2}, and L(n3) = {i3, j3, fs3}. There are two
cases when there is not an edge between nodes n1 and n2. The first
case is when node n2 is not the first field match occurring after n1,
i.e. i3 ≥ j1 ∧ i3 < i2. There would be no incoming edge to n2 in
the graph if i2 < j3, but this is fine because having such an edge
would result in s[i3..i2] to be a delimiter string which is also part
of a field match (n3). The second case when there is no edge from
n1 to n2 is when the node n3 overlaps in the interval j1 to i2, i.e.
i3 < j1 ∧ j3 > j1. This case is also fine because such an edge
would result in s[j1..j3] to be a delimiter string that is also a part of
a field match (n3). Therefore, all edges that correspond to a regular
format descriptor are contained in the parse graph G. �

4.2 Pretty Printing Data Type Instances
The printFD function takes a data type instance v and an output
format descriptor π as input, and returns the string obtained by
pretty printing the instance v in accordance with π as shown in
Figure 8. The function first adds the initial delimiter string δ0
to the output string. It then iterates over the sequence of field-
delimiter pairs (fsi , δi) ∈ π, and computes the field values to be
printed in the output string for each pair. If the field fi is present
in instance v, it first formats the field value in the fsi sub-field
representation using the Format function, and then appends the
formatted field value with the delimiter string δi to the output
string. For example, the printFD function pretty prints a date
instance v ≡ Date(d 7→ 5, m 7→ 8, y 7→ 2011) using π ≡
(ε, 〈((m3, 3, proper), " "), (d1, " "), (y2, ε)〉) to the output string
“Aug 5 2011”.
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Figure 6. (a) The field matches and (b) the parse graph G for the date string “01/10/99”.

5. Data Type Transformation Language
We first present a simple proposal for a baseline language Lb that
can perform data type transformations. Since the data type strings
are often present in multiple formats, a program in this language
consists of a sequence of case statements (one for each format)
that are of the form case πin → πout, where πin corresponds
to the input format descriptor and πout corresponds to the output
format descriptor of the input-output examples. The semantics of
this program is to compare the format descriptor of an input data
type string with πin, and if the input format descriptors match, then
pretty print the data type using the πout format descriptor. We can
also learn programs in this language with a simplification of the
synthesis algorithm that we present in Section 6.

Since the comparison of input format descriptors is Boolean in
this language, the comparison will fail for input data type strings
that are in a format different than the ones present in the case state-
ments. Furthermore, these data type strings are inherently ambigu-
ous and a single format can itself have multiple interpretations. This
non-uniformity and ambiguity would require users to provide an
input-output example for each data type format and each interpre-
tation to learn such a program. Another issue with this language is
that whenever the output string is ambiguous, programs learnt in
this language would produce multiple output strings for new inputs
without any semantics of which output string to show to the user.

We extend the Boolean semantics of this proposal to a prob-
abilistic semantics such that a program in the resulting data type
transformation language Le generates a set of weighted output
strings. The language allows for real-valued interpretations of
similarity of two format descriptors (Approximate Matching),
which enables the program to generate output for input data type
strings that are in a different format than the ones present in the
case statements. To handle ambiguity for the data type strings, we
add a dictionary of input format descriptors that helps in disam-
biguation based on other inputs present in the spreadsheet (Joint
Learning). Finally, each conditional branch is associated with a
weight that is used for ranking the generated output strings. This
probabilistic semantics of our language enables the learning of the
desired transformations from very few input-output examples.

5.1 Syntax
The syntax of language Le is shown in Figure 9. A program P
consists of a tuple (D,Γ), where D denotes a dictionary that stores
the frequency counts of all format descriptors of the input strings
present in the spreadsheet and Γ denotes a reformat program that
consists of a set of reformat expressions ρ. The dictionary D is used

to disambiguate parses of ambiguous data type strings using other
input strings present in the spreadsheet, whereas a reformat pro-
gram formats an input data type string to a set of weighted output
strings. A reformat expression ρ is similar to a case statement of Lb
and is denoted by a tuple (πin, πout, w), where πin is used to parse
input data type strings, πout is used to pretty print the parsed data
type instance and w denotes the likelihood of the reformat expres-
sion. A format descriptor π consists of an initial delimiter string
and a sequence of pairs of sub-field and delimiters, as described in
Section 3.

Program P := (D,Γ)
Fmt. Desc. Dictionary D := {(πi, νi)}i

Reformat Prog. Γ := {ρi}i
Reformat Expr. ρ := (πin, πout, w)

Fmt. Desc. π := (δ0, 〈(fi, δi)〉i)

Figure 9. Syntax of data type transformation language Le.

EXAMPLE 5. The transformation in Example 1 is given by: P1 ≡
(D,Γ), where D = {(π1, 2

12
), (π2,

2
12

), (π3,
2
12

), (π4,
2
12

),

(π5,
1
12

), (π6,
2
12

), (π7,
1
12

)}, π1 ≡ (ε, 〈(m2, /), (d1, /), (y2, ε)〉),
π2 ≡ (ε, 〈(m2, /), (d2, /), (y2, ε)〉), π3 ≡ (ε, 〈(d1, .), (m2, .), (y2, ε)〉),
π4 ≡ (ε, 〈(d2, .), (m2, .), (y2, ε)〉), π5 ≡ (ε, 〈(y2, -), (m2, -), (d2, ε)〉),
π6 ≡ (ε, 〈(y2, -), (d2, -), (m2, ε)〉), π7 ≡ (ε, 〈(y2, -), (d1, -), (m2, ε)〉),
Γ ≡ {(π1, π1, w1), (π2, π1, w2), (π1, π2, w3), (π2, π2, w4)}, where
weights wi are computed as shown in Section 6.

The reformat program Γ consists of reformat expressions that
are combinations of format descriptors π1 and π2. Even though an
input string such as s3 ≡ “20.08.2010” is in a different format
than the example string “08/21/2010”, the program still generates
the correct output as the string s3 has a single interpretation and
the program assigns a low non-zero weight to the match of the two
input format descriptors (using Approximate predicate matching in
Section 5.2). For the ambiguous input string s5 ≡ “2010-06-07”
that has two interpretations corresponding to the format descrip-
tors π5 and π6, the dictionary assigns a higher frequency to π6

((D[π6] = 2
12

) > (D[π5] = 1
12

)) based on the occurrence of an-
other input string “2010-24-08” in the spreadsheet that also has
the same format descriptor π6. In this manner, program P1 gener-
ates the correct output string for all the input strings.



Figure 10. Abstract semantics of the data type transformation language inspired by the random interpretation framework [8, 11]. The four
flowchart nodes of our language are shown together with their corresponding (a) deterministic semantics and (b) probabilistic semantics.

5.2 Semantics
The probabilistic semantics of our language is inspired by the
work on random interpretation [8, 11]. We first present the abstract
semantics of our data type transformation language (for simplifying
the description of the key high-level ideas) and then present its
concrete semantics. There are four flowchart nodes in our language:
(i) one-to-one function node, (ii) one-to-many function node, (iii)
switch node, and (iv) multi-join node. The four nodes are shown
in Figure 10 together with their deterministic semantics (on the
left labelled (a)) and probabilistic semantics (on the right labelled
(b)).

In the deterministic semantics, a one-to-one function node maps
an input program state S to an output program state S′, whereas
a one-to-many function node maps it to bottom ⊥. In a switch
node, one of the branch predicates pi is satisfied in a state S
and that branch produces the output state S, while other branches
produce⊥. The multi-join node performs the join of a set of bottom
values ⊥ and a state S to map it to a single state S. On the other
hand with the probabilistic semantics, the nodes take as input a
set of weighted states {(S1, w1), · · · , (Sn, wn)}, where the tuple
(Si, wi) denotes that state Si is associated with weight wi. The
one-to-one function node maps the input set of weighted states to
another set of weighted states {(f(S1), w1), · · · , (f(Sn), wn)} by
applying the function f to each state in the input set. The one-
to-many function node maps the input set of weighted states to
a set of weighted states such that for each tuple (Si, wi) in the
input set, it produces a weighted set {(S′i1, wi1), · · · , (S′ik, wik)}
in the resulting set, where states {S′i1, · · · , S′ik} are obtained by
applying the one-to-many function g to state Si. In a switch node,
a branch i with predicate pi and weight wpi maps the input set
of weighted states to another set of weighted states of same size
{(Si, w′1i), · · · , (Sn, w′ni)}, where weight w′ji is computed by
multiplying the branch weight wpi with the input state weight wi
and with a value Match(Si, pj) that denotes how closely predicate
pj is satisfied in state Si. The multi-join node takes a set of set
of weighted states as input and merges the states to produce a set
of weighted states {(S′1, w′1), · · · , (S′m, w′m)}. It first computes
the union of states in the input sets to obtain T = ∪kl(Skl, wkl)
and then selects the maximum weight w′i for each state S′i in T .
Note that we have chosen the Max function here instead of the Add

function to filter single occurrence of high-confidence inference
over multiple occurrences of low-confidence inferences.

The concrete semantics of the language Le is shown in Fig-
ure 12. A program P = (D,Γ) on an input string s generates a set
of weighted output strings {(sout, w)}. The semantics of a set Γ
of reformat expressions is similar to the semantics of a multi-join
node. The set of weighted strings is obtained by selecting the maxi-
mum weight w for each output string sout from the set of weighted
strings obtained from individual reformat expressions ρ ∈ Γ. The
semantics of a reformat expression ρ = (πin, πout, w) is similar to
the semantics of a switch node. It first parses the input string using
the parseE function to obtain a set of weighted instances V , and
then pretty prints these weighted instances using the printE func-
tion to obtain a set of weighted output strings. The parseE function
computes the Match value of how closely an input parse descriptor
matches with πin, and the printE function multiplies the branch
weight w with the weight of the weighted instances obtained from
the parseE function.

The parseE(s, π, D) function parses the string s in accordance
with the format descriptor π. There are two key aspects of the
parseE function. The first idea is to use Approximate Predicate
Matching to assign a higher weight to those parses (format descrip-
tors) of s that are more similar to the format descriptor π. The sec-
ond idea is to use Joint Learning for disambiguating ambiguous
parses by assigning a higher weight to parses that occur more fre-
quently in the dictionary. The parseE function first computes the
set of all format descriptors of s and the corresponding data type
instances ({(vi, πi)}i). For each format descriptor πi in the set, it
calculates a similarity score w′i by matching it with the format de-
scriptor π using the matchParse function shown in Figure 11. The
matchParse function returns a perfect score of 1 if the two for-
mat descriptors π1 and π2 are equal. Otherwise, if the sub-fields or
fields of the two format descriptors are equal (ignoring the delim-
iter strings), it assigns a higher score to the match than the default
score of ξ. The sub-fields and fields of a format descriptor are ob-
tained using the corresponding projection operator Π. For our ex-
periments, we chose the values ξ = 0.0001 and k = 10 based on
empirical experimentation. The parseE function finally computes
the weight wi associated with the data type instance vi by multi-
plying the closeness weight w′i with the frequency of the format



matchParse(π1, π2) : double
ξ: small constant, k: scaling factor
if(π1 = π2): return 1 // complete match
if (Πfs(π1) = Πfs(π2)): // sub-fields match

return ξ + 2 * length(Πfs(π1)) * ξ / k
if (Πf(π1) = Πf(π2)): // fields match

return ξ + length(Πf(π1)) * ξ / k
return ξ

Figure 11. The matchParse function to compute the closeness
score for two format descriptors π1 and π2.

descriptor πi in the dictionary D[πi], and returns the resulting set of
weighted instances {(ei, wi)}i.

The printE(V, π, w) function pretty prints a set of weighted
data type instances V according to the format descriptor π to
compute a set of weighted output strings. It formats a data type
instance (vi, wi) ∈ V by using the formatE function to obtain the
output string si and assigns it a weight w × wi.

The getAllFD function, a one-to-many function, uses the
getAllParses (Section 4) function to compute the set of format
descriptors and the corresponding instances for a data type string
s. It then uses the ToCan function to canonicalize the instances
and returns the set of pairs of canonical instances and format de-
scriptors. The formatE function, a one-to-one function, takes a
canonical data type instance v and a format descriptor π as input,
and formats the instance according to the format descriptor π using
the printFD function (Section 4) after appropriately converting the
canonical instance using the FromCan function.

J(D,Γ)Ks = JΓKs,D

J{ρi}iKs,D = {(sout, Max({wi}i)) | (sout, wi) ∈ JρiKs,D}

J(πin, πout, w)Ks,D = printE(parseE(σ(s), πin, D), πout, w)

parseE(s, π, D) = {(vi, wi) | (vi, πi) ∈ getAllFD(s),
w′i = matchParse(πi, π),
wi = w′i × D[πi]}

printE(V, π, w) = {(si, w × wi) | si = formatE(vi, π)
(vi, wi) ∈ V }

getAllFD(s) = {(vic , πi) | vic = ToCan(vi),
(vi, πi) ∈ getAllParses(s)}

formatE(v, π) = let F = subFields(π) in
let v′ = FromCan(v, F) in
printFD(v′, π)

Figure 12. Semantics of transformation language Le.

The semantics of the program P1 in Example 5 on the in-
put string s2 = “07/24/2010” is as follows. Consider the first
reformat expression (π1, π1, w1) ∈ Γ. The getAllFD function
on s2 returns the set {(v1, π1), (v2, π2)}, where v1 ≡ v2 ≡
Date(d 7→ 24, m 7→ 7, y 7→ 2010) with π1 and π2 format
descriptors as defined in Example 5. The parseE function com-
putes the closeness weights w′1 and w′2 of format descriptors π1

and π2 respectively with the input format descriptor π1. We have
w′1 > w′2 as π1 is the same as the input format descriptor of
(π1, π1). The function then multiplies the closeness weights with
respective dictionary frequency of the format descriptors( 2

12
= 1

6

for both) and returns the set V ≡ {(v1, w
′
1
6

), (v2,
w′

2
6

)}. The
printE function then formats the instances in V according to the
output format descriptor π1 and produces the weighted set of output
strings {(07/24/2010, w1×w′

1
6

), (07/24/2010,
w1×w′

2
6

)}. On the

input string s5 = “2010-06-07”, the getAllFD function returns
{(v1, π5), (v2, π6)}, where v1 ≡ Date(d 7→ 7, m 7→ 6y 7→ 2010)
and v2 ≡ Date(d 7→ 6, m 7→ 7y 7→ 2010). Both format de-
scriptors π5 and π6 do not match with the input parse descrip-
tors of reformat expressions (π1 and π2) in Γ, and therefore get
a low closeness weight w′1 = w′2 = w′ by the matchParse
function. The dictionary frequency of format descriptor π6 ( 2

12
)

is higher than that of π5 ( 1
12

), and therefore the parseE func-
tion assigns a higher weight to the date instance v2 and returns
{(v1, w

′

12
), (v2,

w′

6
)}. The printE function then returns the set:

{(07/6/2010, w1×w′

6
), (06/7/2010, w1×w′

12
)}.

Conditional Formatting Programs in Le The input format de-
scriptors πin in the reformat expressions implicitly encode the con-
ditionals for transformations that require conditional formatting.
A reformat program Γ = {(π1, π2, w1), (π3, π4, w2)} encodes a
conditional program such that the input strings whose format de-
scriptor match closely with π1 are formatted using the format de-
scriptor π2 whereas inputs whose format descriptors match closely
with π3 are formatted according to π4.

EXAMPLE 6. A company executive had log entries from two of-
fices in different locations (India and US). She wanted to create
filenames for each log entry such that the filename consisted of the
office location followed by the date in a consistent format as shown
in Figure 13.

Input Output
1 09/08/2011 us 8sep11.log
2 05.03.2010 in 5mar10.log
3 11/23/2011 us 23nov11.log
4 09.08.2010 in 9aug10.log
5 14.09.2010 in 14sep10.log
6 06/15/2011 us 15jun11.log

Figure 13. Generating log filenames based on different date format
(us or indian).

The desired program P2 for generating the log filenames can be
represented in Le as P2 ≡ (D,Γ), where
D ≡ {(π1,

3
12

), (π2,
1
12

), (π3,
2
12

), (π4,
3
12

), (π5,
1
12

), (π6,
2
12

)},
π1 ≡ {ε, 〈(m2, /), (d2, /), (y2, ε)〉}, π2 ≡ {ε, 〈(d2, /), (m2, /), (y2, ε)〉},
π3 ≡ {ε, 〈(m2, /), (d1, /), (y2, ε)〉}, π4 ≡ {ε, 〈(d2, .), (m2, .), (y2, ε)〉},
π5 ≡ {ε, 〈(m2, .), (d2, .), (y2, ε)〉}, π6 ≡ {ε, 〈(d1, .), (m2, .), (y2, ε)〉},
π7 ≡ {us , 〈(d1, ε), ((m3, 3, iden), ε)(y1, .log)〉}, π8 ≡ {in , 〈(d1, ε),
((m3, 3, iden), ε), (y1, .log)〉}, Γ ≡ {(π1, π7, w1), (π4, π8, w2)}.

The US date strings match the input format descriptor π1 of Γ
and get formatted using the corresponding output format descriptor
π7, whereas the Indian date strings are matched with the format
descriptor π4 and get formatted using the format descriptor π8.

6. Synthesis Algorithm
We now present the synthesis algorithm to learn a program in
Le that performs the desired transformation from a given set of
input-output examples. The main challenge of the algorithm is
to learn a dictionary of weighted format descriptors and the set
of reformat expressions. The algorithm computes the normalized
frequency counts for format descriptors of the input strings to
compute the dictionary. For learning the reformat expressions for
an input-output example, the key idea of the algorithm is to first
enumerate pairs of format descriptors of the input and output data
type strings, and then compute consistent matching pairs (while



accounting for missing fields). The algorithm then takes the union
of the reformat expressions from multiple input-output examples to
assign higher weights to the expressions that occur more frequently.

GenProgram Algorithm: The GenProgram algorithm, shown
in Figure 14(a), takes a set of input-output examples T and the
spreadsheet data as inputs, and learns a program P that can format
the input data type strings to the corresponding output strings in the
set T . The algorithm first computes the format descriptor dictionary
D using the GenDict function. It then synthesizes a set of reformat
expressions for each input-output example (si, so) ∈ T using the
GenRefmtExprs function. After learning the reformat expressions,
it performs their set union and adds the weights for common refor-
mat expressions to compute the set of reformat expressions Γ for a
set of examples. The weights for the reformat expressions are then
normalized and bounded such that they are always between 1 and
e. This approach of using union to learn programs conforming to
multiple examples is essential for learning robust conditional pro-
grams over non-uniform, ambiguous, and unstructured datasets.

GenDict Algorithm: The GenDict function, shown in Fig-
ure 14(b) takes as input a set of spreadsheet input strings (I) and
computes a set of weighted format descriptors. The function first
computes the set of format descriptors for each input string using
the getAllFD function, and adds each format descriptor (π) to the
dictionary D maintaining their normalized frequency counts (D[π]).
The complexity of the GenDict function is O(mk2|s|4), where m
is the number of input strings in the spreadsheet. For spreadsheets
with large number of input rows, sampling can be performed to
efficiently learn the dictionary over a smaller set of input strings.

GenRefmtExprs Algorithm: The GenRefmtExprs function,
shown in Figure 14(c), learns the set of reformat expressions Γ
that can format the input data type string si to the output data type
string so. It first computes the set of format descriptors (together
with the corresponding canonical entity instances) Pi and Po for
the strings si and so respectively using the getAllFD function
(Lines 1-2). It then iterates over the pairs of their combinations
{(vk, πk) ∈ Pi × (vl, πl) ∈ Po} to compute consistent pairs for
the reformat expressions. Given a pair of format descriptors, the
algorithm iterates over the sequence of field-delimiter pairs (fs, δ)
of the output format descriptor and matches the corresponding field
values of the data type instances (Lines 7-17). If all the field values
match, the reformat expression (πk, πl, w) is added to the set Γ
with the weight w = D[πk] × w(πk) × w(πl). If any field value
is not consistent between the two instances vk and vl, the format
descriptor pair (πk, πl) is discarded. Finally, there is an interesting
case of a field present in output instance vl that is missing from
the input instance vk. For this case, the algorithm treats the field
value in the output string as a delimiter string and adds it to the
last delimiter string in γ (Lines 16-17). It then resumes the iterative
field value matching process. The complexity of GenRefmtExprs
function is O(k3|s|4).

EXAMPLE 7. Consider the date formatting in Example 1 and its
corresponding Le program P1 in Example 5.

The synthesis algorithm first constructs the dictionary D consist-
ing of weighted format descriptors of all spreadsheet inputs us-
ing the GenDict function. The getAllFD function on the in-
put string “08/21/2010” returns a set of two format descriptors
{(v1, π1), (v2, π2)}, where v1 ≡ v2 ≡ Date(d 7→ 21, m 7→
8, y 7→ 2010, dow 7→ Saturday). Similarly, the set of format de-
scriptors for other input strings : 07/24/2010→ {(v3, π1), (v4, π2)},
20.08.2010→ {(v5, π3), (v6, π4)}, 23.08.2010→ {(v7, π3), (v8, π4)},
2010-06-07→ {(v9, π5), (v10, π6)}, 2010-24-08→ {(v11, π6), (v12, π7)}.
The 7 format descriptors occur in total 12 times. The dictionary D
is:{(π1, 2

12
), (π2,

2
12
, (π3,

2
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), (π4,
2
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), (π5,
1
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), (π6,
2
12

), (π7,
1
12

)}.

The algorithm then uses the GenRefmtExprs function to
compute the set of reformat expressions Γ to format (si ≡
08/21/2010) to (so ≡ 08/21/2010). The function first computes
the set of format descriptors: Pi ≡ {(v1, π1), (v2, π2)} and Po ≡
{(v13, π1), (v14, π2)}, where v1 ≡ v2 ≡ v13 ≡ v14 ≡ Date(d 7→
21, m 7→ 8, y 7→ 2010, dow 7→ Saturday). It then iterates over
four possible combinations of the input and output format descrip-
tors: {[(v1, π1), (v13, π1)], [(v1, π1), (v14, π2)], [(v2, π2), (v13, π1)],
[(v2, π2), (v14, π2)]}. The function MatchF matches the corre-
sponding field values of date instances by performing equality
check on the field values. As all date instances are equal in this case,
the function returns the reformat expression set Γ consisting of all
4 combinations of format descriptors {(π1, π1, w1), (π2, π1, w2),
(π1, π2, w3), (π2, π2, w4)}. The algorithm then returns the pro-
gram (D,Γ).

DEFINITION 7 (Inconsistent Data). We define a set of input strings
{i1, · · · in} to be inconsistent if there exists two different inputs ik
and il with format descriptors πik and πil respectively (πik 6= πil)
such that there is no common format descriptor between ik and il
but the sequence of delimiter strings of the two format descriptors
πik and πil is equal.

For example, the set of input strings {12/23/99, 15/10/94}
is inconsistent since there exists two different format descriptors
corresponding to the formats mm/dd/yy and dd/mm/yy for the two
inputs respectively that have same set of delimiter strings {ε, /, /}.

DEFINITION 8 (Noisy Examples). We define a set of input-output
examples {(i1, o1), · · · , (in, on)} to be noisy if there exists two
examples (ik, ok) and (il, ol) whose input format descriptors are
equal ((πik = πil)) but there does not exist any format descriptor
that is common to both the output strings ok and ol.

For example, the set of examples {(12/23/99, 23 Dec),
(11/19/94, 19 November)} is noisy as there are two differ-
ent output format descriptors corresponding to the output strings
23 Dec and 19 November for the same input format descriptor.
Similarly, the set of input-output examples {(24/7/99, 24 July),
(14/2/94, 14 Feburary)} is noisy as there is a spelling mistake
in the output string for the second example Feburary, which leads
to two different output format descriptors.

THEOREM 2 (Soundness). The GenProgram algorithm is sound
for a set of non-noisy input-output examples and consistent input
data, i.e. the program synthesized by the algorithm is guaranteed
to generate the provided output strings with highest weight when
run on the corresponding input strings for consistent examples.

Proof Sketch: Consider an input-output example (i, o) and let
there be n different reformat expressions {ρ1, · · · , ρn} ∈ P that
the GenProgram algorithm learns from this example. The claim is
that a reformat expression ρ = (πin, πout, w) 6∈ {ρ1, · · · , ρn} of
program P whose input format descriptor πin matches a format de-
scriptor of the input string i cannot exist. If such a reformat expres-
sion existed, that would mean the provided examples are defining
two different formatting transformations on the same input format,
which cannot happen with a set of consistent examples. Now, when
we execute the learnt program P on input string i, only input for-
mat descriptors of reformat expressions {ρ1, · · · , ρn}would match
with a high weight. Since each output format descriptor of the re-
format expressions in this set generates the output string o (line 5 in
Figure 14), the learnt program P always generates o as the highest
weight output string when executed on the input string i. �



GenProgram(T ≡ {(sik , sok )}k, I) : P
D := GenDict(I), ΓD := 〈〉, Γ := ∅
foreach (si, so) ∈ T :

Γ1 := GenRefmtExprs(si, so)
foreach ρ ≡ (πin, πout, w1) ∈ Γ1:

if ΓD.Contains(ρ):
ΓD[ρ] := ΓD[ρ] + w1

else: ΓD.Add(ρ,w1)
foreach ρ ≡ (πin, πout, w1) ∈ ΓD.Keys():

Γ := Γ ∪ {(πin, πout, e
ΓD [ρ]

ΣρΓD [ρ] )}
return (D,Γ)

(a)

GenDict(I) : D
D = {}, nparses := 0
foreach string s ∈ I:

foreach (v, π) ∈ getAllFD(s):
if D.Contains(π): D[π]++
else: D.Add(π, 1)
nparses++

if nparses > 0:

foreach π ∈ D.Keys(): D[π] := D[π]
nparses

return D

(b)

GenRefmtExprs(si, so) : Γ
1 Pi := getAllFD(si)
2 Po := getAllFD(so)
3 Γ := ∅
4 foreach (vk, πk) ∈ Pi:
5 foreach (vl, πl) ∈ Po:
6 validπ := true
7 foreach (fs, δ) ∈ πl:
8 γ := 〈〉
9 if f ∈ Fields(vk):

10 f′s := EqualF(vk[f], vl[f], fs)
11 if(f′s 6= null):
12 γ := γ + (f′s, δ)
13 else:
14 validπ := false
15 else: // missing field in πk
16 δ′ := Format(vl[f], fs) + δ
17 lastDelString(γ).append(δ′)
18 if(validπ):
19 πn := (πl.δ0, γ)
20 Γ := Γ ∪ (πk, πn, D[πk]× w(πk)× w(πn))
21 return Γ

(c)

Figure 14. The GenProgram function takes a set T consisting of a set of input-ouput examples and the set of spreadsheet inputs I as inputs,
and computes a probabilistic program P that can format the entity strings in the training set.

THEOREM 3 (Completeness). The GenProgram algorithm is com-
plete for reformat programs with regular format descriptors, i.e. if
there exists a reformat program (πin, πout) consisting of regular
format descriptors πin and πout, the GenProgram algorithm is
guaranteed to synthesize it.

Proof Sketch: The getAllFD function canonicalizes the in-
stances obtained from the getAllParses function and using the
result of Theorem 1, we have that the getAllFD function is com-
plete for regular format descriptors. Since the GenProgram al-
gorithm considers all possible combinations of parse descriptors
obtained from the getAllFD function on input and output strings
(lines 4-5 in Figure 14), we have that the GenProgram function is
complete for reformat programs with regular format descriptors. �

7. Robust Transformations
Assigning a probabilistic semantics to Le provides an additional
capability of handling examples with missing information as well
as noisy and inconsistent input-output examples. Traditional pro-
gram synthesis approaches fail to learn a program in case of incon-
sistent specifications as they aim to synthesize programs that are
guaranteed to satisfy the given specification. Our approach lever-
ages the weights present in the learnt programs to assign a low
likelihood to programs that correspond to inconsistent and noisy
examples, so that these examples do not affect transformations on
other inputs present in the spreadsheet. We give a few examples
that show how our algorithm handles such cases.

EXAMPLE 8 (Missing Information). An Excel user wanted to for-
mat dates present in two different formats d.m and m-d-yyyy into
a uniform format as shown below. The user posted the following ex-
ample spreadsheet on a help-forum stating that she was struggling
in telling Excel to add the year 2010 to dates in which the year
field was missing.

Input Output
1 24.9 24 Sep 2010
2 6-21-2010 21 Jun 2010
3 29.1 29 Jan 2010
4 8-15-2010 15 Aug 2010
5 4-18-2010 18 Apr 2010
6 16.8 16 Aug 2010

Figure 15. Adding missing year value to a date.

The key idea in handling missing fields in input strings is to
treat the missing fields as constant delimiter strings. The syn-
thesis algorithm when synthesizing the reformat program for the
input-output example (“24.9”, “24 Sep 2010”) finds that the
year field of the output string (2010) is not present in the input
string (Lines 16-17 in Figure 14) and adds the year field value
to previous delimiter string to get the output format descriptor
γ ≡ (ε, 〈(d1, " "), ((m3, 3, proper), " 2010")〉). It is interesting
to note that even though the format descriptor γ is not regular, the
synthesis algorithm still learns it. The synthesized program P3 is:
P3 ≡ (D,Γ), whereD ≡ {(π1, 36 ), (π2,

3
6

), (π3,
3
6

), (π4,
3
6

)},
π1 ≡ (ε, 〈(d1, .), (m1, ε)〉), π2 ≡ (ε, 〈(d2, .), (m1, ε)〉),
π3 ≡ (ε, 〈(m1, -), (d1, -), (y2, ε)〉), π4 ≡ (ε, 〈(m1, -), (d2, -), (y2, ε)〉),
Γ ≡ {(π1, π5, w1), (π2, π5, w2), (π1, π6, w3), (π2, π6, w4)}.

EXAMPLE 9 (Noisy/Inconsistent Examples). An excel user wanted
to transform dates from d/m/yyyy format to mmmm d format as
shown in Figure 16. The input-output examples in rows 1 and 4 rep-
resent the correct formatting operation. The output string in row
2 has a spelling mistake “Feburary” (noisy example), whereas
the output string in row 3 “21 September” has a different format
(inconsistent example).



Input Output
1 24/7/2010 July 24
2 14/2/2011 Feburary 14
3 21/9/2010 21 September
4 16/4/2011 April 16
5 11/12/2010 December 11
6 19/6/2011 June 19

Figure 16. Formatting dates in a uniform format in presence of
inconsistent and noisy input-output examples.

The program P4 learned by GenProgram from the 4 examples
is given by: P4 ≡ (D,Γ), where D ≡ {(π1,

6
12

), (π2,
6
12

)},
π1 ≡ (ε, 〈(d1, /), (m1, /), (y2, ε)〉), π2 ≡ (ε, 〈(d2, /), (m1, /), (y2, ε)〉),
π3 ≡ (ε, 〈((m3,∞, iden), " "), (d1, ε)〉), π5 ≡ (Feburary, 〈((d1, ε)〉),
π4 ≡ (ε, 〈((m3,∞, iden), " "), (d2, ε)〉), π6 ≡ (Feburary, 〈((d1, ε)〉),
π7 ≡ (ε, 〈(d1, ε), ((m3,∞, iden), " ")〉), π8 ≡ (ε, 〈(d2, ε),
((m3,∞, iden), " ")〉), Γ ≡ {(π1, π3, w2), (π1, π4, w2), (π1, π5, w1),

(π1, π6, w1), (π1, π7, w1), (π1, π8, w1), (π2, π3, w2), (π2, π4, w2),

(π2, π5, w1), (π2, π6, w1), (π2, π7, w1), (π2, π8, w1)}, assuming the
weights for each reformat expression is equal for simplicity.

The correct reformat expressions with output format descriptors
π3 and π4 have a higher weight (w2) than the incorrect reformat ex-
pressions with output format descriptors π5, π6, π7 and π8 (w1), as
the algorithm adds up the weights of reformat expressions learned
from examples in rows 1 and 4. The key hypothesis of our algo-
rithm in cases like these is that the inconsistent and noisy examples
are less frequent than the number of correct examples in the set
of provided examples. Our interface runs the synthesized program
on the input-output examples and compares the resulting highest
weight output string with the user-provided output string in the ex-
ample. If they differ, as is the case in this example with the out-
put generated by P4 for rows 2 and 3 being “February 14” and
“September 21” respectively, the interface highlights such cells
for further user inspection and presents the highest weight output
string as a suggested fix.

8. Prototype and Experiments
We have implemented our domain specific language and the syn-
thesis algorithm inC# as an add-in for the Microsoft Excel spread-
sheet system. Our user interface is similar to that of FlashFill [9,
10], where users provide input-output examples as a set of rows in
an Excel table and our system then generates the output strings for
the remaining input strings in the table. In this section, we present
the evaluation of our algorithm on a representative set of 55 real-
world benchmark problems. Our system can learn the desired trans-
formation for all 55 benchmarks as compared to 26 benchmarks
learnt by the base language and 11 benchmarks learnt by Flash-
Fill (and its variants). Moreover, the number of examples needed to
learn the desired transformation is also significantly reduced from
2.2 (for the base language) to 1.575.

8.1 Benchmarks
We obtained 55 benchmark problems from both the online help
forums (24/55) and the Excel product team (31/55). The bench-
marks that the Excel team provided came from internal customer
surveys and piloting, while the online forum benchmarks were col-
lected by the authors. Out of the 55 benchmark problems, 40 of
them involved transformations on the date data type, whereas the
remaining 15 problems involved transformations over other data
types including name, phone number, time, and unit. The larger
fraction of date scenarios is simply a manifestation of date being a

more commonly used data type than others, and one that requires
normalization into a clean format for various operational purposes.

The number of input strings in the spreadsheets varied from 6
to 35, with an exception of 910 inputs (randomly generated using
a uniform distribution) for Example 2. For the benchmarks taken
from the Excel forums, we used the inputs provided by users on
the forum posts (either as Excel attachments or from the text of the
forum conversations). For the benchmarks provided by the Excel
team, we directly used the inputs in the spreadsheets.

8.2 Need for Probabilistic Semantics
We first evaluate the need for probabilistic interpretations in the
data transformation language Le over 40 benchmark problems
from the date domain. The number of benchmark problems for
which the desired transformation can be learnt by different tools is
shown in Figure 17(a). FF, FF-num, and FF-table denote Flash-
Fill [9], FlashFill extended with numbers [26] and FlashFill ex-
tended with tables [25] respectively. Previous FlashFill versions
can learn the transformations for only 11 out of the 40 bench-
marks and require more number of input-output examples. The base
language proposal of data transformation language without proba-
bilistic semantics (Lb) can learn the desired transformations for 26
benchmarks whereas our system learns the desired transformations
(in Le) for all 40 benchmarks.

Ranking The probabilistic interpretations in Le is also impor-
tant for learning the transformations from a small number of input-
output examples. The number of examples required to learn the de-
sired transformation for the benchmark problems in different con-
figurations of Le (where each feature is incrementally added) is
shown in Figure 17(b). Adding weights to reformat expressions
in Lb (Weighted branches) reduces the number of examples re-
quired to learn the transformation for 5 benchmark problems (on
which the base language can learn the transformation) and on aver-
age requires 2.2 input-output examples per benchmark problem to
learn the desired transformations. Adding the MatchParse func-
tion to perform real-valued input parse matches (Approximate
Predicate Matching) reduces the number of examples required
for 7 more benchmark problems to 1 from more than 3 previously.
The average number of examples required per benchmark problem
in this configuration is 1.825. Finally, adding the parse dictionary
for disambiguation (Joint Learning) further reduces the number
of examples required for 8 more problems and the average number
of examples required goes down to 1.575.
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Performance The synthesis algorithm works in real time and
takes less than 0.08 seconds each to learn the desired transforma-
tion for the 39 benchmark problems as shown in Figure 18. The
algorithm takes 1.1 seconds for the benchmark in Example 2 with
910 input strings. The experiments were performed on a machine
with Intel Core i5-3317U 1.7GHz CPU with 16 GB of RAM.
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Figure 19. The synthesis times for learning the desired program
for varying number of input strings in the spreadsheet.

8.3 Scalability with Increasing Number of Inputs
Since the synthesis algorithm computes the dictionary of weighted
parses of the input strings, the scalability of the algorithm also
depends on the number of the input strings in the spreadsheet. The
learning times for the algorithm on a spreadsheet from Example 2
with increasing number of input strings is shown in Figure 19.
The algorithm takes about 3 seconds for 2500 inputs and about 20
seconds for 18000 inputs. However, in practice, we can efficiently
learn a good approximation of the dictionary by sampling only a
few hundred inputs from large spreadsheets, which takes less than
0.5 seconds.

8.4 Other Data Types
We next present the extensibility of our data description framework
by encoding the name, phone number, time, and unit data types.
Since our framework is parameterized by declarative data type def-
initions, we were able to easily add support for these data types
within few hours and in less than 200 LOC for each data type. We
evaluate these data types over 15 representative benchmark prob-
lems. Our system can synthesize transformations for all 15 bench-

0

2

4

6

8

10

1 2 3

B
e

n
ch

m
ar

ks

I/O Examples

Other Domains

Figure 20. The number of examples required to learn the trans-
formation for the benchmark problems over names, phone number,
time, and unit data types.

marks, whereas previous FlashFill versions can learn the transfor-
mations for only 5 of them. The number of input-output examples
required for each benchmark problem is shown in Figure 20. The
time required to learn the desired transformation for each bench-
mark problem was at most 0.6 seconds.

9. Related Work
The most closely related work to ours is that of automated text-
editing using demonstrations and examples. Most of these work
treat strings as a sequence of characters without assigning any
semantic interpretation to them, and therefore are limited in terms
of the range of transformations and the complexity of data they can
support. The work on ad-hoc data manipulation for programmers is
also closely related but our work also learns the structure of output
data and the relationship between the input and output structures in
addition to learning the structure of input data.

Text-editing Systems using Demonstrations and Examples:
Nix described a text-editing system that synthesizes gap programs
based on examples [17]. A gap program is a collection of (pat-
tern, replacement) pairs, where each pattern is composed of con-
stants and variables that bind to the text in between the constants,
and a replacement can be a constant string or a variable from the
input pattern. SMARTedit [15] is a Programming by Demonstra-
tion (PBD) system for learning text-editing commands, where the
primitive program statements include moving the cursor to a new



position and inserting/deleting text. Simultaneous editing [16] is
another PBD-like system that allows the user to define a set of re-
gions to edit and to make edits in one region, while the system
makes equivalent editing in all other regions. Potter’s wheel [21]
lets users define different domains by providing API support and
learns the transformations on strings by recognizing the structure
of input and output strings using a description length metric.

These systems are more general and support arbitrary input
strings but here we limit our discussion to strings that represent
data types. These systems interpret strings as only a sequence
of characters, and support operations such as substring and their
concatenation with constant strings. This limits them to support
only simple transformations on the data types. Moreover, these
systems support only uniform and structured data types whereas
most of the benchmark problems that we obtained from the help-
forums included non-uniform and unstructured data.

FlashFill [9] is a programming-by-example system for automat-
ing string processing in spreadsheets. It synthesizes deterministic
programs using a restricted form of regular expressions, condition-
als, and loops for performing syntactic manipulation of strings. In
contrast, we describe a probabilistic system to perform transfor-
mations on strings that represent rich data types. FlashFill, like
previous systems, can perform only syntactic transformations on
data types and lacks information about the data type interpreta-
tions to perform more complex transformations. It also supports
transformations on non-uniform structured data types by learning
a set of conditionals, but it requires a lot of input-output exam-
ples to learn such conditional programs and in some cases does not
learn any conditional because of a limited language of conditionals.
FlashFill’s extension for handling relational tables [25] and number
transformations [26] enables it to perform more complex transfor-
mations but these systems are still limited by interpreting the in-
put data type strings as just strings. Moreover, these extensions can
only handle uniform and structured data types.

Topes [23, 24] provides end-users an abstraction of their data
and helps them describe constraints on how to validate the data.
From the given data, it infers some basic formats such as numbers
and words, and allows users to modify the format by adding more
constraints or specify additional formats. With these rules, Topes
can validate user’s data and provide error messages regarding why
validation of certain strings failed. In addition, since it has knowl-
edge of the formats, it also provides a finite set of formats as a rec-
ommendation in which a user might want to reformat the data. This
can be viewed as an abstraction for providing Excel custom for-
mat strings, but is more powerful as additional constraints can be
specified. Our tool is a complete PBE system and allows users to
format the data type strings in any arbitrary format without asking
them to specify these formats. Topes also does not handle ambigu-
ity present in the data type strings, which we found essential for
learning desired transformations from few input-output examples.

Ad-hoc Data Manipulation for Programmers: The PADS
project has enabled simplification of ad hoc data processing tasks
for programmers by contributing along several dimensions: devel-
opment of domain specific languages for describing text structure
or data format [3, 4], learning algorithms for automatically infer-
ring such formats [5], and a markup language to allow users to add
simple annotations to enable more effective learning of text struc-
ture [34]. The learned format can then be used by programmers for
documentation or implementation of custom data analysis tools.
In contrast, the focus of this paper is to enable end-users (non-
programmers) to perform small, often one-off, repetitive tasks on
their spreadsheet data. Asking end-users to provide annotations for
learning (relatively simple) text structure, and then develop custom
tools to format/process the inferred structure is beyond the exper-
tise and usability bar for these users. Hence, we are interested in

automating the entire end-to-end process, which includes not only
learning the text structure from the inputs, but also learning the de-
sired transformation from the outputs.

Random Interpretation: The probabilistic semantics of our
data type transformation language is inspired by the random inter-
pretation framework [8, 11]. The key idea of random interpretation
is to execute the program on a few random inputs while modify-
ing states on the fly to satisfy branch constraints, and combining
states using random weights at joins. It has been used previously
for finding affine equalities [11], global value numbering, and in-
terprocedural analysis of programs [8]. However, our probabilistic
semantics maintain weighted states instead of states at each edge.
We also execute all branches, but copy the states and adjust the
weights based on approximate predicate matching. At join points,
we also perform a weighted combination, but we use max instead of
addition. Furthermore, we also deal with one-to-many probabilistic
operators in our formalism.

Program Synthesis: The area of program synthesis is gaining
a renewed interest [1]. It has recently been used to synthesize ef-
ficient low-level code using partial programs [29, 30] and from
higher-order declarative specifications [14], automated feedback
generation for introductory programming assignments [27], com-
piler for low-power spatial architectures [20] using solver-aided
languages [31, 32], data structure manipulations using visual input-
output examples [28], program refactoring using examples [22], in-
ference of efficient synchronization in concurrent programs [33],
and relational data representations [12]. A major difference in our
approach as compared to these synthesis approaches is the ability
to handle some inconsistencies and noise in the specification (ex-
amples) due to the probabilistic semantics of our language.

Probabilistic Programming: There has also been a lot of in-
terest lately in the field of probabilistic programming [6, 7, 18]
for specifying probability distribution over the input and program
space as a first class construct in the language itself, and using ef-
ficient inference mechanisms to learn the distributions [19]. Our
probabilistic DSL can also be encoded in such frameworks where
we define distributions over the set of format descriptors and re-
format expressions, and define appropriate probabilistic operators
for approximate matching and joint learning. One challenge, how-
ever, is that these techniques typically require a lot of examples to
infer desired distributions whereas our goal is to learn from very
few (possibly 1) examples. Moreover, there are no good mecha-
nisms currently in these frameworks to easily specify declarative
constraints over the distributions in contrast to our framework.

10. Limitations and Future Work
One limitation of our system is that it currently supports only
a single data type entity in an input string and can not handle
multiple data type entities present in the same input. Moreover, our
synthesis algorithm is complete for only regular data type strings.
We plan on extending our algorithm for supporting multiple data
entities including non-regular data type strings. Another limitation
is that the likelihood values for InitField, FieldOrder, and
MatchSF currently needs to be provided manually by the data type
designers. Even though we did not find it challenging to provide
these values for the individual data types (as these values can
be treated as partial orders), we envision this will become more
challenging for more complex data types and their combinations.
We are now building a large repository of such data types from
real-world spreadsheets so that it can be possible to automatically
learn more precise likelihood values for these functions. Finally, we
also plan to integrate our system with FlashFill so that it can learn
arbitrary combination of syntactic and semantic transformations on
input strings.



11. Conclusion
In this paper, we have identified an important subset of the data
cleaning problem, namely data type transformations. These data
types are present in many spreadsheets and databases, and trans-
forming them presents a big challenge for both developers and end-
users as they are often present in multiple formats, some of which
may not be known a priori. The inherent ambiguity present in these
data types presents another challenge. We present a Programming-
by-Example (PBE) technology that combines ideas from inductive
synthesis and random interpretation to solve some of these chal-
lenges. The previous works in PBE systems learn deterministic pro-
grams from a set of examples, while our approach learns weighted
programs with probabilistic semantics that allows us to handle non-
uniform, unstructured, and ambiguous data. We have implemented
our algorithms as an Excel add-in and have evaluated it success-
fully on several real-world examples.
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