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A B S T R A C T

New computing platforms have greatly increased the demand for pro-
grammers, but learning to program remains a big challenge. Program
synthesis techniques have the potential to revolutionize programming
by making it more accessible. In this dissertation, I present three sys-
tems, AutoProf, FlashFill, and Storyboard Programming Tool (Spt),
that work towards making programming more accessible to a large
class of people, namely students and end-users. The AutoProf (Au-
tomated Program Feedback) system provides automated feedback
to students on introductory programming assignments. It has been
successfully piloted on thousands of student submissions from an
edX course and is currently being integrated on the MITx and edX
platforms. The FlashFill system helps spreadsheet end-users perform
semantic string transformations, number transformations, and table
lookup transformations using few input-output examples. A part of
the FlashFill system is shipping in Microsoft Excel 2013 and was
quoted as one of the top features in Excel by many press articles.
Finally, the Storyboard Programming Tool helps students write data
structure manipulations using visual examples similar to the ones
used in textbooks and classrooms. It has been used to synthesize
many textbook manipulations over linked list, binary search trees,
and graphs.

These systems are enabled by new Program Synthesis techniques.
Unlike traditional program synthesis approaches where the primary
goal was to derive provably correct programs from a complete speci-
fication, these synthesis techniques are designed around natural spec-
ification mechanisms and intuitive interaction models. Each system
relies on a different synthesis technique, but the techniques can be
structured and understood in terms of four major components:

• Specification Mechanism: The way users specify the functional
behavior of their intended tasks to the system. Our synthesis
techniques support more natural and intuitive forms of speci-
fication such as input-output examples, reference implementa-
tion, intermediate states etc.

• Hypothesis Space: The hypothesis space defines the space of
possible programs the system searches over to synthesize the de-
sired program. The hypothesis space can be fixed or parametrized
(user-defined) with additional user inputs. The fixed hypothesis
spaces are defined using domain-specific languages (DSL) that
exploit the domain knowledge to efficiently structure the hy-
pothesis space, which enables the systems to represent a huge
set of expressions in these languages succinctly. The parametric
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hypothesis spaces are defined using intuitive user inputs that
allows users to easily define and control the space of possible
programs.

• Synthesis Algorithm: We develop new constraint-based and version-
space algebra based synthesis algorithms to efficiently learn pro-
grams from a large hypothesis space that conform to the speci-
fication.

• User Interaction Model: Finally, the user interaction model de-
termines how users refine their intent and provide additional
insights to the system for converging to the desired task.

We describe the three systems based on the four components, and
present experimental evaluation to show the effectiveness of these
systems in practice. We also present related work and some future
directions to build upon these techniques to make programming ac-
cessible to an even larger class of people.

Thesis Advisors: Armando Solar-Lezama (MIT CSAIL) and Sumit
Gulwani (Microsoft Research, Redmond)
Thesis Committee: Rob Miller (MIT CSAIL), Sumit Gulwani (Mi-
crosoft Research, Redmond), Armando Solar-Lezama (MIT CSAIL)
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1
I N T R O D U C T I O N

The unprecedented ubiquity of computational devices has resulted
in a big increase in the demand for programmers to build systems
and services on top of these devices. Unfortunately, programming
these devices has not become much easier. One still needs to write
a program in a step-by-step manner detailing every single step of
the execution in an arcane programming language, which makes it
challenging to meet the increasing programmer demand. The goal of
this dissertation is to build systems to democratize the programming
experience to a large class of users, who are not programmers, but
have access to these devices and services, and want to program them
to perform useful custom tasks.

We can try to achieve the goal of democratizing programming us-
ing two approaches. First, we can build systems that allow for nat-
ural and intuitive interaction mechanisms for users to specify their
intended tasks so that even non-programmers can perform program-
ming tasks. Second, we can build systems to help users learn tradi-
tional programming. In this dissertation, I present three systems that
take both of these approaches to make programming more accessible
to a large class of users, namely students and end-users.

The AutoProf (Automated Program Feedback) system [112] pro-
vides automated feedback to students on introductory programming
assignments and has been successfully piloted on thousands of stu-
dent submissions from an online edX course “Introduction to Com-
puter Science and Programming (6.00x)”. It is currently being inte-
grated on the MITx and edX platforms. The FlashFill system [49,
56] helps spreadsheet end-users perform semantic string transforma-
tions [108], number transformations [107], and table lookup transfor-
mations [108] using few input-output examples. A part of the Flash-
Fill system was shipped in Microsoft Excel 2013 and was quoted as
one of the top features in Excel this year by many press articles [1,
2, 3, 6, 7]. Finally, the Storyboard Programming Tool (Spt) [109, 111]
helps students write data structure manipulations using visual exam-
ples similar to the ones used in textbooks and classrooms. It has been
used to synthesize many textbook manipulations over linked list, bi-
nary search trees, and graphs.

These systems from the domains of automated grading, program-
ming by example, and visual programming are enabled by new pro-
gram synthesis techniques. Program synthesis has been an intriguing
area of research from a long time, whose ultimate goal has been to
automatically synthesize programs from high-level specifications [82].
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introduction 2

Specification 
Mechanism

Hypothesis 
Space

Synthesis 
Algorithm

User Interaction 
Model

Figure 1: The four major components of new program synthesis techniques.

Traditionally, it has been used to synthesize small but provably cor-
rect complex programs from a complete specification. One major pitfall
for these traditional program synthesis approaches has been the ex-
pectation of a complete specification. Unfortunately, often times writ-
ing a complete specification is at least as hard as writing the program
in first place. The interaction mechanism in some of the traditional
interactive synthesis systems [23, 116] also requires deep expertise
in deduction and theorem proving. The systems we need for help-
ing non-programmers do not conform to the view of traditional syn-
thesis approaches. Instead, these systems demand new synthesis ap-
proaches to support different forms of more intuitive specifications
and interaction models. These systems embrace the fact that writing
complete specifications is difficult and allow for specification mecha-
nisms that are easier and more natural for non-programmers.

These three systems depend on different program synthesis tech-
niques, but the techniques are structured around four major compo-
nents (Figure 1). These components provide a systematic way to char-
acterize the systems based on new program synthesis techniques.

• Specification Mechanism: Specification mechanism is the way
users specify the functional behavior of their intended tasks to
the system. Writing a complete specification of the intended task
is challenging even for programmers and we can not expect non-
programmers to provide such specifications. Therefore, our syn-
thesis technique supports simpler and more intuitive specifica-
tion mechanisms such as input-output examples (abstract and
concrete), reference implementations, and intermediate states.
These specifications are inherently ambiguous which makes the
synthesis techniques more challenging.

• Hypothesis Space: Traditional program synthesis approaches
have aimed at synthesizing programs in Turing-complete lan-
guages, which makes the synthesis process more complex and
less scalable. The hypothesis space in new synthesis techniques
can either be fixed or parameterized (user-defined). For fixed
hypothesis spaces, we identify efficient subsets of these Turing-
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Characterization of AutoProf, FlashFill, and SPT based on New Program Synthesis Components

AutoProf FlashFill SPT

Specification Concrete I/O Examples Reference Implementation Abstract I/O Examples,

Mechanism Concrete I/O Examples

Hypothesis Student Submission + DSL for Semantic DSL for Pointer

Space Error Model (in g
mPy) Transformations Assignments + Loop Skeleton

Synthesis Constraint-based Synthesis Version-space Algebra Abstract Interpretation +

Algorithm based Synthesis Constraint-based Synthesis

User Interaction Correction Rules, Additional examples, Intermediate States,

Model Feedback Levels Ambiguity Highlighting Partial Program

Figure 2: The characterization of AutoProf, FlashFill, and Spt based on the
four components of the new program synthesis approach.

complete languages to create Domain-specific languages (DSL)
that exploit the domain knowledge for efficiently structuring
the hypothesis space. The key idea in designing these domain-
specific languages is to make them expressive enough to be able
to encode majority of the intended tasks, but at the same time
keep them concise enough for learning. For parametric hypoth-
esis spaces, the synthesis techniques allow for additional user
inputs to enable users to easily define and control the search-
space for all possible programs.

• Synthesis Algorithm: The synthesis algorithm efficiently learns
a program in the hypothesis space that conform to the specifi-
cation. Since specification mechanisms such as input-output ex-
amples are inherently incomplete and ambiguous, and our hy-
pothesis space is expressive, there are typically a large number
of programs in the hypothesis space that conform to the specifi-
cation. The synthesis techniques use constraints and novel data-
structures to represent this large number of programs (1015)
succinctly, and use corresponding constraint-based algorithms
and divide-and-conquer algorithms for efficiently learning ex-
pressions (succinctly represented in these representations) that
conform to the specification.

• User Interaction Model: Finally, a major component of usability
of these systems is the user interaction model. The user interac-
tion model determines how the system guides the users in cases
where the provided specification is ambiguous or incomplete,
and how a user then refines the intent and provides additional
information for the system to converge to the intended task.

The four components for AutoProf, FlashFill, and Spt systems are
shown in Figure 2. We now briefly describe the three systems together
with their characterization based on these four components.
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def computeDeriv_list_int(poly_list_int):

result = []

for i in range(len(poly_list_int)):

result += [i * poly_list_int[i]]

if len(poly_list_int) == 1:

return result # return [0]

else:

return result[1:] # remove the leading 0

Figure 3: The reference implementation for computeDeriv.

range(a
1

,a
2

) ! range(a
1

,a
2

+ 1)

a
0

>= a
1

! a
0

> a
1

Figure 4: A simplified error model.

1.1 AutoProf

There has been a big interest recently to teach programming to hun-
dreds of thousands of people worldwide through MOOCs. One major
challenge, however, in these courses is how to replicate the personal-
ized feedback provided in traditional classrooms in the online setting.

The AutoProf [113] system for Python provides feedback for intro-
ductory programming exercises to students by telling them exactly
what is wrong with their solution and how to correct it. The spec-
ification mechanism for the tool is a reference implementation that
specifies the desired functional behavior of a student solution. For ex-
ample, the reference implementation for the computeDeriv problem
is shown in Figure 3. The computeDeriv problem is taken from an in-
troductory programming course on edX that asks students to write a
python function that computes the derivative of a polynomial whose
coefficients are represented using a Python list.

The hypothesis space in AutoProf is defined by the combination
of a student program and the error model. An error model is a set
of rewrite rules that captures common mistakes that students make
while solving a given problem. For example, a simple error model
for the computeDeriv problem is shown in Figure 4. The error model
for this example captures two very specific mistakes: incrementing
the second argument of the range function, and changing the greater
than equal operator to greater than. In general an error model would
have many more correction rules, but these two rules suffices to find
mistakes in the incorrect student submission shown in Figure 5.

Given the reference implementation and the error model, the syn-
thesis algorithm symbolically searches over the space of all possible
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rewrites to a student solution and finds a corrected solution, which
is functionally equivalent to the reference implementation and which
requires minimum number of rewrites. This set of rewrites induces a
large space of corrections (1015), and we need to check each one of
them for functional equivalence. We encode this large solution space
using constraints and use an iterative minimization algorithm to effi-
ciently solve them. The user interaction model of AutoProf for teach-
ers is to allow them to incrementally add rewrite rules in the error
model for providing feedback on student mistakes that are not cap-
tured by the current error model.

We have evaluated AutoProf on thousands of student submissions
from the Introduction to Programming course (6.00x) offered on edX
in Fall 2012. These exercises cover a range of Python data types includ-
ing integers, lists, strings, and dictionaries, and programming idioms
such as comparisons, iteration, and recursion. The tool was able to
generate feedback for 64% of all incorrect student submissions and
took about 9 seconds on average per submission. The system is cur-
rently being integrated on the MITx and edX platforms.

1 def computeDeriv(poly):

2 length = int(len(poly)-1)

3 i = length

4 deriv = range(1,length)

5 if len(poly) == 1:

6 deriv = [0]

7 else:

8 while i >= 0:

9 new = poly[i] * i

10 i -= 1

11 deriv[i] = new

12 return deriv

The program requires 2 changes:

• In the expression range(1, length) in
line 4, increment length by 1.

• In the comparison expression (i >= 0)
in line 8, change operator >= to >.

Figure 5: (a) An incorrect student attempt for computeDeriv, and (b) The
corresponding feedback generated by the AutoProf system.

1.2 flashfill

FlashFill is an interactive programming-by-example system for spread-
sheets. Spreadsheets have millions of users with diverse backgrounds
from traders to graphic designers. They are not professional pro-
grammers but often need to create one-off applications to support
business needs. These end-users routinely struggle with transforma-
tions on data over strings, numbers, and tables, but can easily spec-
ify their intent using examples [47]. The FlashFill project was started
by Sumit Gulwani at Microsoft Research with an observation that
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Input v
1

Input v
2

Output

Stroller 10/12/2010 $145.67+0.30*145.67

Bib 23/12/2010 $3.56+0.45*3.56

Diapers 21/1/2011 $21.45+0.35*21.45
Wipes 2/4/2009 $5.12+0.40*5.12
Aspirator 23/2/2010 $2.56+0.30*2.56

MarkupRec
Id Name Markup

S30 Stroller 30%
B56 Bib 45%
D32 Diapers 35%
W98 Wipes 40%
A46 Aspirator 30%
· · · · · · · · ·

CostRec
Id Date Price

S30 12/2010 $145.67

S30 11/2010 $142.38

B56 12/2010 $3.56

D32 1/2011 $21.45

W98 4/2009 $5.12

A46 2/2010 $2.56

· · · · · · · · ·
Figure 6: A transformation that requires lookup and join operations on mul-

tiple tables, and then syntactic manipulations on the results.

programming syntactic string transformations using examples can be
reduced to synthesizing programs in a domain-specific language of
strings [49]. We developed a more general programming-by-example
(PBE) methodology to allow end-users to automate repetitive tasks [56]
and used it to extend the FlashFill system to support semantic string
transformations, namely table lookup transformations [108] and num-
ber transformations [107]. Another important aspect of our work has
been to make FlashFill usable in practice by developing a novel method-
ology to use machine learning for learning a ranking function for
PBE systems [106]. The ranking function is used to efficiently disam-
biguate between the huge number of learnt expressions so that users
only need to provide minimal number of input-output examples.

The specification mechanism for FlashFill is one or more tables of
data in a spreadsheet together with the desired output strings for
a few of the table rows. For example, consider a post taken from
an Excel help forum (Figure. 6). An Excel user wanted to compute
the selling price of an item (Output) from its name (Input v

1

) and
selling date (Input v

2

) using the MarkupRec and CostRec tables. The
selling price of an item is computed by adding its purchase price (for
the corresponding month) to its markup charges, which in turn is cal-
culated by multiplying the markup percentage by the purchase price.
The user provides the desired intent by providing outputs for the first
two rows, and the system then generates the output (shown in bold)
for other rows by learning the desired transformation consisting of
table lookups and syntactic string transformations.



1.3 storyboard programming 7

The hypothesis space for semantic transformations is defined by
new domain-specific languages of lookup transformations and num-
ber transformations. These languages are then combined with the
syntactic string transformation language to obtain an expressive com-
bined language that can express tasks such as the one shown in Fig-
ure. 6. A key idea in the design of these domain-specific languages is
that they are composed of specific forms of expressions, namely fixed-
arity expressions and associative expressions, that allow for sharing
a large number of expressions succinctly. This allows us to efficiently
structure the hypothesis space of possible expressions.

The synthesis algorithm learns a large number of expressions (1030)
in these languages that conform to the examples in polynomial time,
where the expressions are represented succinctly using novel data
structures. These expressions are then ranked using a ranking func-
tion (learnt using machine learning) and the top-ranked expression
is then run on the table rows to compute the corresponding output
strings. The user interaction model of FlashFill is to allow users to
provide additional input-output examples in case the system gener-
ates some undesired outputs. It can also highlight ambiguous input
cells for which there are multiple highly-ranked outputs.

A part of the FlashFill system (string transformations with rank-
ing) was shipped in Microsoft Excel 2013. The initial response for the
FlashFill feature has been quite encouraging. It was quoted as one of
the top features in Excel 2013 by many press articles [2] and there are
currently more than 100 user-created YouTube videos about using it.

1.3 storyboard programming

b x 
next 

prev 
a 

next 

prev 

next 

prev 

next 

prev 

b 
next 

prev 
a 

next 

prev 

next 

prev 

v 

void dllRemove(Node v){

v.n.p = v.p;

v.p.n = v.n;

}

(a) Graphical Intuition (b) Low-level Code

Figure 7: Doubly linked list deletion example in Spt.

Students learning to program find it challenging when there is a
large gap between the abstractions at which algorithms are taught
and explained in classrooms and the abstractions at which they are re-
quired to be programmed. One domain where this gap is rather large
is data-structure manipulations, which are typically described using
high-level visual diagrams. Their translation to low-level pointer ma-
nipulating code, however, is non-intuitive, tedious, and error-prone.
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The Storyboard Programming Tool (Spt) [109, 111] is a new pro-
gramming interface that aims to bridge this gap between the high-
level visual insights and the corresponding low-level code. Spt com-
bines programming-by-example with constraint-based synthesis. The
specification mechanism in Spt lets a user specify the high-level in-
sights in several different forms such as concrete input-output ex-
amples, abstract input-output examples, and intermediate states. For
example, a user can specify the deletion manipulation in a doubly
linked list by providing an abstract input-output example as shown
in Figure 7(a). The hypothesis space of Spt is a domain-specific lan-
guage of pointer assignments together with conditionals and loops
(with bounded pointer dereferences). This language is parameterized
by a loop skeleton, which helps to further constrain the hypothesis
space as well as prevent the synthesis system from synthesizing solu-
tions with arbitrary structure.

The synthesis algorithm in Spt combines constraints with abstract-
interpretation based shape analysis to encode both the synthesis and
verification problems as a constraint satisfaction problem whose so-
lution defines the low-level pointer code. The synthesized low-level
code for doubly linked list deletion is shown in Figure 7(b). Finally,
Spt’s user interaction model allows users to provide additional input-
output examples, intermediate data structure states, and additional
information regarding the expected size of the synthesized code in
case the default bounds are not enough. We have used Spt to success-
fully synthesize several traditional textbook data structure manipula-
tions such as insertion, deletion, reversal, rotation, and traversal over
linked lists, binary search trees, and graphs.

1.4 key contributions

This dissertation makes the following key contributions:

• Generality of the Program Synthesis approach: We show prob-
lems from very different domains of automated feedback gen-
eration for introductory programming assignments (AutoProf),
spreadsheet data transformation using examples (FlashFill), and
visual programming of data structure manipulations (Spt) can
be encoded and efficiently solved using the new program syn-
thesis approaches.

• Multimodal Specification Mechanisms: The presented systems
embrace the fact that it is hard for non-programmers to pro-
vide complete functional specification of their desired intent,
and allow for many different forms of specifications that are
natural and intuitive. Some examples of such specifications in-
clude input-output examples (abstract and concrete), reference
implementations, intermediate states, partial traces, and asser-
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tions. The Spt system has now also been extended to allow for
ink-based and voice-based specifications [100].

• Fixed and Parametric Hypothesis Space: The hypothesis space
in these program synthesis approaches can either be fixed or
parametric. For fixed hypothesis spaces, domain-specific lan-
guages are used to define the hypothesis space. These DSLs
are expressive enough to capture most tasks in the domain, but
at the same time are concise enough for efficient learning. The
DSLs are composed of two classes of expressions, namely fixed-
arity expressions and associative expressions, that allow for ef-
ficient structuring of the hypothesis space. The parametrized
hypothesis space enables users to define and control the space
of possible programs using intuitive inputs.

• New Synthesis Algorithms: We develop new constraint-based
synthesis algorithms that combine abstract interpretation with
the cegis algorithm (Spt), and allow for minimization constraints
(cegismin in AutoProf). We also develop version-space algebra
based synthesis algorithms in FlashFill that exploit the sharing
amongst DSL sub-expressions to efficiently learn a huge set of
programs in several DSLs.

• Machine Learning to build Synthesizers: We present a general
ranking technique to predict a correct program from a large set
of programs that are induced from an incomplete and ambigu-
ous specification. Our ranking technique uses gradient descent
for learning the ranking function with the goal of optimizing a
loss function that ranks any correct program over all incorrect
programs. We use machine learning to build synthesizers in-
stead of using it directly to learn the programs. Machine learn-
ing is ideal to learn relatively less complex functions from a
large amount of data, whereas Program synthesis is more suit-
able to learn more complex structures such as programs from
very few examples. Our approach presents a novel complemen-
tary combination of machine learning techniques with the pro-
gram synthesis techniques.

• Encouraging initial impact of the Systems: Some of the pre-
sented systems have been practically deployed in the real-world
and are already having some initial impact. A part of the FlashFill
system was shipped in Microsoft Excel 2013 and was quoted as
one of the top features in Excel 2013 by many press articles. The
AutoProf system was successfully piloted over thousands of stu-
dents submissions from an introductory programming course
on edX, and is currently being integrated on the MITx and edX
platforms.



2
P R O G R A M S Y N T H E S I S C O M P O N E N T S

This chapter describes in more detail the four components of the
new program synthesis techniques. We formalize the specification
constraint obtained from different specification mechanisms, the hy-
pothesis space, and the synthesis algorithm that learns the intended
program in the hypothesis space that is consistent with the specifica-
tion constraint. We then describe some user interaction models that
users can use to refine their specification to provide additional infor-
mation to the synthesis system.

Let P be the unknown program, H be hypothesis space of all pos-
sible programs, I be a set of inputs, and � be the functional specifi-
cation. The goal of the synthesis algorithm is to learn the unknown
program by solving the synthesis constraint ⇥ ⌘ 9P 2 H 8inp 2
I : �(P, inp), i.e. the functional specification holds for all inputs inp

from the set I.

2.1 specification mechanism

The new synthesis approaches support simpler and intuitive spec-
ification mechanisms such as input-output examples (concrete and
abstract), reference implementations, and intermediate states (partial
traces). We briefly describe each one of these mechanisms and the
corresponding synthesis constraints that are obtained from them.

Figure 8: A semantic transformation in Flashfill to convert dates from one
format to another specified using a concrete input-output example.

10
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Concrete Input-Output Examples: The concrete input-output ex-
amples are one of the simplest and commonly used specification
mechanism for programming-by-example techniques. The concrete
examples describe exactly how the input and output states should
look like without abstracting away any details. For example, consider
the example of a semantic string transformation in Flashfill shown in
Figure 8. The date transformation from one date format to another
is specified using an example with an input string “7/17/2004” and
the corresponding output string “17th July 2004”. Another exam-
ple of using concrete input-output examples to specify data struc-
ture manipulations in Spt is shown in Figure 9. The desired behav-
ior of the list reverse manipulation is specified on a linked list of
length 4 (with four concrete locations a, b, c, and d). In general,
a user can provide a set of concrete input-output examples C

I

=
{(i

1

,o
1

), (i
2

,o
2

), · · · , (i
k

,o
k

)}. The functional specification in the syn-
thesis constraint is �

C

(P, inp) ⌘ ((inp == i
1

) =) (P(i
1

) ==
o
1

))^ · · ·^ ((inp == i
k

) =) (P(i
k

) == o
k

)).

a b c d

head

next next next next

a b c d

head

next next nextnext

Figure 9: A concrete input-output example of linked list of length 4 specify-
ing the desired behavior of the list reverse manipulation in Spt.

Abstract Input-Output Examples: The abstract input-output ex-
amples allow users to specify the behavior of the desired program
on potentially infinite number of concrete input-output examples.
For example, the abstract input-output example shown in Figure 10

shows the behavior of the list reverse manipulation on an abstract
list (of unbounded length). The input list consists of two concrete
nodes a and b, and an abstract node specified by the ellipsis. The
ellipsis denotes a list segment of unbounded length and is defined
inductively as shown on the right in the Figure. The abstract exam-
ples let users specify constraints on the desired program without
enumerating all (potentially infinite) concrete examples. In general,
a user can provide a set of abstract input-output examples A

I

=
{(i#

1

,o#
1

), (i#
2

,o#
2

), · · · , (i#
k

,o#
k

)}. The functional specification in the gen-
erated synthesis constraint is �

C

(P#, inp) ⌘ ((inp == i#
1

) =) (P#(i#
1

) ✓
o#
1

)) ^ · · · ^ ((inp == i#
k

) =) (P#(i#
k

) ✓ o#
k

)), where the set of
inputs I corresponds to the set of input-output examples, i.e. I =
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{i#
1

, i#
2

, · · · , i#
k

}, and P# denotes an abstraction of program P constructed
using an appropriate abstract domain.

a b

head

next next next

b a

head

next nextnext

…

…

…
x

x next …

Figure 10: An abstract input-output example of linked list of an unbounded
length specifying the desired behavior of the list reverse manip-
ulation in Spt. The Figure also shows the inductive definition of
the abstract list node (shown using ellipsis).
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Figure 11: A scenario consisting of an intermediate state for binary search
tree insert manipulation in Spt.

Intermediate States (Partial Traces): The intermediate states pro-
vide additional constraints to the synthesis system about the desired
program and help scale the synthesis algorithm to larger programs.
For example, the scenario for binary search tree insertion in Figure 11

shows an intermediate state that corresponds to the case where the
insertion location of the new node has been found (at the end of the
bst search loop). The function specification predicate is �

int

(P, i) ⌘
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P
l

(i) = j, where l denotes the location of the intermediate state j and
i denotes the input state.

Reference Implementation: A user can also specify the desired
functional behavior of the unknown program P using a reference im-
plementation R. For example, an instructor can specify the desired
functionality of the evaluatePoly problem in the AutoProf system
as shown in Figure 12. The evaluatePoly problem asks students to
write a Python program to compute the value of a polynomial on
a given value x, where the coefficients of the polynomial are repre-
sented using a Python list poly. The functional specification in the
synthesis constraint obtained is �

R

(P, inp) ⌘ P(inp) == R(inp) ^
Asserts(P, inp), where the Asserts(P, inp) predicate denotes whether
any assertion was violated on the input inp.

def evaluatePoly(poly, x):

result = 0

for i in range(len(poly)):

result += poly[i] * (x ** i)

return result

Figure 12: The reference implementation for the evaluatePoly problem
specified by an instructor in AutoProf. The problem asks students
to evaluate a polynomial on a value x, where the polynomial co-
efficients are represented using a Python list poly.

2.2 hypothesis space

The hypothesis space defines the space of all possible programs that
is searched over by the synthesis algorithm to find the desired pro-
gram. The hypothesis space can be fixed apriori for a system or it
can be parameterized (user-defined) with additional user inputs. At
one extreme end are the fixed hypothesis spaces, where the key idea
is to define the space using a Domain-specific Language (DSL) that
exploits the domain knowledge for efficiently structuring the space
of possible programs. The DSLs have two properties: (i) they are ex-
pressive enough so that most desired tasks in the domain can be ex-
pressed, and (ii) they are concise enough to enable efficient learning
of expressions that conform to different forms of specifications. At the
other extreme end are the user-defined hypothesis spaces, which are
completely defined using user inputs. We present few intuitive mech-
anisms for users to provide the inputs to easily define and control the
hypothesis space.

The hypothesis space for the AutoProf system is completely user-
defined. An instructor provides an error model consisting of a set
of rewrite rules that corresponds to common mistakes that students
are making on a given problem. The error model defines the space
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of possible corrections searched over by the AutoProf system on a
student solution. The instructor can further enrich the error model
by adding new rewrite rules that expands the hypothesis space of
possible corrections.

The hypothesis space for FlashFill is fixed and is defined using a
new domain-specific language for semantic transformations L

u

, which
is obtained by combining table lookup transformation language L

t

and syntactic string transformation language L
s

[49]. The language
L
u

is expressive enough to encode transformations over strings that
involve performing syntactic transformations over the outputs of lookups
and joins on its constituent substrings. The restriction on the columns
in the conditional predicates of the lookup transformation language
L
t

is that they should together constitute a candidate key of the table.
A key restriction in the string language L

s

is that the concatenation
of substrings can only happen at the outermost expression level.

The hypothesis space for Spt is defined using a combination of
the previous two approaches of defining hypothesis spaces. A stu-
dent provides a loop skeleton input to describe structural constraints
over the desired program, but the system imposes constraints on the
kinds of statements and conditionals with which the skeleton can be
filled using a domain-specific language. The DSL for Spt is a sim-
ple pointer manipulation language with loops and conditionals. The
three key restrictions in the language are (i) no memory allocation
of new nodes is allowed, (ii) there is at most one pointer derefer-
ence per expression, and (iii) there are only top-level (singly nested)
conditional statements allowed. The third restriction precludes the oc-
currence of an if statement inside another if statement. The pointer
language is expressive enough to express most data structure manip-
ulations over linked lists and binary search trees, but at the same time
efficiently learnable because of these restrictions.

We now describe few mechanisms with which a user can easily
provide additional inputs for parametric hypothesis spaces.

Loop Skeleton: A user can specify the skeleton of the desired
program using a loop skeleton S. This helps the synthesis system
to constrain the hypothesis space of possible programs and helps in
preventing the synthesizer from synthesizing solutions with arbitrary
structure. The loop skeleton for the list reverse program in Spt is
shown in Figure 13. It specifies that the list reverse implementation
should have a single while loop, with a set of unknown states before
the loop, in the loop body, and after the loop (denoted using the ??

construct). The construct ** denotes an unknown comparison pred-
icate over pointer dereferences. The constraint generated from the
loop skeleton are H ⌘ S(c), where c denotes a parametric completion
of the loop skeleton S.

Error Models: The hypothesis space of corrections searched over
by the AutoProf system is parameterized by an error model E. An
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Node llReverse(Node head){

??

while(**){

??

}

??

}

Figure 13: The loop skeleton for the list reverse implementation in Spt.

error model is defined using a set of rewrite rules that corresponds
to potential corrections for common mistakes that students are mak-
ing on a given problem. For example, a simple error model below
captures corrections that involve modifying the return value and the
range iteration values.

return a ! return [0]

range(a
1

,a
2

) ! range(a
1

+ 1,a
2

)

a
0

== a
1

! False

The correction rule return a ! return [0] states that a return state-
ment in a student program can be optionally replaced with a return
statement that returns the list [0]. The hypothesis space generated
from the error model is given by H ⌘ TE(S), where S denotes a
student submission and TE denotes the transformation function that
rewrites S using the error model E.

Succinct Representation of Hypothesis Space

Since the specification mechanisms we consider in the new synthesis
approaches are often incomplete and ambiguous, there are typically a
huge number of programs in the hypothesis space that conform to the
specification. For supporting efficient incremental learning, we need
a mechanism to represent this large set of programs succinctly. We
use two main approaches to succinctly represent this large number
of consistent programs: (i) Constraint-based representation and (ii)
Version-space algebra based representation.

The hypothesis space for AutoProf is represented using expressions
from a language g

mPy. The g
mPy language consists of set-expressions

that can encode a large number of mPy programs succinctly, where
mPy is a simple Python-like imperative language that encodes an ef-
ficiently learnable subset of Python. An example g

mPy expression is
{x,y} {+,-, ⇤, } {1, 2} that succinctly represents a set of 32 different
mPy expressions {x+ 1, x+ 2, x- 1, · · · ,y/2}. The g

mPy expressions are
in turn encoded using constraints.
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The parametric hypothesis space of Spt is also represented suc-
cinctly using a constraints-based representation. The constraints suc-
cinctly encode the non-deterministic semantics of the abstract pro-
gram traces as well as multimodal specifications.

On the other hand, the hypothesis space of a set of L
t

expressions
in FlashFill are succinctly represented using a data structure based
on version-space algebra. This version-space algebra based represen-
tation exploits the domain knowledge of semantic string transforma-
tions to efficiently structure the hypothesis space by sharing common
subexpressions at multiple different levels.

We now describe an abstract language L
a

that captures two major
kinds of expressions that allow for succinct representation in version-
space algebra used in PBE systems, namely fixed arity expressions
and associative expressions. We then present the syntax and semantics
of the version-space algebra based data structure that can succinctly
represent a large number of expressions in this language.

Expr e := v | c | e
f

| e
h

Fixed Arity Expr e
f

:= f(e
1

, · · · , e
n

)

Associative Expr e
h

:= h(e
1

, · · · , e
k

)

Figure 14: Syntax for a general abstract language L
a

for a version-space al-
gebra based Programming-By-Example system.

An Abstract Language L
a

for Version-space Algebra based PBE Systems

An abstract language L
a

that captures the major kinds of expression
sharing in domain-specific languages of several version-space algebra
based PBE systems [49, 108, 107, 58, 56] is shown in Figure 14. The
top-level expression e in L

a

can either be a constant c, a variable v, a
fixed arity expression e

f

, or an associative expression e
h

. A fixed arity
expression e

f

applies a function f to a fixed number of arguments to
compute f(e

1

, · · · , e
n

). An associative expression e
h

applies an asso-
ciative operator h to an unbounded number of arguments (e

1

, · · · , e
k

)
to compute h(e

1

,h(e
2

,h(e
3

, · · · , e
k

) · · · ), denoted as h(e
1

, · · · , e
k

) for
notational convenience.

Definition 2.2.1 (Fixed Arity Expression). Let f be any constructor for
n independent expressions (n > 1). We use the notation f(e

1

, . . . , e
n

)
to denote a fixed arity expression with n arguments.

Example 2.2.1. The position pair expression in the FlashFill language
SubStr(v

i

,p
1

,p
2

) is an example of fixed arity expression that repre-
sents the left and right position logic expressions p

1

and p
2

indepen-
dently. The Boolean expression predicate (C

1

= e
t

^ · · ·^ C
k

= e
t

)
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for a candidate key of size k in the lookup transformation language
L
t

is another fixed-arity expression of arity k with independent val-
ues for the column predicates. The decimal and exponential number
formatting expressions Dec(u,⌘

1

, f) and Exp(u,⌘
1

, f,⌘
2

) in the num-
ber transformation language [107] are also examples of fixed arity ex-
pressions with independent values for integer (⌘

1

), fraction (f), and
exponent (⌘

2

) formatting.

Definition 2.2.2 (Associative Expression). Let h be a binary associa-
tive constructor for independent expressions. We use the simplified
notation h(e

1

, . . . , e
k

) to denote the expanded associative expression
h(e

1

,h(e
2

,h(e
3

, . . . ,h(e
k-1

, e
k

) . . .))) for any k > 1 (where h(e) sim-
ply denotes e).

Example 2.2.2. The Concatenate(f
1

, .., f
n

) expression in FlashFill is
an example of an associative expression with Concatenate as the
binary associative constructor. The top-level select expression e

t

:=
Select(C, T ,C

i

= e
t

) in the lookup transformation language L
t

and
the associative program Assoc(F, s

0

, s
1

) in the table layout transfor-
mation language [58] are also instances of an associative expression.

Associative expressions involve applying an associative operator
with input and output type T to an unbounded sequence of expres-
sions of type T . The associative expressions differ from the fixed arity
expressions in two ways: (i) they have unbounded arity, and (ii) their
input and output types are restricted to be the same.

Union Expr s := {c
i

, v
j

, · · · , s
f

, s
h

}

Join Expr s
f

:= f(s
1

, · · · , s
n

)

DAG Expr s
h

:= Dag(⌘̃,⌘s,⌘t,W)

where W : (⌘
1

,⌘
2

)! s, |⌘̃| = k+ 1

Figure 15: A data structure D
a

for succinctly representing a large set of L
a

expressions.

Data Structure D
a

for Representing a Set of L
a

Expressions

The data structure D
a

to succinctly represent a large number of L
a

ex-
pressions is shown in Figure 15. The Union Expression s represents a
set of top-level expressions as an explicit set since there is no sharing
amongst the expressions at the top level. The Join Expression s

f

repre-
sents a set of fixed arity expressions by maintaining independent sets
for its arguments e

1

, · · · , e
n

. The DAG expression s
h

represents a set
of associative expressions using a DAG Dag, where the edges in the
graph correspond to a set of expressions s and each path from the
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JcK
�

:= c

JvK
�

:= �(v)

JsK
�

:= {e
j

| e
j

2 Je
i

K
�

, e
i

2 s}

Js
f

K
�

:= {f(e
1

, · · · e
n

) | e
i

2 Js
i

K
�

}

Js
h

K
�

:= {h(e
1

, · · · , e
k

) | (⌘
1

,⌘
2

, · · · ,⌘
k+1

) 2 ⌘̃,
⌘
1

= ⌘s,⌘
k+1

= ⌘t, e
i

2 JW(⌘
i

,⌘
i+1

)K
�

}

Figure 16: Semantics of the data structure D
a

used to succinctly represent a
large number of L

a

expressions.

start node ⌘s to the end node ⌘t denotes an associative expression.
The semantics of the data structure is shown in Figure 16.

join expressions (set-based sharing) There can often be a
huge number of fixed-arity expressions that are consistent with a
given example(s). Consider the input-output example pair (u, v). Sup-
pose v

1

, v
2

, v
3

are values such that v = f(v
1

, v
2

, v
3

). Suppose E
1

, E
2

,
and E

3

are sets of expressions that are respectively consistent with
the input-output pairs (u, v

1

), (u, v
2

), and (u, v
3

). Then, f(e
1

, e
2

, e
3

)
is consistent with (u, v) for any e

1

2 E
1

, e
2

2 E
2

, and e
3

2 E
3

. The
number of such expressions is |E

1

|⇥ |E
2

|⇥ |E
3

|. However, these can
be succinctly represented using the data-structure f(E

1

,E
2

,E
3

), which
denotes the set of expressions {f(e

1

, e
2

, e
3

) | e
1

2 E
1

, e
2

2 E
2

, e
3

2 E
3

},
using space that is proportional to |E

1

|+ |E
2

|+ |E
3

|.

Example 2.2.3. The data structure of FlashFill for position pair ex-
pressions SubStr(v

i

, {p̃
j

}
j

, {p̃
k

}
k

) represents the set of left and right
position logic expressions {p̃

j

}
j

and {p̃
j

}
j

independently. Each posi-
tion logic expression in turn is represented as a tuple (r

1

, r
2

, c). The
set-based sharing of position pair expressions for the transformation
$145.67 ! 145.67 is shown in Figure 17. The left and right position
logic expressions are maintained as independent sets. The general-
ized Boolean conditions in the select expression Select(C,T,B) of the
lookup transformation language L

t

also exhibit set-based sharing. A
generalized conditional b̃ 2 B is represented as a conjunction of gen-
eralized predicates p̃

i

, where each p̃
i

is an equality comparison of
some column of a candidate key with a set of string (or node) choices

b̃ =
kV

i=1

(C
i

= {s,⌘}). The data structure for representing a set of dec-

imal and exponential number formatting expressions in the number
transformation language Dec(u, ⌘̃

1

, f̃) and Exp(u, ⌘̃
1

, f̃, ⌘̃
2

) represents
integer formats (⌘̃

1

), fractional formats (f̃), and exponent formats (⌘̃
2

)
as independent sets.
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$145.67 Æ 145.67

Substr(left, right)
1 7

dollar, 𝜖, 1
dollar, 𝜖, -1

𝜖 , decimal, -1
𝜖 , number, 1

…….
constant 1

𝜖 , End of line, 1
alphanumeric, 𝜖, −1
alphanumeric, 𝜖, 2

decimal, 𝜖, −1
…….

constant 7

1 7

Set-based Sharing

{ { }}
Figure 17: Set-based sharing of position pair (substring) expressions in

FlashFill.

dag expressions (path-based sharing) There can often be
a large number of associative expressions that are consistent with
a given example(s). Consider the input-output example pair (u, v).
Suppose v

1

, . . . , v
n

be n values such that v = h(v
1

, . . . , v
n

) and e
i,j be

an expression that evaluates to the value v
i,j ⌘ h(v

i

, . . . , v
j

) on input
u (1 6 i < j 6 n). Let � = [�

0

, . . . ,�
m

] be a subsequence of [0, . . . ,n]
such that �

0

= 0 and �
m

= n and e
�

be the expression h(e 0
1

, . . . , e 0
m

),
where e 0

i

= e
�

i-1

,�
i

. Note that the number of such subsequences � is
exponential in n, and for any subsequence �, e

�

evaluates to v
1,n.

Such an exponential sized set of associative expressions can be rep-
resented succinctly as a DAG whose nodes correspond to 0, . . . ,n and
an edge between two nodes i and j corresponds to the value v

i,j and is
labeled with e

i,j. A path in the DAG from source node 0 to sink node
n is some subsequence [�

1

, . . . ,�
m

] of [0, . . . ,n] where �
1

= 0 and
�
m

= n, and it represents the expression F(e 0
1

, . . . , e 0
m

) = v, where
e 0
i

= e
�

i-1

,�
i

. The DAG data structure Dag of FlashFill and the graph
for generalized expression nodes for representing select expressions
uses such path-based sharing for succinctly representing exponential
number of expressions.

For example, the DAG representation of an associative expression
(concatenate expression) for the transformation Rob ! Mr. Rob is
shown in Figure 18. For each index in the output string Mr. Rob, there
exists a corresponding node in the DAG. An edge (i, j) between nodes
i and j corresponds to an expression �

ij

in the DSL that generates the
substring of the output string between indices i and j. For example
in the Figure, the edge �

1

between nodes 0 and 1 corresponds to a
position pair expression that can generate the substring R. Any path
in this DAG from the start node 0 to the end node 7 is a valid con-
catenate expression to generate the complete output string. There can
potentially be an exponential number of paths from the start node
to the end node, but they are represented succinctly in polynomial
space using a DAG based representation.
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Mr. Rob
0     1    2    3   4     5   6     7

0 1 2 4 73 5 6
𝛾1

𝛾50

𝛾2 𝛾3 𝛾4 𝛾5 𝛾6 𝛾7

𝛾8 𝛾9
𝛾10 𝛾11

𝛾1. 𝛾2. 𝛾3. 𝛾4. 𝛾5. 𝛾6. 𝛾7
𝛾8. 𝛾2. 𝛾3. 𝛾4. 𝛾5. 𝛾6. 𝛾7

𝛾8. 𝛾2. 𝛾3. 𝛾4. 𝛾50

DAG-based Sharing of Concat Expressions

Figure 18: Path-based sharing of concatenate expressions for the transforma-
tion Rob! Mr. Rob in FlashFill.

2.3 synthesis algorithm

The synthesis algorithm learns a program in the hypothesis space
that conforms to the given specification. We first present a general
synthesis algorithm that learns the set of all programs that conform to
each individual input-output example, and intersects them to return
the synthesized program that conforms to all examples. We then in-
stantiate the components of the general synthesis algorithm with dif-
ferent constraint-based and version-space algebra based techniques
to obtain the two corresponding instantiations: (i) Constraint-based
synthesis algorithm, and (ii) Version-space algebra based synthesis
algorithm. The synthesis algorithm in AutoProf is built on top of the
constraint-based cegis (CounterExample Guided Inductive Synthesis)
algorithm [117, 120] by adding support for minimality constraints.
The synthesis algorithm for semantic transformations in FlashFill is
based on version-space algebra, whereas the synthesis algorithm for
Spt combines abstract interpretation [27, 28] with the cegis algorithm.

The general synthesis algorithm Synthesize is shown in Figure 19.
The algorithm takes as input a set of pairs of input-output example
states {(�

1

, s
1

), . . . , (�
n

, s
n

)}. It first learns the set of all programs P

that are consistent with the first input-output example (�
1

, s
1

) using
the LearnProg procedure. It then iterates over the remaining exam-
ples to learn the set of programs for each input-output example, and
intersects them to compute the common set of conforming programs
using the Intersect procedure. The algorithm maintains a loop in-
variant that in the kth loop iteration, the set of programs P consists
of all the programs that are consistent with the first k input-output
examples. Finally, the algorithm uses the Choose function to select a
program from the set P to return as the synthesized program.

We obtain different synthesis algorithms based on different instan-
tiations of the components of the general synthesis algorithm. The
four components of the general synthesis algorithm are: 1) Selection
of input-output examples, 2) LearnProg, 3) Intersect, and 4) Choose.
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Synthesize((�
1

, s
1

), . . . , (�
n

, s
n

))
P := LearnProg(�

1

, s
1

);
for i = 2 to n:

P 0 := LearnProg(�
i

, s
i

);
P := Intersect(P,P 0);

return Choose(P);

Figure 19: The general synthesis algorithm for learning a program in the
hypothesis space that conforms to a given set of input-output
examples.

For the constraint-based synthesis algorithm, the input-output exam-
ples are selected using the counter-examples generated by a Veri-
fier, the LearnProg procedure encodes the execution semantics of the
input-output example as constraints, the Intersect procedure is sim-
ply a conjunction of constraints, whereas the Choose function is a
non-deterministic function that randomly selects any program from
the solution set of the final constraint P. For the version-space algebra
based synthesis algorithm, the input-output examples are provided
by the user, the LearnProg procedure is implemented as an explicit
divide-and-conquer search to learn programs in a custom data struc-
ture, the Intersect procedure intersects the two data structures, and
finally the Choose function is implemented using a ranking function
that returns the highest ranked program from the set of all conform-
ing programs (represented succinctly using the data structure).

We now present a brief description of the cegis algorithm to solve
the synthesis constraint and how it selects the input-output examples.

Counter-example Guided Inductive Synthesis (CEGIS) Algorithm

Synthesis Phase Verification Phase
∃ 𝑖𝑛 ¬ 𝑄(𝑖𝑛, 𝑐)

{𝑖𝑛𝑖}

𝑆𝑘(𝑐)
𝑖𝑛0 𝑐

∃𝑐 𝑄 𝑖𝑛0, 𝑐 ∧ ⋯
∧ 𝑄 𝑖𝑛𝑘, 𝑐

NO

YES

Figure 20: Solving an exists forall quantified constraint using the Synthesis
and Verification phases of the CounterExample Guided Inductive
Synthesis Algorithm (cegis).

Often times the hypothesis space of programs is parameterized us-
ing a vector of variables c, whose values define the unknown program
P ⌘ Sk(c). Let Q(inp, c) ⌘ �(P, inp) so that our synthesis constraint
now becomes 9c. 8inp. Q(inp, c). For solving such doubly quantified
constraints, cegis solves an inductive synthesis problem of the form
9c. Q(inp

0

, c)^ Q(inp
1

, c) · · ·^ Q(inp
k

, c), where {inp
0

· · · , inp
k

} is a
small set of representative inputs. If the equation above is unsatisfi-
able, the original equation will be unsatisfiable as well. If the equation
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provides a solution, we can verify that solution by solving the fol-
lowing equation 9inp ¬Q(inp, c). The algorithm, shown in Figure 20,
consists of two phases: synthesis phase and verification phase. The
algorithm first starts with a random assignment of inputs inp

0

and
solves for the constraint 9c Q(inp

0

, c). If no solution exists, then it re-
ports that the sketch can not be synthesized. Otherwise, it passes on
the solution c to the verification phase to check if the solution works
for all inputs using the constraint 9inp ¬Q(inp, c). If the verifier can
not find a counterexample input, then the sketch Sk(c) is returned
as the desired solution. Otherwise, the verifier finds an input inp

1

which is then added to the synthesis phase. The synthesis phase now
solves for the constraint 9c Q(inp

0

, c)^ Q(inp
1

, c). This loop between
the synthesis and verification phases continues until either the synthe-
sis or the verification constraint becomes unsatisfiable. The algorithm
returns “no solution” when the synthesis constraint becomes unsat-
isfiable whereas it returns the sketch solution as the desired solution
when the verification constraint becomes unsatisfiable.

2.4 user interaction model

The specification mechanisms in these synthesis approaches are in-
herently ambiguous and incomplete, therefore we need some mech-
anism from the systems to help users refine their specification for
achieving their intended goal. In this section, we describe some gen-
eral mechanisms that the users can use to refine their intent in cases
of under-constrained and over-constrained specification.

Incomplete (Under-constrained) Specification

Distinguishing Input The input-output examples provided by the
users are often under-constrained such that there exists multiple dif-
ferent programs that are consistent with the specification. In such
cases, the system generates a new distinguishing input inp [65] and
two programs P

1

and P
2

, such that both P
1

and P
2

conform to the
set of provided examples but generate different outputs on inp, i.e.
P
1

(inp) 6= P
2

(inp). The system then queries the user to either select
P
1

(inp) or P
2

(inp) as the desired output or provide some other out-
put for the input inp. With this additional input-output example, the
system restarts the synthesis process. In Spt and FlashFill, we use this
technique for asking users to provide additional examples.

Multiple Outputs In version-space algebra based synthesis system,
an advantage of learning the set of all conforming programs is that
we can run them on new inputs to check if there are multiple differ-
ent outputs being generated. FlashFill highlights such cells where the
learnt programs generate multiple different outputs, which a user can
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inspect and either select one of those outputs as the correct output, or
can provide a new output. The system can then use this input-output
example as an additional example and re-learn the transformation.

Refining Error Models With hundreds of thousands of student as-
signments, it can become prohibitively expensive to go over each
student assignment to find the correction rules for providing corre-
sponding feedback. The AutoProf system guides the instructor to
inspect only a few student submissions that could not be corrected
with the current error model. After the addition of new correction
rules, AutoProf re-runs the synthesis process and returns another stu-
dent assignment where the correction process with the updated error
model fails and can not produce the desired feedback.

Conflicting (Over-constrained) Specification

In some cases, the specification can be over-constrained such that
there does not exist any implementation that conforms to the pro-
vided specification. This can happen because of two reasons: (i) ei-
ther the intended transformation lies outside the hypothesis space,
or (ii) the specification is inconsistent. The synthesis system can pro-
vide some guidance to users for explaining why the synthesis process
failed to help them debug the specification. Spt finds the minimal set
of examples that are conflicting and asks the user to check if the out-
puts are correct. In FlashFill, we compute clusters of examples based
on the size of the intersection set of programs, and it can query the
users to check for clusters of unusually small size.

Timeout of Synthesis Process

The synthesis algorithm can sometimes take too long to generate the
desired programs. In such cases, a user can refine their specifica-
tion and provide additional insights to make the synthesis process
more scalable. In Spt, a user can provide additional intermediate
states, as well as more information in the loop skeleton with par-
tially filled statements and conditionals. In FlashFill, a user can break-
down a complex transformation into a sequence of simpler transfor-
mations. In AutoProf, an instructor can provide additional informa-
tion in terms of specialized correction rules, and smaller bounds on
the input values, loop unrolling, and recursion inlining to reduce the
search space of corrections.



3
Au t o P r o f

There has been a lot of interest recently in making quality education
more accessible to students worldwide using information technol-
ogy. Several education initiatives such as EdX, Coursera, and Udacity
are racing to provide online courses on various college-level subjects
ranging from computer science to psychology. These courses, also
called massive open online courses (MOOC), are typically taken by
thousands of students worldwide, and present many interesting scal-
ability challenges. Specifically, we consider the challenge of providing
personalized feedback for programming assignments in introductory
programming courses.

The two methods most commonly used by MOOCs to provide feed-
back on programming problems are: (i) test-case based feedback and
(ii) peer-feedback [37]. In test-case based feedback, the student program
is run on a set of test cases and the failing test cases are reported back
to the student. This is also how the 6.00x course (Introduction to Com-
puter Science and Programming) offered by MITx currently provides
feedback for Python programming exercises. The feedback of failing
test cases is however not ideal; especially for beginner programmers
who find it difficult to map the failing test cases to errors in their code.
This is reflected by the number of students who post their submis-
sions on the discussion board to seek help from instructors and other
students after struggling for hours to correct the mistakes themselves.
In fact, for the classroom version of the Introduction to Programming
course (6.00) taught at MIT, the teaching assistants are required to
manually go through each student submission and provide feedback
describing what is wrong with the submission and how to correct it.
This manual feedback by teaching assistants is simply prohibitive for
the number of students in the online class setting.

The second approach of peer-feedback is being suggested as a po-
tential solution to this problem [132]. For example in 6.00x, students
routinely answer each other’s questions on the discussion forums.
This kind of peer-feedback is helpful, but it is not without problems.
For example, we observed several instances where students had to
wait for hours to get any feedback, and in some cases the feedback
provided was too general or incomplete, and even wrong in a few
cases. Some courses have experimented with more sophisticated peer
evaluation techniques [73] and there is an emerging research area that
builds on recent results in crowd-powered systems [16, 80] to provide
more structure and better incentives for improving the feedback qual-
ity. However, peer-feedback has some inherent limitations, such as

24
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the time it takes to receive quality feedback and the potential for in-
accuracies in feedback, especially when a majority of the students are
themselves struggling to learn the material.

We present the AutoProf tool that employs an automated technique
to provide feedback for introductory programming assignments. The
approach leverages program synthesis technology to automatically
determine minimal fixes to the student’s solution that will make it
match the behavior of a reference solution written by the instructor.
This technology makes it possible to provide students with precise
feedback about what they did wrong and how to correct their mis-
takes. The problem of providing automatic feedback appears to be
related to the problem of automated bug fixing, but it differs from it
in the following two significant respects:

• The complete specification is known. An important challenge
in automatic debugging is that there is no way to know whether
a fix is addressing the root cause of a problem, or simply mask-
ing it and potentially introducing new errors. Usually the best
one can do is check a candidate fix against a test suite or a par-
tial specification [41]. While providing feedback on the other
hand, the solution to the problem is known, and it is safe to
assume that the instructor already wrote a correct reference im-
plementation for the problem.

• Errors are predictable. In a homework assignment, everyone is
solving the same problem after having attended the same lec-
tures, so errors tend to follow predictable patterns. This makes
it possible to use a model-based feedback approach, where the
potential fixes are guided by a model of the kinds of errors stu-
dents typically make for a given problem.

These simplifying assumptions, however, introduce their own set of
challenges. For example, since the complete specification is known,
AutoProf now needs to reason about the equivalence of the student
solution with the reference implementation. Also, in order to take
advantage of the predictability of errors, AutoProf needs to be pa-
rameterized with models that describe the classes of errors. And fi-
nally, these programs can be expected to have higher density of errors
than production code, so techniques which correct bugs one path at
a time [69] will not work for many of these problems that require
coordinated fixes in multiple places.

Our feedback generation technique handles all of these challenges.
The AutoProf tool can reason about the semantic equivalence of stu-
dent programs with reference implementations written in a fairly
large subset of Python, so the instructor does not need to learn a
new formalism to write specifications. The tool also provides an error
model language that can be used to write an error model: a very high
level description of potential corrections to errors that students might
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def computeDeriv_list_int(poly_list_int):

result = []

for i in range(len(poly_list_int)):

result += [i * poly_list_int[i]]

if len(poly_list_int) == 1:

return result # return [0]

else:

return result[1:] # remove the leading 0

Figure 21: The reference implementation for computeDeriv.

make in the solution. When the system encounters an incorrect solu-
tion by a student, it symbolically explores the space of all possible
combinations of corrections allowed by the error model and finds a
correct solution requiring a minimal set of corrections.

We have evaluated our approach on thousands of student solutions
on programming problems obtained from the 6.00x submissions and
discussion boards, and from the 6.00 class submissions. These prob-
lems constitute a major portion of first month of assignment prob-
lems. Our tool can successfully provide feedback on over 64% of the
incorrect solutions.

3.1 AutoProf feedback example

In order to illustrate the kind of feedback generated by AutoProf,
consider the problem of computing the derivative of a polynomial
whose coefficients are represented as a list of integers. This problem
is taken from week 3 problem set of 6.00x (PS3: Derivatives). Given
the input list poly, the problem asks students to write the function
computeDeriv that computes a list poly’ such that

poly’ =

�
[i⇥ poly[i] | 0 < i < len(poly)] if len(poly) > 1

[0] if len(poly) = 1

For example, if the input list poly is [2,-3, 1, 4] (denoting the func-
tion f(x) = 4x3 + x2 - 3x+ 2), the computeDeriv function should re-
turn [-3, 2, 12] (denoting the derivative f 0(x) = 12x2 + 2x - 3). The
reference implementation for the computeDeriv function is shown in
Figure 21. This problem teaches concepts of conditionals and itera-
tion over lists. For this problem, students struggled with many low-
level Python semantics issues such as the list indexing and iteration
bounds. In addition, they also struggled with conceptual issues such
as missing the corner case of handling lists consisting of single ele-
ment (denoting constant function).

One challenge in providing feedback for student submissions is
that a given problem can be solved by using many different algo-
rithms. Figure 22 shows three very different student submissions
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Three different student submissions for computeDeriv
Student Program AutoProf Feedback

1 def computeDeriv(poly):

2 deriv = []

3 zero = 0

4 if (len(poly) == 1):

5 return deriv

6 for e in range(0,len(poly)):

7 if (poly[e] == 0):

8 zero += 1

9 else:

10 deriv.append(poly[e]*e)

11 return deriv

The program requires 3
changes:
• In the return statement re-

turn deriv in line 5, replace
deriv by [0].

• In the comparison expres-
sion (poly[e] == 0) in line
7, change (poly[e] == 0) to
False.

• In the expression range(0,
len(poly)) in line 6, incre-
ment 0 by 1.

(a) (d)

1 def computeDeriv(poly):

2 idx = 1

3 deriv = list([])

4 plen = len(poly)

5 while idx <= plen:

6 coeff = poly.pop(1)

7 deriv += [coeff * idx]

8 idx = idx + 1

9 if len(poly) < 2:

10 return deriv

The program requires 1
change:
• In the function computeD-

eriv, add the base case at
the top to return [0] for
len(poly)=1.

(b) (e)

1 def computeDeriv(poly):

2 length = int(len(poly)-1)

3 i = length

4 deriv = range(1,length)

5 if len(poly) == 1:

6 deriv = [0]

7 else:

8 while i >= 0:

9 new = poly[i] * i

10 i -= 1

11 deriv[i] = new

12 return deriv

The program requires 2
changes:
• In the expression

range(1, length) in
line 4, increment
length by 1.

• In the comparison ex-
pression (i >= 0) in
line 8, change opera-
tor >= to !=.

(c) (f)

Figure 22: Three very different student submissions ((a), (b), and (c)) for
the computeDeriv problem and the corresponding feedback gen-
erated by our tool ((d), (e), and (f)) for each one of them using the
same reference implementation.



3.1 AutoProf feedback example 28

for the computeDeriv problem, together with the feedback generated
by our tool for each submission. The student submission shown in
Figure 22(a) is taken from the 6.00x discussion forum1. The student
posted the code in the forum seeking help and received two responses.
The first response asked the student to look for the first if-block re-
turn value, and the second response said that the code should return
[0] instead of empty list for the first if statement. There are many dif-
ferent ways to modify the code to return [0] for the case len(poly)=1.
The student chose to change the initialization of the deriv variable
from [ ] to the list [0]. The problem with this modification is that the
result will now have an additional 0 in front of the output list for all
input lists (which is undesirable for lists of length greater than 1). The
student then posted the query again on the forum on how to remove
the leading 0 from result, but unfortunately this time did not get any
more response.

AutoProf generates the feedback shown in Figure 22(d) for the stu-
dent program in about 40 seconds. During these 40 seconds, AutoProf
searches over more than 107 candidate fixes and finds the fix that
requires minimum number of corrections. There are three problems
with the student code: first it should return [0] in line 5 as was sug-
gested in the forum but was not specified how to make the change,
second the if block should be removed in line 7, and third that the
loop iteration should start from index 1 instead of 0 in line 6. The
generated feedback consists of four pieces of information (shown in
bold in the figure for emphasis):

• the location of the error denoted by the line number.

• the problematic expression in the line.

• the sub-expression which needs to be modified.

• the new modified value of the sub-expression.

The feedback generator is parameterized with a feedback-level pa-
rameter to generate feedback consisting of different combinations of
the four kinds of information, depending on how much information
the instructor is willing to provide to the student.

workflow In order to provide the level of feedback described
above, AutoProf needs some information from the instructor. First,
AutoProf needs to know what the problem is that the students are
supposed to solve. The instructor provides this information by writ-
ing a reference implementation such as the one in Figure 21. Since
Python is dynamically typed, the instructor also provides the types of

1 https://www.edx.org/courses/MITx/6.00x/2012_Fall/discussion/forum/600x_

ps3_q2/threads/5085f3a27d1d422500000040

https://www.edx.org/courses/MITx/6.00x/2012_Fall/discussion/forum/600x_ps3_q2/threads/5085f3a27d1d422500000040
https://www.edx.org/courses/MITx/6.00x/2012_Fall/discussion/forum/600x_ps3_q2/threads/5085f3a27d1d422500000040
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function arguments and return value. In Figure 21, the instructor spec-
ifies the type of input argument to be list of integers (poly_list_int)
by appending the type to the name.

In addition to the reference implementation, AutoProf needs a de-
scription of the kinds of errors students might make. We have de-
signed an error model language Eml, which can describe a set of
correction rules that denote the potential corrections to errors that
students might make. For example, in the student attempt in Fig-
ure 22(a), we observe that corrections often involve modifying the
return value and the range iteration values. We can specify this infor-
mation with the following three correction rules:

return a ! return [0]

range(a
1

,a
2

) ! range(a
1

+ 1,a
2

)

a
0

== a
1

! False

The correction rule return a ! return [0] states that the expression
of a return statement can be optionally replaced by [0]. The error
model for this problem that we use for our experiments is shown in
Figure 27, but we will use this simple error model for simplifying the
presentation in this section. In later experiments, we also show how
only a few tens of incorrect solutions can provide enough information
to create an error model that can automatically provide feedback for
thousands of incorrect solutions.

The rules define a space of candidate programs which AutoProf
needs to search in order to find one that is equivalent to the reference
implementation and that requires minimum number of corrections.
We use constraint-based synthesis technology [117, 52, 122] to effi-
ciently search over this large space of programs. Specifically, we use
the Sketch synthesizer that uses a SAT-based algorithm to complete
program sketches (programs with holes) so that they meet a given
specification. We extend the Sketch synthesizer with support for min-
imize hole expressions whose values are computed efficiently by using
incremental constraint solving. To simplify the presentation, we use a
simpler language mPy (miniPython) in place of Python to explain the
details of our algorithm. In practice, our tool supports a fairly large
subset of Python including closures, higher order functions, and list
comprehensions.

The architecture of AutoProf is shown in Figure 23. The solution
strategy to find minimal corrections to a student’s solution is based
on a two-phase translation to the Sketch synthesis language. In the
first phase, the Program Rewriter uses the correction rules to trans-
late the solution into a language we call g

mPy; this language provides
us with a concise notation to describe sets of mPy candidate programs,
together with a cost model to reflect the number of corrections associ-
ated with each program in this set. In the second phase, this g

mPy pro-
gram is translated into a sketch program by the Sketch Translator,
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Figure 23: The architecture of our AutoProf system.

which is then solved using the Sketch synthesis system. After the syn-
thesizer finds a solution, the Feedback Generator extracts the choices
made by the synthesizer and uses them to generate the corresponding
feedback in natural language.

3.2 specification mechanism

The specification mechanism of the AutoProf tool consists of a ref-
erence implementation that specifies the correct functional behav-
ior of a student submission. The reference implementation for the
computeDeriv problem is shown in Figure 21. Since Python is a dy-
namic language and we use a statically typed synthesis system Sketch

for synthesizing corrections, the reference implementation also needs
to specify the types of the function arguments and the return type.
These types are specified by appending the corresponding types at
the end of argument names and function name.

3.3 hypothesis space of corrections

The hypothesis space of corrections searched over by the AutoProf
tool is defined by the application of error model on a student imple-
mentation. We first describe Eml, the Error Model Language to write
error models and present its syntax and semantics. An error model
consists of a collection of rewrite rules that correspond to poten-
tial corrections to common mistakes students are making on a given
problem. We define the semantics of an error model over a simple
Python-like imperative language mPy to obtain a large set of Python
programs represented succinctly using the language g

mPy. Finally, we
present a syntactic translation of an error model to a transformation
function that transforms an mPy program to an g

mPy program.
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3.3.1 Eml: Error Model Language

The second input to the AutoProf tool is an error model that describes
a set of correction rules that corresponds to the common mistakes
students make for a given problem. The error models are described
using the error model language Eml. We describe the syntax and
semantics of Eml. An Eml error model consists of a set of rewrite
rules that captures the potential corrections for mistakes that students
might make in their solutions. We define the rewrite rules over a sim-
ple Python-like imperative language mPy. A rewrite rule transforms
a program element in mPy to a set of weighted mPy program ele-
ments. This weighted set of mPy program elements is represented
succinctly as an g

mPy program element, where g
mPy extends the mPy

language with set-exprs (sets of expressions) and set-stmts (sets of
statements). The weight associated with a program element in this
set denotes the cost of performing the corresponding correction. An
error model transforms an mPy program to an g

mPy program by recur-
sively applying the rewrite rules. We show that this transformation
is deterministic and is guaranteed to terminate on well-formed error
models.

Arith Expr a := n | [ ] | v | a[a] | a
0

op
a

a
1

| [a
1

, · · · , a
n

] | f(a
0

, · · · , a
n

)

| a
0

if b else a
1

Arith Op op
a

:= + | - | ⇥ | / | ⇤ ⇤
Bool Expr b := not b | a

0

op
c

a
1

| b
0

op
b

b
1

Comp Op op
c

:= == | < | > | 6 | >
Bool Op op

b

:= and | or

Stmt Expr s := v = a | s
0

; s
1

| while b : s

| if b : s
0

else: s
1

| for a
0

in a
1

: s | return a

Func Def. p := def f(a
1

, · · · , a
n

) : s

Figure 24: The syntax of a simple Python-like language mPy.

mPy and

g
mPy languages The syntax of mPy and g

mPy languages
is shown in Figure 24 and Figure 25 respectively. The purpose of
g
mPy language is to represent a large collection of mPy programs
succinctly. The g

mPy language consists of set-expressions (ã and b̃)
and set-statements (s̃) that represent a weighted set of corresponding
mPy expressions and statements respectively. For example, the set ex-
pression { n

0

, · · · ,n
k

} represents a weighted set of constant integers
where n

0

denotes the default integer value associated with cost 0 and
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Arith set-expr ã := a | { ã
0

, · · · , ã
n

} | ã[ã] | ã
0

fop
a

ã
1

| [ã
0

, · · · , ã
n

] | f̃(ã
0

, · · · , ã
n

)

set-op fop
x

:= op
a

| { fop
x

0

, · · · , fop
x

n

}

Bool set-expr b̃ := b | { b̃
0

, · · · , b̃
n

} | not b̃ | ã
0

fop
c

ã
1

| b̃
0

fop
b

b̃
1

Stmt set-expr s̃ := s | { s̃
0

, · · · , s̃
n

} | ṽ := ã | s̃
0

; s̃
1

| while b̃ : s̃ | for ã
0

in ã
1

: s̃

| if b̃ : s̃
0

else : s̃
1

| return ã

Func Def p̃ := def f(a
1

, · · · ,a
n

) s̃

Figure 25: The syntax of language g
mPy for succinct representation of a large

number of mPy programs.

all other integer constants (n
1

, · · · ,n
k

) are associated with cost 1. The
sets of composite expressions are represented succinctly in terms of
sets of their constituent sub-expressions. For example, the composite
expression { a

0

,a
0

+ 1}{ < ,6,>,>,==, 6=}{ a
1

,a
1

+ 1,a
1

- 1} repre-
sents 36 mPy expressions.

Each mPy program in the set of programs represented by an g
mPy

program is associated with a cost (weight) that denotes the number of
modifications performed in the original program to obtain the trans-
formed program. This cost allows AutoProf to search for corrections
that require minimum number of modifications. The weighted set of
mPy programs is defined using the [[ ]] function shown in Figure 26.
The [[ ]] function on mPy expressions such as a returns a singleton set
{(a, 0)} consisting of the corresponding expression associated with
cost 0. On set-expressions of the form { ã

0

, · · · , ã
n

}, the function re-
turns the union of the weighted set of mPy expressions correspond-
ing to the default set-expression ([[ã

0

]]) and the weighted set of ex-
pressions corresponding to other set-expressions (ã

1

, · · · , ã
n

), where
each expression in [[ã

i

)]] is associated with an additional cost of 1. On
composite expressions, the function computes the weighted set recur-
sively by taking the cross-product of weighted sets of its constituent
sub-expressions and adding their corresponding costs. For example,
the weighted set for composite expression x̃[ỹ] consists of an expres-
sion x

i

[y
j

] associated with cost c
x

i

+ c
y

j

for each (x
i

, c
x

i

) 2 [[x̃]] and
(y

j

, c
y

j

) 2 [[ỹ]].

syntax of Eml An Eml error model consists of a set of correction
rules that are used to transform an mPy program to an g

mPy program.
A correction rule C is written as a rewrite rule L ! R, where L and
R denote a program element in mPy and g

mPy respectively. A program
element can either be a term, an expression, a statement, a method
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[[a]] = {(a, 0)}
[[{ ã
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, · · · , ã
n

}]] = [[ã
0

]][ {(a, c+ 1) | (a, c) 2 [[ã
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, c
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n
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f
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n
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f
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i
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]]}

[[op
a

]] = {(op
a

, 0)}

[[{ fop
a

0

, · · · , fop
a
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0

]][ {(op
a
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a
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[[b]] = {(b, 0)}
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0

]][ {(b, c+ 1) | (b, c) 2 [[b̃
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[[s]] = {(s, 0)}
[[{ s̃

0

, · · · , s̃
n

}]] = [[s̃
0

]][ {(s, c+ 1) | (s, c) 2 [[s̃
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) | (v, c
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) 2 [[ṽ]], (a, c
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) 2 [[ã]]}

[[s̃
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; s̃
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; s
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) 2 [[s̃
0
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]]}

[[if b̃ then s̃
0

else s̃
1

]] = {(if b then s
0

else s
1

, c
b
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0

+ c
1

) | (b, c
b

) 2 [[b̃]],
(s

0

, c
0

) 2 [[s̃
0

]], (s
1

, c
1

) 2 [[s̃
1

]]}

[[while b̃ do s̃]] = {(while b do s, c
b

+ c
s

) | (b, c
b

) 2 [[b̃]], (s, c
s

) 2 [[s̃]]}

[[return ã]] = {(return a, c) | (a, c) 2 [[a]]}

Figure 26: The [[ ]] function that translates an g
mPy program to a weighted set

of mPy programs.
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or the program itself. The left hand side (L) denotes an mPy program
element that is pattern matched to be transformed to an g

mPy program
element denoted by the right hand side (R). The left hand side of
the rule can use free variables whereas the right hand side can only
refer to the variables present in the left hand side. The language also
supports a special 0 (prime) operator that can be used to tag sub-
expressions in R that are further transformed recursively using the
error model. The rules use a shorthand notation ?a (in the right hand
side) to denote the set of all variables that are of the same type as the
type of expression a and are in scope at the corresponding program
location. We assume each correction rule is associated with cost 1,
but it can be easily extended to different costs to account for different
severity of mistakes.

IndR: v[a] ! v[{a+ 1,a- 1, ?a}]
InitR: v = n ! v = {n+ 1,n- 1, 0}

RanR: range(a
0

,a
1

) ! range({0, 1,a
0

- 1,a
0

+ 1},
{a

1

+ 1,a
1

- 1})

CompR: a
0

op
c

a
1

! {{a 0
0

- 1, ?a
0

} fop
c

{a 0
1

- 1, 0, 1, ?a
1

},
True, False}

where fop
c

= {<,>,6,>,==, 6=}

RetR: return a ! return{[0] if len(a) == 1 else a,
a[1 :] if (len(a) > 1) else a}

Figure 27: The error model E for the computeDeriv problem. The default
choices that do not change the original expression are added by
default by the translation function.

Example 3.3.1. The error model for the computeDeriv problem is
shown in Figure 27. The IndR rewrite rule transforms the list access
indices. The InitR rule transforms the right hand side of constant ini-
tializations. The RanR rule transforms the arguments for the range

function; similar rules are defined in the model for other range func-
tions that take one and three arguments. The CompR rule transforms
the operands and operator of the comparisons. The RetR rule adds
the two common corner cases of returning [0] when the length of
input list is 1, and the case of deleting the first list element before
returning the list. Note that these rewrite rules define the corrections
that can be performed optionally; the zero cost (default) case of not
correcting a program element is added automatically as described in
Section 3.3.

Definition 3.3.1. Well-formed Rewrite Rule : A rewrite rule C : L! R

is defined to be well-formed if all tagged sub-terms t 0 in R have a
smaller size syntax tree than that of L.
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The rewrite rule C
1

: v[a] ! {(v[a]) 0 + 1} is not a well-formed
rewrite rule as the size of the tagged sub-term (v[a]) of R is the same
as that of the left hand side L. On the other hand, the rewrite rule
C
2

: v[a]! {v 0[a 0] + 1} is well-formed.

Definition 3.3.2. Well-formed Error Model : An error model E is de-
fined to be well-formed if all of its constituent rewrite rules C

i

2 E

are well-formed.

3.3.2 Rewriting Student Solution using an Error Model

An error model E is syntactically translated to a function TE that
transforms an mPy program to an g

mPy program. The TE function
first traverses the program element w in the default way, i.e. no trans-
formation happens at this level of the syntax tree, and the function
is called recursively on all of its top-level sub-terms t to obtain the
transformed element w

0

2 g
mPy. For each correction rule C

i

: L
i

! R
i

in the error model E, the function contains a Match expression that
matches the term w with the left hand side of the rule L

i

(with appro-
priate unification of the free variables in L

i

). If the match succeeds,
it is transformed to a term w

i

2 g
mPy as defined by the right hand

side R
i

of the rule after calling the TE function on each of its tagged
sub-terms t 0. Finally, the method returns the set of all transformed
terms { w

0

, · · · ,w
n

}.

TE
1

(w : mPy) : gmPy =

let w
0

= w[t! TE
1

(t)] in (⇤ t : a sub-term of w ⇤)
let w

1

= Match w with
v[a]! v[{a+ 1,a- 1}] in

let w
2

= Match w with
a
0

op
c

a
1

! {TE
1

(a
0

)- 1, 0} op
c

{TE
1

(a
1

)- 1, 0} in
{ w

0

,w
1

,w
2

}

Figure 28: The TE
1

method for error model E
1

.

Example 3.3.2. Consider an error model E
1

consisting of the follow-
ing three correction rules:

C
1

: v[a] ! v[{a- 1,a+ 1}]

C
2

: a
0

op
c

a
1

! {a 0
0

- 1, 0} op
c

{a 0
1

- 1, 0}
C
3

: v[a] ! ?v[a]
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The transformation function TE
1

for the error model E
1

is shown
in Figure 28.

T(x[i] < y[j]) ⌘ { T(x[i]) < T(y[j]) , {T(x[i])- 1, 0} < {T(y[j])- 1, 0}}

T(x[i]) ⌘ { T(x)[T(i)] , x[{i+ 1, i- 1}],y[i]}

T(y[j]) ⌘ { T(y)[T(j)] ,y[{j+ 1, j- 1}], x[j]}

T(x) ⌘ { x } T(i) ⌘ { i } T(y) ⌘ { y } T(j) ⌘ { j }

T(x[i] < y[j]) ⌘ { { x [ i ] , x[{i+ 1, i- 1}],y[i]} < { y [ j ] ,y[{j+ 1, j- 1}], x[j]} ,

{{ x [ i ] , x[{i+ 1, i- 1}],y[i]}- 1, 0} < {{ y [ j ] ,y[{j+ 1, j- 1}], x[j]}- 1, 0}}

Figure 29: Application of TE
1

(abbreviated T ) on expression (x[i] < y[j]).

The recursive steps of application of TE
1

function on expression
(x[i] < y[j]) are shown in Figure 29. This example illustrates two
interesting features of the transformation function:

• Nested Transformations : Once a rewrite rule L! R is applied
to transform a program element matching L to R, the instruc-
tor may want to apply another rewrite rule on only a few sub-
terms of R. For example, she may want to avoid transforming
the sub-terms which have already been transformed by some
other correction rule. The Eml language facilitates making such
distinction between the sub-terms for performing nested cor-
rections using the 0 (prime) operator. Only the sub-terms in R

that are tagged with the prime operator are visited for applying
further transformations (using the TE function recursively on its
tagged sub-terms t 0), whereas the non-tagged sub-terms are not
transformed any further. After applying the rewrite rule C

2

in
the example, the sub-terms x[i] and y[j] are further transformed
by applying rewrite rules C

1

and C
3

.

• Ambiguous Transformations : While transforming a program
using an error model, it may happen that there are multiple
rewrite rules that pattern match the program element w. Af-
ter applying the rewrite rule C

2

in the example, there are two
rewrite rules C

1

and C
3

that pattern match the terms x[i] and
y[j]. After applying one of these rules (C

1

or C
3

) to an expres-
sion v[a], we cannot apply the other rule to the transformed
expression. In such ambiguous cases, the TE function creates a
copy of the transformed program element (w

i

) for each ambigu-
ous choice and then computes the union of all such elements to
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def computeDeriv(poly):

deriv = []

zero = 0

if ({ len(poly) == 1 , False}):

return { deriv ,[0]}

for e in range ({ 0 ,1}, len(poly)):

if ({ poly[e] == 0 ,False}):

zero += 1

else:

deriv.append(poly[e]*e)

return { deriv ,[0]}

Figure 30: The resulting g
mPy program after applying correction rules to pro-

gram in Figure 22(a).

obtain the transformed program element. This semantics of han-
dling ambiguity of rewrite rules also matches naturally with the
intent of the instructor. If the instructor wanted to perform both
transformations together on array accesses, she could have pro-
vided a combined rewrite rule such as v[a]!?v[{a+ 1,a- 1}].

For the student program shown in Figure 22(d), the three correction
rules in the error model described in Section 3.1 induce a space of 32
different candidate programs as shown in Figure 30. This candidate
space is fairly small, but the number of candidate programs grow
exponentially with the number of correction places in the program
and with the number of correction choices in the rules. The error
model that we use in our experiments induces a space of more than
1012 candidate programs for some of the benchmark problems. In
order to search this large space efficiently, the program is translated
to a sketch program.

Theorem 3.3.1. Given a well-formed error model E, the transforma-
tion function TE always terminates.

Proof. From the definition of well-formed error model, each of its con-
stituent rewrite rule is also well-formed. Hence, each application of
a rewrite rule reduces the size of the syntax tree of terms that are re-
quired to be visited further for transformation by TE. Therefore, the
TE function terminates in a finite number of steps.

3.4 synthesis algorithm

In the previous section, we described the transformation of an mPy

program to an g
mPy program based on an error model. We now present

the translation of an g
mPy program into a Sketch program [117] and

present the CEGISMIN algorithm for solving the Sketch program to
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struct MultiType{

int val, flag;

bit bval;

MTString str; MTTuple tup;

MTDict dict; MTList lst;

}

struct MTList{

int len;

MultiType[len] lVals;

}

Figure 31: The MultiType struct for encoding Python types.

compute the minimum number of corrections to a student program
(represented as an mPy program) such that it becomes functionally
equivalent with the teacher’s reference implementation.

3.4.1 Translation of g
mPy programs to Sketch

The Sketch [117] synthesis system allows programmers to write pro-
grams while leaving fragments of it unspecified as holes; the contents
of these holes are filled up automatically by the synthesizer such that
the program conforms to a specification provided in terms of a refer-
ence implementation. The synthesizer uses the CEGIS algorithm [118]
to efficiently compute the values for holes and uses bounded sym-
bolic verification techniques for performing equivalence check of the
two implementations.

There are two key aspects in the translation of an g
mPy program

to a Sketch program: (i) the translation of Python-like constructs in
g
mPy to Sketch, and (ii) the translation of set-expr choices in g

mPy to
Sketch functions. The first aspect is specific to the Python language.
Sketch supports high-level features such as closures and higher-order
functions which simplifies the translation, but it is statically typed
whereas mPy programs (like Python) are dynamically typed. The
translation models the dynamically typed variables and operations
over them using struct types in Sketch in a way similar to the union
types. The second aspect of the translation is the modeling of set-
expressions in g

mPy using ?? (holes) in Sketch, which is language
independent.

handling dynamic typing of

g
mPy variables The dynamic

variable types in the mPy language are modeled using the MultiType

struct defined in Figure 31. The MultiType struct consists of a flag

field that denotes the dynamic type of a variable and currently sup-
ports the following set of types: {INTEGER, BOOL, TYPE, LIST, TUPLE,
STRING, DICTIONARY}. The val and bval fields store the value of an in-
teger and a Boolean variable respectively, whereas the str, tup, dict,
and lst fields store the value of string, tuple, dictionary, and list
variables respectively. The MTList struct consists of a field len that de-
notes the length of the list and a field lVals of type array of MultiType
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that stores the list elements. For example, the integer value 5 is rep-
resented as the value MultiType(val=5, flag=INTEGER) and the con-
stant list value [1,2] is represented as the value MultiType(lst=new

MTList(len=2,lVals={oneMT, twoMT}), flag=LIST), where oneMT =

MultiType(val=1, flag=INTEGER) and twoMT = MultiType(val=2,
flag=INTEGER). The g

mPy expressions and statements are transformed
to Sketch functions that perform the corresponding transformations
according to Python semantics over MultiType. For example, the Python
statement (a = b) is translated to assignMT(a, b), where the assignMT
function assigns MultiType b to a. Similarly, the binary add expres-
sion (a + b) is translated to binOpMT(a, b, ADD_OP) that in turn calls
the function addMT(a,b) to add a and b as shown in Figure 32.

MultiType addMT(MultiType a, MultiType b){

assert a.flag == b.flag; // same types can be added

if(a.flag == INTEGER) // add for integers

return new MultiType(val=a.val+b.val, flag = INTEGER);

if(a.flag == LIST){ // add for lists

int newLen = a.lst.len + b.lst.len;

MultiType[newLen] newLVals = a.lst.lVals;

for(int i=0; i<b.lst.len; i++)

newLVals[i+a.lst.len] = b.lst.lVals[i];

return new MultiType(lst = new MTList(lVals=newLVals, len=

newLen), flag=LIST);}

· · · · · ·
}

Figure 32: The addMT function for adding two MultiType a and b.

translation of

g
mPy set-expressions The second key aspect

of this translation is the translation of expression choices in g
mPy. The

Sketch construct ?? denotes an unknown integer hole that can be as-
signed any constant integer value by the synthesizer. The expression
choices in g

mPy are translated to functions in Sketch that based on the
unknown hole values return either the default expression or one of
the other expression choices. The function bodies obtained by the ap-
plication of translation function (�) on some of the interesting g

mPy

constructs are shown in Figure 33. The Sketch construct ?? (called
hole) is a placeholder for a constant value, which is filled up by the
Sketch synthesizer while solving the constraints to satisfy the given
specification.

The singleton sets consisting of an mPy expression such as {a}

are translated simply to the corresponding expression itself. A set-
expression of the form { ã

0

, · · · , ã
n

} is translated recursively to the
if expression :if (??) �(ã

0

) else �({ã
1

, · · · , ã
n

}), which means
that the synthesizer can optionally select the default set-expression
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�(ã
0

) (by choosing ?? to be true) or select one of the other choices
(ã

1

, · · · , ã
n

). The set-expressions of the form {ã
0

, · · · , ã
n

} are sim-
ilarly translated but with an additional statement for setting a fresh
variable choicek if the synthesizer selects the non-default choice ã

0

.
The translation rules for the assignment statements (ã

0

:= ã
1

) re-
sults in if expressions on both left and right sides of the assign-
ment. The if expression choices occurring on the left hand side
are desugared to individual assignments. For example, the left hand
side expression if (??) x else y := 10 is desugared to if (??) x :=
10 else y := 10. The infix operators in g

mPy are first translated to
function calls and are then translated to sketch using the translation
for set-function expressions. The remaining g

mPy expressions are sim-
ilarly translated recursively.

For example, the set-statement return { deriv ,[0]}; (line 5 in Fig-
ure 30) is translated to return modRetVal0(deriv), where the modRetVal0
function is defined as:

MultiType modRetVal0(MultiType a){

if(??) return a; // default choice

choiceRetVal0 = True; // non-default choice

MTList list = new MTList(lVals={new MultiType(val=0,

flag=INTEGER)}, len=1);

return new MultiType(lst=list, type = LIST);

}

translating function calls The translation of function calls
for recursive problems and for problems that require writing a func-
tion that uses other sub-functions is parmeterized by three options: 1)
use the student’s implementation of sub-functions, 2) use the teacher’s
implementation of sub-functions, and 3) treat the sub-functions as un-
interpreted functions.

generating the driver functions The translation phase also
generates a Sketch harness that compares the outputs of the trans-
lated student and reference implementations on all inputs of a bounded
size. The Sketch synthesizer supports the equivalence checking of
functions whose input arguments and return values are over Sketch

primitive types such as int, bit and arrays. Therefore, after the trans-
lation of g

mPy programs to Sketch programs, we need additional
driver functions to integrate the functions over MultiType input argu-
ments and return value to the corresponding functions over Sketch

primitive types. The driver functions first converts the input argu-
ments over primitive types to corresponding MultiType variables us-
ing library functions such as computeMTFromInt, and then calls the
translated g

mPy function with the MultiType variables. The returned
MultiType value is translated back to primitive types using library
functions such as computeIntFromMT. The driver function for student’s
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0

, · · · , ã
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1

, · · · , ã
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n

))

�{f̃
0

, · · · , f̃
n

}(ã
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�(while b̃ : s̃) = while (�(b̃)) {�(s̃)}

�(return ã) = return �(ã)

Figure 33: The translation rules for converting g
mPy set-exprs to correspond-

ing Sketch function bodies.

programs also consists of additional statements of the form if(choicek)
totalCost++; and the statement minimize(totalCost), which tells
the synthesizer to compute a solution to the Boolean variables choicek
that minimizes the totalCost variable.

For example in case of the computeDeriv function, with bounds of
n = 4 for both the number of integer bits and the maximum length of
input list, the harness matches the output of the two implementations
for more than 216 different input values as opposed to 10 test-cases
used in 6.00x. Even though AutoProf searches over a much larger
space of inputs, it can only check for inputs upto a bounded size. This
tradeoff can lead it to declare some student programs correct when
they are not, but this can be easily taken care of by complementing
AutoProf with traditional test cases to perform an additional result
verification step. The sketch generated for g

mPy program in Figure 30

is shown in Figure 34.

3.4.2 CEGISMIN: Incremental Solving for the Minimize holes

We can use the standard CEGIS algorithm in Sketch [117] to solve the
resulting sketch files, but since the algorithm searches for any possi-
ble solution, it often comes up with corrections that requires a lot of
changes. Ideally, we would like to compute minimal changes since
that would most likely correspond to the approach that student had
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#include <multiTypeLib.c>
int totalCost = 0;
bit choiceComp0=0, choiceComp1=0;
bit choiceIdx0=0, choiceRetVal0=0, choiceRetVal1=0;

#define zeroMT new MultiType(val=0, type = INTEGER)
#define oneMT new MultiType(val=1, type = INTEGER)
#define emptyListMT = new MultiType(lst = new MTList(lVals={}, len=0),

type = LIST)

MultiType computeDeriv(MultiType poly){
MultiType deriv, zero;
assignMT(deriv, emptyListMT);
assignMT(zero, zeroMT);
if(getBoolValue(modComp0(compareMT(len(poly), oneMT, COMP_EQ))))
return modRetVal0(deriv);

MultiType iterList = range2(modIdx0(zeroMT),len(poly));
for(int i=0; i< iterList.lst.len; i++){
MultiType e = iterList.lst.lVals[i];
if(getBoolValue(modComp1(compareMT(sub(poly,e), zeroMT, COMP_EQ))))
assignMT(zero, binOpMT(zero, oneMT, ADD_OP));

else
append(deriv, binOpMT(sub(poly,e),e, MUL_OP));

}
return modRetVal1(deriv);

}

MultiType modComp0(MultiType b){
if(??) return b;
choiceComp0 = 1;
return FalseMT();

}
MultiType modIdx0(MultiType a){
if(??) return a;
choiceIdx0 = 1;
return incrementOne(a);

}
MultiType modRetVal0(MultiType a){
if(??) return a;
choiceRetVal0 = 1;
MTList list = new MTList(lVals={zeroMT}, len =1);
return new MultiType(lst=list, type = LIST);

}

int[N] computeDeriv_driver(int N, int[N] poly) implements
computeDeriv_teacher_driver{

MultiType polyMT = createMTFromArray(N, poly);
MultiType resultMT = computeDeriv(polyMT);
int[N] result = getArrayFromMT(resultMT);
if(choiceComp0) totalCost = totalCost + 1;
if(choiceComp1) totalCost = totalCost + 1;
if(choiceIdx0) totalCost = totalCost + 1;
if(choiceRetVal0) totalCost = totalCost + 1;
if(choiceRetVal1) totalCost = totalCost + 1;
minimize(totalCost);
return result;

}

Figure 34: The sketch generated for g
mPy program in Figure 30.
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Algorithm 1 CEGISMIN Algorithm for Minimize expression
1: �

0

 �random, i 0, �
0

 �, �
p

 null

2: while (True)
3: i i+ 1

4: �
i

 Synth(�
i-1

,�
i-1

) /* Synthesis Phase */
5: if (�

i

= UNSAT) /* Synthesis Fails */
6: if (�prev = null) return UNSAT_SKETCH

7: else return PE(P,�
p

)
8: choose � 2 �

i

9: �
i

 Verify(�) /* Verification Phase */
10: if (�

i

= null) /* Verification Succeeds */
11: (minHole, minHoleValue) getMinHoleValue(�)
12: �

p

 �

13: �
i

 �
i

[ {encode(minHole < minHoleVal)}

in mind. But adding minimality constraints to SAT-based approaches
is challenging. We can try to use binary search or MAX-SAT solvers
to solve for minimality constraints, but we found them to be too inef-
ficient in practice to solve the sketches for these problems.

We extend the CEGIS algorithm to obtain the CEGISMIN algorithm
shown in Algorithm 1 for efficiently solving sketches that include
a minimization constraint. The input state of the sketch program is
denoted by � and the sketch constraint store is denoted by �. Ini-
tially, the input state �

0

is assigned a random input state value and
the constraint store �

0

is assigned the constraint set obtained from
the sketch program. The variable �

p

stores the previous satisfiable
hole values and is initialized to null. In each iteration of the loop,
the synthesizer first performs the inductive synthesis phase where it
shrinks the constraints set �

i-1

to �
i

by removing behaviors from
�

i-1

that do not conform to the input state �
i-1

. If the constraint
set becomes unsatisfiable, it either returns the sketch completed with
hole values from the previous solution if one exists, otherwise it re-
turns UNSAT. On the other hand, if the constraint set is satisfiable,
then it first chooses a conforming assignment to the hole values and
goes into the verification phase where it tries to verify the completed
sketch. If the verifier fails, it returns a counter-example input state
�
i

and the synthesis-verification loop is repeated. If the verification
phase succeeds, instead of returning the result as is done in the CEGIS

algorithm, the CEGISMIN algorithm computes the value of minHole

from the constraint set �, stores the current satisfiable hole solution
� in �

p

, and adds an additional constraint {minHole<minHoleVal} to
the constraint set �

i

. The synthesis-verification loop is then repeated
with this additional constraint to find a conforming value for the
minHole variable that is smaller than the current value in �.
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3.4.3 Mapping Sketch solution to generate feedback

Each correction rule in the error model is associated with a feedback
message, e.g. the correction rule for variable initialization v = n !
v = {n+ 1} in the computeDeriv error model is associated with the
message “Increment the right hand side of the initialization by 1”. Af-
ter the Sketch synthesizer finds a solution to the constraints, the tool
maps back the values of unknown integer holes to their correspond-
ing expression choices. These expression choices are then mapped to
natural language feedback using the messages associated with the
corresponding correction rules, together with the line numbers. If the
synthesizer returns UNSAT, the tool reports that the student solution
can not be fixed.

3.5 user interaction model

An instructor first starts with a basic error model corresponding to
the set of common mistakes that students typically make across all
programming problems. This lets AutoProf provide common generic
feedback for some of the student submissions. The instructor then
chooses one of the incorrect student submissions for which AutoProf
could not generate feedback, and adds corresponding correction rules
to the model so that in the next iteration AutoProf would generate
feedback for such mistakes. This iterative process of incrementally
adding correction rules to the error model helps instructors avoid the
prohibitively expensive step of going through each student solution,
and analyze only a handful of student submission to construct a rela-
tively thorough problem-specific error model.

AutoProf also allows instructors to specify the cost value corre-
sponding to each correction rule. This cost metric can be updated
iteratively as more rules are added to the error model. An instruc-
tor can also specify the level of feedback detail that AutoProf should
generate for each correction rule. For some corrections, the instruc-
tor may wish to provide a very generic feedback, whereas for some
other corrections, the instructor may wish to provide exact feedback
corresponding to how to the fix and line number.

3.6 implementation and experiments

We now briefly describe some of the implementation details of AutoProf,
and then describe the experiments we performed to evaluate AutoProf
over the benchmark problems.
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3.6.1 Implementation

The frontend of AutoProf is implemented in Python itself and uses
the Python ast module to convert a Python program to a Sketch pro-
gram. The backend system that solves the sketch is implemented as a
wrapper over the Sketch system that is extended with the CEGISMIN

algorithm. The feedback generator, implemented in Python, parses
the output generated by the backend system and translates it to cor-
responding high level feedback in natural language. The error mod-
els in AutoProf are currently written in terms of rewrite rules over
the Python AST. In addition to the Python AutoProf, we have also
developed a prototype for the C# language, which we built on top
of the Microsoft Roslyn compiler framework. The C# prototype sup-
ports a smaller subset of the language relative to the Python tool but
nevertheless it was useful in helping us evaluate the potential of our
technique on a different language.

3.6.2 Benchmarks

We created our benchmark set with problems taken from the Intro-
duction to Programming course at MIT (6.00) and the edX version of
the class (6.00x) offered in 2012. Our benchmark set includes most
problems from the first four weeks of the course. We only excluded
(i) a problem that required more detailed floating point reasoning
than what we currently handle, (ii) a problem that required file i/o
which we currently do not model, and (iii) a handful of trivial fin-
ger exercises. To evaluate the applicability to C#, we created a few
programming exercises2 on Pex4Fun [126] that were based on loop-
over-arrays and dynamic programming from an AP level exam3. A
brief description of each benchmark problem follows:

• prodBySum-6.00 : Compute the product of two numbers m and
n using only the sum operator.

• oddTuples-6.00 : Given a tuple l, return a tuple consisting of
every other element of l.

• compDeriv-6.00 : Compute the derivative of a polynomial poly,
where the coefficients of poly are represented as a list.

• evalPoly-6.00 : Compute the value of a polynomial (repre-
sented as a list) at a given value x.

• compBal-stdin-6.00 : Print the values of monthly installment
necessary to purchase a car in one year, where the inputs car

price and interest rate (compounded monthly) are provided
from stdin.

2 http://pexforfun.com/learnbeginningprogramming
3 AP exams allow high school students in the US to earn college level credit.

http://pexforfun.com/learnbeginningprogramming
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• compDeriv-6.00x : compDeriv problem from the EdX class.

• evalPoly-6.00x : evalPoly problem from the EdX class.

• oddTuples-6.00x : oddTuples problem from the EdX class.

• iterPower-6.00x : Compute the value mn using only the multi-
plication operator, where m and n are integers.

• recurPower-6.00x : Compute the value mn using recursion.

• iterGCD-6.00x : Compute the greatest common divisor (gcd) of
two integers m and n using an iterative algorithm.

• hangman1-str-6.00x : Given a string secretWord and a list of
guessed letters lettersGuessed, return True if all letters of secretWord
are in lettersGuessed, and False otherwise.

• hangman2-str-6.00x : Given a string secretWord and a list of
guessed letters lettersGuessed, return a string where all letters
of secretWord that have not been guessed yet (i.e. not present
in lettersGuessed) are replaced by the letter ’_’.

• stock-market-I(C#) : Given a list of stock prices, check if the
stock is stable, i.e. if the price of stock has changed by more
than $10 in consecutive days on less than 3 occasions over the
duration.

• stock-market-II(C#) : Given a list of stock prices and a start
and end day, check if the difference between the maximum and
minimum stock prices over the duration from start and end day
is less than $20.

• restaurant rush (C#) : A variant of maximum contiguous sub-
set sum problem.

3.6.3 Experiments

We now present various experiments we performed to evaluate AutoProf
on the benchmark problems.

performance Table 1 shows the number of student attempts cor-
rected for each benchmark problem as well as the time taken by
AutoProf to provide the feedback. The experiments were performed
on a 2.4GHz Intel Xeon CPU with 16 cores and 16GB RAM. The ex-
periments were performed with bounds of 4 bits for input integer
values and maximum length 4 for input lists. For each benchmark
problem, we first removed the student attempts with syntax errors to
get the Test Set on which we ran AutoProf. We then separated the
attempts which were correct to measure the effectiveness of AutoProf
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def evaluatePoly(poly, x):

result = 0

for i in list(poly):

result += i*x**poly.index(i)

return result

(a)

def getGuessedWord(secretWord, lettersGuessed):

for letter in lettersGuessed:

secretWord = secretWord.replace(letter, ’_ ’)
return secretWord

(b)

Figure 35: An example of big conceptual error for a student’s attempt for (a)
evalPoly and (b) hangman2-str problems.

on the incorrect attempts. AutoProf was able to provide appropriate
corrections as feedback for 64% of all incorrect student attempts in
around 10 seconds on average. The remaining 36% of incorrect stu-
dent attempts on which AutoProf could not provide feedback fall in
one of the following categories:

• Completely incorrect solutions: We observed many student at-
tempts that were empty or performing trivial computations such
as printing strings and variables.

• Big conceptual errors: A common error we found in the case of
eval-poly-6.00x was that a large fraction of incorrect attempts
(260/541) were using the list function index to get the index
of a value in the list (e.g. see Figure 35(a)), whereas the index

function returns the index of first occurrence of the value in the
list. Another example of this class of error for the hangman2-str

problem in shown in Figure 35(b), where the solution replaces
the guessed letters in the secretWord by ’_’ instead of replac-
ing the letters that are not yet guessed. The correction of some
other errors in this class involves introducing new program
statements or moving statements from one program location to
another. These errors can not be corrected with the application
of a set of local correction rules.

• Unimplemented features: Our implementation currently lacks
a few of the complex Python features such as pattern matching
on list enumerate function and lambda functions.

• Timeout: In our experiments, we found less than 5% of the stu-
dent attempts timed out (set as 4 minutes).
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Benchmark Median Total Syntax Test Set Correct Incorrect Generated Average Median
(LOC) Attempts Errors Attempts Feedback Time(in s) Time(in s)

prodBySum-6.00 5 1056 16 1040 772 268 218 (81.3%) 2.49s 2.53s

oddTuples-6.00 6 2386 1040 1346 1002 344 185 (53.8%) 2.65s 2.54s

compDeriv-6.00 12 144 20 124 21 103 88 (85.4%) 12.95s 4.9s

evalPoly-6.00 10 144 23 121 108 13 6 (46.1%) 3.35s 3.01s

compBal-stdin-6.00 18 170 32 138 86 52 17 (32.7%) 29.57s 14.30s

compDeriv-6.00x 13 4146 1134 3012 2094 918 753 (82.1%) 12.42s 6.32s

evalPoly-6.00x 15 4698 1004 3694 3153 541 167 (30.9%) 4.78s 4.19s

oddTuples-6.00x 10 10985 5047 5938 4182 1756 860 (48.9%) 4.14s 3.77s

iterPower-6.00x 11 8982 3792 5190 2315 2875 1693 (58.9%) 3.58s 3.46s

recurPower-6.00x 10 8879 3395 5484 2546 2938 2271 (77.3%) 10.59s 5.88s

iterGCD-6.00x 12 6934 3732 3202 214 2988 2052 (68.7%) 17.13s 9.52s

hangman1-str-6.00x 13 2148 942 1206 855 351 171 (48.7%) 9.08s 6.43s

hangman2-str-6.00x 14 1746 410 1336 1118 218 98 (44.9%) 22.09s 18.98s

stock-market-I(C#) 20 52 11 41 19 22 16 (72.3%) 7.54s 5.23s

stock-market-II(C#) 24 51 8 43 19 24 14 (58.3%) 11.16s 10.28s

restaurant rush (C#) 15 124 38 86 20 66 41 (62.1%) 8.78s 8.19s

Table 1: The percentage of student attempts corrected and the time taken for
correction for the benchmark problems.
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Figure 36: The number of incorrect student submissions that require differ-
ent number of corrections (in log scale).
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Figure 37: The number of incorrect student submissions corrected by addi-
tion of correction rules to the error models.

number of corrections The number of student submissions
that require different number of corrections are shown in Figure 36

(on a logarithmic scale). We observe from the figure that a significant
fraction of the problems require 3 and 4 coordinated corrections, and
to provide feedback on such attempts, we need a technology like ours
that can symbolically encode the outcome of different corrections on
all input values.

repetitive mistakes In this experiment, we check our hypoth-
esis that students make similar mistakes while solving a given prob-
lem. The graph in Figure 37 shows the number of student attempts
corrected as more rules are added to the error models of the bench-
mark problems. As can be seen from the figure, adding a single rule to
the error model can lead to correction of hundreds of attempts. This
validates our hypothesis that different students indeed make similar
mistakes when solving a given problem.

generalization of error models In this experiment, we check
the hypothesis that the correction rules generalize across problems of
similar kind. The result of running the compute-deriv error model
on other benchmark problems is shown in Figure 38. As expected, it
does not perform as well as the problem-specific error models, but it
still fixes a fraction of the incorrect attempts and can be useful as a
good starting point to specialize the error model further by adding
more problem-specific rules.
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3.7 capabilities and limitations

AutoProf supports a fairly large subset of Python types and language
features, and can currently provide feedback on a large fraction (64%)
of student submissions in our benchmark set. In comparison to the
traditional test-cases based feedback techniques that test the programs
over a few dozens of test-cases, AutoProf typically performs the equiv-
alence check over more than 106 inputs. Programs that print the
output to console (e.g. compBal-stdin) pose an interesting challenge
for test-cases based feedback tools. Since beginner students typically
print some extra text and values in addition to the desired outputs,
the traditional tools need to employ various heuristics to discard
some of the output text to match the desired output. AutoProf lets
instructors provide correction rules that can optionally drop some of
the print expressions in the program, and then AutoProf finds the
required print expressions to eliminate so that a student is not penal-
ized much for printing additional values.

Now we briefly describe some of the limitations of AutoProf. One
limitation is in providing feedback on student attempts that have big
conceptual errors (see Section 3.6.3), which can not be fixed by ap-
plication of a set of local rewrite rules. Correcting such programs
typically requires a large global rewrite of the student solution, and
providing feedback in such cases is an open question. Another lim-
itation of AutoProf is that it does not take into account structural
requirements in the problem statement since it focuses only on func-
tional equivalence. For example, some of the assignments explicitly
ask students to use bisection search or recursion, but AutoProf can
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not distinguish between two functionally equivalent solutions, e.g. it
can not distinguish between a bubble sort and a merge sort imple-
mentation of the sorting problem.

For some problems, the feedback generated by AutoProf is too low-
level. For example, a suggestion provided by AutoProf in Figure 22(d)
is to replace the expression poly[e]==0 by False, whereas a higher
level feedback would be a suggestion to remove the corresponding
block inside the comparison. Deriving the high-level feedback from
the low-level suggestions is mostly an engineering problem as it re-
quires specializing the message based on the context of the correction.

The scalability of the technique also presents a limitation. For some
problems that use large constant values, AutoProf currently replaces
them with smaller teacher-provided constant values such that the cor-
rect program behavior is maintained. We also currently need to spec-
ify bounds for the input size, the number of loop unrollings and recur-
sion depth as well as manually provide specialized error models for
each problem. The problem of discovering these optimizations auto-
matically by mining them from the large corpus of datasets is also an
interesting research question. AutoProf also currently does not sup-
port some of the Python language features, most notably classes and
objects, which are required for providing feedback on problems from
later weeks of the class.



4
S E M A N T I C S T R I N G T R A N S F O R M AT I O N S I N
F L A S H F I L L

The IT revolution over the past few decades has resulted in two signif-
icant advances: digitization of massive amounts of data and accessibil-
ity of computational devices to massive proportions of the population.
It is thus not surprising that more than 500 million people worldwide
use spreadsheets for storing and manipulating data. These business
end-users have myriad diverse backgrounds and include commodity
traders, graphic designers, chemists, human resource managers, fi-
nance pros, marketing managers, underwriters, compliance officers,
and even mail room clerks—they are not professional programmers,
but they need to create small, often one-off, applications to support
business functions [46].

Unfortunately, the programming experience since inception has fo-
cused mostly on serving the needs of a select class of few million
skilled users. In particular, spreadsheet systems like Microsoft Excel
allow sophisticated users to write macros using a rich inbuilt library
of string and numerical functions, or to write arbitrary scripts using
a variety of programming languages like Visual Basic, or .NET. Since
end-users are not proficient in programming, they find it too difficult
to write desired macros or scripts.

The combination of the above-mentioned technical trends and lack
of a satisfactory solution has led to a marketplace of hundreds of
advertisement-driven help-forums1, some of which contain millions
of posts from end-users soliciting help for scripts to manipulate data
in their spreadsheets. The experts respond to these requests after
some time. From an extensive case study of such spreadsheet help-
forums, we observed the following two things.

• Semantic String Transformations: Several of the requested script-
s/macros were for manipulating strings that need to be interpreted
as more than a sequence of characters, e.g., as a column entry from
some relational table, or as some standard data type such as num-
ber, date, time, or currency. We describe the systematic design of a
semantic transformation language for manipulating such strings.

• Input-Output Examples based Interaction Model: End-users used
input-output examples as the most common and natural way of ex-
pressing intent to experts on the other side of the help-forums. An
expert provides a program/transformation that is consistent with

1 http://www.excelforum.com/, http://www.ozgrid.com/forum/,http://www.mrexcel.com/,
http://www.exceltip.com/

52
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those examples. If the end-user is not happy with the result of the
program on any other new input in the spreadsheet, the interaction
is repeated with an extended set of input-output examples. This is
the natural interface that our tool provides to the end-user. We de-
scribe the systematic design of an (inductive) synthesis algorithm
that can learn desired scripts in our transformation language from
very few examples.
We observe that most semantic transformations can be expressed as

a combination of lookup transformations and syntactic transformations.
We use this observation to present a systematic design of the transfor-
mation language for performing semantic string transformations. We
first present an expressive language for lookup transformations and
then extend it by adding syntactic transformations [49].

We also describe a systematic design of the synthesis algorithm for
the semantic string transformation language, which can synthesize
a set of semantic transformations that are consistent with the given
set of input-output examples. We first describe a synthesis algorithm
for the lookup transformation language L

t

, and then extend it to a
synthesis algorithm for the extension of L

t

with syntactic transforma-
tions. We present the evaluation of our prototype on a large collection
of benchmarks obtained from help-forums, books, mailing lists and
Excel product team. The experimental results on our benchmark ex-
amples show that our algorithm is scalable and can learn desired
transformations from very few examples.

4.1 motivating example

Consider the example posted by a user on an Excel help-forum shown
in Figure 39.
Example 4.1.1. A shopkeeper wanted to compute the selling price

of an item (Output) from its name (Input v
1

) and selling date (Input
v
2

) using the MarkupRec and CostRec tables as shown in Figure 6.
The selling price of an item is computed by adding its purchase price
(for the corresponding month) to its markup charges, which in turn
is calculated by multiplying the markup percentage by the purchase
price.

The user expresses her intent by giving a couple of examples (i.e.,
the first two rows). Our tool then automates the repetitive task (i.e.,
fills in the bold entries). We highlight below the key technical chal-
lenges involved.

expressive transformation language The program inferred
by our system for automating the repetitive task involves both lookup
and syntactic operations. In particular, note that we need lookup op-
erations for (i) obtaining the markup percentage from an item name
in MarkupRec table (Stroller ! 30%) and (ii) for obtaining the pur-
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Input v
1

Input v
2

Output

Stroller 10/12/2010 $145.67+0.30*145.67

Bib 23/12/2010 $3.56+0.45*3.56

Diapers 21/1/2011 $21.45+0.35*21.45
Wipes 2/4/2009 $5.12+0.40*5.12
Aspirator 23/2/2010 $2.56+0.30*2.56

MarkupRec
Id Name Markup

S30 Stroller 30%
B56 Bib 45%
D32 Diapers 35%
W98 Wipes 40%
A46 Aspirator 30%
· · · · · · · · ·

CostRec
Id Date Price

S30 12/2010 $145.67

S30 11/2010 $142.38

B56 12/2010 $3.56

D32 1/2011 $21.45

W98 4/2009 $5.12

A46 2/2010 $2.56

· · · · · · · · ·
Figure 39: A transformation that requires syntactic manipulations on multi-

ple lookup results.

chase price of item in CostRec table after performing a join operation
between the two tables on the item Id column (Stroller,12/2010 !
$145.67). Observe that the string 12/2010 used for performing the
second lookup is obtained by performing a syntactic transformation
(namely, a substring operation) on the input string 10/12/2010. After
performing the lookups, we need a syntactic transformation (namely,
a concatenate operation) to concatenate the lookup outputs with con-
stant strings like +,0.,* in a particular order to generate the final
output string. We present an expressive transformation language that
combines lookup and syntactic transformations in a nested manner.

succinct representation of large number of consistent

transformations The number of expressions in the expressive
lookup transformation language L

t

that are consistent with a given
example can potentially be very large. For example, for the first i-o
example (Stroller, 10/12/2012! $145.67+0.30*145.67), there are
a large number of transformations that can generate the output string.
In general, every substring in the output string can potentially be ei-
ther a constant string, or a substring of an input string, or the result
of a lookup operation. For example, the substring 30 in the output
string can either be a constant string or a string obtained by perform-
ing a lookup operation in the MarkupRec or CostRec table. Some of the
possible lookup transformations to obtain the string 30 include select-
ing the Markup column entry in the MarkupRec table where the item
Name in the corresponding row is either one of the constant strings
Stroller or Aspirator, or it matches the input string v

1

. Another
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valid lookup transformation is to select the last two characters from
the item Id column (S30) in MarkupRec or CostRec table with var-
ious ways to select the first row by constraining the item Name or
Date columns respectively. We thus have a large number of possible
transformations for each substring of the output string and explicit
enumeration of all such choices becomes infeasible. A key technical
contribution of our system is a data structure that can succinctly rep-
resent an exponential number of such transformations in polynomial
space, and an algorithm that can compute such transformations in
polynomial time. The key idea is to share common sub-expressions
and compute/maintain choices for independent sub-expressions in-
dependently.

ranking Our synthesis algorithm learns the set of all consistent
transformations for each example and then intersects these sets to ob-
tain the common transformations. The number of examples required
to converge to the desired transformation may be large. To enable
learning of the desired transformation from very few examples, we
perform a ranking of these learned transformations that gives pref-
erence to transformations that are smaller (Occam’s razor principle)
and that use fewer constants (to enforce generalization).

4.2 hypothesis space : lookup transformations

In this section, we present a lookup transformation language L
t

that
can model transformations that involve mapping a tuple of strings to
another string using (possibly nested) lookup operations over a given
database of relational tables. We present the syntax and semantics of
L
t

and then present few examples of L
t

programs that can express
tasks taken from Excel help forums.

4.2.1 Lookup Transformation Language L
t

Expression e
t

:= v
i

| Select(C, T ,b)
Boolean Cond b := p

1

^ . . .^ p
n

Predicate p := C = s

| C = e
t

Figure 40: The syntax of lookup transformation language L
t

.

The syntax of our expression language L
t

for lookup transforma-
tions is defined in Figure 40. An expression e

t

is either an input
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string variable v
i

, or a select expression denoted by Select(C, T ,b),
where T is a relational table identifier and C is a column identifier
of the table. The Boolean condition b is an ordered conjunction of
predicates p

1

^ . . .^ p
n

where predicate p is an equality comparison
between the content of some column of the table with a constant or
an expression. We place a restriction on the columns present in these
conditional predicates namely that these columns together constitute
a candidate key of the table. The main idea behind this restriction is
that we want to express queries that produce a single output as op-
posed to a set of outputs. The ordering of predicates results in an
efficient intersection algorithm as described in Section. 4.3.2.

The language L
t

has expected semantics. The expression Select(C, T ,b)
returns the table entry T [C, r], where r is the only row that satisfies
condition b (as condition b is over candidate keys of the table). If
there exists no row r whose columns satisfy b, the expression returns
the empty string ✏. The predicate C = e

t

is evaluated for row r by
first evaluating the expression e

t

and then comparing the returned
string [[e

t

]]� with the string T [C, r].
We now present few posts taken from Excel help-forums where the

desired transformation can be represented in L
t

.

Example 4.2.1. An Excel user was working on two tables: CustData
and Sale. The user wanted to map names of customers to the selling
price using address and street number columns as common columns
between the two tables and posted the example shown in Figure 41

on a help-forum.

Input v
1

Output

Peter Shaw 110

Gary Lamb 225
Mike Henry 2015
Sean Riley 495

CustData
Name Addr St

Sean Riley 432 15th
Peter Shaw 24 18th
Mike Henry 432 18th
Gary Lamb 104 12th
· · · · · · · · ·

Sale
Addr St Date Price

24 18th 5/21 110

104 12th 5/23 225

432 18th 5/20 2015

432 15th 5/24 495

· · · · · · · · · · · ·

Figure 41: A lookup transformation that requires joining two tables.

The transformation can be expressed in L
t

as Select(Price, Sale, Addr =
Select(Addr, CustData, Name = v

1

)^St = Select(St, CustData, Name =
v
1

)).
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Example 4.2.2. An Excel user was struggling with the task of copy-
ing the data from one table to another table based on a common
column part-number. The first table Parts consisted of two columns
PartNumber and Price of some items. The second table also consisted
of the same two columns partNumber and Price but the price col-
umn was empty and the user wanted to fill this table using the Parts

table. The user managed to perform the copying using PHP by im-
porting data into tables, using scripts to join them and exporting
it back to CSV. An expert later replied to the post with the macro
: =INDEX($C$2:$C$4,MATCH(G3,$B$2:$B$4,0),1). In our framework,
the user can perform the task by just providing one example as shown
below. The strings in bold are the outputs produced by our frame-
work.

Input v
1

Output

AXY-0031-UX 48

ISD-3234-PY 21
VWX-3023-HS 105

Parts
PartNumber Price

ISD-3234-PY 21

VWX-3023-HS 105

IIW-2010-QE 99

AXY-0031-UX 48

· · · · · ·

The desired transformation can be expressed in the language L
t

as:
Select(Price, Parts, PartNumber = v

1

).

The surface syntax of L
t

allows sharing of sub-expressions (which
is the key principle used in data structure D

t

described in Section.
4.3.1). To appreciate this, consider the following example, which is
also our running example in this section.

Example 4.2.3. Consider m tables T
1

to T
m

, each containing three
columns C

1

, C
2

, and C
3

with C
1

being the primary key. Suppose
table T

i

contains a row (s
i

,s
i+1

,s
i+2

). Now given an input-output
example s

1

! s
m

, we want to compute all expressions in L
t

that are
consistent with it.

Consider the case of m = 4. Let e ⌘ Select(C
2

, T
1

,C
1

= v
1

)
that produces string s

2

. Two possible expressions in L
t

to obtain
output s

4

from input s
1

are: (i) e
1

⌘ Select(C
3

, T
2

,C
1

= e) (corre-
sponding to path s

1

! s
2

! s
4

) and (ii) e
2

⌘ Select(C
2

, T
3

,C
1

=
Select(C

2

, T
2

,C
1

= e)) (corresponding to path s
1

! s
2

! s
3

! s
4

).
The expressions e

1

and e
2

share the common sub-expression e which
corresponds to obtaining the intermediate string s

2

. This sharing of
sub-expression leads to a path-based sharing of set of select expres-
sions to represent an exponential number of such expressions in poly-
nomial space.
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ẽ
t

:= (⌘̃,⌘t, Progs)
where Progs : ⌘̃! 2f̃

f̃ := v
i

| Select(C, T ,B)
B := {b̃

i

}
i

b̃ := p̃
1

^ . . .^ p̃
n

p̃ := C = s | C = ⌘

| C = {s,⌘}

Figure 42: The syntax of the data structure D
t

for succinctly representing a
set of expressions from language L

t

.

[[(⌘̃,⌘t, Progs)]] = {e
t

| e
t

2 [[f̃]], f̃ 2 Progs[⌘t]}

[[v
i

]] = {v
i

}

[[Select(C, T , {b̃
i

}
i

)]] = {Select(C, T ,b) | b 2 [[b̃
i

]]}

[[p̃
1

^ . . .^ p̃
n

]] = {p
1

^ . . .^ p
n

| p
j

2 [[p̃
j

]]}

[[C = s]] = {C = s}

[[C = ⌘]] = {C = e
t

| e
t

2 [[Progs[⌘]]]}

[[C = {s,⌘}]] = [[C = s]][ [[C = ⌘]]

Figure 43: The semantics of the data structure D
t

for succinctly representing
a set of expressions from language L

t

.

4.3 synthesis algorithm

Since the language L
t

is quite expressive, there are typically a large
number of expressions that are consistent with a set of few input-
output examples. We first present a data structure D

t

to succinctly
represent a large set of expressions in the language. We then present
an efficient synthesis algorithm to learn a set of transformations in
L
t

from a set of input-output examples, such that each of the learned
transformations when run on the given inputs produces the corre-
sponding outputs.

4.3.1 Data Structure for Set of Expressions in L
t

The set of expressions in language L
t

that are consistent with a given
input-output example can be exponential in the number of reachable
table entries. We represent this set succinctly using the data struc-
ture D

t

, which is described in Figure 42. The data structure consists
of a generalized expression ẽ

t

, generalized Boolean condition b̃, and
generalized predicate p̃ (which respectively denote a set of L

t

expres-
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sions, a set of Boolean conditions b, and a set of predicates p). The for-
mal semantics [[.]] of the data structure is described in Figure 43. The
generalized expression ẽ

t

is represented using a tuple (⌘̃,⌘t, Progs)
where ⌘̃ is a set of nodes containing a distinct target node ⌘t (repre-
senting the output string), and Progs : ⌘̃! 2f̃ maps each node ⌘ 2 ⌘̃

to a set consisting of input variables v
i

or generalized select expres-
sions Select(C, T ,B). A generalized select expression takes a set of
generalized Boolean conditions b̃

i

as the last argument, where each
b̃
i

corresponds to some candidate key of table T . A generalized con-
ditional b̃ is a conjunction of generalized predicates p̃

i

, where each
p̃
i

is an equality comparison of the jth column of the corresponding
candidate key with a constant string s or some node ⌘̃ or both. There
are two key aspects of this data structure which are explained below
using some worst-case examples.

Use of intermediate nodes in ⌘̃ for sharing: Consider the problem
in Example 4.2.3. The set of all transformations in L

t

that are con-
sistent with the example s

1

! s
m

can be represented succinctly us-
ing our data structure as: {{⌘

1

, . . . ,⌘
m

},⌘
m

, Progs}, where Progs[⌘
i

] =
{Select(C

2

, T
i-1

, {C
1

= {s
i-1

,⌘
i-1

}}), Select(C
3

, T
i-2

, {C
1

= {s
i-2

,
⌘
i-2

}})}, Progs[⌘
1

] = {v
1

}, and Progs[⌘
2

] = {Select(C
2

, T
1

, {C
1

=
{s

1

,⌘
1

}})}. The node ⌘
i

essentially corresponds to the string s
i

. Fig-
ure 44 illustrates how the various nodes can be reached or com-
puted from one another. Let N(i) denote the number of expressions

…. 𝜂1 𝜂2 𝜂3 𝜂4 𝜂𝑚 

Figure 44: The reachability graph of nodes in Ex. 4.2.3.

represented succinctly by Progs[⌘
i

]. We have N(i) = 2 + N(i-1) +

N(i-2), implying that N(i) = ⇥(2i). Observe how the data structure
makes use of the set of nodes {⌘

1

, . . . ,⌘
m

} to succinctly represent
⇥(2m) transformations in O(m) space.

Exploiting CNF form of boolean conditions: The second key as-
pect of our representation is exploiting the CNF form of boolean
conditions to succinctly represent a huge set b̃ of conditionals. Con-
sider a table T with n + 1 columns C

1

, . . . ,C
n+1

, where the first n

columns constitute a primary key of the table and the table con-
tains an entry (s

1

, s
2

, . . . , s
n

, t). Consider the input-output example
(s

1

, s
2

, . . . , s
m

) ! t with s
1

= s
2

= · · · = s
max(m,n)

. The number
of transformations that are consistent with the given input-output
example are (m+ 1)n because for indexing into each column C

i

of
the table, we have m+ 1 choices namely constant s

1

and the input
string variables v

1

, . . . , v
m

. This huge set of transformations can be
represented succinctly in O(n+m) space using our data structure as
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({⌘
1

,⌘
2

},⌘
2

, Progs), where Progs[⌘
1

] = {v
1

, . . . , v
m

}, and Progs[⌘
2

] =

{Select(C
n+1

, T , b̃)}, b̃ =
nV

i=1

(C
i

= {s
1

,⌘
1

}).

Theorem 4.3.1 (Properties of data structure D
t

). (a) The number of
transformations in L

t

that are consistent with a given example may
be exponential in the number of reachable entries and number of
columns in a candidate key.
(b) However, the data structure D

t

can represent these potentially ex-
ponential number of transformations in polynomial size in number of
reachable entries, number of candidate keys and number of columns
in a candidate key.

Proof of (a) follows from the two examples discussed above, while
proof of (b) follows from Theorem 4.3.2(a).

4.3.2 Synthesis Algorithm for L
t

GenerateStr
t

(�: Input state, s: Output string)

1 ⌘̃ := ;; ⌘̃Old := ;; steps := 0;

2 val := ; // val : ⌘! T [C, r]
3 foreach input variable v

i

:

4 if ((⌘ := val-1(�(v
i

))) = ?)
5 then { ⌘ := NewNode(); ⌘̃ := ⌘̃[ {⌘};
6 val(⌘) := �(v

i

);Progs[⌘] := ;; }
7 Progs[⌘] := Progs[⌘][ {v

i

};

8 while (steps++ 6 k ^ ⌘̃Old 6= ⌘̃)
9 ⌘̃diff := ⌘̃- ⌘̃Old; ⌘̃Old := ⌘̃;

10 foreach table T, col C, row r s.t.

T [C, r] = val(⌘) for some ⌘ 2 ⌘̃diff
11 B := {

V
C

02cKey
(C 0 = {T [C 0, r], val-1(T [C 0, r])}) |

cKey 2 CandidateKeys(T)};

12 foreach column C 0 of table T s.t. C 0 6= C:

13 if ((⌘ := val-1(T [C 0, r])) = ?)
14 then { ⌘ := NewNode(); ⌘̃ := ⌘̃[ {⌘};
15 val(⌘) := T [C 0, r];Progs[⌘] := ;; }
16 Progs[⌘] := Progs[⌘][ {Select(C 0, T ,B)};
17 return (⌘̃, val-1(s), Progs);

Figure 45: The GenerateStr
t

procedure for generating the set of all expres-
sions (of depth at most k) in language L

t

that are consistent with
a given input-output example.

The inductive synthesis algorithm Synthesize for an expression
language L learns the set of expressions in L (represented using data
structure D) that are consistent with a given set of input-output ex-
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Intersect
t

((⌘̃
1

,⌘t
1

, Progs
1

), (⌘̃
2

,⌘t
2

, Progs
2

)) = (⌘̃
1

⇥ ⌘̃
2

, (⌘t
1

,⌘t
2

), Progs
12

)

where Progs
12

[(⌘
1

,⌘
2

)] = Intersect
t

(Progs
1

[⌘
1

], Progs
2

[⌘
2

])

Intersect
t

(v
i

, v
i

) = v
i

Intersect
t

(Select(C, T ,B), Select(C, T ,B 0)) = Select(C, T ,B 00)

where B 00 = Intersect
t

(B,B 0)

Intersect
t

({b̃
i

}
i

, {b̃ 0
i

}
i

) = {Intersect
t

(b̃
i

, b̃ 0
i

)}
i

Intersect
t

({p̃
i

}
i

, {p̃ 0
i

}
i

) = {Intersect
t

(p̃
i

, p̃ 0
i

)}
i

Intersect
t

(C = s,C = s) = C = s

Intersect
t

(C = ⌘
1

,C = ⌘
2

) = C = (⌘
1

,⌘
2

)

Intersect
t

(C = {s,⌘
1

},C = {s,⌘
2

}) = C = {s, (⌘
1

,⌘
2

)}

Intersect
t

(C = {s
1

,⌘
1

},C = {s
2

,⌘
2

}) = C = {(⌘
1

,⌘
2

)}, if s
1

6= s
2

Figure 46: The Intersect
t

procedure for intersecting sets of expressions
from language L

t

. The Intersect
t

procedure returns ; in all
other cases.

amples. Our synthesis algorithm consists of the following two proce-
dures:
• The GenerateStr procedure for computing the set of all expres-

sions (represented using data structure D) that are consistent with
a given input-output example.

• The Intersect procedure for intersecting two sets of expressions
(represented using data structure D). We describe Intersect pro-
cedure also using a set of rules.

Definition 4.3.1. (Soundness/k-completeness of GenerateStr) Let ẽ =
GenerateStr(�, s). We say that GenerateStr procedure is sound if all
expressions in ẽ are consistent with the input-output example (�, s).
We say that GenerateStr procedure is k-complete if ẽ includes all ex-
pressions with at most k recursive sub-expressions that are consistent
with the input-output example (�, s).

Definition 4.3.2. (Soundness/Completeness of Intersect) Let ẽ 00 =
Intersect(ẽ, ẽ 0). We say that Intersect is sound and complete iff ẽ 00

includes all expressions that belong to both ẽ and ẽ 0.

The synthesis algorithm Synthesize involves invoking the GenerateStr
procedure on each input-output example, and intersecting the results
using the Intersect procedure as shown in Figure 47.

Procedure GenerateStr
t

The GenerateStr
t

procedure, shown in Figure 45, operates by itera-
tively computing a set of nodes ⌘̃ and updating two maps Progs and
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Synthesize((�
1

, s
1

), . . . , (�
n

, s
n

))
1 P := GenerateStr(�

1

, s
1

);
2 for i = 2 to n:

3 P 0 := GenerateStr(�
i

, s
i

);P := Intersect(P,P 0);
4 return P;

Figure 47: The general synthesis algorithm for version-space algebra based
synthesis algorithm.

val in the loop at Line 8. Each node ⌘ 2 ⌘̃ represents a string val(⌘)
that is present in some table entry. The inverse map val-1(a) returns
the node corresponding to string a or ; if no such node exist. The
map Progs associates every node ⌘ to a set of expressions (of depth
at most steps), each of which evaluates to string val(⌘) on the input
state �. The key idea of the loop at Line 8 is to perform an iterative
forward reachability analysis of the string values that can be gener-
ated in a single step (i.e., using a single Select expression) from the
string values computed in previous step, with the base case being the
values of the input string variables.

Each iteration of the loop at Line 8 results in consideration of ex-
pressions whose depth is one larger than the set of expressions consid-
ered in the previous step. The depth of the expressions in language
L
t

can be as much as the total number of entries in all of the re-
lational tables combined. Since we have not observed any intended
transformation that requires self-joins, we limit the depth considera-
tion to a parameter k whose value we set to be equal to the number
of relational tables present in the spreadsheet. One might be tempted
to use the predicate (s 2 ⌘̃ _ ⌘̃Old = ⌘̃) as a termination condition
for the loop. However, this has two issues. The first issue is that it
may happen co-incidentally that the output string s is computable
by a transformation of depth smaller than the depth of the intended
transformation on a given example, and in that case we would fail to
discover the correct transformation. The other major issue is that it
might also happen that the intended transformation does not belong
to the language L

t

, in which case the search would fail, but only after
consideration of all expressions whose depth is as large as the total
number of entries in all relational tables combined together.

The generalized boolean condition B is computed to be the set
of all boolean conditions that uniquely identify row r in table T

(Line 11). It considers the set of candidate keys of table T and for
each column C 0 in a candidate key it learns the generalized predicate:
C 0 = {T [C 0, r], val-1[T [C 0, r]]}.

During the reachability computation, a node ⌘ can be reached through
multiple paths and therefore the set of expressions associated with
the node (Progs[⌘]) needs to be updated accordingly. When a node
is revisited, the algorithm computes the Select expression with up-
dated set of Boolean conditions B and adds it to the set (Line 16).
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We now briefly describe how the GenerateStr
t

procedure com-
putes the set of expressions for each node in Example 4.2.3. It first cre-
ates a node ⌘

1

such that Progs[⌘
1

] = {v
1

}, val(⌘
1

) = s
1

and the fron-
tier of reachable nodes is set as ⌘̃diff = {⌘

1

}. We use node ⌘
i

to denote
the node corresponding to string s

i

such that val(⌘
i

) = s
i

. The algo-
rithm then finds that the table entry T

1

[C
1

, 1] is reachable from node
⌘
1

with the generalized Boolean condition B = {C
1

= {s
1

, v
1

}}. The
algorithm then makes the other column entries in the row, namely
T
1

[C
2

, 1] and T
1

[C
3

, 1] also reachable and creates nodes ⌘
2

and ⌘
3

corresponding to them, and then sets Progs[⌘
2

] = {Select(C
2

, T
1

,B)}
and Progs[⌘

3

] = {Select(C
3

, T
1

,B)}. In the next iteration of loop, the
frontier of reachable set is updated to ⌘̃diff = {⌘

2

,⌘
3

} and the nodes
that are reachable from this set are next computed. The algorithm
finds that table entry T

2

[C
1

, 1] is reachable from node ⌘
2

and thereby
makes nodes ⌘

3

and ⌘
4

reachable as well with corresponding Select

expressions. Similarly, the nodes ⌘
4

and ⌘
5

become reachable from ⌘
3

.
In this manner, the algorithm keeps computing the set of reachable
table entries iteratively until k iterations, where k is set to the number
of relational tables n.

Procedure Intersect
t

The Intersect
t

procedure takes two sets of expressions in L
t

as input
and computes the set of expressions that are common to both the sets.
(Both input and output sets are represented using the data structure
D

t

.) Figure 46 describes the Intersect
t

procedure for intersecting the
sets of L

t

expressions using a set of rules that are pattern matched
for execution. For intersecting two expressions (⌘̃

1

,⌘t
1

, Progs
1

) and
(⌘̃

2

,⌘t
2

, Progs
2

), we take the cross product of the set of nodes to get
the new set of nodes ⌘̃

12

= (⌘̃
1

⇥ ⌘̃
2

) with the target node (⌘t
1

,⌘t
2

),
and compute the new Progs

12

map for each node (⌘
1

,⌘
2

) 2 ⌘̃
12

by
intersecting their corresponding maps Progs

1

[⌘
1

] and Progs
2

[⌘
2

] re-
spectively. The intersect rule for two select expressions requires the
column name and table id to be the same and intersects the condi-
tionals recursively. The candidate keys b̃

i

as well as each column con-
ditional p̃ in a candidate key are intersected individually maintaining
their corresponding orderings.

Theorem 4.3.2 (Synthesis Algorithm Properties). (a) The procedure
GenerateStr

t

is sound and k-complete. The computational complex-
ity of GenerateStr

t

procedure (and hence the size of the data struc-
ture constructed by it) is O(t2 p m) where t is the number of reach-
able strings in k iterations, p is the maximum number of candidate
keys in any table and m is the maximum number of columns in any
candidate key.

(b) The procedure Intersect
t

is sound and complete. The compu-
tational complexity of Intersect

t

procedure (and hence the size of
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the data structure returned by it) is O(d2), where d is the size of the
input data structures.

Proof. Proof of (a) follows from the following two stronger inductive
invariants associated with the loop at line 8. (i) The set {val(⌘) | ⌘ 2 ⌘̃}

denotes the set of all string values that can be computed starting from
the values of input variables v

i

and using some expression of depth
at most steps. (ii) Progs[⌘] is the set of all expressions of depth at
most steps that evaluate to val(⌘) from �. Let us suppose we have
t number of reachable table entries computed by GenerateStr proce-
dure. For each reachable table entry, we need to compute its general-
ized conditional B for which we go through each of its primary key
and each column in that primary key. This gives us a complexity of
O(t p m). Now we can visit each reachable string from any of the
other strings in worst case t times, which gives us the complexity of
O(t2 p m). We can perform the check on line 10 in O(1) time hashing
all table entries. Proof of (b) follows from the semantics of ẽ

t

as de-
fined in Figure 43. The complexity of Intersect

t

follows from cross-
product intersection based algorithm in Figure 46. Note that except
intersecting generalized conditionals takes linear time as we maintain
the ordering of primary keys and their constituent columns.

4.3.3 Ranking

We define a partial order between expressions in L
t

that we use for
ranking of these expressions. We prefer expressions of smaller depth
(fewer nested chains of Select expressions). We prefer lookup expres-
sions that use distinct tables for join queries (the most common sce-
nario for end-users) as opposed to expressions involving self-joins.
We prefer conditionals that consist of fewer predicates and prefer
predicates that involve comparing columns with other table entries
or input variables (as opposed to comparing columns with constant
strings).

4.4 user interaction model

The user expresses the intended task using few input-output exam-
ples. The synthesizer based on the above formalism then generates
a ranked set of transformations that are consistent with those exam-
ples. We describe below some interaction techniques for automating
the desired task or for generating a reusable transformation.

The user can run the top-ranked synthesized transformation on
other inputs in the spreadsheet and check the generated outputs. If
any output is incorrect, the user can fix it by providing the correct
output and the synthesizer can repeat the learning process with the
additional example that the user provided as a fix. Requiring the user
to check the results of the synthesizer, especially on a large spread-
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sheet, can be cumbersome. To enable easier interaction, the synthe-
sizer can run all transformations on each new input to generate a
set of corresponding outputs for that input. The synthesizer can then
highlight those inputs (for user inspection) whose corresponding out-
put set contains at least two outputs. The user can then focus their
inspection on the highlighted inputs. Our prototype, implemented as
an Excel add-in, supports this interaction model (which is also used
in [49]).

On the other hand, if the user wishes to learn a reusable script, then
the synthesizer may present the set of synthesized transformations to
the user. Either the top-k transformations can be shown, or the syn-
thesizer can walk the user through the data structure that succinctly
represents all consistent transformations and let the user select the de-
sired one. The transformations can be shown using the surface syntax,
or can be paraphrased in a natural language. The differences between
different transformations can also be explained by synthesizing a dis-
tinguishing input on which the transformations behave differently [65].
After receiving the correct output from the user on the distinguishing
input, the synthesizer can repeat the learning process with this addi-
tional example.

4.5 semantic transformations

We now present an extension of the lookup transformation language
L
t

(described in Section. 4.2) with a syntactic transformation language
L
s

(from [49]). This extended language L
u

, also referred to as seman-
tic transformation language, adds two key capabilities to L

t

: (i) It
allows for lookup transformations that involve performing syntactic
manipulations (such as substring, concatenation, etc.) on strings be-
fore using them to perform lookups, and (ii) It allows for performing
syntactic manipulations on lookup outputs (which can then be used
for performing further lookups or for generating the output string).
This extension, as we show in Section. 4.6, also enables us to model
transformations on strings representing standard data types such as
date, time, etc. We first describe a syntactic transformation language.

syntactic transformation language L
s

Gulwani [49] in-
troduced an expression language for performing syntactic string trans-
formations. We reproduce here a small subset of (the rules of) that
language and call it L

s

(with e
s

being the top-level symbol).

e
s

:= Concatenate(f
1

, . . . , f
n

) | f
Atomic expr f := ConstStr(s) | v

i

| SubStr(v
i

, p
1

, p
2

)

Position p := k | pos(r
1

, r
2

, c)
Integer expr c := k | k

1

w + k
2

Regular expr r := ✏ | fi | TokenSeq(fi
1

, . . . , fi
n

)
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The formal semantics of L
s

can be found in [49]. For completeness,
we briefly describe some key aspects of this language. The top-level
expression e

s

is either an atomic expression f or is obtained by con-
catenating atomic expressions f

1

,. . .,f
n

using the Concatenate con-
structor. Each atomic expression f can either be a constant string
ConstStr(s), an input string variable v

i

, or a substring of some in-
put string v

i

. The substring expression SubStr(v
i

, p
1

, p
2

) is defined
partly by two position expressions p

1

and p
2

, each of which implic-
itly refers to the (subject) string v

i

and must evaluate to a posi-
tion within the string v

i

. (A string with ` characters has ` + 1 po-
sitions, numbered from 0 to ` starting from left.) SubStr(v

i

, p
1

, p
2

)
is the substring of string v

i

in between positions p
1

and p
2

. A posi-
tion expression represented by a non-negative constant k denotes the
kth position in the string. For a negative constant k, it denotes the
(` + 1 + k)th position in the string, where ` = Length(s). A position
expression pos(r

1

, r
2

, c) evaluates to a position t in the subject string
s such that regular expression r

1

matches some suffix of s[0 : t],
and r

2

matches some prefix of s[t : `], where ` = Length(s). Further-
more, if c is positive (negative), then t is the |c|th such match starting
from the left side (right side). We use the expression s[t

1

: t
2

] to de-
note the substring of s between positions t

1

and t
2

. We use notation
SubStr2(v

i

, r, c) as an abbreviation to denote the cth occurrence of r
in v

i

, i.e., SubStr(v
i

, pos(✏ , r, c) , pos(r, ✏ , c)).
A regular expression r is either a token fi, ✏ (which matches the

empty string), or a token sequence TokenSeq(fi
1

, . . . , fi
n

). The tokens
fi range over some finite (but easily extensible) set and typically cor-
respond to character classes and special characters. For example, to-
kens UpperTok, NumTok, and AlphTok match a nonempty sequence of
uppercase alphabetic characters, numeric digits, and alphanumeric
characters respectively. DecNumTok matches a nonempty sequence of
numeric digits and/or decimal point. SlashTok matches the slash
character. Special tokens StartTok and EndTok match the beginning
and end of a string respectively.

Example 4.5.1. An Excel user wanted to transform names to a format
where the last name is followed by the initial letter of the first name,
e.g., “Alan Turing” ! “Turing A”. An expression in L

s

that can per-
form this transformation is: Concatenate(f

1

, ConstStr(“ "), f
2

) where
f
1

⌘ SubStr2(v
1

, AlphTok, 2) and f
2

⌘ SubStr2(v
1

, UpperTok, 1). This
expression constructs the output sting by concatenating the 2nd word
of input string, the constant string whitespace, and the 1st capital let-
ter in input string.



4.5 semantic transformations 67

We now present the extended language L
u

.

4.5.1 Semantic Transformation Language L
u

Let R
t

and R
s

denote the set of grammar rules of languages L
t

and
L
s

respectively. We subscript each non-terminal in the two languages
with t and s for disambiguating the names of non-terminals in the
extended language. For example, f

s

denotes the atomic expression f
of the syntactic transformation language L

s

. The expression grammar
of the extended language L

u

consists of rules R
t

[ R
s

in which the
following rules are modified (with modifications shown in bold), and
with e

s

as the top-level symbol.

Atomic expr f
s

:= ConstStr(s) | et | SubStr(et, p
s

1

, p
s

2

)

Predicate p
t

:= C = s | C = es

e
s

:= Concatenate(f
s

1

, . . . , f
s

n

) | f
s

The top-level expression e
s

of the extended language is either an
atomic expression f

s

or a Concatenate operation on a sequence of
atomic expressions f

s

i

, as before. However, the atomic expression
f
s

is updated to consist of a lookup expression e
t

or its substring
SubStr(e

t

, p
s

1

, p
s

2

) (as opposed to only an input variable v
i

or its
substring). This lets the language model transformations that per-
form syntactic manipulations over table lookup outputs. The other
modification is in the predicate expression p

t

of language L
t

, where
we modify the conditional expression C = e

t

to C = e
s

. This enables
the language to model lookup transformations that perform syntactic
manipulations on strings before performing the lookup. The updated
rules have expected semantics and can be defined in a similar fashion
as the semantics of rules in L

t

and L
s

. We now illustrate the expres-
siveness of the extended language using few examples.

The transformation in Example 4.1.1 can be represented in L
u

as:
Concatenate(f

1

, ConstStr(“+0.”), f
2

, ConstStr(“*”), f
3

),
f
1

⌘ Select(Price, CostRec, Id = f
4

^ Date = f
5

),
f
4

⌘ Select(Id, MarkupRec, Name = v
1

),
f
5

⌘ SubStr(v
2

, pos(SlashTok, ✏, 1), pos(EndTok, ✏, 1)),
f
2

⌘ SubStr2(f
6

, NumTok, 1), f
3

⌘ SubStr2(f
1

, DecNumTok, 1),
f
6

⌘ Select(Markup, MarkupRec, Name = v
1

).
The expression f

4

looks up the Id of the item in v
1

from the MarkupRec
table and expression f

5

generates a substring of the date in v
2

, which
are then used to look up the Price of the item from the CostRec table
(f
1

). The expression f
6

looks up the Markup percentage of the item
from the MarkupRec table and f

2

generates a substring of this lookup
value by extracting the first numeric token (thus removing the % sign).
Similarly, the expression f

3

generates a substring of f
1

, removing the $
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sign. Finally, the top-level expression concatenates f
1

, f
2

, and f
3

with
constant strings “+0.” and “*”.

Example 4.5.2. Indexing with concatenated strings:
A bike merchant maintained an inventory of BikePrices table, and
wanted to compute the price quote table by performing lookup of
bike Price after concatenating the bike name (v

1

) and the engine cc
value (v

2

) as shown in Figure 48.

Input v
1

Input v
2

Output

Honda 125 11,500

Ducati 100 10,000
Honda 250 19,000
Ducati 250 18,000

BikePrices
Bike Price

Ducati100 10,000

Ducati125 12,500

Ducati250 18,000

Honda125 11,500

Honda250 19,000

· · · · · ·

Figure 48: A lookup transformation that requires concatenating input
strings before performing selection from a table.

The desired transformation can be expressed in L
u

as:
Select(Price, BikePrices, Bike = e

s

) where e
s

= Concatenate(v
1

, v
2

).
The expression e

s

concatenates the two input string variables v
1

and
v
2

, which is then used to perform the lookup in the BikePrices table.

Example 4.5.3. Concatenating table outputs: A user had a series
of three company codes in a column and wanted to expand them
into the corresponding series of company names using a table Comp

that mapped company codes to the company names as shown in Fig-
ure 49.

Input v
1

Output

c4 c3 c1 Facebook Apple Microsoft
c2 c5 c6 Google IBM Xerox
c1 c5 c4 Microsoft IBM Facebook
c2 c3 c4 Google Apple Facebook

Comp
Id Name

c1 Microsoft
c2 Google
c3 Apple
c4 Facebook
c5 IBM
c6 Xerox
· · · · · ·

Figure 49: A nested syntactic and lookup transformation. It requires concate-
nating results of multiple lookup transformations, each of which
involves a selection operation that indexes on some substring of
the input.
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This transformation is expressed in L
u

as:
Concatenate(f

1

, ConstStr(“ "), f
2

, ConstStr(“ "), f
3

), where
f
1

⌘ Select(Name, Comp, Id = SubStr2(v
1

, AlphTok, 1)),
f
2

⌘ Select(Name, Comp, Id = SubStr2(v
1

, AlphTok, 2)), and
f
3

⌘ Select(Name, Comp, Id = SubStr2(v
1

, AlphTok, 3)). The expres-
sions f

1

, f
2

, and f
3

extract the first, second, and third words from
the input string respectively, which are then used for performing the
table lookups and the results are concatenated with whitespaces to
obtain the output string.

4.5.2 Synthesis Algorithm

Data Structure for Set of Expressions in L
u

Let R̃
t

and R̃
s

denote the set of grammar rules for the data structures
that represent set of expressions in languages L

t

and L
s

respectively
(See [49] for description of R̃

s

). We construct the grammar rules for
the data structure that represents set of expressions in the extended
language L

u

by taking the union of the two rules R̃
t

[ R̃
s

and modi-
fying some rules as follows:

f̃
s

:= ConstStr(s) | ẽt | SubStr(ẽt, p̃s1
, p̃s2

)

p̃
t

:= C = s | C = ẽs

ẽ
s

:= Dag(↵̃,↵s,↵t, ⇠̃,W) | f̃
s

, where W : ⇠̃! 2f
s

The most interesting aspect of this data structure is the Dag(↵̃,↵s,↵t, ⇠̃,W)
construct, which succinctly represents a set of Concatenate expres-
sions in L

u

using a dag (directed acyclic graph), where ↵̃ is a set of
nodes containing two distinct source and target nodes ↵s and ↵t, ⇠̃ is
a set of edges over nodes in ↵̃ that induces a dag, and W maps each
edge in ⇠̃ to a set of atomic expressions. The semantics [[.]] of the Dag

constructor is:

[[Dag(↵̃,↵s,↵t, ⇠̃,W)]] = {Concatenate(f
s

1

, . . . , f
s

n

) |

f
s

i

2 [[W(⇠̃
i

)]], ⇠
1

, .., ⇠
n

2 ⇠̃ form a path between ↵s and ↵t}

The set of all Concatenate expressions represented by the Dag con-
structor includes exactly those whose ordered arguments belong to
the corresponding edges on any path from ↵s to ↵t. This dag repre-
sentation is similar to the representation of string expressions in [49].
However, in our case, the edges of the dag consist of more sophis-
ticated (substrings of) lookup expressions, whose predicates can in-
turn be represented using nested-dags.

Consider Example 4.5.3, where the input string is “c4 c3 c1” and
the output string is “Facebook Apple Microsoft” (of length 24). The
dag G that represents the set of all transformations consistent with
this input-output pair is shown in Figure 50. For better readability,
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we only show some of the relevant nodes and edges of the dag G.
The edge from node 0 to node 8 corresponds to all expressions ẽ

1

that generate the string Facebook. One of the lookup transformations,
Select(Name, Comp, Id = f̃

1

), in ẽ
1

requires syntactic transformations
f̃
1

to extract substring c1 from the input string, where f̃
1

is itself
represented as a nested-dag as shown in the figure. The edges for
expressions ẽ

3

and ẽ
5

also consist of similar nested-dags.

Theorem 4.5.1 (Properties of data structure D
u

). (a) The number of
transformations in L

u

that are consistent with a given input-output
example may be exponential in the number of reachable entries, the
number of columns in a primary key, and the length of the largest
reachable string.
(b) However, the data structure D

u

can represent these potentially ex-
ponential number of transformations in size polynomial in the num-
ber of reachable entries, the number of primary keys, the number of
columns in a primary key, and the length of the largest reachable
string.

Proof. (a) Proof of number of transformations being exponential in
the number of reachable entries and the number of columns in a
primary key follows from Theorem 4.3.1(a). The number of transfor-
mations can also be exponential in the length of the largest reachable
string as we are using GenerateStr

s

procedure for checking reachabil-
ity which has this worst case complexity. (b) We show that the size of
the data structure generated is O(t2 p m `2) in Theorem 4.5.2(a).

4.5.3 Synthesis Algorithm for L
u

Procedure GenerateStr
u

Recall that the GenerateStr
t

procedure for language L
t

(Section. 4.3.2)
performs reachability on table entries based on exact string matches
(T [C, r] = ⌘). The key idea in case of the language L

u

is to perform a
more relaxed reachability on table entries taking into account the pos-
sibility of performing syntactic manipulations on previously reach-
able strings.

We first define a GenerateStr 0
t

procedure by making two modifica-
tions to the GenerateStr

t

procedure. First, we replace the condition
“T [C, r] = val(⌘)” in GenerateStr

t

(Line 10 in Figure 45) by the condi-
tion “GenerateStr

s

(�[ ⌘̃, T [C, r]) contains any expression that uses a
variable from �[ ⌘̃”. We use the notation �[ ⌘̃ to denote a state that
extends � and maps ⌘ to val(⌘) for all ⌘ 2 ⌘̃. The GenerateStr 0

t

proce-
dure marks a table entry as reachable if it can be computed using the
GenerateStr

s

procedure (from [49]) on previously reachable strings.
The GenerateStr

s

procedure can perform concatenation of constant
strings and substrings of previously reachable strings (⌘̃). We add an
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a0 a1 a2 𝑓1  
𝑒 6 𝑒 7 

𝑒 8 

0 8 9 14 15 24 
𝑒 1 𝑒 2 𝑒 3 𝑒 4 𝑒 5 

𝐺 

f̃
1

⌘ Dag({a
0

,a
1

,a
2

},a
0

,a
2

, {ha
0

,a
1

i, ha
1

a
2

i, ha
0

a
2

i},W
2

})

where W
2

(ha
0

,a
1

i) = ẽ
6

, W
2

(ha
1

,a
2

i) = ẽ
7

, W
2

(ha
0

,a
2

i) = ẽ
8

G ⌘ Dag({0, . . . , 24), 0, 24, {hi, ji | 0 6 i < j 6 24},W
1

)

where W
1

(h0, 8i) = ẽ
1

,W
2

(h8, 9i) = ẽ
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ẽ
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, AlphTok, 1), . . .}

Figure 50: A partial Dag representation of the set of expressions in Exam-
ple 4.5.3.
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additional check that the expressions synthesized by GenerateStr
s

contains a variable from � [ ⌘̃ to avoid expressions containing only
constant string expressions. For our experiments, we enforce an even
stronger restriction that there exists a string ⌘ 2 (� [ ⌘̃) such that ei-
ther T [C, r] is substring of ⌘ or ⌘ is a substring of T [C, r]. This provides
efficiency without any practical loss of precision. The second modifi-
cation is in Line 11 in Figure 45, where we replace the generalized
predicate with C 0 = {GenerateStr

s

(�[ ⌘̃, T [C 0, r])}.
The GenerateStr

u

procedure for the extended language L
u

can
now be defined as:

GenerateStr
u

(�: Input state, s: Output string)

1 (⌘̃,⌘t, Progs) = GenerateStr 0
t

(�, s);
2 return GenerateStr

s

(�[ ⌘̃, s);

The GenerateStr
u

procedure first constructs the set of all reachable
table entries (⌘̃) from the set of input strings in � using the GenerateStr 0

t

procedure. It then uses the GenerateStr
s

procedure to construct the
Dag for generating the output string s from the set of strings that in-
cludes values of input variables (in state �) as well as the reachable
table entries (represented by ⌘̃).

Consider the first input-output pair (“c4 c3 c1”, “Facebook Apple

Microsoft”) in Example 4.5.3. The GenerateStr
u

algorithm first uses
the GenerateStr 0

t

procedure to compute the set of reachable table en-
tries. The GenerateStr 0

t

procedure finds that the table entry T[Id,4]

= c4 is reachable from the input string “c4 c3 c1” as there exists an
expression SubStr2(v

1

, AlphTok, 1) that can generate the string c4. It
then adds the string Facebook from row 4 to the reachable set ⌘̃. Sim-
ilarly, table entries c3, Apple, c1, and Microsoft are also added to ⌘̃.
It then uses the GenerateStr

s

procedure to construct a dag for gen-
erating the output string “Facebook Apple Microsoft” from the set
{“c4 c3 c1”, c1, c2, c3, Facebook, Apple, Microsoft} (� [ ⌘̃). It
first creates a Dag of 25 nodes (↵̃ = {0, . . . , 24}) with 0 as the source
node and 24 as the target node. The algorithm then assigns a set of
expressions to each edge hi, ji that can generate the substring s[i,j].
For example, the algorithm adds the expression that selects the string
Facebook from � [ ⌘̃ to the edge h0, 8i; the expression in turn corre-
sponds to a lookup transformation with nested sub-dags as shown in
Figure 50. Similarly, it adds the expression ẽ

2

that generates a whites-
pace to the edge h8, 9i, and so on.
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Procedure Intersect
u

The Intersect
u

procedure for the extended language L
u

consists of
the union of rules of Intersect

t

and Intersect
s

procedures along
with the following four additional rules.

Intersect
u

(ẽ
t

, ẽ 0
t

) = Intersect
t

(ẽ
t

, ẽ 0
t

)

Intersect
u

(C = ẽ
s

,C = ẽ 0
s

) = (C = Intersect
s

(ẽ
s

, ẽ 0
s

))

Intersect
u

(SubStr(ẽ
t

, p̃
s

1

, p̃
s

2

), SubStr(ẽ 0
t

, p̃ 0
s

1

, p̃ 0
s

2

)) =

SubStr(Intersect
t

(ẽ
t

, ẽ 0
t

), IntersectPos(p̃
s

1

, p̃ 0
s

1

),

IntersectPos(p̃
s

2

, p̃ 0
s

2

))
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The intersect rule for Dag intersects the two dags in a manner sim-
ilar to the intersection of two finite state automatons. The new map-
ping W

12

is computed by performing intersection of the expressions
on the two corresponding edges of the dags. (Rules for Intersect

s

are defined in [49].)

Theorem 4.5.2 (Synthesis Algorithm Properties). (a) The GenerateStr
u

procedure is sound and k-complete. The computational complexity
of GenerateStr

u

procedure is O(t2 p m `4) (assuming O(l2) com-
plexity for the new check on Line 10), and the size of the data struc-
ture constructed by it is O(t2 p m `2), where t is the number of
reachable strings in k iterations, p is the maximum number of can-
didate keys of any table, m is the maximum number of columns in
any candidate key, and ` is the length of the longest reachable string.
(b) The Intersect

u

procedure is sound and complete. The compu-
tational complexity of Intersect

u

(and hence the size of the data
structure returned by it) is O(d2), where d is the size of the input
data structures.

Proof. The soundness of GenerateStr
u

procedure follows immedi-
ately from the soundness of the GenerateStr

t

and GenerateStr
s

pro-
cedures. To prove completeness, we have an invariant that GenerateStr 0

t

generates all reachable strings of depth k (which can be proven simi-
larly to Theorem 4.3.2(a)). The completeness of GenerateStr

u

now fol-
lows from the completeness of GenerateStr

s

. There are two modifica-
tions in GenerateStr

t

to obtain GenerateStr 0
t

. We use GenerateStr
s

for checking reachability in Line 10 which in worst case can take
O(l2) time where l is the length of the output string. We consider the
complexity of the check in Line 10 to be O(l2) and independent of
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N (the number of table entries) as we can perform a substring check
on table entries (whether T [C, r] is substring of val(⌘) or val(⌘) is
substring of T [C, r]) by creating a hash table of all different substrings
of table entries. We also make a modification in computing the con-
ditionals in Line 11 which introduces an additional complexity of
O(l2) per reachable table entry to the complexity of GenerateStr

t

from Theorem 4.3.2(a). This results in complexity of GenerateStr 0
t

to
be O(t2 p m `2). The complexity of GenerateStrs in the second step
O(t l |s|2), which is dominated by the complexity of GenerateStr 0

t

and we obtain the complexity of algorithm as O(t2 p m `2). Proof
of (b) follows from the soundness and completeness properties of the
individual intersect procedures, namely Intersect

t

and Intersect
a

and the semantics of the additional rules defined above. The com-
plexity of Intersect

u

follows from the complexity of Intersect
t

and
Intersect

s

.

The worst-case quadratic blowup in the size of the output returned
by the Intersect procedure does not happen in practice (as we report
in Section. 4.7) making the synthesis algorithm very efficient.

4.5.4 Ranking

The partial orders of ranking schemes of L
t

and L
s

are also used to
rank expressions in L

u

. In addition, we define some additional partial
orders for expressions in L

u

. We prefer lookup expressions that match
longer strings in table entries for indexing than the ones that match
shorter strings. We prefer lookup expressions with fewer constant
string expressions and ones that generate longer output strings.

4.6 standard data types

The language L
u

can also model a rich class of transformations on
strings that represent standard data types such as date, time, phone
numbers, currency, or addresses. Manipulation of these data types
typically requires some background knowledge associated with these
data types. For example, for dates we have the knowledge that month
2 corresponds to the string February, or for phone numbers we have
the knowledge that 90 is the ISD code for Turkey. This background
knowledge can be encoded as a set of relational tables in our frame-
work (once and for all). This allows the synthesis algorithm for L

u

to learn transformations over strings representing these data types.
We now present some examples from Excel help-forums where users
were struggling with performing manipulations over such strings.

Example 4.6.1 (Time Manipulation). An Excel user
needed to have spot times (shown in column 1 in Figure 51(a)) con-
verted to the hh:mm AM/PM format (as shown in column 2 in Fig-
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(a) (b)

Figure 51: User interface of our programming-by-example Excel add-in. (a)
and (b) are the screenshots before and after clicking the Apply
button.

ure 51(a)). The user posted this problem on a help-forum to which an
expert responded by providing the following macro: TEXT(C1,"00 00")+0.
When we showed this example to a team of Excel experts in a live pre-
sentation, it drew a response: “There are 40 different ways of doing
this!”. When we asked them to describe any one of those ways, we
got the response “I do not exactly remember how to do it. I will have
to investigate”.

We encode the background knowledge concerning time in a table
Time with three columns 24Hour,12Hour and AMPM, where the first col-
umn constitutes a primary key, and so does the combination of the
second and third columns. The table is populated with 24 entries:
(0, 0,AM), . . ., (11, 11,AM), (12, 12,PM), (13, 1,PM), . . ., (23, 11,PM).
The desired transformation can be represented in our language as:
Concatenate(Select(12Hour, Time,b

1

), ConstStr(“ : "),
SubStr(v

1

,-3,-1), ConstStr(“ "), Select(AMPM, Time,b
1

)
where b

1

⌘ (24Hour = SubStr(v
1

, pos(StartTok, ✏, 1),-3)).
The SubStr expression in b

1

computes the substring of the input
between the start and 3rd character from end, to compute the hour
part of the time in column v

1

. This hour string is then used to perform
lookup in table Time to compute its corresponding 12Hour format
and AMPM value. These lookup strings are then concatenated with the
minute part of the input string and constant strings : and whitespace.

Example 4.6.2 (Date Manipulation). An Excel user wanted to convert
dates from one format to another as shown in Figure 52, and the
fixed set of hard-coded date formats supported by Excel 2010 do not
match the input and output formats. Thus, the user solicited help on
a forum.

We encode the background knowledge concerning months in a ta-
ble Month with two columns MN and MW, where each of the columns
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Input v
1

Output

6-3-2008 Jun 3rd, 2008

3-26-2010 Mar 26th, 2010
8-1-2009 Aug 1st, 2009
9-24-2007 Sep 24th, 2007

Figure 52: Formatting dates using examples.

constitutes a candidate key by itself. The table is populated with
12 entries: (1, January), . . ., (12, December). We also maintain a table
DateOrd with two columns Num and Ord, where the first column con-
stitutes a primary key. The table contains 31 entries (1, st), (2, nd), . . .,
(31, st). The desired transformation is represented in L

u

as :
Concatenate(SubStr(Select(MW, Month, MN = e

1

), pos(StartTok, ✏, 1), 3),
ConstStr(“ "), e

2

, Select(Ord, DateOrd, Num = e
2

), ConstStr(“, "), e
3

)
where e

1

= SubStr2(v
1

, NumTok, 1), e
2

= SubStr2(v
1

, NumTok, 2), and
e
3

= SubStr2(v
1

, NumTok, 3).
The expression concatenates the following strings: the string ob-

tained by lookup of first number token of v
1

in table Month, the con-
stant string whitespace, the second number token of v

1

, the string
obtained by lookup of second number token of v

1

in table DateOrd,
the constant string “, ", and the string corresponding to third num-
ber token of v

1

. Unfortunately, it is not possible to encode semantics
of data-types with infinite domains using relational tables. One such
data-type is numbers, which often entail rounding and formatting
transformations [107].

Example 4.6.3 (Currency Manipulation). An administrative assistant
wanted to perform a set of currency conversion tasks for reimburse-
ment purposes. As an example, she gave the first two rows below stat-
ing that she wanted to convert 10 USD into corresponding EUR value
using the conversion rate on the date 24/05/2010. The rates are looked
up from a large centralized currency conversion table CurrTab com-
prising the exchange rates for different currencies for last 10 years.

Input v
1

Input v
2

Input v
3

Output

10 USD EUR 2010-05-24 0.8202 * 10

20 USD EUR 2010-05-26 0.8124 * 20

21 CHF EUR 2010-06-03 0.7124 * 21
52 EUR USD 2010-06-17 1.2345 * 52
25 EUR USD 2010-06-20 1.2372 * 25
80 EUR INR 2010-08-20 59.5146 * 80
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CurrTab

Src Date Dst ExRate

USD 2010-05-24 EUR 0.8202

USD 2010-05-24 INR 46.9846

USD 2010-05-26 EUR 0.8124

EUR 2010-06-20 USD 1.2372

· · · · · · · · · · · ·

The desired transformation can be represented in L
u

as:
Concatenate(e

t

, ConstStr(“ ⇤ "), SubStr2(v
1

, NumTok, 1)), where
e
t

⌘ Select(ExRate, CurrTab,b ^ Dst = v
2

^ Date = v
3

) and b ⌘
(Src = SubStr2(v

1

, alphaTok, 1)). The expression computes the ExRate
value by indexing the CurrTab table with alphabet substring of input
string v

1

and input strings v
2

and v
3

. This lookup output is then con-
catenated with constant string * and the number substring of input
string v

1

.

4.7 experimental evaluation

We have implemented the inductive synthesis algorithm for the trans-
formation language L

u

in C# as an add-in for Microsoft Excel Spread-
sheet system as shown in Figure 51. We hard-code a few useful rela-
tional tables of our own (such as the one that maps month numbers
to month names), while also allowing the user to point to existing
Excel tables to be used for performing the transformation.

Benchmarks: We report experimental results on a set of 50 prob-
lems collected from several Excel help-forums and the Excel product
team (including all problems described in this chapter). Out of these
50 problems, 12 problems can be modeled in the lookup language L

t

whereas the remaining 38 of them require the extended language L
u

.
Effectiveness of data structure D

u

: We first present the statistics
about the number of expressions in L

u

that are consistent with the
user-provided set of input-output examples for each benchmark prob-
lem in Figure 53(a). The figure shows that the number of such con-
sistent expressions are very large and are typically in the range from
1010 to 1030. Figure 53(b) shows that the size of our data structure D

u

to represent this large number of expressions typically varies from
100 to 2000, where each terminal symbol in the grammar rules of the
data structure contributes a unit size to the size of the data structure.

Effectiveness of ranking: Use of a ranking scheme enables users
to provide fewer input-output examples to automate their repetitive
task. Hence, the effectiveness of our ranking scheme can be measured
by the number of examples required for the intended program to be
ranked as the top-most program. In our evaluation, all benchmark
problems required at most 3 examples to learn the transformation: 35
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Figure 53: (a) Number of expressions consistent with given i-o examples and
(b) Size of data structure (in terms of size of grammar derivation,
where each terminal symbol contributes a unit size) to represent
all consistent expressions.
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Figure 54: (a) Running time (in seconds) to learn the program and (b) Size of
the data structure D
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before and after performing Intersect
u

.



4.8 ranking in flashfill 80

benchmarks required 1 example, 13 benchmarks required 2 examples
and 2 benchmarks required 3 examples.

Performance: We present the running time of our synthesis algo-
rithm to learn the desired transformation for each benchmark prob-
lem in Figure 54(a) (sorted in increasing order). Note that 88% of
benchmark problems finished in less than 1 second each and 96% of
problems finished in less than 2 seconds each. The experiments were
performed on a machine with Intel Core i7 1.87GHz CPU and 4GB
RAM.

Size of data structure after Intersection: Finally, we show empiri-
cally that the Intersect

u

procedure does not cause a quadratic blowup
in the size of the data structure for any of our benchmark problems.
We compare the sizes of the data structure corresponding to the first
input-output example and the data structure obtained after perform-
ing the Intersect

u

procedure in Figure 54(b). As we can see the size
of the data structure mostly decreases after intersection and increases
slightly in a few cases, but it is very far from a quadratic increase in
its size.

4.8 ranking in flashfill

We now present our novel learning to rank approach to learn a rank-
ing function for efficiently predicting the correct (desired) expression
in PBE systems from a large set of expressions induced from a few
input-output examples. We show that our machine learning based
approach LearnRank performs a lot better than a baseline approach
of selecting the simplest program in FlashFill, and learns the desired
program for 79% of benchmarks from only 1 input-output example.

4.8.1 Motivating Examples

We first present a few motivating examples from FlashFill that show
three observations: (i) there are multiple correct programs in the set
of programs induced from an input-output example, (ii) simple fea-
tures such as size are not sufficient for preferring a correct program
over incorrect programs, and (iii) there are huge number of programs
induced from a given input-output example.

Example 4.8.1. An Excel user had a series of names in a column and
wanted to add the title Mr. before each name. She gave the input-
output example shown in Figure 55 to express her intent. The in-
tended program concatenates the constant string "Mr." with the in-
put string in column �

1

.

The challenge for FlashFill to learn the desired transformation in
this case is to decide which substrings in the output string “Mr. Roger”
are constant strings and which are substrings of the input string
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Input �
1

Output

1 Roger Mr. Roger

2 Simon

3 Benjamin

4 John

Figure 55: Adding Mr. title to the input names.

“Roger”. We use the notation s[i..j] to refer to a substring of s of length
j- i+ 1 starting at index i and ending at index j. FlashFill infers that
the substring out

1

[0..0] ⌘ “M" has to be a constant string since “M”
is not present in the input string. On the other hand, the substring
out

1

[1..1] ⌘ “r" can come from two different substrings in the input
string (in

1

[0..0] ⌘ “R" and in
1

[4..4] ⌘ “r"). FlashFill learns more than
103 regular expressions to compute the substring “r” in the output
string from the input string, some of which include: 1st capital let-
ter, 1st character, 5th character from end, 1st character followed by a
lower case string etc. Similarly, FlashFill learns more than 104 expres-
sions to extract the substring “Roger” from the input string, thereby
learning more than 107 programs from just one input-output example.
All programs in the set of learnt programs that include an expression
for extracting “r” from the input string are incorrect, whereas pro-
grams that treat “r” as a constant string are correct. Some features
than can help FlashFill to rank constant expressions for “r” higher
than substring expressions are:
• Length of substring: Since the length of substring “r” is 1, it is less

likely to be an input substring.
• Relative length of substring: The relative length of substring “r” as

compared to the output string is small 1

9

.
• Constant neighbouring characters: The neighbouring characters “M”

and “.” of “r” are both constant expressions.

Example 4.8.2. An Excel user had a list of names consisting of first
and last names, and wanted to format the names such that the first
name is abbreviated to its first initial and is followed by the last name
as shown in Figure 56.

This example requires the output substring out
1

[0..0] ⌘ “M" to come
from the input string instead of it being the constant string “M”. The
desired behavior in this example of preferring the substring “M” to be
a non-constant string is in conflict with the desired behavior of pre-
ferring smaller substrings as constant strings in Example 4.8.1. Some
features that can help FlashFill prefer the substring expression for “M"
over the constant string expression are:
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Input �
1

Output

1 Mark Sipser M.Sipser

2 Louis Johnson

3 Edward Davis

4 Robert Mills

Figure 56: Initials from input Firstnames.

• Output substring Token: The substring “M” of the output string is
a token (Capital letter).

• String case change: The case of the substring does not change from
the input substring.

• Regular expression Frequency: The regular expression to extract
1st capital letter occurs frequently in practice.

Example 4.8.3. An Excel user had a series of addresses in a column
and wanted to extract the city names from them. The user gave the
input-output example shown in Figure 57 to express this task.

Input �
1

Output

1 243 Flyer Dr,Cambridge, MA 02145 Cambridge
2 512 Wir Ave,Los Angeles, CA 78911

3 64 128th St,Seattle, WA 98102

4 560 Heal St,San Mateo, CA 94129

Figure 57: Extracting city names from addresses.

FlashFill learns more than 106 different substring expressions to
extract the substring “Cambridge” from the input string “243 Flyer

Drive,Cambridge, MA 02145”, some of which are listed below.
• p

1

: Extract the 3rd alphabet token string.
• p

2

: Extract the 4th alphanumeric token string.
• p

3

: Extract substring between 1st and 2nd comma tokens.
• p

4

: Extract substring between 3rd capital token and the 1st comma

token from left.
• p

5

: Extract substring between 1st and last comma tokens.
The problem with learning the substring expression p

1

is that on
the input string “512 Wright Ave, Los Angeles, CA 78911”, it pro-
duces the output string “Los” that is not the desired output. On
the other hand, the expression p

3

(or p
5

) generates the desired out-
put string “Los Angeles”. FlashFill needs to rank the expression p

3

(or p
5

) higher than other expressions to generate the desired output
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string from only one input-output example. Some of the features that
can help ranking the expression p

3

higher are:
• Same left and right position logics: The regular expression tokens

for left and right position logics for p
3

are similar (comma).
• Occurrence count of the match: The occurrence count of a substring

between two comma tokens is 1 in comparison to the occurrence
count of 3 for the alphabet token of p

1

.

4.8.2 Learning the Ranking Function

As we saw in the previous section, there are often a large number
of (both correct and incorrect) programs induced from a few input-
output examples in an expressive domain-specific language. This phe-
nomenon is not just limited to FlashFill, but occurs regularly in most
PBE systems. In this section, we formalize the problem of automati-
cally learning a ranking function to predict a correct program from a
set of correct and incorrect programs. Most previous approaches for
learning to rank [26, 62, 43, 24] aim at ranking all relevant documents
above all non-relevant documents or ranking the most relevant doc-
ument as highest. However, in our case, we want to learn a ranking
function that ranks any correct program higher than all incorrect pro-
grams. We use a supervised learning approach to learn such a func-
tion, but it requires us to solve two main challenges. First, we need
some labeled training data for the supervised learning. We present
a technique to automatically generate labeled training data from a
set of input-output examples and the corresponding set of induced
programs. Second, we need to learn a ranking function based on this
training data. We use a gradient descent based method to optimize a
novel loss function that aims to rank any correct program higher than
all incorrect programs.

Preliminaries

The training phase consists of a set of tasks T = {t
1

, · · · , t
n

}. Each
task t

i

consists of a set of input-output examples Ei = {ei
1

, · · · , ei
n(t

i

)},
where example ei

j

= (ini
j

, outi
j

) denotes a pair of input (in
i

) and out-
put (out

i

). We assume that for each training task t
i

, sufficiently large
number of input-output examples Ei are provided such that only cor-
rect programs are consistent with the examples. Note that although
preferable it is not a requirement that the examples be representa-
tive for the training task, since to evaluate the learnt ranking function
we calculate how many examples are required to learn the transfor-
mation that is consistent with the provided (potentially incomplete)
examples. Currently, we require PBE system designers to manually
provide the examples for the training tasks, but this process can also
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be partially automated using the idea of distinguishing inputs [65].
The task labels i on examples ei

j

are used only for assigning the train-
ing labels, and we will drop the labels to refer the examples simply
as e

j

for notational convenience. The complete set of input-output
examples for all tasks is obtained by taking the union of the set of ex-
amples for each task E = {e

1

, · · · , e
n(e)} = [tEt. Let p

i

denote the set
of synthesized programs that are consistent with the example e

i

such
that p

i

= {p1

i

, · · · ,pn(i)
i

}, where n(i) denotes the number of programs
in the set p

i

. We define positive and negative programs induced from
an input-output example as follows.

Definition 4.8.1 (Positive and Negative Program). A program p 2 p
j

is said to be a positive (or correct) program if it belongs to the set
intersection of the set of programs for all examples of task t

i

, i.e.
p 2 p

1

^ p
2

^ · · ·^ p
n(t

i

). Otherwise, the program p 2 p
j

is said to
be a negative (or incorrect) program i.e. p 62 p

1

^ p
2

^ · · ·^ p
n(t

i

).

Automated Training Data Generation

We now present a technique to automatically generate labeled train-
ing data from the training tasks specified using input-output exam-
ples. Consider a training task t

i

consisting of the input-output exam-
ples Ei = {(e

1

, · · · , e
n(t

i

)} and let p
j

be the set of programs synthe-
sized by the synthesis algorithm that are consistent with the input-
output example e

j

. For a task t
i

, we construct the set of all positive
programs by computing the set p

1

^ p
2

^ · · ·^ p
n(t

i

). We compute
the set of all negative programs by computing the set {p

k

\ (p
1

^p
2

^

· · ·^ p
n(t

i

)) | 1 6 k 6 n(t
i

)}. The version-space algebra based repre-
sentation allows us to construct these sets efficiently by performing
intersection and difference operations over corresponding shared ex-
pressions.

We associate a set of programs p
i

= {p1

i

, · · · ,pn(i)
i

} for an example
e
i

with a corresponding set of labels y
i

= {y1

i

, · · · ,yn(i)
i

}, where label
yj

i

denotes the label for program pj

i

. The labels yj

i

take binary values
such that the value yj

i

= 1 denotes that the program pj

i

is a positive
program for the task, whereas the label value 0 denotes that program
pj

i

is a negative program for the task.

Gradient Descent based Learning Algorithm

From the training data generation phase, we obtain a set of programs
p
i

associated with labels y
i

for each input-output example e
i

of a
task. Our goal now is to learn a ranking function that can rank a
positive program higher than all negative programs for each example
of the task. We present a brief overview of our gradient descent based
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method to learn the ranking function for predicting a correct program
by optimizing a novel loss function.

We compute a feature vector xj
i

= �(e
i

,pj

i

) for each example-program
pair (e

i

,pj

i

), e
i

2 E,pj

i

2 p
i

. For each example e
i

, a training instance
(x

i

,y
i

) is added to the training set, where x
i

= {x1
i

, · · · , xn(i)
i

} de-
notes the list of feature vectors and y

i

= {y1

i

, · · · ,yn(i)
i

} denotes their
corresponding labels. The goal now is to learn a ranking function f

that computes the ranking score z
i

= (f(x1
i

), · · · , f(xn(i)
i

)) for each
example such that a positive program is ranked as highest.

This problem formulation is similar to the problem formulation
of listwise approaches for learning-to-rank [24, 133]. The main dif-
ference comes from the fact that while previous listwise approaches
aim to rank most documents in accordance with their training scores
or rank the most relevant document as highest, our approach aims
to rank any one positive program higher than all negative programs.
Therefore, our loss function counts the number of examples where
a negative program is ranked higher than all positive programs, as
shown in Equation 1. For each example, the loss function compares
the maximum rank of a negative program (Max({f(xj

i

) | yj

i

= 0})) with
the maximum rank of a positive program (Max({f(xk

i

) | yk

i

= 1})), and
adds 1 to the loss function if a negative program is ranked highest
(and subtracts 1 if a positive program is ranked highest).

L(E) =

n(e)X

i=1

L(y
i

, z
i

) =

n(e)X

i=1

sign(Max({f(xj
i

) | yj

i

= 0})-Max({f(xk
i

) | yk

i

= 1}))

(1)

The presence of sign and Max functions in the loss function in Equa-
tion 1 makes the function non-continuous. The non-continuity of the
loss function makes it unsuitable for gradient descent based optimiza-
tion as the gradient of the function can not be computed. We, there-
fore, perform smooth approximations of the sign and Max functions
using the hyperbolic tanh function and softmax function respectively
(with scaling constants c

1

and c
2

) to obtain a continuous and differ-
entiable loss function in Equation 2.

L(y
i

, z
i

) = tanh(c
1

⇥ (
1

c
2

⇥log(
X

y

j

i

=0

ec2

⇥f(xj

i

))-
1

c
2

⇥log(
X

y

k

i

=1

ec2

⇥f(xk

i

))))

(2)

We assume the desired ranking function f(xj
i

) = ~w · xj
i

to be a lin-
ear function over the features. Let there be m features in the feature
vector xj

i

= {g
1

, · · · ,g
m

} such that f(xj
i

) = w
0

+w
1

g
1

+ · · ·+w
m

g
m

.
We use the gradient descent algorithm to the learn the weights w

i
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of the ranking function that minimizes the loss function from Equa-
tion 2. Although our loss function is differentiable, it is not convex,
and therefore the algorithm only achieves a local minima. We need to
restart the gradient descent algorithm from multiple random initial-
izations to avoid getting stuck in non-desirable local minimas.

4.8.3 Efficiently Ranking a Set of L
a

Expressions

A key challenge in using any ranking methodology for expressions
represented using version-space algebra based data structures is that
of computational efficiency. The set of programs can not be enumer-
ated explicitly for applying the learnt ranking function since that
would break the expression sharing and make it computationally in-
hibitive. We need a mechanism to rank the expressions in a way that
conforms to the sharing maintained by the data structure. In this sec-
tion, we describe efficient features and algorithms for identifying the
highest ranked expression amongst a huge set of expressions repre-
sented succinctly using Join Expressions and DAG Expressions. We
first present certain properties of the features for different expres-
sion sharing that enable them to be computed efficiently over a large
set of expressions. We then present corresponding algorithms that ex-
ploit these feature characteristics for efficiently computing the highest
ranked expression.

Fixed Arity Expressions

Expressions with fixed arity allow set-based sharing among those ex-
pressions whose arguments evaluate to the same values. In order
to efficiently rank these expressions, we introduce the notion of fea-
tures that have abstraction functions with low abstract-dimension and
project-dimension. We then present an algorithm that exploits such
characteristics of features.

efficient features Our aim is to find an expression from the

set of fixed arity expressions that has the highest rank
mP
j=1

w
j

g
j

, where

the expressions are represented succinctly using a Join expression
f(E

1

, ..,E
n

). Since the ranking function is a linear weighted function
of features, if all features depended on only one column (say E

i

), we
can easily enumerate the expressions individually for each column
(e 2 E

i

) and compute the highest ranked expression f(e
1

, .., e
n

) by
selecting the highest ranked expression e

i

for each individual col-
umn E

i

. But often times features depend on more than one column,
which leads to challenges in efficiently identifying the highest ranked
expression. We use two key observations for computing with such
features. The first key observation is that features that depend on
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more than one column do not depend on all concrete values of other
columns, but only on a few abstract values. We define a notion of
abstraction function that characterizes the dependence of a feature on
a set of abstract values for other columns. The second key observa-
tion is that the number of distinct values a feature can take for a
given column are not that many in comparison to the number of
expressions represented by the column. We introduce the notion of
project-dimension for a feature to capture this set of distinct values. We
then present an algorithm for selecting the highest-ranked expression
whose complexity depends on product of abstract-dimensions of the
abstraction functions and on the product of project-dimensions asso-
ciated with the various features.

Definition 4.8.2 (Abstraction Function).
Let f(E

1

, . . . ,E
n

) denote a set of fixed arity expressions and A be a
function over E

1

⇥ .. ⇥ E
k-1

⇥ E
k+1

⇥ .. ⇥ E
n

such that for all e 2
E
k

, for all (e
1

, .., e
k-1

, e
k+1

, .., e
n

), (e 0
1

, .., e 0
k-1

, e 0
k+1

, .., e 0
n

) 2 E
1

⇥ ..⇥
E
k-1

⇥E
k+1

⇥ ..⇥E
n

: A(e
1

, .., e
k-1

, e
k+1

, .., e
n

) =A(e 0
1

, .., e 0
k-1

, e 0
k+1

, .., e 0
n

))
g(f(e

1

, .., e
k-1

, e, e
k+1

, .., e
n

)) = g(f(e 0
1

, .., e 0
k-1

, e, e 0
k+1

, .., e 0
n

)). We re-
fer to such a function as an abstraction function for feature g along
column k, and refer to the cardinality of the range of function A as
its abstract-dimension.

An abstraction function A of a feature g along column k captures
the dependency of the feature on values of the other columns (other
than column k). There may exist multiple abstraction functions for a
given feature, but we select the best abstraction function (one with
minimum abstract-dimension) for each feature. For example, an iden-
tity function is a valid abstraction function, but it is not a useful one
since its abstract-dimension is very large (equal to the cross-product
of the expression values from the remaining n- 1 columns). On the
other extreme is an abstraction function that is a constant function
(with abstract-dimension 1), which signifies that the feature only de-
pends on a single column k. For features that depend on multiple
columns, the corresponding best abstraction functions lie in between
these two extremes.

Definition 4.8.3 (Project Dimension).
Let f(E

1

, . . . ,E
n

) denote a set of fixed arity expressions. The project-
dimension r of a feature g along column k is defined as the maximum
cardinality of the set of feature values P(e) = {g(f(e

1

, .., e
k-1

, e, e
k+1

, .., e
n

))| e
i

2
E
i

} for any e 2 E
k

, where the set P(e) is referred to as the projection
set.

The project dimension of a feature (along a column) captures the
maximum number of distinct values a feature can take while keep-
ing the column expression constant (for any expression value) and
varying the expression values in other columns.
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Example 4.8.4. Consider the binary position pair expression that
takes as arguments two position logic expressions (pos(rl

1

, rl
2

, cl) and
pos(rr

1

, rr
2

, cr)). The list of features for ranking position pair expres-
sions is shown in Figure 61 together with their abstract-dimensions,
project-dimensions, and projection sets. For the feature g

1

: ⌫(rl
1

)
that computes the frequency of left token sequence for left position
logic, any constant function (say c(0)) is an abstraction function for
g
1

along column 1 with abstract-dimension of 1, project-dimension
of 1, and projection set {⌫(rl

1

)}. c(0) denotes a constant function that
always returns 0. For the feature g

13

: rl
2

= rr
1

that computes whether
the left token sequence of right position logic is same as the right
token sequence of left position logic, the function LeftTSOfRightPL
(rr

1

) is an abstraction function for g
3

along column 1 with an abstract-
dimension of |p̃

k

|, project-dimension of 2, and projection set {c(0), c(1)}.

efficient algorithm We now describe an efficient algorithm
to compute the highest ranked expression amongst the set of expres-
sions represented succinctly using the Join expression. There are two
main ideas of the algorithm. The first idea is that a scoring function

such as h =
mP
j=1

w
j

g
j

, which is a linear combination of features that

depend on only one column is maximized by selecting the best candi-
date from each column, where the best candidate from each column
is the one that maximizes the weighted combination of features that
depend on that column. We use the observation of small projection
set sizes to compute the best candidate expressions for each column
by enumerating all possible expression values. The second key idea is
that the set of all possible candidates can be partitioned into a set of
classes Range(A

1

)⇥ . . .⇥Range(A
n

) obtained from the corresponding
abstraction functions. For each such class, a feature is now dependent
on only one column. Hence, the best candidate can be identified by
selecting the best candidate from each class, and the best candidate
for a class is obtained by identifying the best candidate from each
column.

Let f(E
1

, . . . ,E
n

) be a set of fixed arity expressions and let g
1

, . . . ,g
m

be a set of features for such expressions. Let A
j

be an abstraction func-
tion for feature g

j

along column k
j

with abstract-dimension d
j

. Let
the projection set and project-dimension of feature g

j

along column
k
j

be P
j

and r
j

respectively. Figure 58 describes the algorithm for find-
ing an expression f 2 f(E

1

, . . . ,E
m

) that maximizes a scoring function

h =
mP
j=1

w
j

g
j

that is some positive linear combination of features g
j

.

The algorithm also takes as input, for each feature g
j

, an abstraction
function A

j

along some column k
j

2 {1, . . . ,n}.
The algorithm first initializes the sets E 0

i

by enumerating all expres-
sions e 2 E

i

of column i and labels them with an empty set ;. The
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GetBestProg(F(E
1

, . . . ,E
n

), {(w
j

,g
j

,A
j

)}m
j=1

)

1 Foreach 1 6 i 6 n:

2 E 0
i

:= {(e, ;) | e 2 E
i

};

3 Foreach 1 6 j 6 m:

4 E 0
k

j

:= {(e, {(j, v
l

)}[ T) | (e, T) 2 E 0
k

j

, v
l

2 P
j

(e)};

5 Foreach 1 6 i 6 n:

6 Sort (e, T) 2 E 0
i

according to
P

(j,v
l

)2T

w
j

v
l

;

7 Best
i

:= new Dictionary();

8 Foreach (e, T) 2 E 0
i

in decreasing sort order:

9 8t 2 Tags(e, T)\ Keys(Best
i

) : Best
i

[t] := e;

10 maxScore := ?; maxTag := ?;
11 Foreach tag t 2 Range(A

1

)⇥ . . .⇥ Range(A
m

):

12 totalScore :=
nP

i=1

Best
i

[t];

13 if (totalScore > maxScore)
14 maxScore := totalScore; maxTag := t;

15 return (Best
1

[t], . . . , Best
n

[t]);

Figure 58: Algorithm for finding the highest ranked expression amongst a
set of fixed arity expressions.

loop at Line 3 makes �
i

= (|E
i

|⇥
Q

16j6m:k
j

=i

r
j

) copies for each E
i

,

where each element in the copy is uniquely labelled with a set of
pairs (j, v

l

) where 1 6 j 6 m, k
j

= i, and v
l

2 P
j

(e). These copies
are stored in E 0

i

. Each labelled copy (e, (j, v
j

)) corresponds to the case
where feature g

j

on expression e takes the value v
j

. Line 6 sorts the el-
ements in E 0

i

according to its local score that is computed as weighted
combinations of those features g

j

that depend on column i under ab-
straction function A

j

. In computing this local score, the appropriate
weights w

j

corresponding to the values v
l

are used.
We define Tags(e, T) to be the set of all combinations of abstract

values under which the projection of feature g
j

is v
l

for any (j, v
l

) 2 T .
The main intuition behind defining this set of abstract values is that
under this partition of values, each feature g

j

is only dependent on a
single column k

j

. Formally, Tags(e, T) = {(t
1

, . . . , t
m

) | 81 6 j 6 m :
(j, v

l

) 2 T ) (8(e
1

, .., e
k

j

-1

, e
k

j

+1

, .., e
n

) 2 E
1

⇥ ..E
k

j

-1

⇥ E
k

j

+1

⇥ ..⇥
E
n

: A
j

(e
1

, .., e
k

j

-1

, e, e
k

j

+1

, .., e
n

) = t
j

) g
j

(e
1

, .., e
k

j

-1

, e, e
k

j

+1

,
.., e

n

) = v
l

)}. The size of the set Tags(e, T) is ↵ =
Q

16j6m

d
j

.

Finally, the algorithm identifies the best candidate by selecting the
best candidate from each class (Loop at Line 11), and computes the
best candidate for a class t by identifying the best candidate from
each column i (stored in Best

i

[t] at Line 9). The following theorem
holds.



4.8 ranking in flashfill 90

Theorem 4.8.1. Let F(E
1

, . . . ,E
n

) be a set of fixed arity expressions.
Let g

1

, . . . ,g
m

be any m features for such expressions. Let A
j

be any
abstraction function for feature g

j

with abstract-dimension d
j

and
project-dimension r

j

. Let w
1

, . . . ,w
m

be m non-negative weights.

1. GetBestProg(F(E
1

, . . . ,E
n

), {(w
j

,g
j

,A
j

)}m
j=1

returns f 2 F(E
1

, . . . ,E
n

)

that maximizes
mP
j=1

w
j

g
j

.

2. GetBestProg(F(E
1

, . . . ,E
n

), {(w
j

,g
j

,A
j

)}m
j=1

runs in time propor-

tional to n⇥ ↵+
nP

i=1

�
i

log�
i

, where ↵ =
Q

16j6m

d
j

and �
i

=

|E
i

|⇥
Q

16j6m:k
j

=i

r
j

.

Proof. (1) The correctness of the algorithm follows from the following
observations. (i) A scoring function that is a linear combination of fea-
tures that depend on only one column is maximized by selecting the
best candidate from each column, where the best candidate from each
column is the one that maximizes its local score, i.e., the weighted
combination of features that depend on that column. (ii) The set of
all possible candidates can be partitioned into various classes, where
each class corresponds to a tag from Range(A

1

) ⇥ . . . ⇥ Range(A
n

).
For each such class, each feature is dependent on only one column.
(iii) Hence, the best candidate can be identified by selecting the best
candidate from each class(Loop at Line 11), and the best candidate
for a class t is obtained by identifying the best candidate from each
column i (stored in Best

i

[t] at Line 9).
(2) Note that �

i

denotes the size of E 0
i

after the loop at Line 3. We as-
sume that the assignment at Line 9 can be performed in time propor-
tional to Tags(e, T)\ Keys(Best

i

). This ensures that the loop at Line 8

runs in time proportional to ↵+�
i

. Hence, the loop at Line 5, which
dominates the cost of the entire procedure, runs in time proportional

to
nP

i=1

(↵+�
i

log�
i

).

Associative Expressions

Associative expressions involve applying an associative operator with
same input and output type to an unbounded sequence of expres-
sions. The associative expressions allow path-based sharing, which
are represented succinctly using a DAG data structure. We first present
the notion of associative features and then present an efficient algo-
rithm to compute the highest ranked expression amongst a set of
associative expressions succinctly represented using a DAG.
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associative features

Definition 4.8.4 (Associative Feature). A feature g over associative
expressions is said to be associative if there exists an associative mono-
tonically increasing binary operator � and a numerical feature h over
expressions e

i

such that g(F(e
1

, . . . , e
n

)) = g(F(e
1

, . . . , e
n-1

)) �h(e
n

).

Example 4.8.5. The associative features for the Concatenate expres-
sion together with their corresponding binary operators and numeri-
cal features are shown in Figure 63. For the feature g

1

: NumArgs that
counts the number of arguments to the concatenate expression, oper-
ator � is the addition operator and h is the constant function c(1). For
the feature g

3

: ProdWeights that computes the product of weights of
edges on a concatenate expression path, operator � is the multiplica-
tion operator and h is the weight function.

efficient algorithm We now describe an efficient algorithm
for finding the highest ranked expression from an exponential num-
ber of expressions represented succinctly using the path-based shar-
ing. The main idea behind the algorithm is to use a dynamic pro-
gramming algorithm similar to Dijkstra’s shortest path algorithm,
where each node maintains the highest ranked path from the start
node to itself, together with the corresponding feature values. The
algorithm for computing the highest ranked expression from a set of
DAG expressions is shown in Figure 59. The algorithm takes as input
a DAG Dag(⌘̃,⌘s,⌘t,W) and m weights with m associative features
{(w

j

,g
j

)}m
j=1

, and returns an associative expression with the maxi-

mum score
mP
j=1

w
j

g
j

.

The algorithm first topologically sorts the nodes in the DAG (Line 1)
to get a list of nodes Q, and initializes the score and parent (par) val-
ues of each node to be -1 and ? respectively. The score value of a
node ⌘ stores the maximum value of the ranking function of any path
from the start node ⌘s to ⌘, whereas the par field stores a pointer to
the previous node for the path of maximum score. For notational con-
venience, we use a special value ⇣ to denote the identity element for
associative features such that for all values ↵, we have ⇣ �↵ = ↵. Each
node ⌘ is associated with a set of values {g 0

k

}m
k=1

that stores the value
of the associative features {g

k

}m
k=1

of the maximum score path from
⌘s to ⌘. For the start node, the values g 0

k

and score are initialized to
be ⇣ and 0 respectively.

The algorithm iterates over the set of nodes i 2 Q in the topologi-
cally sorted order to compute the values g 0

k

and score of the neigh-
boring nodes j (e

ij

2 edges(W)) (Lines 7-13). It computes the value

score 0 =
mP

k=1

w
k

(g 0
k

[i] �
k

h
k

(e
ij

)) for each node j, and accordingly

updates the g 0
k

and score values for the node if the score 0 value is
higher than the current score value for the node. The algorithm fi-
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GetBestProg(Dag(⌘̃,⌘s,⌘t,W), {(w
j

,g
j

)}m
j=1

)

1 Q := TopologicalSort(⌘̃,⌘s,⌘t,W)
2 Foreach ⌘ 2 ⌘̃:

3 score[⌘] = -1; par[⌘] := ?;
4 Foreach 1 6 k 6 m:

5 g 0
k

[⌘s] := ⇣ // identity element

6 score[⌘s] = 0;

7 Foreach i 2 Q: // in topologically sorted order

8 Foreach e
ij

2 edges(W):

9 score 0 =
mP

k=1

w
k

(g 0
k

[i] �
k

h
k

(e
ij

));

10 if (score[j] < score 0)

11 score[j] = score 0; par[j] = i;

12 Foreach 1 6 k 6 m:

13 g 0
k

[j] := g 0
k

[i] �
k

h
k

(e
ij

);
14 N := (); j := ⌘t;

15 while (par[j] 6= ?):
16 N := (epar[j],j) +N; j := par[par[j]];
17 return N;

Figure 59: Algorithm for finding the highest ranked expression amongst a
set of associative expressions represented as a DAG.

nally returns the highest ranked path N constructed using the par

values.
The following theorem holds.

Theorem 4.8.2. Let D be a DAG representing a succinct collection
of associative expressions. Let g

1

, · · · ,g
m

be m different associative
features over associative expressions and let {w

1

, · · · ,w
m

} be some
real-values non-negative weights.

1. GetBestProg(D, {(w
j

,g
j

)}m
j=1

) returns f 2 D that maximizes
mP
j=1

w
j

g
j

.

2. GetBestProg(D, {(w
j

,g
j

)}m
j=1

) runs in time proportional to O(n2),
where n is the number of nodes in D.

Proof. (1) The correctness follows from the following observations. (i)
The rank of a path h⌘s,⌘

1

, · · · ,⌘
p-1

,⌘
p

i can be computed from fea-
tures of the path h⌘s,⌘

1

, · · · ,⌘
p-1

,⌘
p

i using the property of the asso-

ciative features
mP
j=1

w
j

g
j

(e
1

, · · · , e
p

)

=
mP
j=1

w
j

(g
j

(e
1

, · · · , e
p-1

) �
k

h
k

(e
p

)). (ii) The maximum value of the

ranking function for a path (e
1

, · · · , e
p-1

, e
p

) corresponds to the fea-
tures for which the rank of path (e

1

, · · · , e
p-1

) is maximized, i.e.

arg max
e

1

,··· ,e
p

mP
j=1

w
j

g
j

(e
1

, · · · , e
p

) =
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mP
j=1

w
j

(arg max
e

1

,··· ,e
p-1

(g
j

(e
1

, · · · , e
p-1

)) �
k

h
k

(e
p

)), as �
k

is a monotoni-

cally increasing operator and h
k

(e
p

) is a non-varying value for the
edge e

p

.
(2) Let the number of nodes in the DAG be n. The number of edges

in the graph are O(n2). The topological sort on the DAG takes O(n2)
time. The amortized complexity analysis of the loop (Lines 7-13) re-
sults in O(n2) complexity as each edge of the DAG is visited once
for computing the score values. Therefore, the complexity of the al-
gorithm is O(n2).

4.8.4 Case Study: FlashFill

We now present an instantiation of our ranking scheme for the Flash-
Fill synthesis algorithm [49]. We use FlashFill as a case study because
of the access to several FlashFill benchmarks from online forums, tu-
torials, and blogs. FlashFill uses a version-space algebra based data-
structure to succinctly represent a huge set of programs. The expres-
sions in FlashFill are shared at three different levels: (i) set-based shar-
ing of position pair expressions at the lowest level, (ii) union expres-
sions for atomic expressions on the DAG edges, and (iii) path-based
sharing of concatenate expressions at the top level. We first describe
efficient features for expressions at each one of these levels that con-
form to their respective sharing. We then learn a separate ranking
function for each one of these levels using the gradient descent al-
gorithm. We rank FlashFill expressions in a hierarchical manner by
first computing highest ranked position pair expressions, then high-
est ranked atomic expressions, and then highest ranked concatenate
expressions to compute the highest ranked top level program. We also
present the evaluation of effectiveness and efficiency of the ranking
scheme on several benchmark tasks.

M r . R o g e rφ

(StartTok, ε, 1)
(StartTok, CapitalTok, 1)
(ε, CapitalTok, 1)
(ε, AlphaTok, 1)
(ε, AlphaNumTok, 1)
…….

(ε, EndTok, 1)
(AlphaTok, EndTok, 1)
(AlphaNumTok, EndTok, 1)
(AlphaTok, EndTok, -1)
(AlphaTok, ε, 1)
…….

ff = Substr(v1,p1,p2)

{ {

{{

Figure 60: The DAG data structure for representing all programs induced
programs in Example 4.8.1.

The top-level DAG data structure Dag represents an exponential
number of programs in polynomial space by sharing expressions for
substrings of the output string. The DAG data structure represent-
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ing all programs consistent with the input-output example in Exam-
ple 4.8.1 is shown in Figure 60. The horizontal edges denote constant
string expressions whereas the curved edges denote position pair ex-
pressions. Each position pair expression is further represented as two
independent sets of left and right position logic expressions as shown
for the substring expression a in the figure. The position expression
(StartTok, ✏, 1) denotes the 1st occurrence of StartTok token (that
represents the beginning of the string). In this way, the DAG encodes
a huge number of possible programs in the language that are consis-
tent with the examples.

Automated Training Data Generation

We now show how to compute the set of positive and negative pro-
grams for a task automatically from a given set of input-output ex-
amples in FlashFill. Let Dag

k

denote the DAG learnt by FlashFill for
the input-output example e

k

and Dag^ be the DAG obtained after
intersecting the DAGs for all examples, i.e. Dag^ ⌘ (Dag

1

^ Dag
2

· · ·^
Dag

n

). To compute positive and negative programs from the set p
k

,
the first challenge is to align the edges in the two DAGs. After align-
ing the edges, the common edges between the two dags constitute
the positive expressions whereas the edges that are present in Dag

k

but not in Dag^ constitute the negative expressions. We run the DAG
programs Dag

k

and Dag^ on the input string in
k

and annotate the
dag nodes with the indices of the output string out

k

using the la-
bel function L : ⌘ ! int. The start node ⌘s of a dag is annotated
with index 0, such that L(⌘s) = 0. A node ⌘

2

in a dag is anno-
tated with index m (i.e. L(⌘

2

) = m) if we have L(⌘
1

) = l and the
expressions on the dag edge (⌘

1

,⌘
2

) generates the string out
k

[l..m]
when run on the input string in

k

. Once we have annotated the nodes
of both dags, we collect the expressions on edges between nodes
that have the same labels to compare. We denote the set of expres-
sions that generates the string out

k

[l..m] in dag Dag
k

as s
l,m,k, where

s
l,m,k ⌘

[

⌘

1

,⌘
2

2Dag
k

s(⌘
1

,⌘
2

),L(⌘
1

) = l,L(⌘
2

) = m. We denote expres-

sions that appear in s(l,m,^) as positive expressions and expressions
that appear in the set s(l,m,k) \ s(l,m,^) as negative expressions. In
this manner, we compute the set of positive and negative expression
values for each input-output example pair of a training benchmark.

Efficient Expression Features

The set of efficient expression features used for ranking expressions
at each level of DAG sharing are as follows.
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Feature A, Abs. Proj. Proj.
Col. Dim. Dim. Set

g
1

: ⌫(rl
1

),g
2

: ⌫(rl
2

) c(0), 1 1 1 {⌫(e)}

g
3

: ⌫(cl),g
4

: ⌫((rl
1

, rl
2

)) c(0), 1 1 1 {⌫(e)}

g
5

: ⌫(Lengthrl
1

),g
6

: ⌫(Lengthrl
2

) c(0), 1 1 1 {⌫(e)}

g
7

: ⌫(rr
1

),g
8

: ⌫(rr
2

) c(0), 2 1 1 {⌫(e)}

g
9

: ⌫(cr),g
10

: ⌫((rr
1

, rr
2

)) c(0), 2 1 1 {⌫(e)}

g
11

: ⌫(Lengthrr
1

),g
12

: ⌫(Lengthrr
2

) c(0), 2 1 1 {⌫(e)}

g
13

: rl
2

= rr
1

rr
1

, 1 |p̃
k

| 2 {c(0), c(1)}
g
14

: rl
2

= ✏^ rr
1

= ✏ g
14

,1 2 2 {c(0), c(1)}
g
15

: rl
1

= ✏^ rr
2

= ✏ g
15

,1 2 2 {c(0), c(1)}

Figure 61: The set of features for ranking position pair expression
SubStr(�

i

, {p̃
j

}
j

, {p̃
k

}
k

), where p̃
j

= pos(rl
1

, rl
2

, cl), p̃
k

=
pos(rr

1

, rr
2

, cr). The table also shows the abstraction function, ab-
stract dimension, project dimension, and projection set for fea-
tures.

position pair expression features The binary position pair
expressions take two position logic expressions as arguments. The fea-
tures used for ranking the position pair expressions are shown in Fig-
ure 61 together with their abstraction functions, abstract-dimensions,
project-dimensions, and projection sets. Note that all the listed fea-
tures are efficient as they have low abstract and project dimensions.
These features include frequency-based features denoting frequencies
of: left and right token sequences of left position logic expression
(g

1

,g
2

), occurence Id of left position logic (g
3

), left position logic
(g

4

), length of left and right token sequences of left position logic
(g

5

,g
6

), left and right token sequences of right position logic expres-
sion (g

7

,g
8

), occurence Id of right position logic (g
9

), right position
logic (g

10

), length of left and right token sequences of right position
logic (g

11

,g
12

). In addition to frequency-based features, there are also
Boolean features that include whether the right token sequence of left
position logic is equal to the left token sequence of the right position
logic (g

13

), the right token sequence of left position logic and left
token sequence of right position logic are empty (g

14

), and the left to-
ken sequence of left position logic and right token sequence of right
position logic are empty (g

15

).
The frequencies of position logic expressions are obtained from

the occurrence of position logic expressions in the training data and
are computed as follows. Let n+(r) and n-(r) denote the number
of times a sub-expression r occurs as a correct and incorrect posi-
tion logic expression respectively in the training set, and let n(r) =
n+(r) + n-(r). We compute the frequency of an expression ⌫(r

1

) as
n+(r

1

)
⌃

r

n(r) .
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Feature Description

g
1

: isOutLTok left position of s matches a token
g
2

: isOutRTok right position of s matches a token
g
3

: isInpLTok left position of i matches a token
g
4

: isInpRTok right position of i matches a token
g
5

: isConstExpr is a print constant expression
g
6

: Casing casing transformation to obtain s

g
7

: RelLenInSubstr lenSubstr / lenInpStr

g
8

: IsOutLConst left expression of s is constant
g
9

: IsOutRConst right expression of s is constant
g
10

: IsPPExpr is a position pair expression
g
11

: LenSubstr length of s
g
12

: RelLenOutSubstr lenSubstr / lenOutStr

g
13

: RankPPExpr rank of position pair expression

Figure 62: The features for ranking expressions on DAG edges, where s de-
notes the string obtained from executing the DAG edge expres-
sion and i denotes the input substring that matches with s.

atomic expression features An atomic expression corresponds
to a substring of the output string, which can come from several po-
sitions in the input string in addition to being a constant string. This
leads to multiple atomic expression edges between any two nodes of
the DAG, which are represented explicitly using a Union expression
and therefore we can use any set of features for ranking these expres-
sions. The features for ranking expressions at this level are shown in
Figure 62, some of which include whether the output substring and
the corresponding input substring are at token boundaries or not,
the expression is a constant string or a substring expression, absolute
and relative lengths of the substring as compared to input and out-
put strings, the left and right expressions of the output substring are
constant expressions or not, and the rank of position pair expression
obtained from the previous level.

concatenate expression features At the top-level of DAG,
we use associative features to compute the ranking of paths. The set
of associative features together with their corresponding binary op-
erator and numerical feature are shown in Figure 63. These features
include number of arguments in the Concatenate expression (g

1

), the
sum of weights of edges on the path (g

2

), the product of weights of
edges on the path (g

3

), and the maximum (g
4

) and minimum (g
5

)
weights of an edge on the path.
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Feature Binary Numerical
Operator � Feature h

g
1

: NumArgs + c(1)

g
2

: SumWeights + weight

g
3

: ProdWeights ⇥ weight

g
4

: MaxWeight Max weight

g
5

: MinWeight Min weight

Figure 63: The set of associative features for ranking a set of
Concatenate(a

1

, ..,a
n

) expressions together with their binary
operator and numerical feature.

Experimental Evaluation

We now present the evaluation of our ranking scheme for FlashFill
on a set of 175 benchmark tasks obtained from various online Excel
help forums. We evaluate our algorithm on three different train-test
partition strategies, namely 20-80, 30-70 and 40-60. For each partition
strategy, we randomly assign the corresponding number of bench-
marks to the training and test set. The experiments were performed
on an Intel Core i7 3.20 GHz CPU with 32 GB RAM.

Training phase: We run the gradient descent algorithm 1000 times
with different random values for initialization of weights, while also
varying the value of the learning rate ↵ from 10-5 to 105 (in incre-
ments of multiples of 10). We learn the weights for the ranking func-
tions for the initialization and ↵ values for which best performance is
achieved on the training set.

Test phase: We compare the performance of the following two
ranking schemes on the basis of number of input-output examples
required to learn the desired task.
• Baseline (No Ranking): No ranking of expressions. We keep adding

input-output examples to the task until there are only positive ex-
pressions remaining in the DAG.

• LearnRank: Our ranking scheme that uses the gradient descent
algorithm to learn the ranking functions for position pair, atomic,
and concatenate expressions in DAG.
One thing to note is that the algorithms for finding highest ranked

position-pair and concatenate expressions require weights of the rank-
ing function to be non-negative, but the gradient descent algorithm
in the training phase can learn some negative weight values as well.
In such cases of negative weight values, we treat the weight values as
positive and make the corresponding feature values negative.

comparison with baseline (no ranking) The average num-
ber of input-output examples required to learn a test task for 10 runs
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Train-Test Average Examples
Partition Baseline LearnRank

20-80 4.19 1.52 ± 0.07

30-70 4.17 1.49 ± 0.06

40-60 4.18 1.44 ± 0.07

Table 2: The average number of examples to learn test tasks for 10 runs of
different training partitions.
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Figure 64: Comparison of LearnRank with the Baseline scheme for a ran-
dom 30-70 partition.

of different train-test partitions is shown in Table 2. We can observe
that with the introduction of ranking (LearnRank), the number of
input-output examples required to learn the test tasks are drastically
reduced. The LearnRank scheme performs much better than Base-
line in terms of average number of input-output examples required
to learn the desired task (1.49 vs 4.17). For a random 30-70 partition
run, the number of input-output examples required to learn the 123

test benchmark tasks under the two ranking schemes is shown in Fig-
ure 64. The LearnRank scheme learns the desired task from just 1

example for 91 tasks (74%) as compared to 0 for Baseline. The Learn-
Rank scheme learns the desired tasks from at most 2 examples for
110 tasks (89%), whereas Baseline learns only 18 tasks (14%) from 2

examples.

efficiency of learnrank We now present the efficiency of
LearnRank scheme that uses efficient features and algorithms for
maintaining the corresponding sharing between expressions while
computing the highest ranked expressions. For evaluating the over-
head of LearnRank scheme, we compare the running times of Flash-
Fill without any ranking (NoRanking) and FlashFill augmented with
LearnRank scheme over the same number of input-output examples
for each test task. Note that even though the LearnRank scheme can
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Figure 65: The running times for FlashFill without ranking (NoRanking)
and with LearnRank.

learn the desired task from much fewer input-output examples, we
still use all the examples for learning for a fair comparison. The run-
ning times of the two FlashFill versions is shown in Figure 65. We
can observe that the overhead of LearnRank is quite small and the
two running times are comparable. The average overhead of Learn-
Rank over NoRanking is about 20 milliseconds (ms) per benchmark
task whereas the median overhead is about 8 ms. This translates to
an average overhead of about 29% and a median overhead of 25% in
running times as compared to NoRanking.



5
S T O RY B O A R D P R O G R A M M I N G T O O L

Students learning to program find it challenging when there is a
large gap between the abstractions at which algorithms are taught
and explained in classrooms and the abstractions at which they are
required to be programmed. One domain where this gap is rather
large is data-structure manipulations, which are typically described
using high-level “boxes-and-arrows” diagrams. Their translation to
low-level pointer manipulating code, however, is non-intuitive, te-
dious, and error-prone.

To illustrate this gap, consider the manipulation shown in Figure 66.
Part (a) of the figure shows a graphical description of the removal
of a node from a doubly linked-list. The diagram—we call it a sto-
ryboard—communicates very clearly the effect of the manipulation.
By contrast, the imperative code in Figure 66(b) is short but not self-
explanatory; understanding this code essentially requires one to men-
tally recreate the image from the storyboard in part (a). We present
the Storyboard Programming Tool (Spt) that aims to bridge this gap
by using constraint-based synthesis technology to automatically im-
plement data-structure manipulations that are provably correct with
respect to high-level descriptions like the one illustrated by Figure 66.
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next 
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next 
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next 

prev 
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next 
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prev 
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prev 

v 

void dllRemove(Node v){

v.n.p = v.p;

v.p.n = v.n;

}

(a) Graphical Intuition (b) Low-level Code

Figure 66: Doubly linked list deletion example in Spt.

The Spt system presented in this chapter assumes a textual input
describing the storyboard, which is a set of descriptions of the state
of a data-structure before and after manipulation. However, Spt has
been extended with a graphical interface where users can draw story-
boards using digital ink as well as provide voice-based inputs [100].
Spt supports a form of Programming by Example (PBE) [29] where the
manipulations are synthesized from partial descriptions of their ef-
fects. Two important features, however, distinguish our system from
traditional PBE systems. The first is the ability to abstract away those
parts of the data-structure that are not relevant to the manipulation,
as is done in Figure 7 through the use of ellipsis. This form of abstrac-

100
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tion gives our system a lot of expressive power, because it allows a
single figure to succinctly describe the behavior of the algorithm on
an infinite number of concrete inputs, turning a simple input-output
pair into a partial specification. The second difference with PBE is that
our system asks the user to provide information about the loop skele-
ton of the solution; this information reduces the space of possible
implementations that the system needs to consider and makes it less
likely that the system will produce a solution that only works for the
given examples. These two features allow us to synthesize complex
data-structure manipulations from relatively simple storyboards.

The instructors today have two choices for testing whether students
understand a data-structure manipulation: (i) ask the student to pro-
gram it, or (ii) ask them to visually describe the manipulation. The
problem with the first choice is that instructors are not just testing
the understanding of the manipulation but also the programming
skills. This problem is ameliorated with the second choice but now
instructors need to grade these diagrams by hand. Spt helps instruc-
tors get best of both worlds because with Spt students do not need to
program and the visual descriptions can be checked mechanically by
verifying the synthesized low-level code.

The system is made possible by a new synthesis algorithm that
combines previous work on constraint-based synthesis [117, 122] with
abstract interpretation. Our algorithm is not the first to do this [122],
but it is the first to scale to the large and complex abstract domains
required to reason about data-structure manipulations. The key idea
behind the algorithm is to use quantification to eliminate operations
that require complex set-based reasoning, and to use the Sketch

solver [117] to solve these constraints. The new synthesis algorithm
allows us to combine constraint-based synthesis with a form of shape-
analysis loosely based on TVLA [77]. The shape analysis algorithm
used by our system is not as powerful as many of those found in the
literature [102], but it is powerful enough to reason about most opera-
tions involving trees and lists. The strength of our particular form of
shape analysis, however, lies in the ease with which we can take the
abstractions expressed as part of the storyboard and use them as the
basis for an abstract domain that is then used to verify each candidate
implementation.

We have used Spt to successfully synthesize several data structure
manipulations such as insertion, deletion, search, reversal, and rota-
tion operations over singly linked list, doubly linked list and binary
search tree data structures. We have also used our framework to syn-
thesize small puzzle problems as well as some manipulations involv-
ing a tricky real-world And Inverter Graph [86] data-structure used
in the ABC solver [19].
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5.1 example manipulations with Spt

We now present an overview of the specification mechanism in Spt

through two textbook data-structure manipulation examples: in-place
linked list reversal and linked list deletion. Reversing a list with a
loop and using only a constant amount of additional memory is non-
trivial; in fact, the algorithm for this manipulation is a common ques-
tion in technical interviews. The linked list deletion manipulation re-
quires the implementation to iterate over the linked list until reaching
the desired node to be deleted, and then requires a precise sequence
of pointer updates to delete the node. We describe how a user de-
scribes the intended data-structure manipulations to Spt.

5.1.1 In-place Linked List Reversal

The specification mechanism of Spt is a storyboard that is composed
of three elements: a set of scenarios, each of which corresponds to an
abstract input-output pair; a set of fold and unfold definitions, and a
skeleton of the looping structure of the desired algorithm.

A scenario in Spt is an input-output pair describing the effect of
the manipulation on a potentially abstract data-structure, where ab-
straction is used to elide details of the data-structure that are not
considered relevant. For example, Figure 67 below shows the main
scenario describing the effect of reversing a linked list. Like the more

f e
mid

a b

e’ f’
mid’

a b

head

next next

next next

head

Figure 67: Graphical description of linked-list reverse

informal example in Figure 7, the scenario uses ellipses to abstract
away part of the list. In our notation, however, the ellipses are for-
malized by using the concept of summary nodes. For this example, the
scenario uses a summary node mid to represent the middle part of the
list, which may vary in size for different runs of the algorithm. Out of
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scenario s1
input: head -> a, a.next -> mid::f,
mid::e.next -> b, b.next -> null
output: head -> b, b.next -> mid::f,
mid::e.next -> a, a.next -> null
scenario s2
input: head -> a, a.next -> b,
b.next -> null
output: head -> b, b.next -> a,
a.next -> null
scenario s3
input: head -> a, a.next -> null
output: head -> a, a.next -> null
scenario s4
input: head -> null
output: head -> null

(a)

a b next 

head 

a b 

head 

next 

a 

head 

a 

head 

head 

head 

f e 
mid 

a b 

head 

next next 

e’ f’ 
mid’ 

a b next next 

head 

(b)

Figure 68: The storyboard scenarios for in-place linked list reversal.

all the nodes in the sub-list represented by mid, the first and last node
deserve special attention because other nodes outside the sub-list mid

may point to them. We call these special nodes attachment points of
the summary node, and as we shall see, they play an important role
in reasoning about scenarios. Figure 68(b) shows the complete set of
scenarios needed for this example, including scenarios to describe the
behavior of the algorithm on lists of length zero, one, and two. Fig-
ure 68(a) presents the text notation used by our system to describe
the scenarios on the right.

In order to make scenarios precise, it is often necessary to provide
additional information about the structure of summary nodes. For ex-
ample, in Figure 67, the summary node mid represents a set of nodes
with a very particular structure; specifically, the scenario only makes
sense under the assumption that node e is reachable from node f. Our
system allows the user to provide this structural information through
fold and unfold predicates. For example, Figure 69 shows the fold and
unfold predicates used to describe the recursive structure of the mid

summary node. The predicates describe the structure of summary
nodes in terms of their attachment points, in a similar way as Fradet
et al. [42] used context-free graph grammars to describe shape types.

The exact syntax and semantics of the predicates will be discussed
in detail in Section 5.3.2; for now, it is enough to understand that the
predicates in Figure 69(a) are precise text representations of the re-
cursive definitions illustrated in Figure 69(b). For example, the unfold

rule shows two alternatives for the summary node mid: either the at-
tachment points f and e are actually the same node x’, and this is the
only node in mid, or f is a node x’ whose next pointer points to the
attachment point f’ of another similar summary node mid’. For this
example, fold is an inverse of unfold and could be derived automati-
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cally, but Section 5.3.2 will show other examples where it is useful to
define fold and unfold independently as a way to guide the solver to a
specific solution.

The scenarios and the fold and unfold definitions together describe
the effects of the desired manipulation, but recall that our specifica-
tion included some non-functional requirements, such as the require-
ment that the implementation uses a single loop. This requirement is
expressed by providing a skeleton of the looping structure of the de-
sired algorithm. Figure 70 shows the skeleton for list reverse, which
states that the implementation should contain exactly one while loop
with some blocks of code before and after it. It consists of a while loop
with a set of unknown statements before the loop, in the loop body
and after the loop. The operator ** denotes a comparison expression,
operator ??(n) denotes a block consisting of n unknown pointer as-
signment statements, and operator ?=(n) denotes a block consisting
of n conditional assignment statements of the form if(**) ??(1).

unfold mid::f x [in (mid::f, x)] [out (mid:e, x)] ()
unfold mid::f x [in (mid::f, x)] [out (mid::e, mid::e)] (x.next -> mid::f)

fold x mid::f [in (x,mid::f)] [out (x,mid::e)] ()
fold x mid::f [in (x, mid::f)] [out (mid::e,mid::e)] (x.next -> mid::f)

(a)

f e 
mid 

f’ e’ 
mid 

x’ next 

x’ x’ = f  
x’= e 

x’ = f  
e = e’ 

f e 
mid 

f’ e’ 
mid 

x’ next 

x’ x’ = f  
x’= e 

x’ = f  
e = e’ 

Unfold: 

Fold: 

(b)

Figure 69: Unfold and fold predicate definitions for mid summary node.

From a satisfying assignment to the constraints, the framework de-
rives the imperative implementation shown in Figure 71(a) for the
linked list reverse manipulation. The conditionals (true and false)
from the conditional assignment statements are removed for better
readability of the code in Figure 71(b). It can be noted that the imple-
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Node llReverse(Node head){

Node temp1, temp2, temp3;

?=(2) /* F1 */

while(**){ /* F2 */

??(4) /* F3 */

}

?=(2) /* F4 */

return head;

Figure 70: Control flow sketch for list reversal. Each number corresponds to
an unknown block of code.

Node llReverse(Node head){

Node temp1 = null, temp2 = null;

Node temp3 = null;

if(false) head = head;

if(true) temp1 = head;

while(temp1 != null){

// unfold temp1;

head = temp1;

temp1 = temp1.next;

head.next = head;

head.next = temp3;

temp3 = head;

// fold head;

}

if(false) head.next = head.next;

if(false) head.next = head.next;

}

Node llReverse(Node head){

Node temp1 = null, temp2 = null;

Node temp3 = null;

temp1 = head;

while(temp1 != null){

// unfold temp1;

head = temp1;

temp1 = temp1.next;

head.next = head;

head.next = temp3;

temp3 = head;

// fold head;

}

}

(a) (b)

Figure 71: (a) The synthesized implementation of list reverse, and (b)
cleaned up version of (a) with false conditionals removed.
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mentation did not use the program variable temp2 and the loop body
includes an extra dead store assignment statement (head.next = head).
Aside from the additional assignment, the code is an efficient imple-
mentation of the desired algorithm, and the entire synthesis process
takes only a couple of minutes.

5.1.2 Linked List Deletion

scenario s1
input: head -> front::f, y -> ly, front::l.next -> ly, back::l -> null, ly.next ->

back::f
output: head -> front::f, front::l.next -> back::f, back::l.next -> null
scenario s2
input: head -> front::f, y -> ly, ly.next -> null, front::l.next -> ly
output: head -> front::f, front::l.next -> null
scenario s3
input: head -> ly,ly.next -> back::f, y -> ly, back::l.next -> null
output: head -> back::f, back::l.next -> null
scenario s4
input: head -> ly,ly.next -> null,y -> ly
output: head -> null

Figure 72: Textual description of linked list deletion storyboard shown in
Figure 73.
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f l 
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head 

f l 
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s3 s4 
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Figure 73: The storyboard consisting of four visual scenarios describing the
input and output state descriptions for linked list deletion.

The scenarios for linked list deletion are shown in Figure 72, and
the corresponding visual description of the scenarios is shown in Fig-
ure 73. The first scenario s1 describes an abstract input-output ex-
ample, where the input list consists of two summary nodes front and
back and a concrete node ly that is to be deleted. The summary node
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front contains two attachment points front::f and front::l denot-
ing the first and last elements of the front list respectively. The other
scenarios s2, s3 and s4 correspond to the cases of deleting the last
node, the first node and the only node of the list respectively. Notice
that there is no scenario corresponding to the case where the node
to be deleted is not in the list. That means that the behavior of the
synthesized code will be unspecified in such a case.

f l 
front 

f l 
front 

x next 

x 

f l 
front 

x 
next 

next 

f l 
front 

next 

next 

next 

next 

x 
next 

unfold front::f x [in (front::f, x)] [out (front::l, x)] ()
unfold front::f x [in (front::f, x)] [out (front::l, front::l)] (x.next -> front::f)

unfold front::f x [in (front::f, x)] [out (front::l, x)] ()
unfold front::f x [in (front::f, front::f)] [out (front::l, x)] (front::l.next -> x)

Figure 74: Two possible unfold definitions for summary node front.

The two possible unfold rules for the summary node front and
their corresponding visual description are shown in Figure 74. The
rule states that the summary node front either represents a single
node x or a node x followed by another similar summary node front.

The loop skeleton for the linked list deletion manipulation is shown
in Figure 75(a). It consists of a while loop with a set of unknown state-
ments before the loop, in the loop body and after the loop. Given the
scenarios, recursive definitions and the loop skeleton, Spt synthesizes
the imperative implementation shown in Figure 75(b)

5.2 specification mechanism : storyboard

In this section we present the specification mechanism used by Spt to
specify, encode, and reason about the storyboard description. A story-
board comprises of a set of scenarios, a set of unfold-fold definitions,
and a loop skeleton. The formalism is based on abstract interpreta-
tion, and is similar to that of TVLA; the primary difference is our
treatment of summary nodes with attachment points. But before we
describe the abstract interpretation, we need to define the concrete
domain over which programs operate. In this concrete domain, the
state of the program is defined by a fixed set of local variables and
a set of memory locations (also called nodes), where each location
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llDelete(Node head, Node y){

Node temp1, temp2;

?=(2) /* h1 */

while(**){ /* h2 */

??(4) /* h3 */

}

?=(2) /* h4 */

}

llDelete(Node head, Node y){

Node temp1, temp2;

temp1 = head;

while(temp1 != y){

// unfold temp1;

temp2 = temp1;

temp1 = temp1.next;

// fold prev;

}

if(temp2 == null)

head = temp1.next;

if(temp2 != null)

temp2.next = temp1.next;

}

(a) (b)

Figure 75: (a) The loop skeleton and (b) the synthesized implementation for
linked list deletion.

can have a number of fields pointing to other memory locations. Spt

assumes all nodes are of the same type. Spt also does not support the
allocation of memory by a synthesized routine, so the set of nodes
that the program has to reason about does not grow as the routine
executes.

≡ f e 
mid 

a b next next 

x0 a b next next 

x0 a x1 
next next b next 

next next x0 a x1 
next next x2 b 

Figure 76: An abstract list representing infinite concrete lists

scenarios A scenario in a storyboard describes the behavior of
the manipulation using (potentially abstract) input-output data struc-
ture configurations. The storyboard in Figure 68 consists of four sce-
narios named s1, s2, s3, and s4. Each scenario consists of an input and
output state, and can also contain optional intermediate states. Let L#

represent the set of memory locations the synthesized program will
operate on. Then, the state of the program is captured by two sets of
predicates. First, for every variable v and location l 2 L# there is a
predicate v(l) that indicates whether v points to location l. Then, for
every field sel, there is a predicate sel(l

1

, l
2

) that indicates whether
a location l

1

has a field sel that points to location l
2

. These two sets
of predicates encode a concrete shape which defines the instantaneous
configuration of the heap at any point in the execution.
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The abstract domain consists of sets of abstract shapes, where each
abstract shape itself represents a set of concrete shapes. The abstract
shapes are defined in terms of a set of locations L. Each location
loc 2 L can be either a summary location or a concrete location; we
use the predicate sm(loc) to indicate that loc is a summary location,
so ¬sm(loc) indicates that the location is concrete. As we have stated
before, a concrete location loc may serve as an attachment point for
a summary location u, which we express with the notation loc 2
A(u); we use the predicate apt(loc) to indicate the role of loc as an
attachment point.

f e 
mid 

n1 n2 

head 

next next 

temp1 temp2 

Figure 77: State configuration for a singly linked list

Example 5.2.1. The state configuration in Figure 77 is encoded as fol-
lows. The set of locations is given by L = {n

1

, mid, f, e,n
2

}, with
a summary node mid and attachment points A(mid) = {f, e}. The
set of program variables are V= {head, temp

1

, temp

2

}. The variable
predicates head(n

1

), temp

1

(f) and temp

2

(n
2

) are true. The next selec-
tor predicates next(n

1

, f), next(e,n
2

) and next(n
2

, null) are true, and
next(f, mid) = 1/2 (similar to the 3-valued logic used in TVLA).

To make the definition of the abstract domain more formal, con-
sider a concrete shape S# with a set of nodes L#, a selector predicate
sel

# and a variable predicate var

#, together with an abstract shape S

with a set of nodes L, selector sel and variable predicate var. We say
that shape S# is in the concretization of S (S# 2 �(S)) when there
exists a relation M : L# ⇥L that satisfies the following conditions.

• Every node in S# maps to some node in S and vice versa:
i. e. 8l

1

2 L# 9n
1

2 L s.t. M(l
1

,n
1

) and 8n
1

2 L 9l
1

2 L# s.t. M(l
1

,n
1

)

• Nodes that do not map to summary nodes map to a single concrete
node: i. e. for any l

1

2 L#, if ¬9n
2

s.t. sm(n
2

) ^M(l
1

,n
2

) then
M(l

1

,n
a

)^M(l
1

,n
b

)) n
a

= n
b

.

• Summary nodes do not overlap: i. e.
sm(n

a

)^M(l
1

,n
a

)^M(l
1

,n
b

)) (n
a

= n
b

_n
b

2 A(n
a

)).

• Edges between concrete nodes are preserved: i. e. given l
1

, l
2

2 L#

and n
1

,n
2

2 L where ¬sm(n
1

) and ¬sm(n
2

), let M(l
1

,n
1

) and
M(l

2

,n
2

); then,
sel

#(l
1

, l
2

), sel(n
1

,n
2

) and var

#(l
1

), var(n
1

).

• Summary nodes own their associated attachment points: i. e. if M(l
1

,n
2

)
and n

2

2 A(u) then M(l
1

,u)
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• Any edge pointing to a summary node from the outside must point
to one of its attachment points: i. e. let
sel

#(l
1

, l
2

) ^M(l
2

,n
b

) ^ sm(n
b

), then either M(l
1

,n
b

) or 9n
a

2
A(n

b

)s.t.M(l
2

,n
a

), and for variables, var#(l
2

)^M(l
2

,n
b

)^ sm(n
b

),
then 9n

a

2 A(n
b

)s.t.M(l
2

,n
a

)

• Selector edges for summary nodes not originating in an attachment
point are ignored: i. e. if sm(n

a

)_ sm(n
b

) then sel(n
a

,n
b

) = 0_

n
a

2 A(n
b

).

• Selector edges from an attachment point to its enclosing summary
node will have value 1/2: i. e. if n

a

2 A(n
b

) and 9l
1

, l
2

2 L# s.t. sel#(l
1

, l
2

)^
M(l

1

,n
a

) ^ M(l
2

,n
b

), and ¬9n
c

s.t. M(l
2

,n
c

) ^ ¬sm(n
c

), then
sel(n

a

,n
b

) = 1/2.

In shape analysis it is common to use 3-valued logic to represent
the values of selector and variable predicates in abstract shapes. How-
ever, notice that the rules above specifically require us to ignore most
selector edges involving summary nodes. The restrictions imply that
the only selector edges that will potentially have value equal to 1/2

are edges from an attachment point to its corresponding summary
node; that is why we have next(f, mid) = 1/2 in the earlier example.
As we shall see in the next section, the transition rules in the abstract
semantics are defined in such a way that if the algorithm under analy-
sis ever tries to dereference a field corresponding to one of these half
edges, it will transition into an error state. This makes the analysis
simpler at the expense of added imprecision, but our analysis com-
pensates for this imprecision by relying on the unfold predicates to
materialize[102] summary nodes.

unfold/fold definitions In order for Spt to precisely reason
about the abstract shapes, Spt needs some more information about
the structure of the abstract nodes. A user provides this additional in-
formation using unfold and fold definitions. An unfold definition in-
ductively defines the structure of concrete nodes that a corresponding
abstract node represents. Spt uses the unfold definitions to concretize
abstract nodes during its analysis. The fold predicate performs the
analogous reverse operation, i.e. it abstracts the set of concrete nodes
back to an abstract node. An unfold definition (resp. fold) is defined
using a 5-tuple consisting of an abstract node, a concrete node, a set
of in predicates, a set of out predicates, and a set of constraints that
should hold after the unfold operation. The semantics of unfold and
fold predicates is defined in Section 5.3.2.
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5.3 hypothesis space

5.3.1 A Simple Pointer Language L
p

The hypothesis space that defines the set of programs explored by
Spt is defined using a combination of domain-specific language of
pointers L

p

, whose syntax is shown in Figure 78, and a user input of
loop skeleton. The set of statements in L

p

consists of pointer assign-
ments, conditional pointer assignments, while loops, unfold, and fold
statements. The concrete semantics of the language are as expected.
There are three key restrictions in L

p

: (i) only one dereferencing of
pointers is allowed in pointer assignments, (ii) no memory allocation
of new nodes is allowed, and (ii) only one level of Boolean operators
is allowed in conditionals. These restrictions do constrain the family
of programs that Spt can synthesize, but as we will see in Section 5.6,
it is still rich enough to express a large family of manipulations over
linked lists and binary search trees.

Ptr Expr e := v | v.sel | null

Bool Expr b := not b | e
0

op
c

e
1

| b
0

op
b

b
1

Comp Opop
c

:= == | < | > | 6 | > | ! =
Bool Op op

b

:= and | or

Stmt s := e
0

= e
1

| s
0

; s
1

| while(b) s

| if(b) s | unfold v | fold v

Func Def. p := f(e
1

, · · · , e
n

) { s }

Figure 78: The syntax for a simple pointer language L
p

.

loop skeleton The hypothesis space is parameterized by a loop
skeleton provided as part of the storyboard. The loop skeleton helps
Spt to constrain and guide the search space of possible implemen-
tations. The body of a loop skeleton is defined using the following
simple grammar.

Unknown Stmt Block s := ? = (n) | ??(n) | while(⇤⇤) s | s
0

; s
1

The unknown statment block ?=(n) defines a block of size n of con-
ditional statements, whereas ??(n) defines a block of size n of pointer
assignment statements. The while statment while(**){s} defines a
while loop with an unknown loop condition and loop body s.



5.3 hypothesis space 112

5.3.2 Abstract Semantics of L
p

Having defined the pointer language L
p

and the structure of the ab-
stract domain, we now describe the abstract semantics of L

p

, since
Spt performs analysis over the abstract domain for synthesizing pro-
grams in L

p

. Figures 79 and 80 show respectively the abstract seman-
tics of L

p

statements and conditionals. The figures also show the for-
mal definitions of the transition rules associated with each construct.
The transition rules relate the state before the transition—the pre-
state represented with non-primed predicates—with the post-state
represented with primed predicates. It is assumed that the values
of all other predicates not mentioned in the transition rule remain
unchanged. The abstract semantics for while statement is the stan-
dard fixpoint computation by performing iterative abstract execution
of statements and conditionals of the loop body.

Statement Abstract Semantics
x = null 8 l 2 L : x 0(l) = 0

x = t 8 l 2 L : x 0(l) = t(l)

x = t.sel assert ¬9l
1

, l
2

2 L : t(l
1

)^ sel(l
1

, l
2

)^ sm(l
2

)
8 l 2 L : x 0(l) = 9l

1

t(l
1

)^ sel(l
1

, l)

x.sel = null assert ¬9l
1

, l
2

2 L : x(l
1

)^ sel(l
1

, l
2

)^ sm(l
2

)
8 l

1

, l
2

2 L : sel 0(l
1

, l
2

) = ¬x(l
1

)^ sel(l
1

, l
2

)

x.sel = t 8 l
1

, l
2

2 L : sel 0(l
1

, l
2

) = sel(l
1

, l
2

)_ (x(l
1

)^ t(l
2

)))

unfold x

unfoldPred(E, M, C) ^ x(E) =)
((8 l

1

in! l
2

2 M : fresh(l2)^

8 v 2 V : v 0(l2) = v(l1) ^ v 0(l1) = 0 ^

8 l 2 L : sel 0(l, l2) = sel(l, l1) ^ sel 0(l, l1) = 0)^

(8 l
1

out! l
2

2 M : fresh(l2)^

8 l 2 L : sel 0(l2, l) = sel(l1, l) ^ sel 0(l1, l) = 0) ^ C)

fold x

foldPred(E, M, C) ^ (x(E)^ C) =)
((8 l

1

in! l
2

2 M : fresh(l2)^

8 v 2 V : v 0(l2) = v(l1) ^ v 0(l1) = 0 ^

8 l 2 L : sel 0(l, l2) = sel(l, l1) ^ sel 0(l, l1) = 0)^

(8 l
1

out! l
2

2 M : fresh(l2)^

8 l 2 L : sel 0(l2, l) = sel(l1, l) ^ sel 0(l1, l) = 0))

Figure 79: Abstract semantics of L
p

statements.

The rules follow a convention from shape analysis to assume that
every statement of the form exp = t is preceded by a statement of the
form exp = null, where exp is either x or x.sel. This assumption simpli-
fies the rules because the transition rule for exp = t does not have to
worry about destroying the value previously stored at exp [102]. The
other important observation about the rules is the use of assertions
for the two rules that do field dereferences. These assertions ensure
that the system will transition into an error state when it tries to
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Conditional Abstract Semantics
x == null 8 l 2 L : ¬x(l)

x != null 9 l 2 L : x(l)

x == t 8 l 2 L : x(l) () t(l)

x.data > t.data 8 l1, l2 2 L : x(l1)^ t(l2) =) gt(data, l1, l2)

x.data > t.data 8 l1, l2 2 L : x(l1)^ t(l2) =) gte(data, l1, l2)

x.data == t.data 8 l1, l2 2 L : x(l1)^ t(l2) =) eq(data, l1, l2)

x.data != t.data 8 l1, l2 2 L : x(l1)^ t(l2) =) ¬eq(data, l1, l2)

Figure 80: Abstract semantics of L
p

conditionals.

dereference a selector that points to a summary node, which in turn
guarantees that 1/2 values corresponding to these selector predicates
will not propagate through the representation.

The abstract semantics for the class of conditionals is shown in Fig-
ure 80. It can be noted that although the assignment statements in our
target language of programs ignore data fields of the data-structure
(.data as opposed to .sel), the conditionals can reason about the data
constraints. We store data predicates using gt, gte, eq etc., which en-
code data constraints over the data values of locations. We do not
consider conditionals involving selector dereferencing of variables,
e.g. of the form x.next == null, as they can be reduced into a con-
ditional of the form y == null where the variable y is first assigned by
the statement y = x.next.

fold/unfold semantics The unfold operation is described with
a triple unfoldPred (E, M, C). The first argument E is called the enabling
node, and it represents the summary node that is being expanded.
The transition rule for the unfold x statement performs the unfold
operation only if the variable x points to the enabling node E. The
second argument M is the location mapping M : loc ! loc, which de-
scribes how nodes before expansion relate to nodes after expansion.
There are two kinds of location mappings in M: in! mappings and out!
mappings. An in! mapping maps a location loc

1

to loc

2

such that all
variables and selector edges pointing to loc

1

in the pre-state should
point to loc

2

in the post-state. An out! mapping maps a location loc

1

to loc

2

such that all outgoing selector edges from loc

1

in the pre-state
emanate from loc

2

in the post-state.
Finally, the description of unfold also includes a set of constraints

C. These constraints describe how the new nodes will be connected
together, and are asserted to hold in the post-state after unfolding.
The transition rule for fold x statement works similarly to the unfold

rule. The difference is that the fold operations are enabled only if the
constraints C are also satisfied by the state configuration in addition
to the requirement of x pointing to the enabling node E. The unfold
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and fold predicate definitions on the summary node mid are shown
in Figure 69.

Another set of fold-unfold examples for the binary search tree (bst)
case studies is shown in Figure 81. The goal of bst search is to search
for a value x in the tree where r represents its root. The bst search
(contains) manipulation assumes that the value x always exists in the
tree. The three cases of bst search (contains) unfold are: i) x < y.val,
ii) x = y.val and iii) x > y.val as shown in Fig 81(a), where y denotes
the root node of the subtree being unfolded. The unfold definition
for the more general case of bst search is shown in Figure 81(b). The
tree summary nodes labeled stuff are given without any unfold rules,
which means they cannot be materialized, so the verifier will not be
able to reason about any implementation that tries to visit them. In
this way, the unfold rule is providing algorithmic insights, telling the
synthesizer that a given region of the tree should not be visited or
manipulated.

One important thing to note about unfold is that a given shape can
be expanded in many different ways, as illustrated in Figure 69. This
is expressed by having multiple unfoldPred triples with the same en-
abling node. As a consequence, every abstract shape in the pre-state
of an unfold operation may be expanded into a set of abstract shapes.
This expansion allows the analysis to maintain precision, but having
to represent sets of abstract shapes in the abstract interpreter will
pose an interesting challenge when we turn the problem into a con-
straint satisfaction problem.

Another very important aspect about unfold is that the presence
of unfold changes the concretization relation � between abstract and
concrete shapes. In the absence of unfold, any arbitrary set of con-
crete nodes can be mapped to a summary node by the relation M

described in the previous section, but unfold has the effect of placing
some structural constraints on the set of nodes that can be mapped
to a summary node. This is a result of the requirement that unfold
correspond to skip in the concrete domain; this means that if a given
abstract shape S can be transformed by unfold into any shape in the
set {S

i

}, then the set of concrete shapes �(S) should equal
S

i

�(S
i

).
So we can refine the earlier definition of the concretization function
to say that S# 2 �(S) if it satisfies the requirements stated before and
if S# 2

S
i

�(S
i

), where S
i

are all the shapes that can be derived from
S through the application of unfold. The next section elaborates on
how this definition relates to the instrumentation predicates used by
TVLA to describe the structure of summary nodes.

relationship with tvla In order to understand some of the
more subtle aspects of our formalism, it is useful to understand how
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(d) bst search fold

Figure 81: Unfold and fold operations for different data structure manipula-
tions
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it relates to the formalism in TVLA [77]. The two most apparent dif-
ferences between the two formalisms are the use of attachment points
as part of summary nodes and the use of fold and unfold.

In our system, the unfold definition serves two purposes: it provides
a mechanism to convey structural properties of summary nodes, and
it is also used to materialize summary nodes, i. e. to produce a set of
more refined shapes that together represent the same set of concrete
configurations as the original configuration. In TVLA, by contrast,
structural properties are described through instrumentation predicates.
These predicates are also used for materialization, but not directly;
instead, a focus operation first expands a summary node into a set of
possible shapes, and then a coerce operation uses the instrumentation
predicates to refine the new shapes and to remove those that do not
satisfy the required structural properties.

One can understand the unfold rules in our framework as a spe-
cialized way of describing instrumentation predicates. For example,
from the unfold rule for mid we can derive the following instrumenta-
tion predicate:

isMid(f, e) = (f = e)_ 9f 0(f.next = f 0 ^ isMid(f 0, e)) (3)

The predicate isMid encodes that every node in mid is reachable from
the front attachment point, and therefore that the sub-list between
f and e is acyclic. When we say that a summary node satisfies this
predicate, it means that the summary node can only represent sets of
nodes where we can find two nodes f and e that satisfy the predicate.
The unfold operation induces this predicate because we want the effect
of unfold in the abstract domain to be equivalent to the effect of skip
in the concrete domain, and this will only be true if the summary
nodes satisfy this predicate. It is interesting to see, however, that the
structure of the predicate is very close to the structure of the unfold
rules, with the attachment points serving as convenient parameters
to the predicate.
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Figure 82: unfold in 3-valued shape analysis

Given such an instrumentation predicate, we can map our sum-
mary nodes with attachment points to a shape in TVLA; for example,
Figure 82 shows how mid would look like as a shape in TVLA. Our
unfold operation is equivalent to first applying materialization to par-
tially concretize the summary node and then coerce to remove invalid
shapes obtained after materialization.
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The use of unfold in place of instrumentation predicates and the
use of attachment points both have a number of advantages for the
purpose of our framework. The first important advantage is that it
simplifies the transition rules, because it eliminates the need to track
instrumentation predicates. Another important benefit of using sum-
mary nodes with attachment points is that it simplifies the graphical
representations, as can be readily appreciated by comparing Figure 82

with Figure 69. One clear difference between the two representations
is that Figure 82 includes a number of selector edges with value 1/2

which are not present in the diagrams in Figure 69. This is partly
by convention, since we omit from our representation the selector
edges within summary nodes, and partly because the assumptions in
Section 5.2 ensure that references from concrete to summary nodes
always point to their attachment points.

Compared to TVLA, out formalism allows for a simpler analysis
and more concise graphical representations. The downside, of course,
is reduced expressive power. If one were trying to verify arbitrary
programs, the shortcuts taken by our system would make the analy-
sis impractical—it would be too easy for the user to write a program
that could not be verified because it violated one of our assumptions.
On the other hand, as Vechev et al. have pointed out [130], the com-
bination of synthesis with abstract interpretation means that the syn-
thesizer can work around the limitations of the abstract interpreter by
producing programs that are easy to verify. In our case, the way the
synthesizer works around the limitations imposed by our assump-
tion is by using unfold statements to materialize nodes at the right
time and ensure that the assumption is never violated.

5.4 constraint-based synthesis algorithm

Having defined our basic abstract interpretation framework, we can
now describe how we frame the synthesis problem as a set of con-
straints whose solution will describe the implementation we are look-
ing for. The starting point for this process is the loop skeleton together
with the scenarios.

The loop skeleton Sk constitutes the control flow graph of the im-
plementation; unlike a CFG, however, the vertices are not just basic
blocks because they can contain conditional assignments. More for-
mally, we represent the control flow sketch Sk as a directed graph
Sk = G(V ,E) where V represents a set of blocks of code which can
either be a sequence of conditional assignment statements or a con-
ditional (for loop exit conditions); E in turn represents potential tran-
sitions between these blocks of code. By convention, we say that ver-
tex v

0

is the entry point of the graph node and v
N

is the exit point;
neither the entry nor the exit blocks contain any code. As for scenar-
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ios, each of them is represented as a pair of input and output states
S
i

= (In
i

,Out
i

).
We use standard techniques to encode each block of unknown state-

ments as a parameterized function F
i

(in, c
i

), where the parameter c
i

selects which block of code out of the set of possible blocks of code
F
i

will represent. The inputs and outputs of F
i

are elements of the
abstract domain, which happen to be sets of shapes. Now, the set of
possible sequences of conditional assignments is infinite, but bound-
ing the maximum length of the statement sequence makes the set
finite as there are a finite number of assignment statements and con-
ditionals of the form shown in Figure 79 and Figure 80 respectively.

The goal of the synthesis process is to find values of c
i

such that
for each scenario S

k

, the least fixed point solution to the following
equation satisfies t

N

= Out
k

:

t
0

= In
k

^ 8v
i

2 (V \ v
0

) t
i

= F
i

(
[

j2pred(v
i

)

t
j

, c
i

) (4)

The function pred(v
i

) in the equation above indicates the set of pre-
decessors of node v

i

. The equation above is fairly simple, but two
challenges prevent us from solving it directly with an SMT solver.
First, the equation above requires us to find not just any solution,
but the least fixed point solution. Additionally, the t

i

in the equation
above are elements in the abstract domain, which is composed of sets
of shapes. Such sets can get quite big given the nature of our domain,
so representing them naïvely in an SMT solver is infeasible. In the
rest of this section, we describe how our framework addresses both
of these problems.

5.4.1 Computing Least Fixed Points

In order to find a least fixed point solution to Equation 4, we start
from the assumption that an iterative method can reach a least fixed
point after visiting each vertex in Sk at most K times. Now, let P

K be
the set of all paths in Sk that visit each vertex at most K times.For each
path p

i

2 P

K, we can define a path transformer p

i

(in, ~C) which is the
composition of all the transfer functions F

t

(in, c
t

) of all vertices v
t

in
the path, where ~

C = [c
0

, . . . , c
N

]. Then, the least fixed point solution
to the value of t

N

in Equation 4 will be given by

[

p

i

2P

K

p

i

(In
k

, ~C)

The equivalence follows from the distributivity of F (i. e. the fact
that F(a[ b) = F(a)[ F(b)). Given a solution to the equation above, it
is easy to check the assumption of K convergence by simply checking
the solution against Equation 4.
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5.4.2 Dealing with sets of abstract shapes

As discussed before, in order to feed the constraints into a solver, we
would like to avoid having to reason about sets of abstract shapes.
Our strategy will be as follows. First, from a transfer function F, we
can define a function Fj that returns a singleton set containing the
jth element of the set returned by F, or an empty set if there is no
jth element. Thus, F(a) = [

j

Fj(a), where each Fj produces either
singleton or empty sets.

The strategy even works when composing functions thanks to the
distributivity of F. Because of this property, if we have a function F(a)
and a function T(a), then the composition F(T(a)) can be computed
as [

i,jF
j(T i(a)).

In the case of our transfer functions F
i

(in, c), it is relatively easy
to derive the functions Fj

i

(in, c). For example, one of the statements
that can produce multiple shapes from a single one is unfold, so if
we want a function to return only the jth shape produced by unfold,
we only use the jth unfoldPred instead of using all of them. Compos-
ing the transfer functions for each block into path expressions, we
get a path expression p

~
j

i

(In
k

, ~C), where instead of composing func-
tions F

i

(in, c
i

) in the path, we compose functions Fji
i

(in, c
i

). With
this transformation, the constraint we need to solve becomes:

9~C (Out
k

=
[

~
j

[

p

i

2P

p

~
j

i

(In
k

, ~C))

The set unions in the equation above can be turned into universal
quantifiers to produce the following equation:

9~C (8~
j

8
p

i

2P

p

~
j
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, ~C) 2 Out
k

^ 9~
j

9
p

i

2P

p

~
j

i

(In
k

, ~C) = Out
k

)

The universally quantified part of the equation forces the union of
the path transformers to be a subset of Out

k

, while the existentially
quantified part of the constraint ensures that the singleton Out

k

is a
subset of the union of the path transformers. The equation above no
longer has to reason about sets with more than one element, but in
exchange for that, it has to cope with 98 quantifier alternation. How-
ever, the Sketch system is very effective in dealing with such doubly
quantified formulas, so our system actually translates the above equa-
tion into a sketch and uses the Sketch solver to find a solution to all
the unknowns.

5.4.3 Termination

Equation 4 only ensures partial correctness, so there is no termina-
tion guarantee for the synthesized implementation. However, we have
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found that adding a few additional constraints was enough to guaran-
tee terminating solutions for all the examples we examined. The ad-
ditional constraint was to require that for every state reachable inside
any loop in the program it is possible to satisfy the loop exit condition
in an additional K loop unrollings. If the unfold and fold predicates
satisfy well-formedness constraints [93] and with the restriction of
using only one unfold and fold operation per loop, the framework
can guarantee termination of the synthesized implementation using
a reasoning similar to [20]. This restriction works for data-structure
manipulations that perform a single pass over the data-structure.

5.5 user interaction model

A storyboard specification—the scenarios, the loop skeleton and the
fold and unfold definitions—comprise a partial specification of the de-
sired manipulation. For example, the list reverse storyboard is a par-
tial specification because the abstraction does not define the relation-
ship between mid in the input and mid in the output. In this case,
asking the synthesizer to produce a solution with a small number of
statements is sufficient to ensure the correct answer, but sometimes
the user may have to provide the system with additional information.
In keeping with the PBE model, this additional information usually
takes the form of additional scenarios with concrete examples, but
a user can also provide intermediate state configurations, add predi-
cates in scenarios or provide a more detailed implementation sketch
in place of the simple loop skeletons. The strength of our synthe-
sis approach is that it can combine these different constraints into a
concrete implementation. Moreover, as shown in Section 5.6, the con-
straints imposed by the storyboards are strong enough that in the few
cases where the specification has to be strengthened, it only takes a
few additional concrete scenarios or an intermediate state configura-
tion to guide the framework to synthesize the correct implementation.

5.6 experimental evaluation

In our experiments with the Storyboard framework, the key ques-
tions we explored were: i) how does it scale for synthesizing reason-
ably complex data-structure manipulations, ii) how much additional
information is required to be provided in the storyboards other than
just the input-output scenarios, iii) how much having abstraction in
the scenarios help and iv) can we use it to synthesize user-defined
data-structure manipulations.

Table 3 presents the experimental results of the case studies that we
performed with the framework. The experiments were run on an Intel
Core-i7 1.87GHz CPU with 4GB of RAM. The first column in the table
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shows the name of the manipulation where ll refers to singly linked-
list, dll refers to doubly linked-list and bst refers to binary search
tree. The table presents the details about number of scenarios used
in storyboard, the total time it took to synthesize the implementation,
the number of clauses in the SAT translation of the constraints and
the memory used. Even though this is not the most efficient encoding
of the constraints, we were able to synthesize all the manipulations
in less than 6 minutes each using less than 1 GB of memory.

For reducing the search space in our experiments, we had to restrict
the usage of unfold and fold statements to at most once at the begin-
ning and end locations inside the loop respectively; which works well
for single-pass algorithms. The case studies with the Interm column
marked yes required some additional intermediate state configura-
tion, e. g. in the storyboard for linked list insertion, we also had to
provide intermediate state configuration after the loop body in the
skeleton for helping the synthesizer to converge faster. These inter-
mediate configurations present a natural interface for providing hints
about the manipulation. Some case studies also required composition
of storyboards (marked with a *), e. g.the bst-deletion storyboard re-
quired composition of bst-search and bst-find-min storyboards.

In some cases like bst-deletion, we found that the abstract input-
output specification was too weak and allowed many undesired so-
lutions; but it was easily fixed by providing a couple of concrete
input-output bst instances. We also performed an experiment where
we only provided concrete examples for these manipulations, the
synthesizer either generated an undesired solution or got timed out
and never converged for most of these case studies. This experiment
shows the ability of abstract input-output examples to prune a big
search space of undesired programs.

We have used our framework to synthesize manipulations for a
complicated real-world AIG data structure. AIG is a DAG that en-
codes the structural implementation of the logical functionality of a
circuit [86] using two-input AND gates and inverters. Each internal
node of AIG represents an and gate and has two parents correspond-
ing to the two inputs of the gate. The child list information for each
node is overlayed inside the node itself by keeping a pointer to the
first child and pointers to the sibling nodes. Even though our frame-
work currently can not synthesize arbitrary graph manipulations, we
exploit the listness property of the child lists of AIG nodes for syn-
thesizing its manipulations.

Even for complicated data-structures like red-black trees, where
it is difficult to draw a simple storyboard expressing the complex
invariants about the data-structure, we found the storyboard frame-
work helpful for synthesizing fragments of low-level code of differ-
ent cases individually and then manually composing the synthesized
code to obtain a complete implementation. Figure 83 shows the story-



5.6 experimental evaluation 122

board for red-black tree fixInvariant method (part of the insertion

procedure) that we obtained from an online lecture note [4]. We used
the framework to synthesize low-level code for the four cases, which
were then easily composed manually inside the complete algorithm.
Our tool and more details about the case studies can be found at the
storyboard website [5].

Figure 83: Red-black tree fixInvariant storyboard.

Manipulation #Scens Time #Clauses Memory Loops Interm
ll-insertion 4 2m9s 1.99M 0.75GB 1 Yes

ll-deletion 4 1m48s 1.88M 0.54GB 1 Yes

ll-reversal 4 1m49s 1.3M 0.35GB 1 No

ll-find-last 4 0m56s 1.02M 0.29GB 1 No

ll-swap-first-last 4 4m18s 1.08M 0.31GB 1 Yes

dll-traversal 4 1m58s 1.72M 0.88GB 1 No

dll-reversal 4 3m47s 2.04M 0.49GB 1 No

bst-search(contains) 1 1m02s 0.62M 0.37GB 1 No

bst-search 1 6m07s 0.77M 0.45GB 1 No

bst-find-min 1 0m58s 0.63M 0.18GB 1 No

bst-find-max 1 0m23s 0.57M 0.16GB 1 No

bst-left-rotate 3 3m18s 1.41M 0.50GB 0 No

bst-right-rotate 3 3m15s 1.47M 0.43GB 0 No

bst-insertion⇤
3 1m52s 1.04M 0.46GB 1 Yes

bst-deletion⇤
6 3m13s 0.63M 0.62GB 2 Yes

aig-insertion⇤
4 1m04s 0.17M 0.31GB 1 Yes

Table 3: Experimental results for case studies



6
R E L AT E D W O R K

This thesis presents new automated program synthesis techniques for
problems from various domains ranging from Visual Programming
(Storyboard Programming) to End-user Programming (FlashFill) and
Computer-aided Education (AutoProf). In addition to related work
on Program Synthesis, we also present related work from the fields
of Programming by Examples and Demonstrations, Computer-aided
Education and Automated Grading, Automated Program Repair, Au-
tomated Database Query Synthesis, and the user of Machine Learn-
ing for Program Synthesis.

6.1 program synthesis

Software synthesis has been an active research area at least since the
early 80s when Waldinger and Manna [82, 83] did seminal work on
deductive synthesis. In this work, a program was extracted from the
proof of correctness of the specification. A more algorithmic approach
to synthesis was pioneered by Pnueli and Rosner in the context of fi-
nite state controllers [96]. More recently, Program synthesis has seen
a renewed interest and has been used for many applications such
as synthesis of efficient low-level code [118, 74], data structure ma-
nipulations [110], inference of efficient synchronization in concurrent
programs [130], snippets of excel macros [56, 108], relational data rep-
resentations [60, 61], protocol synthesis [128], and angelic program-
ming [17]. A comprehensive survey on various program synthesis
techniques and different intention mechanisms for specification can
be found in [48].

One of the more recent successful synthesis system, Sketch [118,
117], takes a partial program and a reference implementation as in-
put and uses a constraint-based cegis algorithm to synthesize the
completion of the partial program that is functionally equivalent to
the reference implementation. We enhance the cegis algorithm with
abstraction interpretation based semantics of shapes for the Story-
board Programming system, and with minimize constraints to obtain
the CEGISMIN algorithm for the AutoProf system. In general, the tem-
plate of the desired program as well as the reference specification is
unknown and puts a considerable burden on programmers to pro-
vide them. For the Storyboard Programming system, we use abstract
and concrete input-output examples as the specification for the data
structure manipulation, and use a simplified loop skeleton grammar
to generate templates. For the AutoProf system, we use the student

123
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solution rewritten using the error model as the template program and
teacher’s solution as the reference implementation.

abstract interpretation based program synthesis The
idea of using abstract interpretation for synthesis was recently intro-
duced by Vechev, Yahav, and Yorsh [130], as a follow up to earlier
work on synthesis of concurrent data-structures [129]. Their system
is designed to synthesize efficient synchronization for concurrent pro-
grams, and is very different from Spt, both in its scope and in the al-
gorithms it uses. Unlike their system, Spt is based on a more general
constraint-based approach that allows us to handle extremely large
search spaces with no apparent structure.

The idea of using a constraint-based approach for abstract interpre-
tation was previously introduced by Gulwani et al. [52]. Recently, sim-
ilar techniques have been extended to synthesize invariants [53] and
even complete programs [122]. Some important distinctions between
this work and Spt are the use of storyboards to capture insights, as
well as our path-based representation of the constraints to support a
very large and complex abstract domain. The idea of using a sketch
to define the structure of the implementation was adapted from the
original work on sketch based synthesis [119]. The idea was originally
applied to the domain of bit-stream manipulations [118], such as ci-
phers and error correction codes, and has been applied more recently
to scientific programs [119] and concurrent data-structures [120]. Al-
though Sketch can synthesize some of the data-structure manipula-
tions, it requires the programmer to provide detailed sketches and
only provides bounded guarantees for the synthesized implementa-
tion. Additionally, writing specifications for data-structure manipula-
tions tend to be harder, because they have to be written as tricky test
harnesses.

Recent work in data representation synthesis [59] automatically
synthesizes efficient data-structure representations for a given set of
data usage patterns. The representations are built from a library of
data-structure building-blocks and support only a fixed set of com-
mon interface methods. Spt supports the implementation of more
general data-structure manipulations, such as the list reverse exam-
ple. The price of the generality is a more involved interaction model
compared with the push-button interface provided by that system.
Pins [123] introduced the idea of focusing on individual paths when
generating constraints. Their approach does not build upon abstract
interpretation as ours and Spt lets the synthesizer select interest-
ing paths automatically using the Cegis algorithm unlike a heuris-
tic technique used by Pins. Gulwani et al. [54, 66] have proposed
component-based synthesis techniques for synthesizing tricky (but
loop-free) code snippets from a given multi-set of components. These
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techniques are not applicable in our setting as we deal with loopy
programs.

6.2 programming by example and demonstrations

Shaw [105] developed a framework for learning restricted Lisp pro-
grams from a single input/output. The framework is not for gen-
eral programs and is also not guaranteed to learn the correct pro-
gram. Pygmalion [115] was one of the first successful programming
by demonstration systems. The programmer provided concrete exe-
cution of the program on a concrete example with the help of icons
and the system inferred some recursive program from the example.
Tinker [79], aimed at beginning programmers, lets one write Lisp pro-
grams by providing Lisp expressions or mouse inputs to handle the
execution on concrete examples of input data. These concrete pro-
gram executions are then generalized to symbolic executions and in
the process ambiguities were resolved by asking the programmer for
disambiguations. These systems alleviate somewhat the problem for
programmer to worry about abstract inputs but they still require the
programmer to know how the program is supposed to execute on
concrete inputs.

The Storyboard Programming system is different from previous
works in programming by example (or demonstration) as it requires
no concrete program executions on the example inputs from the user
and works with abstract examples (an infinite number of concrete)
input-output examples. Moreover, Spt requires a loop skeleton of the
program to be provided by the programmer to structure the pro-
gram search space and not let the synthesizer synthesize arbitrary
programs. This idea of providing programmer’s insights in a mul-
timodal form using concrete examples, abstract examples, and loop
skeleton helps rule out a large subset of undesirable programs.

Our work in the FlashFill Programming by Example system learns
semantic string transformations from input-output examples. The key
idea that distinguishes our work from all previous work in PBE sys-
tems is the idea of defining the hypothesis space using a custom-
designed expressive domain-specific language that can express most
semantic transformations that end-users need to perform, but at the
same time is efficiently learnable. This domain-specific language al-
lows us to design a polynomial time synthesis algorithm for effi-
ciently learning all expressions in the language that are consistent
with the examples. Our synthesis algorithm is sound and complete
and we use ranking techniques to learn the desired programs from
very few examples.

visual programming using examples The systems using graph-
ics for aiding programming, debugging, and program understanding
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have been an intriguing research area from a very long time. My-
ers [90] classifies these systems on the basis of three broad categories:
Visual Programming (with Program Visualizations), Programming by
Example, and interactive/batch systems. Visual Programming refers
to systems that allow programmers to specify program computations
graphically whereas Program visualization is used for graphically vi-
sualizing data structures at run-time for debugging purposes. Pro-
gramming by Example approach uses a finite set of input-output
pairs and tries to infer a program that conforms to those examples.

AMBIT/G [25] was one of the earliest efforts for representing data
and programs as predefined pictures and using a pattern matching
language to execute them. Grail [35] could compile flow chart pro-
grams directly to executable code. Some systems like Shaw’s [105]
were proposed that could learn a restricted set of programs from in-
put/output pairs. Programming visualization systems [21] [89] were
also developed to display runtime data structure information for de-
bugging of the programs. Several other systems like Pygmalion [115]
and Thinglab [18] were developed to help programmer define com-
putations pictorially. Programming Languages like Visual Basic also
allowed programmers to write GUI applications from general sub-
components using drag-and-drop techniques.

Grail [35] was one of the earliest systems that compiled flowcharts
to executable code. The AMBIT/G [25] language represented both
programs and the data as graphs. Then the pictorial program was pat-
tern matched for its execution. The framework was used to describe
list-structure garbage collection program and reduction-analysis string
parser. Even though these approaches alleviate the problem of writing
code by letting the programmers use static predefined pictures but
the burden of figuring out the exact sequence of operations still lies
with the programmer. Also attempting to capture dynamic transfor-
mations through static diagrams makes the resulting programs much
difficult.

Sketchpad [125] is a seminal work that lead to a whole new field of
human-computer interaction, and is considered a great breakthrough
for the computer graphics research. In this framework, a program-
mer used sketched geometrical object shapes like straight lines, arcs
etc. using a light pen. The programmer could also express constraints
on these shapes to get regular geometrical objects on the screen and
used graphical buttons for providing options like copying etc. Even
though this was a revolutionary work, this did not cater to the general
purpose programming purposes.

Thinkpad [99] system combined some ideas from programming
by example, constrained-based systems, and graphical programming
frameworks. It used data abstracts to let user draw data structures
graphically and use constraints to specify data structure invariants.
The programmer could then manipulate these graphical abstractions
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and perform an execution of the program on some example input.
This system provided a platform for programmer to program pictori-
ally but still the problem of reasoning about the precise execution of
the program remained.

Most of these systems did not attempt to exploit the semantic in-
formation present in the pictures; rather they used them only syntac-
tically as a means of communication between the programmer and
the machine. Spt combines ideas from visual programming, program-
ming by example, and software synthesis research. It lets programmer
specify graphical specifications for input-output pairs (potentially in-
finite number of them). The Storyboard Programming system is dif-
ferent from the previous work in visual programming as it does not
require programmers to provide a pictorial execution of the program.
Only the input and output pictures are required which are much eas-
ier to reason about rather than different executions of the complete
program.

text-editing systems using demonstrations and examples :
Nix described a text-editing system that synthesizes gap programs
based on examples [94]. FlashFill [49] is a programming by exam-
ple system for automating syntactic string transformations in spread-
sheets. It synthesizes programs with restricted form of regular expres-
sions, conditionals, and loops for performing syntactic string trans-
formations. Our work leverages FlashFill to perform semantic string
transformations.

The Programming-by-demonstration (PBD) systems for text-editing
like SMARTedit [76] or simultaneous editing [85] require the user to
provide a complete demonstration or trace, where the demonstration
consists of a sequence of the editor state after each primitive action,
really spelling out how to do the transformation, but on a given ex-
ample. This is considered to be one of the major obstacles in the adop-
tion of programming by demonstration systems [75]. Our system is
based on Programming by Example (as opposed to Programming by
Demonstration) – it requires the user to provide only the final state
(as opposed to also providing the intermediate states).

Topes [104, 103] provides end-users an abstraction of their data and
helps them describe constraints on how to validate the data. From the
given data, it infers some basic format such as numbers and words,
and allows the users to modify the format by adding more constraints
or specify additional formats. With these rules, Topes can validate
user’s data and provide error messages regarding why validation of
certain strings failed. In addition, since it has knowledge of the for-
mats, it also provides a finite set of formats as a recommendation in
which a user might want to reformat the data. This can be viewed as
an abstraction for providing Excel custom format strings, but is more
powerful as additional constraints can be specified. Our tool is a com-
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plete PBE system and allows users to format the data type strings in
any arbitrary format without asking them to specify these format.

The work in [58] describes a programming by example technology
for learning layout transformations on tables. In contrast, our work in
FlashFill describes a learning algorithm for synthesizing string trans-
formations based on table lookups.

Our work on learning semantic transformations in FlashFill is based
on a novel learning algorithm. None of the examples we presented
can be addressed by any of these systems because they do not im-
plement any reasoning about semantic data types. The language of
syntactic string transformations over which our system is built upon
is also quite expressive, which enables our system to learn more com-
plex and a much larger class of transformations than the ones that
these other systems can learn.

Ad-hoc Data Manipulation for Programmers: The PADS project [40,
39] has enabled simplification of ad hoc data processing tasks for pro-
grammers by contributing along several dimensions: development of
domain specific languages for describing text structure or data for-
mat, learning algorithms for automatically inferring such formats,
and a markup language to allow users to add simple annotations to
enable more effective learning of text structure. The learned format
can then be used by programmers for documentation or implemen-
tation of custom data analysis tools. In contrast, we enable end-users
(non-programmers) to perform small, often one-off, repetitive tasks
on their spreadsheet data. Asking end-users to provide annotations
for learning (relatively simple) text structure, and then asking them to
develop custom tools to format/process the inferred structure is way
above their expertise and usability bar. Hence, we automate end-to-
end process, which includes not only learning the text structure from
inputs, but also learning the desired transformation from outputs.

6.3 computer-aided education and grading

The technology developed in the programming languages and for-
mal methods community can play a big role in enhancing Education.
Recently, it has been applied to multiple aspects of Education includ-
ing problem generation [114, 11, 9] and solution generation [55]. In
our work on AutoProf, we push the frontier forward to cover another
aspect namely automated grading. Recently [10] also applied auto-
mated grading to automata constructions and used syntactic edit dis-
tance like ours as one of the metrics. Our work differs from theirs
in two regards: (a) our corrections for programs (which are much
more sophisticated than automata) are teacher-defined, while [10]
considers a small pre-defined set of corrections over graphs, and (b)
we use the Sketch synthesizer to efficiently navigate the huge search
space, while [10] uses brute-force search. A recent work by Gulwani
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et al. [55] also uses program synthesis techniques for automatically
synthesizing solutions to ruler/compass based geometry construc-
tion problems. Their focus is primarily on finding a solution to a
given geometry problem whereas we aim to provide feedback on a
given programming exercise solution.

automated grading approaches The survey by Douce et al. [34]
presents a nice overview of the systems developed for automated
grading of programming assignments over the last forty years. Based
on the age of these systems, they classify them into three generations.
The first generation systems [63] graded programs by comparing the
stored data with the data obtained from program execution, and kept
track of running times and grade books. The second generation sys-
tems [64] also checked for programming styles such as modularity,
complexity, and efficiency in addition to checking for correctness. The
third generation tools such as RoboProf [30] combine web technology
with more sophisticated testing approaches. Pex4Fun [126] takes it a
step further by adding social gaming component of coding duels. All
of these approaches are a form of test-cases based grading approach
and can produce feedback in terms of failing test inputs, whereas
our technique generates feedback about the changes required in the
student submission to make it correct.

ai based programming tutors There has been a lot of work
done in the AI community for building automated tutors for help-
ing novice programmers learn programming by providing feedback
about semantic errors. These tutoring systems can be categorized into
the following two major classes:

Code-based matching approaches: LAURA [8] converts teacher’s
and student’s program into a graph based representation and com-
pares them heuristically by applying program transformations while
reporting mismatches as potential bugs. TALUS [88] matches a stu-
dent’s attempt with a collection of teacher’s algorithms. It first tries
to recognize the algorithm used and then tentatively replaces the top-
level expressions in the student’s attempt with the recognized algo-
rithm for generating correction feedback. The problem with these ap-
proach is that the enumeration of all possible algorithms (with its
variants) for covering all corrections is very large and tedious on part
of the teacher.

Intention-based matching approaches: LISP tutor [38] creates a
model of the student goals and updates it dynamically as the stu-
dent makes edits. The drawback of this approach is that it forces stu-
dents to write code in a certain pre-defined structure and limits their
freedom. MENO-II [121] parses student programs into a deep syn-
tax tree whose nodes are annotated with plan tags. This annotated
tree is then matched with the plans obtained from teacher’s solution.
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PROUST [68], on the other hand, uses a knowledge base of goals and
their corresponding plans for implementing them for each program-
ming problem. It first tries to find correspondence of these plans in
the student’s code and then performs matching to find discrepancies.
CHIRON [101] is its improved version in which the goals and plans
in the knowledge base are organized in a hierarchical manner based
on their generality and uses machine learning techniques for plan
identification in the student code. These approaches require teacher
to provide all possible plans a student can use to solve the goals of a
given problem and do not perform well if the student’s attempt uses
a plan not present in the knowledge base.

Our approach performs semantic equivalence of student’s attempt
and teacher’s solution based on exhaustive bounded symbolic veri-
fication techniques and makes no assumptions on the algorithms or
plans that students can use for solving the problem. Moreover, our
approach is modular with respect to error models; the local correc-
tion rules are provided in a declarative manner and their complex
interactions are handled by the solver itself.

6.4 automated program repair

The techniques developed for automated program repair is also re-
lated to our work in the AutoProf system. Könighofer et. al. [71]
present an approach for automated error localization and correction
of imperative programs. They use model-based diagnosis to localize
components that need to be replaced and then use a template-based
approach for providing corrections using SMT reasoning. Their fault
model only considers the right hand side (RHS) of assignment state-
ments as replaceable components. The approaches in [67, 124] frame
the problem of program repair as a game between an environment
that provides the inputs and a system that provides correct values for
the buggy expressions such that the specification is satisfied. These
approaches only support simple corrections (e.g. correcting RHS side
of expressions) in the fault model as they aim to repair large pro-
grams with arbitrary errors. In AutoProf, we exploit the fact that we
have access to the dataset of previous student mistakes that we can
use to construct a concise and precise error model. This enables us to
model more sophisticated transformations such as introducing new
program statements, replacing LHS of assignments etc. in our error
model. Our approach also supports minimal cost changes to student’s
programs where each error in the model is associated with a certain
cost, unlike the earlier mentioned approaches.

Mutation-based program repair [32] performs mutations repeat-
edly to statements in a buggy program in order of their suspicious-
ness until the program becomes correct. The large state space of mu-
tants (1012) makes this approach infeasible. AutoProf uses a sym-
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bolic search for exploring correct solutions over this large set. There
are also genetic programming approaches that exploit redundancy
present in other parts of the code for fixing faults [14, 41]. These
techniques are not applicable in our case as such redundancy is not
present in introductory programming problems.

Techniques like Delta Debugging [134] and QuickXplain [70] aim
to simplify a failing test case to a minimal test case that still exhibits
the same failure. AutoProf can be complemented with these tech-
niques to restrict the application of rewrite rules to certain failing
parts of the program only. There are many algorithms for fault local-
ization [15, 45] that use the difference between faulty and successful
executions of the system to identify potential faulty locations. Jose et.
al. [69] recently suggested an approach that uses a MAX-SAT solver to
satisfy maximum number of clauses in a formula obtained from a fail-
ing test case to compute potential error locations. These approaches,
however, only localize faults for a single failing test case and the sug-
gested error location might not be the desired error location, since we
are looking for common error locations that cause failure of multiple
test cases. Moreover, these techniques provide only a limited set of
suggestions (if any) for repairing these faults.

6.5 query synthesis in databases

Within the database literature, our work on semantic transformations
is most closely related to the problems of record matching, learning
schema matches and query synthesis. We have detailed some differences
below, but the most significant difference is that we put these con-
cepts together.

Record Matching: The task of syntactic manipulation performed
before a lookup operation in our extended transformation language
can be likened to the problem of record matching. Most of the prior
work in this area [36, 72] has focused on designing appropriate sim-
ilarity functions such as edit distance, jaccard similarity, cosine sim-
ilarity, and HMM25. A basic limitation of most of them is that they
have limited customizability. Arasu et.al. have proposed a customiz-
able similarity measure that can either be user-programmed [12] or
can be inferred from examples of matching textual records [13]. In
both these cases, the underlying transformation rules only involve
constant strings, e.g., US ! United States. Our record matching is
also inferred from examples, but it involves generalized transforma-
tion rules consisting of syntactic operations such as regular expres-
sion matching, substring, and concatenate.

Learning Complex Schema Matches: The problem of synthesiz-
ing semantic string manipulations is also related to the problem of
finding complex semantic matches between the data stored in dis-
parate sources. The iMAP system [33] finds the schema matches that
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involve concatenation of column strings across different tables us-
ing a domain-oriented approach. Another approach by Warren and
Tompa [131] learns the relationships that involve concatenation of
column substrings, but within a single table using a greedy approach.
Our language-theoretic approach learns relationships that involve con-
catenation of column substrings across multiple database tables with-
out using any domain knowledge about the column entries.

Query Synthesis by Example: The view synthesis [31, 127] problem
aims to find the most succinct and accurate query for a given database
view instance. The high-level goal of this work is similar to that of our
inductive synthesis algorithm for the lookup transformation language
L
t

, but there are some key differences: (i) View synthesis techniques
infer a relation from a large representative example view, while we
infer a transformation from a set of few example rows (which is a
critical usability aspect for end-users). (ii) View synthesis techniques
infer the most likely relation, while our lookup synthesis algorithm
infers a succinct representation of all possible hypotheses, which en-
ables its extension to a synthesis algorithm for the language L

u

. (iii)
The technique in [31] does not consider join or projection operations.

6.6 ranking in program synthesis

There have been several related work on using a manual ranking func-
tion for ranking of synthesized programs (or expressions). Gvero et.
al. [57] use weights to rank the expressions for efficient synthesis
of likely program expressions of a given type at a given program
point. These weights depend on the lexical nesting structure of decla-
rations and also on the statistical information about the usage of dec-
larations in a code corpus. PROSPECTOR [81] synthesizes jungloid
code fragments (chain of objects and method calls from type ⌧

in

to
type ⌧

out

) by ranking jungloids using the primary criterion of length,
and secondary criteria of number of crossed package boundaries and
generality of output type. Perelman et. al. [95] synthesize hole val-
ues in partial expressions for code completion by ranking potential
completed expressions based on features such as class hierarchy of
method parameters, depth of sub-expressions, in-scope static meth-
ods, and similar names. PRIME [87] uses relaxed inclusion matching
to search for API-usage from a large collection of code corpuses, and
ranks the results using the frequency of similar snippets. The SemFix

tool [92] uses a manual characterization of components in different
complexity levels for synthesizing simpler expression repairs. Our
ranking scheme also uses some of these features, but we learn the
ranking function automatically using machine learning unlike these
techniques which need manual definition and parameter tuning for
the ranking function.
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SLANG [98] uses the regularities found in sequences of method
invocations from large code repositories to synthesize likely method
invocation sequences for code completion. It uses alias and history
analysis to extract precise sequences of method invocations during
the training phase, and then trains a statistical language model on
the extracted data. CodeHint [44] is an interactive and dynamic code
synthesis system that also employs a probabilistic model learnt over
ten million lines of code to guide and prune the search space. The
motivation of our ranking technique is also similar as we want to
learn models of programs from a database of training benchmarks.
The main difference in our technique is that it is based on version-
space algebra based representation, where we compute all possible
conforming programs and then efficiently rank them in a hierarchical
fashion based on different expression sharing using the correspond-
ing efficient features and algorithms.

learning to rank Learning to rank has been an active area of
research in the machine learning community over the last decade.
Most learning to rank approaches can be categorized into three broad
categories: pointwise, pairwise, and listwise. The pointwise approaches
transform the ranking problem to a classification [91] or ordinal re-
gression problem [26]. This approach requires numerical rank values
for each training instance. The pairwise approaches transform the
ranking problem to a classification problem of preferring one object
over another such that the number of misclassified pairs are mini-
mized [62, 43, 22]. The downside of this approach is that it needs to
construct a pair of positive and negative expression for each input-
output example that leads to a quadratic increase in the number
of training instances. The listwise approach uses list of objects as
a training instance and directly optimizes the evaluation measures.
ListNet [24] proposes probabilistic models of permutation and top-k
probability for defining listwise loss functions for a neural network
model and uses gradient descent algorithm to compute the ranking
function. ListMLE [133] models the listwise ranking problem as that
of minimizing the likelihood loss function. Our approach is also a
listwise approach as it learns a ranking function over a list of pro-
gram expressions. A major difference in our technique, however, is
that it aims to rank any positive expression higher than all negative
expressions unlike all previous techniques.

machine learning for programming by example A re-
cent work by Menon et al. [84] uses machine learning to bias the
search for finding a composition of a given set of typed operators
based on clues obtained from the examples. Raychev et. al. [97] use
A⇤ search based on a heuristic function of length of current refac-
toring sequence and estimated distance from target tree for efficient
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learning of software refactorings from few user edits. On the other
hand, we use machine learning to identify an intended program from
a given set of programs that are consistent with a given set of exam-
ples. Our technique is applicable to domains where it is possible to
compute the set of all programs that are consistent with a given set of
examples [56, 50]. SMARTedit [76] is a PBD (Programming By Demon-
stration) text-editing system where a user presents demonstration(s)
of the text-editing task and the system tries to generalize the demon-
stration(s) to a macro by extending the notion of version-spaces to
model plausible macro hypotheses. The macro language of SMARTe-
dit is not as expressive as FlashFill’s, and furthermore the task demon-
strations in SMARTedit reduce a lot of ambiguity in the hypothe-
sis space. Liang et al. [78] introduce hierarchical Bayesian prior in
a multi-task setting that allows sharing of statistical strength across
tasks. This allows to provide an inductive bias to common sub-tasks
across multiple tasks and helps in learning the desired user inten-
tion from few demonstrations. Our underlying language and repre-
sentation of string manipulation programs is very different from the
combinatory logic based program representation used by Liang et al.,
which requires us to use a different approach for learning the ranking
function.
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F U T U R E W O R K

In this chapter, I describe some of the work I am planning to work
on in the short term to extend the capabilities of the three synthesis
systems. I also present some ideas and directions for building upon
these synthesis techniques for creating such systems for making pro-
gramming accessible to a much larger class of end-users, students,
and programmers.

Probabilistic Synthesis in FlashFill

While going through many FlashFill blogs and tutorial videos, we
observed that often times users were trying to use FlashFill to trans-
form strings that represented unstructured and non-uniform data types.
The unstructured data types refers to a collection of data type strings
whose constituent fields do not follow a logical pattern recognizable
by syntactic regular expressions. The non-uniform data types refers to
a collection of data type strings that are in multiple different formats.
The example shown in Figure 84 shows a collection of ambiguous
and non-uniform date strings. An Excel user wanted to format dates
present in different formats into a uniform format as shown in the
Figure. Note that the semantic transformation language can not ex-
press such transformations because: (i) there exists input strings such
as 4/18/2010 for which FlashFill has not seen an input-output exam-
ple yet, and (ii) the fields are not recognizable by syntactic regular
expressions. Sometimes, the data is also ambiguous, e.g. the string
8-7-2010, which can be interpreted as both 7 August and 8 July.

Input Output

1 24.9 24 Sep 2010

2 6-21-2010 21 Jun 2010

3 29.1 29 Jan 2010
4 8-7-2010 7 Aug 2010
5 4/18/2010 18 Apr 2010
6 16.8 16 Aug 2010

Figure 84: Learning transformations on unstructured, non-uniform, and am-
biguous data type strings.

We are developing a probabilistic domain-specific language for han-
dling transformations on noisy, non-uniform, and ambiguous data.

135
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This language is parameterized by semantic entity descriptions that
enables it to efficiently support more sophisticated transformations
(requiring semantic knowledge) over such data. The expressions learnt
in this language are assigned likelihood probabilities based on the
provided input-output examples as well as other input strings present
in the spreadsheet. Because of the probabilistic semantics, it can also
handle noisy input-output examples (inconsistent examples) such as
spelling mistakes or small typos in the user-provided output strings.

Learning Probabilistic Error Models from edX data

The AutoProf system currently requires instructors to provide error
models consisting of common mistakes that students are making
on a given problem. This manual effort of creating error models is
time-consuming and tedious for instructors, and sometimes even pro-
hibitively expensive to find correction rules for mistakes that occur
infrequently in practice. The syntax of error model language is also
something teachers need to learn to be able to write error models for
AutoProf.

We propose a technique to automatically learn error models from
the logs of thousands of students attempts. The edX data logs consists
of sequence of student attempts for a given problem, and many stu-
dents correct their mistakes themselves after performing a sequence
of corrections. For such student logs, we can perform a diff on their
consecutive attempts to find what changed between the two attempts,
which would in turn lead to a potential correction rule. We can then
compute the frequency distribution of occurrence of each correction
rule to assign a probability (cost) for the rule, and can then use prob-
abilistic synthesis techniques (similar to FlashFill above) for finding
most likely changes to a student program.

AutoProf as an Intelligent Tutoring System for Programming

The AutoProf feedback describing exactly what is wrong with a pro-
gram and how to fix it is great for instructors and teaching assistants,
who are trying to grade student programs and provide detailed feed-
back. But such detailed feedback is not great for students who are
trying to learn programming as it might prevent them from learning
the conceptual mistake and essential debugging skills.

We are currently working on using the information obtained from
the AutoProf analysis to add another feedback level for tutoring. The
main idea is to provide a more general feedback that helps students
learn how to debug their programs. Instead of telling the location and
fix of the problem, the feedback asks them to print certain variables
and expressions in their program, which in turn allows students to
understand their mistake and find fixes for them. We are working
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with the MITx and edX team to deploy AutoProf with this feedback
level in the 6.0001 class in the 2014 Fall semester, and are planning
to perform some studies on the effectiveness of such feedback for
helping students learn programming.

Table Interface for Spt

We are currently collaborating with researchers from the Multimodal
Understanding Group at MIT to create a tablet interface for Spt, where
a user can draw the examples directly on the tablet screen, and can
interact with the system using even more modalities such as speech
to provide additional specifications [100]. The specifications obtained
from such an interface are often not as detailed as one expects in the
textual specification of Spt, so the system now needs to perform a
few inferences about the missing information. We are also planning
to perform studies with students using the tablet interface to see how
natural such an interface is for students to learn data structure ma-
nipulations.

Other Program Synthesis Applications for Accessible Programming

We now describe few other exciting applications of program synthe-
sis technology for making programming accessible to an even larger
community.

For End-users: Nowadays only a handful of people can create smart-
phone applications but the ability to easily program them can em-
power end-users to build custom apps for their routine tasks. There
are already systems like AppInventor1 and TouchDevelop2 that make
it easier to build such apps, but they still involve some form of pro-
gramming. We would like to build a system where end-users can
provide a few demonstrations of expected app behaviors using a vo-
cabulary of high-level components, which can then be generalized
by a synthesizer to create the custom app. Another domain that end-
users struggle with is the domain of web programming, e.g. for writ-
ing scripts to extract data from a website or enter form values from a
database. We want to combine ideas from FlashFill to create a system
where users can provide demonstrations of the desired task, and the
system then learns the intended program.

For Programmers: We would like to integrate example-based spec-
ification mechanisms into mainstream programming languages as
even programmers can benefit greatly from them. For data processing
and text manipulation tasks, programmers typically use languages
like Awk and Perl, but every language supports a different regular ex-
pression syntax and even figuring out the desired regular expression

1 http://appinventor.mit.edu
2 http://www.touchdevelop.com
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is quite tricky. We want to develop a language with a tighter integra-
tion of example-based specification mechanisms such that the com-
piler can synthesize the intended regular expressions. Another do-
main where such an integration would be useful is auto-completion
and intellisense in IDEs. We would like to provide language con-
structs to programmers to express partial expressions, which the syn-
thesizer can use to provide hints for possible well-typed completions.

For Students (Education Technology): We would like to collabo-
rate with education researchers to measure the learning outcomes of
the AutoProf tutoring system for programming. Interestingly, similar
program synthesis techniques can also be used for building tutoring
and feedback systems for other K-12 STEM subjects such as math-
ematics and physics [51]. For proof problems that are common in
mathematics and logic courses, where students need to write step-by-
step solutions and where there are multiple correct ways of solving,
a technique based on AutoProf can be used to provide feedback and
to teach different concepts. We would like to build such a system
for them and this would also give us an opportunity to impart some
computational concepts to K-12 students.

Program synthesis techniques also have a big role to play for the
problem of content creation. For example, enabling students and teach-
ers to easily enter their structured content (problems or solutions)
naturally and easily as opposed to using existing techniques like Mi-
crosoft Word or Latex. The content creation problem can be formal-
ized as a synthesis problem as follows: given a term t, a rule/axiom
r, and a partial expression t 0

p

, complete the partial expression t 0
p

to t 0

such that t !
r

t 0. In other words, our goal is to build a system that
can auto-populate the term t 0 by learning the desired transformation
on a term t. Our initial results for building systems for content cre-
ation in the domains of trigonometry and probability have been quite
encouraging. We are also exploring other natural specification mech-
anisms for content creation such as voice and ink.

Another interesting side-effect of the MOOCs movement has been
the capability to capture large amounts of data about student inter-
actions. We would like to leverage this vast amount of data to learn
common sources of student misunderstandings as well as developing
customized learning experiences based on a student’s performance.
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C O N C L U S I O N S

In this thesis, I presented three systems Spt, FlashFill extensions,
and AutoProf that work towards achieving the goal of making pro-
gramming accessible to a large class of users namely end-users and
students. These systems are based on new program synthesis ap-
proaches that allow for more natural and intuitive specification mech-
anisms. The hypothesis spaces in these approaches can be fixed or
parametric (user-defined). The key idea for designing fixed hypoth-
esis spaces is to define them using domain-specific languages that
are expressive enough to express most tasks in the domain but at the
same time concise enough for efficiently learning expressions in them.
The user-defined hypothesis spaces are parameterized with intuitive
user inputs to allow users to easily define and control the search
space. We use constraint-based and version-space algebra based syn-
thesis algorithms to efficiently learn programs in this large hypothesis
space that conform to the provided specification. The user interaction
model is also important for such systems for enabling users to refine
their intent and to make them usable in practice. We believe this thesis
present a first step towards using the power of automated program
synthesis for democratizing programming, and there are many new
exciting systems that can be built upon these foundations to make
programming accessible to an even larger class of people.
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