
Subsumer-First: Steering Symbolic Reachability

Analysis

Andrey Rybalchenko1 and Rishabh Singh2

1 Max Planck Institute for Software Systems (MPI-SWS)
2 Massachusetts Institue of Technology (MIT)

Abstract. Symbolic reachability analysis provides a basis for the veri-
fication of software systems by offering algorithmic support for the ex-
ploration of the program state space when searching for proofs or coun-
terexamples. The choice of exploration strategy employed by the anal-
ysis has direct impact on its success, whereas the ability to find short
counterexamples quickly and—as a complementary task—to efficiently
perform the exhaustive state space traversal are of utmost importance
for the majority of verification efforts. Existing exploration strategies can
optimize only one of these objectives which leads to a sub-optimal reach-
ability analysis, e.g., breadth-first search may sacrifice the exploration ef-
ficiency and chaotic iteration can miss minimal counterexamples. In this
paper we present subsumer-first, a new approach for steering symbolic
reachability analysis that targets both minimal counterexample discovery
and efficiency of exhaustive exploration. Our approach leverages the re-
sult of fixpoint checks performed during symbolic reachability analysis to
bias the exploration strategy towards its objectives, and does not require
any additional computation. We demonstrate how the subsumer-first ap-
proach can be applied to improve efficiency of software verification tools
based on predicate abstraction. Our experimental evaluation indicates
the practical usefulness of the approach: we observe significant efficiency
improvements (median value 40%) on difficult verification benchmarks
from the transportation domain.

1 Introduction

Model Checking [7] is a popular verification technology employed to verify both
hardware and software systems [1,5,14]. State space exploration using symbolic
techniques provides a basis for the verification of software systems. Explicit-state
model checking which is commonly used to analyze software systems face the
fundamental problem of state space explosion during this exploration. Scalability
is one of the major challenges that model checking techniques face today which
limits their applicability to verifying large systems. There are various efforts
made to overcome this bottleneck. Techniques like abstract interpretation [8]
try to abstract only relevant properties of the program to prove its correct-
ness. Symbolic model checking [4] avoids explicit construction of the state space
by performing symbolic fixpoint computation. Partial-order reduction [17] tries



to explore only representative transitions and ignores other redundant transi-
tions. But these techniques still suffer from having to explore a huge state space,
which in turn is greatly dependent on the search strategy used for exploration.
The exploration procedure used has a significant direct impact on the overall
effectiveness of the verification efforts.

Directed model checking techniques [10,11] try to direct the state space search
to avoid the potential blowup faced by uninformed model checking techniques.
Various heuristic strategies [9,13,15] have been proposed for searching the state
space efficiently. Saturating the strongly connected components first [3] is also
proposed for efficient search. But all these searching techniques aim to optimize
only one objective, e.g. the counterexample length or the efficient traversal of
the state space. Heuristics directed towards quickly finding the error state may
not scale very well in the absence of error states and vice versa.

In this paper we present “subsumer-first”, a new approach for steering sym-
bolic reachability analysis that targets both minimal counterexample discovery
and efficiency of exhaustive exploration. The subsumer-first approach leverages
the results of partial fixpoint checks—subsumption tests—performed during the
symbolic state space exploration. The main idea is to schedule the successor
computation of a symbolic state, say s, before the successor computation of all
states that are reachable from the states subsumed s.

Subsumer-first has implicit bias towards the discovery of symbolic counterex-
amples that maximize the size of the symbolic state that reaches the error loca-
tion. This aspect of the heuristic is useful for improving the effectiveness of the
counterexample-guided abstraction refinement procedures, since it exposes the
imprecision of the abstraction to a larger extent.

We present an application of the subsumer-first heuristic for improving the
efficiency of abstraction-based software verification within the framework of CE-
GAR [6] based approaches. The empirical evaluation on industrial benchmarks of
this search strategy implemented in ARMC [18], a predicate abstraction based
model checker, presents its efficacy. The search strategy saves in the abstrac-
tion computation phase across the refinement iterations. We observe significant
efficiency improvements (median of 40% reduction, 1.6 speedup) on difficult
benchmarks from the transportation domain. The subsumer guided search on
an average leads to a significant reduction in the number of abstraction entail-
ment queries, total number of states explored and the total time taken. In some
cases it is orders of magnitude faster than the breadth-first strategy successfully
employed previously.

2 Example

In this section, we illustrate the subsumer-first approach on a simple example
motivated by the symbolic reachability analysis.

We consider a set of symbolic program states that contains a distinguished
start state. We assume that the set of symbolic states are partially ordered
by the subset inclusion relation on the sets of concrete states denoted by the

2



Fig. 1. Reachability tree fragment.

corresponding symbolic states. We say a symbolic state n1 subsumes a symbolic
state n2 if the state n1 is larger than n2 with respect to the given partial order.
Furthermore, we consider a finite collection of monotonic successor functions
over the symbolic states which represent a transition relation. Our goal is to
construct a tree whose nodes are symbolic states, whose root is the start state,
and whose parent-child relation is determined by the given transition relation.

We consider a reachability tree fragment in Figure 1, and assume that it was
constructed in the breadth-first manner. Let n3 be the last node that was added
to the tree, and furthermore assume that n1 subsumes a node n1. All the nodes
that are reachable from node n1 are also reachable from n3. Now there are a few
alternatives to resume the search from this point onwards.

One possible option is to continue the search in breadth-first manner, i.e.
append node n3 at the end of the queue of nodes to be expanded and continue.
However, this approach can be sub-optimal since a significant amount of time
may be spent in exploring states inside the subtree rooted at n1 which are anyway
going to be explored from state n3 after some time. Such redundant computation
should be avoided.

Another option is be to delete all the nodes in the subtree rooted at n1 and
resume the search in the breadth-first manner. Since all nodes reachable from n1

are guaranteed to be reached from n3, it is a sound step to perform. The problem
with this approach is that we may lose on already computed states (nodes inside
subtree rooted at n1) and would need to recompute them again. If the number

3



of nodes in the subtree to be deleted is large, we potentially lose significantly in
the re-computation of all the pruned nodes.

Our subsumer-first approach keeps the tree intact instead of deleting the
subtree rooted at node n1. The node n1 is pruned from the tree. The node n3 is
scheduled for expansion in the queue Q before the nodes in the subtree rooted
at n1 which are present in Q. From the monotonicity of successor functions,
the successor node of n3 with respect to a function τ1, say n4,is guaranteed to
be at least as large as n2. If the successor node n4 is larger than n2, then the
same algorithm applies recursively: the node n2 is pruned and n4 is scheduled
ahead of the nodes in the subtree rooted at node n2. But if the successor node
n4 is equal to node n2, then we prune the node n4. Now we can reuse all of
the previously computed subtree of n2. So if at some point, the newly computed
successor node becomes exactly equal to some previously computed node, we
can stop searching the space further from that node and reuse the whole of the
previously computed subtree. It is easy to envision the cases where significant
savings can be achieved. The child and parent pointers need to be appropriately
modified and maintained during the complete iteration.

Another important advantage of this approach is that since larger symbolic
states (less constrained) get priority for the expansion first, we search for error
states in a much larger state space. The counterexamples involving the larger
symbolic states are given priority over the ones involving smaller states (more
constrained). Therefore the counterexamples we get in the abstract-check-refine
loop expose the imprecision of the abstraction to a larger extent. Another per-
spective on the obtained counterexample is to consider them as a logical com-
bination of multiple counterexamples. Refining multiple counterexamples simul-
taneously has been shown empirically to perform well in practice [16], which is
also confirmed by our experimental evaluation.

3 Subsumer-first approach

In this section, we present the subsumer-first approach in an abstract setting.
Let (S,≤) be a partially ordered set, s0 be a distinguished element in S, and

R ⊆ S × S be a binary relation over S such that

∀s, s′, t ∈ S ∃t′ ∈ S : s ≤ t ∧ (s, s′) ∈ R → (t, t′) ∈ R ∧ t ≤ t′ .

Intuitively, S corresponds to a set of symbolic program states of a program and
R models the transition relation of the program, which is necessarily monotonic.
Our goal is to compute the set of elements in S that is reachable from s0 via
the binary relation R in form of a reachability tree. We assume that the tree is
computed using a worklist based algorithm, and leave the worklist scheduling as
unspecified.

The subsumer-first approach amounts to the following exploration strategy.
Let s be an element to put on the worklist and X be the set of all elements that
are reachable from any element already appearing in the tree and subsumed

4



by s, i.e.,

X = {s′′ | exist already reached s′ such that s′ ≤ s and (s′, s′′) ∈ R∗} .

Then, we put s on the worklist at a position with higher priority than any
element from the set X.

4 Subsumer-first for predicate abstraction

In this section we present an application of the subsumer-first approach for the
symbolic reachability analysis using predicate abstraction, which is a prominent
abstraction technique for software verification.

4.1 Preliminaries

This section provides basic definitions together with a brief description of pred-
icate abstraction [2] and a refinement-based approach for proving safety proper-
ties (which can be skipped by experts in predicate abstraction).

Programs and Computations A program P = (Σ, T , sI , SE) consists of

– Σ : a set of program states,

– T : a finite set of program transitions such that each transition τ ∈ T is
associated with a binary transition relation ρτ ⊆ Σ × Σ,

– sI : an initial state, sI ∈ Σ,

– SE : a set of error states, SE ⊆ Σ.

Our exposition does not assume any further state structure. Though, for the sake
of concreteness we point out that usually a program state s ∈ Σ is represented
by a valuation of program variables, and program transitions T correspond to
program statements as written in a programming language.

A program computation σ = s1, s2, . . . is a sequence of program states that
starts at the initial state, i.e., s1 = sI , and each pair of consecutive states
(si, si+1) is related by some program transition τ ∈ T , i.e., (si, si+1) ∈ ρτ . A
program state s is reachable if it appears in some program computation. Let
Reach be the set of all reachable states. The program P is safe if no error state
in SE is reachable in any computation, i.e., if SE ∩ Reach = ∅.

A program path π is a sequence of program transitions. We write π · τ to de-
note an extension of a path π by a transition τ . A program path π = τ1, . . . , τn

is feasible if it induces a computation, i.e., if there is a sequence of states
s1, . . . , sn+1 such that (si, si+1) ∈ ρτi

for each 1 ≤ i ≤ n.

5



Predicate Abstraction and Refinement We can verify program safety by
computing the set of reachable program states and checking if it contains the
error states. The set of reachable program states Reach can be constructed incre-
mentally by iterating the “one-step” reachability operator post that maps a set
of states S ⊆ Σ into a set of immediate successors. Formally, for each transition
τ ∈ T we define

post(τ, S) = {s′ ∈ Σ | ∃s ∈ S : (s, s′) ∈ ρτ} ,

and then extend canonically to aggregate over all program transitions

post(S) =
⋃

τ∈T

post(τ, S) .

Then, the set Reach of all reachable states consists of the states reachable from
the initial state sI by any finite number of post-applications:

Reach =
⋃

i≥0

posti({sI})

= lfp(post, {sI}) .

The set Reach of reachable states is generally not computable, since the
number of iterations required to reach the fixpoint can be very large or infinite.
For practical safety verification, we observe that any sufficiently precise over-

approximation of Reach can be used to check program safety: if the error state is
not present in the approximation then it is not reachable. Thus, by adjusting the
precision of over-approximation we can achieve the desired practical effectiveness
of the iterative reachability computation.

The framework of abstract interpretation formalizes the approximation-based
approach by defining the effect of over-approximation using an abstraction func-
tion α as a basic building block [8]. The abstraction function α maps a set of
program states to its over-approximation. Formally, we require S ⊆ α(S) for any
set of states S, and α(S) ⊆ α(T ) for any set of states T such that S ⊆ T . We
apply abstraction after each application of the “one-step” operator post

post#(S) = α(post(S)) ,

and then obtain the desired over-approximation of the reachable states

Reach# = lfp(post#, {sI}) .

The main challenge in applying the abstract interpretation framework amounts
to choosing the abstraction function α that is precise enough and can be effi-
ciently computed in practice.

Predicate abstraction is a prominent approach to automate the construc-
tion of α using automated theorem prover [12]. It requires a finite set of predi-

cates Preds = {P1, . . . , Pn}, where each predicate Pi represents a set of program
states Pi ⊆ Σ. An over-approximation of the state is constructed from Preds.
Automated refinement techniques are used to determine the set of predicates
that define the abstraction function.

6



4.2 Algorithms

We present our algorithm to combine the subsumer-first search strategy with
the CEGAR framework. In each iteration of the abstract-check-refine loop, the
method abstractCheck is called with queue Q initially containing only the start

state. If no error state is reached and a fixpoint is reached, i.e. Q becomes empty,
the program is declared SAFE. Otherwise if an error state is encountered, the ab-
stract counterexample is checked whether it is a valid concrete counterexample.
If yes, the counterexample is returned as a concrete counterexample presenting
the violation of the safety property. Otherwise the spurious counterexample is
refined by adding new predicates which refute its concrete existence and again
a new iteration of abstractCheck is initiated with the newer set of predicates.

abstractCheck The abstractCheck algorithm in Figure 2 keeps expanding the
states until either the queue becomes empty (line 1) or some error state is
reached (line 5). It dequeues the first element n in the queue Q (line 2). Then
for all possible enabled transitions τ , i.e. all transitions which can fire from
n, the next state m is computed using post# (line 4). If m is an error state,
checkCounterexample method is called which verifies if the counterexample path
from the root to state m is spurious or not (line 6). SubsumedSubtree contains
the list of nodes that are present in the subtree rooted at node p which is
subsumed by m. In line 9, it is computed for all such p and then their union is
taken. The child pointer from the parent of p, pp is modified to now point to m

(lines 10-11). Also, in line 12 the child pointers of p are accordingly moved to
now point from m.

If the node m is subsumed by some other node p in the tree, then the node
m is not scheduled in Q (line 16). It should be noted that it can never be the
case that m subsumes some node in the tree and at the same time is subsumed
by some other node in the tree. We maintain the invariant that no node present
in the tree is subsumed by any other node present in the tree.

If no node subsumes m, we schedule m in front of all the nodes that are
present in both the SubsumedSubtree list and the queue Q (line 26). If no nodes
present in the SubsumedSubtree are present in Q or the SubsumedSubtree is
empty, m is appended at the end of Q (line 24).

computePosition The function computePosition returns the index of the first
node in the queue Q that is also present in the SubsumedSubtree. It traverses
over all the nodes in Q from the beginning (line 1) and returns the least index i,
such that Q(i) ∈ SubsumedSubtree (line 4). If no such i is present, it returns −1.

computeSubtree The function computeSubtree computes the nodes in the
subtree rooted at the node SId using the abstract child relation : n × τ → n.
Since there might be loops following the abstract child pointers, computeSubtree
keeps adding nodes to the subTree list until it converges (lines 2-6). The cycles

7



abstractCheck(IterId)

1. while Q 6= ∅ do
2. n := dequeue(Q)
3. forall τ . enabled(n, τ)
4. m := post#(n, τ)
5. if error(m)
6. return checkCounterexample(m)
7. SubsumedSubtree := ∅
8. forall p. subsumed(p, m)
9. SubsumedSubtree ∪ := computeSubtree(p)
10. AbstractChild \ := abstract child(pp, τ1, p)
11. AbstractChild ∪ := abstract child(pp, τ1, m)
12. forall q. child(q, p)
13. AbstractChild \ := abstract child(p, τ2, q)
14. AbstractChild ∪ := abstract child(m, τ2, q)
15. if exists p. subsumed(m, p)
16. AbstractChild ∪ := abstract child(n, τ, p)
17. else

18. AbstractChild ∪ := abstract child(n, τ, m)
19. if SubsumedSubtree == ∅
20. enqueue(Q, m)
21. else

22. SubsumerPosition := computePosition(Q, SubsumedSubtree)
23. if SubsumerPosition == −1
24. enqueue(Q, m)
25. else

26. insert(Q, SubsumerPosition, m)

computePosition(Q, SubsumedSubtree)
1. for i in range(len(Q))
2. n=Q(i)
3. if n ∈ SubsumedSubtree
4. return i
5. return −1

computeSubtree(SId)

1. SubTree := {SId}
2. until SubTree converges

3. forall n ∈ SubTree
4. forall m. child(m, n)
5. if m /∈ SubTree
6. SubTree ∪ := m
7. return SubTree

Fig. 2. Subsumer-first based algorithm for symbolic reachability analysis using predi-
cate abstraction.

8



(by following the child pointers) might be introduced while manipulating the
child pointers when handling the subsumer and subsumed nodes.

5 Experiments

We present the results of the subsumer-first search heuristic and compare it
with the breadth-first search strategy (both implemented in the ARMC model
checker) on a set of benchmarks, some of which come from train control systems.
We evaluated the heuristic on some of the most difficult benchmarks from the
transportation domain. To get more coverage, we added some smaller bench-
marks as well to the evaluation set. The results for computing the fixpoint given
a fixed abstraction sufficient for verifying the safety property are presented in
Table 1 and the results for the complete abstraction-refinement loop are pre-
sented in Table 2, see Appendix A. The first two rows in the tables present
the performance of breadth-first search and subsumer-first search respectively.
The third row presents the percentage decrease in the running time, entailment
queries and the number of states. The experiments were run on a dual core 3.16
GHz Intel Pentium processor machine with 2 GB of RAM.

Table 1 presents the experiment results on the last iteration computation of
ARMC given a sufficient set of predicates at the start of search to refute all spu-
rious counterexamples and verify the safety property. This provides us a notion
of reaching the fixpoint faster for a fixed abstraction. The last 3 columns of the
table present the relative sizes of the benchmarks in terms of number of variables,
transitions and locations in their control flow graphs. From the results, it is quite
evident that subsumer-first strategy significantly outperforms the breadth-first
search strategy consistently across all benchmarks. The subusmer-first strategy
takes less time (mean decrease 31.8%, median 33.3%), produces fewer entail-
ment queries (mean 35.8%, median 42.1%) and explores smaller number of states
(mean 32.9%, median 35.5%). The subsumer-first strategy was on average 1.68
times faster, and the median speedup was 1.54.

Table 2 presents the results for the complete abstraction-refinement loop
starting with an empty initial abstraction. The results show that the subsumer-
first strategy mostly outperforms the breadth-first startegy in terms of running
time(mean 31%, median 46.9%), number of entailment queries of theorem prover
(mean 30.5%, median 20.8%) and the total number of states explored (mean
15.5%, median 29.7%). The subsumer-first strategy was 2.9 times faster on aver-
age (with median of 1.88) than the breadth-first strategy on these benchmarks.
Since the subsumer-first approach refines thicker counterexamples, it usually
finds more predicates but still on average reaches the fixpoint faster. In some
cases, it might happen that while refining a shorter, thinner and local coun-
terexample the breadth-first strategy might get lucky and the new predicates
discovered may prune a large state space in the next iteration. But in general
both from our experience from the experiments and as presented in [16], refining

9



more counterexamples simultaneously provides a higher chance of discovering
better predicates and faster fixpoint arrival.

Odometrys1ub and model-test19 seem to belong to those exception cases
where the thicker counterexamples take some time to find the right set of pred-
icates whereas the thinner counterexample finds a good set of predicates acci-
dentally. But even then the subsumer-first strategy remarkably generated fewer
entailment queries on the odometrys1ub benchmark.

6 Discussion and future work

In this paper we present a useful heuristic which addresses the issues of efficient
counterexample discovery and faster convergence of reachability computation
simultaneously. The subsumer-first heuristic can also be thought of as a com-
bination of breadth-first search strategy for state exploration with depth-first
exploration of subsumer nodes. It tries to get benefits of both approaches and
produces short and thick counterexamples. Refining thicker counterexamples
gives a better chance to get good predicates after refinement. These predicates
can potentially rule out many spurious paths in later iterations. The optimality
of the strategy can not be guaranteed as sometimes some lucky predicates can
be discovered from other counterexamples which may prune the search space far
more. However, in practice the subsumer-first strategy usually performs well.

This heuristic can easily be integrated with other heuristic state space ex-
ploration strategies to achieve even more savings, e.g in case of saturating the
strongly connected components(SCC) first heuristic, the subsumer-first heuris-
tic can be used inside a particular SCC during its saturation. We present in
this paper one application of this heuristic in predicate abstraction based model
checking. Its adaptation for integration with lazy abstraction and partial order
reduction techniques would certainly be an interesting next step.

One interesting case occurs when a node m subsumes a node p, we change
the child pointer of parent of pp to m. But now if some node n subsumes pp, it
may be the case that there are some states in the subtree of m which are not
reachable from n but still we schedule n before all of m’s subtree. Using more
fine-grained information about the transition system might help in predicting
even better positions for scheduling the new nodes in the queue Q.

References

1. T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In PLDI, pages 203–213. ACM, 2001.

2. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In SPIN, pages 113–130, 2000.

3. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proceedings

of the International Conference on Formal Methods in Programming and their

Applications, pages 128–141. Springer-Verlag, 1993.
4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

10



5. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In ICSE, pages 385–395. IEEE Computer Society, 2003.

6. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, pages 154–169. Springer, 2000.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

9. K. Dräger, B. Finkbeiner, and A. Podelski. Directed model checking with distance-
preserving abstractions. In SPIN, pages 19–34, 2006.

10. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model check-
ing in the validation of communication protocols. STTT, 5(2-3):247–267, 2004.

11. S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed explicit model checking
with HSF-SPIN. In SPIN, pages 57–79, 2001.

12. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV,
pages 72–83. Springer, 1997.

13. A. Groce and W. Visser. Heuristic model checking for java programs. In SPIN,
pages 242–245, 2002.

14. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL, pages 58–70. ACM, 2002.

15. S. Kupferschmid, K. Dräger, J. Hoffmann, B. Finkbeiner, H. Dierks, A. Podelski,
and G. Behrmann. Uppaal/DMC- Abstraction-based heuristics for directed model
checking. In TACAS, pages 679–682, 2007.

16. K. L. McMillan and N. Amla. Automatic abstraction without counterexamples.
In TACAS, pages 2–17, 2003.

17. D. Peled. All from one, one for all: on model checking using representatives. In
CAV, pages 409–423, 1993.

18. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model
checking with abstraction refinement. In PADL, pages 245–259, 2007.

A Evaluation results

Benchmark time # queries # states # vars # trans # locs speedup

odometrys4lb1 787m 18.3M 11486 15 3337 150 1.59
odometrys4lb -sub-first 494m 9.4M 6207

37.2% 48.6% 45.9%
odometryls2lb1 227m 7.9m 8184 16 6127 214 2.18
odometryls2lb -sub-first 104m 3.8m 3886

54.2% 51.9% 52.5%
odometryls1ub1 243m 13.3M 12762 16 6127 214 3.19
odometryls1ub -sub-first 76m 4.5M 4624

68.7% 66.2% 63.8%
odometrys1ub 34m 1.6M 2073 15 3337 150 1.79
odometrys1ub -sub-first 19m 0.7M 1033

44.1% 56.2% 50.2%
1 These benchmarks are not present in Table 2 as they either TIMED-OUT (> 1500m)

or RESOURCE-ERROR due to memory requirements

11



timing 29m 0.4M 3425 47 99093 4954 1.0
timing -sub-first 29m 0.39M 3378

0% 2.5% 1.4%
gasburner 17m 3.5M 3309 19 3124 152 1.89
gasburner -sub-first 9m 1.7M 1791

47% 51.4% 45.9%
odometryls1lb 12m 0.8M 1439 16 6127 214 3.0
odometryls1lb -sub-first 4m 0.3M 632

66.7% 62.5% 56%
rtalltcs 4m 2.5M 1789 20 18757 122 2.0
rtalltcs -sub-first 2m 1M 796

50% 60% 55.5%
odometrys1lb 2m 0.2M 681 15 3337 150 2.0
odometrys1lb -sub-first 1m 0.1M 425

50% 50% 37.6%
triple2 2m 0.77M 610 3 8 3 1.0
triple2 -sub-first 2m 0.70M 520

0% 9% 14.8%
odometry 1m 0.14M 246 15 437 28 1.5
ododmetry -sub-first 40s 0.09M 193

33.3% 35.7% 21.5%
bakery3 11s 0.25M 1311 9 31 3 1.1
bakery3 -sub-first 10s 0.19M 986

9% 24% 24.8%
model-test01 32s 0.18M 1578 16 110 36 1.1
model-test01 -sub-first 29s 0.18M 1565

9.4% 0% 0.8%
model-test07 39s 0.25M 1998 16 124 40 1.05
model-test07 -sub-first 37s 0.24M 1902

5.1% 4% 4.8%
model-test13 2m 0.9M 5766 16 110 36 1.0
model-test13 -sub-first 2m 0.75M 4791

0% 16.7% 16.9%
model-test19 3m 0.9M 5256 16 124 40 1.5
model-test19 -sub-first 2m 0.6M 3499

33.3% 33.3% 33.4%
Table 1: Experiments with last iteration of ARMC with fixed set
of predicates, fixpoint computation.

12



Benchmark time # queries # iter # preds # states speedup

odometry 109m 9.3M 65 218 680 13.6
odometry -sub-first 8m 1.6M 37 153 295

92.7% 82.8% 56.6%

odometryls1lb 60m 7.1M 32 97 1439 2.07
odometryls1lb -sub-first 29m 3M 29 102 539

51.7% 57.7% 62.5%

triple2 13m 6.5M 65 254 519 6.50
triple2 -sub-first 2m 2.1M 45 219 248

84.6% 67.7% 52.2%

odometrys1lb 9m 1.1M 20 72 681 1.0
odometrys1lb -sub-first 9m 1.0M 22 83 345

0% 9% 49.3%

odometrys1ub 195m 14.4M 37 157 2073 0.59
odoemtrys1ub -sub-first 329m 11.4M 33 257 2379

-68.7% 20.8% -14.8%

gasburner 175m 48.9M 64 198 3309 1.88
gasburner -sub-first 93m 17.3M 61 220 1604

46.9% 64.6% 51.5%

timing 51m 1M 14 14 3425 1.04
timing -sub-first 49m 1M 14 14 3378

3.9% 0% 1.4%

rtalltcs 38m 27M 30 56 1789 1.03
rtalltcs -sub-first 37m 25.3M 40 74 1258

2.6% 6.3% 29.7%

bakery3 2m 2.6M 34 67 1419 3.75
bakery3 -sub-first 32s 0.9M 36 58 885

73.3% 65.4% 37.6%

model-test01 4m 1.7M 58 115 1207 2.0
model-test01 -sub-first 2m 1.5M 54 100 1565

50% 11.8% -29.7%

model-test07 5m 2.4M 58 115 1372 1.67
model-test07 -sub-first 3m 2.2M 56 104 1902

40% 8.3% -38.6%

model-test13 17m 6.6M 63 140 4708 1.89
model-test13 -sub-first 9m 5.2M 61 136 4791

47% 21.2% -1.8%

model-test19 19m 7.7M 62 137 5256 0.83
model-test19 -sub-first 23m 9.2M 59 135 8135

-21% -19.5% -54.8%

Table 2. Experiments with full ARMC abstraction-refinement iterations

13


