
For Peer Review

OverCode: Visualizing Variation in Student Solutions to

Programming Problems at Scale

Journal: Transactions on Computer-Human Interaction

Manuscript ID: TOCHI-2014-0078

Manuscript Type: Online Learning at Scale Special Issue Submission

Date Submitted by the Author: 01-Jun-2014

Complete List of Authors: Glassman, Elena; MIT, CSAIL
Scott, Jeremy; MIT, CSAIL
Singh, Rishabh; MIT, CSAIL
Guo, Philip; MIT, CSAIL; University of Rochester, Computer Science
Miller, Robert; MIT, CSAIL

Computing Classification

Systems:
H.5.m. Information Interfaces and Presentation (e.g. HCI)--Miscellaneous

Transactions on Computer-Human Interaction

For Peer Review

A

OverCode: Visualizing Variation in Student
Solutions to Programming Problems at Scale

ELENA L. GLASSMAN, MIT CSAIL

JEREMY SCOTT, MIT CSAIL

RISHABH SINGH, MIT CSAIL

PHILIP J. GUO, MIT CSAIL and University of Rochester

ROBERT C. MILLER, MIT CSAIL

In MOOCs, a single programming exercise may produce thousands of solutions from learners. Understanding solution

variation is important for providing appropriate feedback to students at scale. The wide variation among these solutions can

be a source of pedagogically valuable examples, and can be used to refine the autograder for the exercise by exposing corner

cases. We present OverCode, a system for visualizing and exploring thousands of programming solutions. OverCode uses

both static and dynamic analysis to cluster similar solutions, and lets instructors further filter and cluster solutions based

on different criteria. We evaluated OverCode against a non-clustering baseline in a within-subjects study with 24 teaching

assistants, and found that the OverCode interface allows teachers to more quickly develop a high-level view of students’

understanding and misconceptions, and to provide feedback that is relevant to more students.

Categories and Subject Descriptors: H.5.m. [Information Interfaces and Presentation (e.g., HCI)]: Miscellaneous

1. INTRODUCTION

Intelligent tutoring systems (ITSes), Massive Open Online Courses (MOOCs), and websites like
Khan Academy and Codecademy are now used to teach programming courses at a massive scale.
In these courses, a single programming exercise may produce thousands of solutions from learners,
which presents both an opportunity and a challenge. For teachers, the wide variation among these
solutions can be a source of pedagogically valuable examples [Marton et al. 2013], and understand-
ing this variation is important for providing appropriate, tailored feedback to students [Basu et al.
2013; Huang et al. 2013]. The variation can also be useful for refining evaluation rubrics, since it
can expose corner cases in automatic grading tests.

Sifting through thousands of solutions to understand their variation and find pedagogically valu-
able examples is a daunting task, even if the programming exercises are simple and the solutions are
only tens of lines of code long. Without tool support, a teacher may not read more than 50-100 of
them before growing frustrated with the tedium of the task. Given this small sample size, teachers
cannot be expected to develop a thorough understanding of the variety of strategies used to solve
the problem, or produce instructive feedback that is relevant to a large proportion of learners, or find
unexpected interesting solutions.

An information visualization approach would enable teachers to explore the variation in solutions
at scale. Existing techniques [Gaudencio et al. 2014; Huang et al. 2013; Nguyen et al. 2014] use a
combination of clustering to group solutions that are semantically similar, and graph visualization
to show the variation between these clusters. These clustering algorithms perform pairwise com-
parisons that are quadratic in both the number of solutions and in the size of each solution, which
scales poorly to thousands of solutions. Graph visualization also struggles with how to label the
graph node for a cluster, because it has been formed by a complex combination of code features.
Without meaningful labels for clusters in the graph, the rich information of the learners’ solutions
is lost and the teacher’s ability to understand variation is weakened.

In this paper we present OverCode, a system for visualizing and exploring the variation in thou-
sands of programming solutions. OverCode is designed to visualize correct solutions, in the sense
that they pass the automatic grading tests typically used in a programming class at scale. OverCode
uses a novel clustering technique that creates clusters of identical cleaned code, in time linear in both
the number of solutions and the size of each solution. The cleaned code is readable, executable, and
describes every solution in that cluster. The cleaned code is shown in a visualization that puts code
front-and-center (Figure 1). In OverCode, the teacher reads through code solutions that each repre-

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 1 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:2

Fig. 1. The OverCode user interface. The top left panel shows the number of clusters, called stacks, and the total number
of solutions visualized. The next panel down in the first column shows the largest stack, while the second column shows the
remaining stacks. The third column shows the lines of code occurring in the cleaned solutions of the stacks together with
their frequencies.

sent an entire cluster of solutions that look and act the same. The differences between clusters are
highlighted to help instructors discover and understand the variations among submitted solutions.
Clusters can be filtered by the lines of code within them. Clusters can also be merged together with
rewrite rules that collapse variations that the teacher decides are unimportant.

A cluster in OverCode is a set of solutions that perform the same computations, but may use dif-
ferent variable names or statement order. OverCode uses a lightweight dynamic analysis to generate
clusters, which scales linearly with the number of solutions. It clusters solutions whose variables
take the same sequence of values when executed on test inputs and whose set of constituent lines of
code are syntactically the same. An important component of this analysis is to rename variables that
behave the same across different solutions. The renaming of variables serves three main purposes.
First, it lets teachers create a mental mapping between variable names and their behavior which
is consistent across the entire set of solutions. This may reduce the cognitive load for a teacher to
understand different solutions. Second, it helps clustering by reducing variation between similar
solutions. Finally, it also helps make the remaining differences between different solutions more
salient.

In two user studies with a total of 24 participants, we compared the OverCode interface with a
baseline interface that showed original unclustered solutions. When using OverCode, participants
felt that they were able to develop a better high-level view of the students’ understandings and mis-
conceptions. While participants didn’t necessarily read more lines of code in the OverCode interface
than in the baseline, the code they did read came from clusters containing a greater percentage of all
the submitted solutions. Participants also drafted mock class forum posts about common good and
bad solutions that were relevant to more solutions (and the students who wrote them) when using
OverCode as compared to the baseline.

The main contributions of this paper are:

— a novel visualization that shows similarity and variation among thousands of solutions, with
cleaned code shown for each variant.

— an algorithm that uses the behavior of variables to help cluster solutions and generate the cleaned
code for each cluster of solutions.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 2 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:3

— two user studies that show this visualization is useful for giving instructors a birds-eye view of
thousands of students’ solutions.

2. RELATED WORK

There is a growing body of work on both the frontend and backend required to manage and present
the large volumes of solutions gathered from MOOCs, intelligent tutors, online learning platforms,
and large residential classes. The backend necessary to analyze solutions expressed as code has
followed from prior work in fields such as program analysis, compilers, and machine learning.
A common goal of this prior work is to help teachers monitor the state of their class, or provide
solution-specific feedback to many students. However, there has not been much work on developing
interactive user interfaces that enable an instructor to navigate the large space of student solutions.

We first present here a brief review of the state of the art in the backend, specifically about
analyzing code generated by students who are independently attempting to implement the same
function. This will place our own backend in context. We then review the information visualization
principles and systems that inspired our frontend contributions.

2.1. Related Work in Program Analysis

2.1.1. Canonicalization and Semantics-Preserving Transformations. When two pieces of code
have different syntax, and therefore different abstract syntax trees (ASTs), they may still be se-
mantically equivalent. A teacher viewing the code may want to see those syntactic differences, or
may want to ignore them in order to focus on semantic differences. Semantics-preserving trans-
formations can reduce or eliminate the syntactic differences between code. Applying semantics-
preserving transformations, sometimes referred to as canonicalization or standardization, has been
used for a variety of applications, including detecting clones [Baxter et al. 1998] and automatic
“transform-based diagnosis” of bugs in students’ programs written in programming tutors [Xu and
Chee 2003].

OverCode also canonicalizes solutions, using variable renaming. OverCode’s canonicalization is
novel in that its design decisions were made to maximize human readability of the resulting code.
As a side-effect, syntactic differences between answers are also reduced.

2.1.2. Abstract Syntax Tree-based Approaches. Huang et al. [2013] worked with short Mat-
lab/Octave functions submitted online by students enrolled in a machine learning MOOC. The au-
thors generate an AST for each solution to a problem, and calculate the tree edit distance between
all pairs of ASTs, using the dynamic programming edit distance algorithm presented by Shasha et
al. [1994]. Based on these computed edit distances, clusters of syntactically similar solutions are
formed. The algorithm is quadratic in both the number of solutions and the size of the ASTs. Using
a computing cluster, the Shasha algorithm was applied to just over a million solutions.

Codewebs [Nguyen et al. 2014] created an index of “code phrases” for over a million submissions
from the same MOOC and semi-automatically identified equivalence classes across these phrases,
using a data-driven, probabilistic approach. The Codewebs search engine accepts queries in the
form of subtrees, subforests, and contexts that are subgraphs of an AST. A teacher labels a set of
AST subtrees considered semantically meaningful, and then queries the search engine to extract all
equivalent subtrees from the dataset.

Both Codewebs [Nguyen et al. 2014] and Huang et al. [2013] use unit test results and AST edit
distance to identify clusters of submissions that could potentially receive the same feedback from a
teacher. These are non-interactive systems that require hand-labeling in the case of Codewebs, or a
computing cluster in the case of Huang et al. In contrast, OverCode’s pipeline does not require hand-
labeling and runs in minutes on a laptop, then presents the results in an interactive user interface.

2.1.3. Supervised Machine Learning and Hierarchical Pairwise Comparison. Semantic equiva-
lence is another way of saying that two solutions have the same schema. A schema, in the context
of programming, is a high-level cognitive construct by which humans understand or generate code
to solve problems [Soloway and Ehrlich 1984]. For example, two programs that implement bubble

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 3 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:4

sort have the same schema, bubble sort, even though they may have different low-level implemen-
tations. Taherkhani et al. [2012; 2013] used supervised machine learning methods to successfully
identify which of several sorting algorithms a solution used. Each solution is represented by statis-
tics about language constructs, measures of complexity, and detected roles of variables. The method
can identify sorting algorithms that have already been analyzed and included in its training dataset.
OverCode, in contrast, handles problems for which the algorithmic schema is not already known.

Luxton-Reilly et al. [2013] label types of variations as structural, syntactic, or presentation-
related. The structural similarity between solutions in a dataset is captured by comparing their con-
trol flow graphs. If the control flow of two solutions is the same, then the syntactic variation within
the blocks of code is compared by looking at the sequence of token classes. Presentation-based vari-
ation, such as variable names and spacing, is only examined when two solutions are structurally and
syntactically the same. In contrast, our approach is not hierarchical, and uses dynamic information
in addition to syntactic information.

2.1.4. Program Synthesis. There has also been work on analyzing each student solution individu-
ally to provide more precise feedback. Singh et al. [2013] use a constraint-based synthesis algorithm
to find the minimal changes needed to make an incorrect solution functionally equivalent to a ref-
erence implementation. The changes are specified in terms of a problem-specific error model that
captures the common mistakes students make on a particular problem.

Rivers and Koedinger [2013] propose a data-driven approach to create a solution space consisting
of all possible ways to solve a problem. This solution space can then be used to locate the potential
learning progression for a student submission and provide hints on how to correct their attempt.
Instead of providing hints, the aim of our work is to help instructors navigate the space of correct
solutions and therefore techniques based on checking only the functional correctness are not helpful
in computing similarities and differences between such solutions.

2.2. Related Work in User Interfaces for Solution Visualization

Several user interfaces have been designed for providing grades or feedback to students at scale, and
for browsing large collections in general, not just student solutions.

Basu et al. [2013] provide a novel user interface for powergrading short-answer questions. Pow-
ergrading means assigning grades or writing feedback to many similar answers at once. The backend
uses machine learning that is trained to cluster answers, and the frontend allows teachers to read,
grade or provide feedback to those groups of similar answers simultaneously. Teachers can also dis-
cover common misunderstandings. The value of the interface was verified in a study of 25 teachers
looking at their visual interface with clustered answers. When compared against a baseline inter-
face, the teachers assigned grades to students substantially faster, gave more feedback to students,
and developed a “high-level view of students’ understanding and misconceptions” [Brooks et al.
2014].

At the intersection of information visualization and program analysis is Cody1, an informal learn-
ing environment for the Matlab programming language. Cody does not have a teaching staff but does
have a solution map visualization to help students discover alternative ways to solve a problem. A
solution map plots each solution as a point against two axes: time of submission on the horizontal
axis, and code size on the vertical axis, where code size is the number of nodes in the parse tree
of the solution. Despite the simplicity of this metric, solution maps can provide quick and valuable
insight when assessing large numbers of solutions [Glassman et al. 2013].

OverCode has also been inspired by information visualization projects like WordSeer [Muralid-
haran and Hearst 2013; Muralidharan et al. 2013] and CrowdScape [Rzeszotarski and Kittur 2012].
WordSeer helps literary analysts navigate and explore texts, using query words and phrases [Mu-
ralidharan and Hearst 2011]. CrowdScape gives users an overview of crowd-workers’ performance

1mathworks.com/matlabcentral/cody

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 4 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:5

on tasks. An overview of crowd-workers each performing on a task, and an overview of submitted
code, each executing a test case, are not so different, from an information presentation point of view.

3. OVERCODE

We now describe the OverCode user interface. OverCode is an information visualization application
for teachers to explore student program solutions. The OverCode interface allows the user to scroll,
filter, and stack solutions. OverCode uses the metaphor of stacks to denote collections of similar
solutions, where each stack shows a cleaned solution from the corresponding collection of identical
cleaned solutions it represents. These cleaned solutions have strategically renamed variables and can
be filtered by the cleaned lines of code they contain. Cleaned solutions can also be rewritten when
users compose and apply a rewrite rule, which can eliminate differences between cleaned solutions
and therefore combine stacks of cleaned solutions that have become identical.

We iteratively designed and developed the OverCode interface based on continuous evaluation
by authors, feedback from instructors and peers, and by consulting principles from the information
visualization literature. A screenshot of OverCode visualizing iterPower, one of the problems
from our dataset, is shown in Figure 1. In this section, we describe the intended use cases and the
user interface. In Section 4, the backend program analysis pipeline is described in detail.

3.1. Target Users and Context

The target users of OverCode are teaching staff of programming courses. Teaching staff may be
undergraduate lab assistants who help students debug their code; graduate students who grade as-
signments, help students debug, and manage recitations and course forums; and lecturing profes-
sors who also compose the major course assessments. Teachers using OverCode may be looking for
common misconceptions, creating a grading rubric, or choosing pedagogically valuable examples
to review with students in a future lesson.

3.1.1. Misconceptions and Holes in Students’ Knowledge. Students just starting to learn program-
ming can have a difficult time understanding the language constructs and different API methods.
They may use them suboptimally, or in non-standard ways. OverCode may help instructors identify
these common misconceptions and holes in knowledge, by highlighting the differences between
stacks of solutions. Since the visualized solutions have already been tested and found correct by an
autograder, these highlighted differences between cleaned solutions may be variations in construct
usage and API method choices that expose misconceptions.

3.1.2. Grading Rubrics. It is a difficult task to create grading rubrics for checking properties such
as design and style of solutions. Therefore most autograders resort to checking only functional
correctness of solutions by testing them against a test suite of input-output pairs. OverCode enables
instructors to identify the variation in both style and structure within correct solutions, as well as
the frequency of these variations. Unlike traditional ways of creating a grading rubric, where an
instructor may go through a set of solutions, revising the rubric along the way, instructors can
use OverCode to first get a high-level overview of the variations before designing a corresponding
rubric.

3.1.3. Pedagogically Valuable Examples. There can be a variety of ways to solve a given problem
and express it in code. OverCode helps instructors filter through cleaned solutions to find different
examples of solutions to the same problem, which may be pedagogically valuable according to
Variation Theory [Marton et al. 2013]. According to Variation Theory, students can learn through
concrete examples of these multiple solutions, which vary along various conceptual dimensions.

3.2. User Interface

The OverCode user interface is divided into three columns. The top-left panel in the first column
shows the problem name, the done progress bar, the number of stacks, the number of visualized
stacks given the current filters and rewrite rules, and the total number of solutions those visualized

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 5 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:6

stacks contain. The panel below shows the largest stack that represents the most common solu-
tion. Side by side with the largest stack, the remaining solution stacks appear in the second panel.
Through scrolling, any stack can be horizontally aligned with the largest stack for easier compari-
son. The third panel has three different tabs that provide static and dynamic information about the
solutions, and the ability to filter and combine stacks.

As shown in Figure 1, the default tab shows a list of lines of code that occur in different cleaned
solutions together with their corresponding frequencies. The stacks can be filtered based on the oc-
currence of one or more lines (Filter tab). The column also has tabs for Rewrite and Legend. The
Rewrite tab allows an instructor to provide rewrite rules to collapse different stacks with small dif-
ferences into a larger single stack. The Legend tab shows the dynamic values that different program
variables take during the execution of programs over a test case. We now describe different features
of OverCode in more detail.

3.2.1. Stacks. A stack in OverCode denotes a set of similar solutions that are grouped together
based on a similarity criterion defined in Section 4. For example, a stack for the iterPower

problem is shown in Figure 2(a). Each stack is associated with a numeric count, which is shown in
a pill at the top-left corner of the stack. The count denotes how many solutions are in the stack, and
can also be referred to as the stack size. The solution on the top of the stack is a cleaned solution
that describes all the solutions in the stack. See Section 4 for details on the cleaning process.

Each stack can also be clicked. After clicking a stack, the border color of the stack changes and
the done progress bar is updated to reflect the percentage of total solutions clicked, as shown in
Figure 2(b). This feature is intended to help users remember which stacks they have already read or
analyzed, and keep track of their progress. Clicking on a large stack, which represents a significant
fraction of the total solutions, is reflected by a large change in the done progress bar.

(a) (b)

Fig. 2. (a) A stack consisting of 1534 similar iterPower solutions. (b) After clicking a stack, the border color of the
stack changes and the done progress bar denotes the corresponding fraction of solutions that have been checked.

3.2.2. Showing Differences between Stacks. OverCode allows instructors to compare smaller
stacks, shown in the second column, with the largest stack, shown in the first column. The lines
of code in the second column that also appear in the set of lines in the largest stack are dimmed so
that only the differences between the smaller stacks and the largest stack are apparent. For example,
Figure 3 shows the differences between the cleaned solutions of the two largest stacks.

3.2.3. Filtering Stacks by Lines of Code. The third column of OverCode shows the list of lines of
code occurring in the solutions together with their frequencies (numbered pills). The interface has
a slider that can be used to change the threshold value, which denotes the number of solutions in
which a line should appear for it to be included in the list. For example, by dragging the slider to

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 6 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:7

Fig. 3. Similar lines of code between two stacks are dimmed out such that only differences between the two stacks are
apparent.

200 in Figure 4(a), OverCode only shows lines of code that are present in at least 200 solutions.
Furthermore, users can filter the stacks by selecting one or more lines of code from the list. After
each selection, only stacks whose cleaned solutions have those selected lines of code are shown.
Figure 4(b) shows a filtering of stacks that have a for loop, specifically the line of code for i

in range(expB), and that assign 1 to the variable result.

(a) (b)

Fig. 4. (a) The sliders allows filtering of the list of lines of code by the number of solutions in which they appear. (b)
Clicking on a line of code adds it to the list of lines by which the stacks are filtered.

3.2.4. Rewrite Rules. There are often small differences between the cleaned solutions that can
lead to a large number of stacks for an instructor to review. OverCode provides rewrite rules by
which users can collapse these differences. A rewrite rule is described with a left hand side and a
right hand side as shown in Figure 5(a). The semantics of a rewrite rule is to replace all occurrences
of the left hand side expression in the cleaned solutions with the corresponding right hand side. As
the rewrite rules are entered, OverCode presents a preview of the changes in the cleaned solutions
as shown in Figure 5(b). After the application of the rewrite rules, OverCode collapses stacks that
now have the same cleaned solutions because of the rewrites. For example, after the application of
the rewrite rule in Figure 5(a), OverCode collapses the two biggest iterPower stacks from Figure 1
of sizes 1534 and 374, respectively, into a single stack of size 1908. Other pairs of stacks whose

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 7 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:8

differences have now been removed by the rewrite rule are also collapsed into single stacks. As
shown in Figure 6(a), the number of stacks now drop from 862 to 814.

(a) (b)

Fig. 5. (a) An example rewrite rule to replace all occurrences of statement result = base * result with result

*= base. (b) The preview of the changes in the cleaned solutions because of the application of the rewrite rule.

(a) (b)

Fig. 6. (a) The merging of stacks after application of the rewrite rule shown in Figure 5. (b) The variable legend shows the
sequence of dynamic values that all program variables in cleaned solutions take over the course of execution on a given test
case.

3.2.5. Variable Legends. OverCode also shows the sequence of values that variables in the
cleaned solutions take on, over the course of their execution on a test case. As described in Sec-
tion 4, a variable is identified by the sequence of values it takes on during the execution of the test
case. Figure 6(b) shows a snapshot of the variable values for the iterPower problem. The goal
of presenting this dynamic information associated with common variable names is to help users un-
derstand the behavior of each cleaned solution, and further explore the variations among solutions
that do not have the same common variables.

4. IMPLEMENTATION

The OverCode user interface depends on an analysis pipeline that canonicalizes solutions in a man-
ner designed for human readability, referred to here as cleaning. The pipeline then creates stacks of
solutions that have become identical through the cleaning process. The pipeline accepts, as input, a
set of solutions, expressed as function definitions for f(a, ...), and one test case f(a1, ...). We refer
to the solutions that enter the pipeline as raw, and the solutions that exit the pipeline as clean. To
illustrate this pipeline, we will have a few running examples, beginning with iterPower.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 8 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:9

4.1. Analysis Pipeline

OverCode is currently implemented for Python, but the pipeline steps described below could be
readily generalized to other languages commonly used to teach programming.

1. Reformat solutions. For a consistent appearance, the solutions are reformatted2 to have consis-
tent line indentation and token spacing. Comments and empty lines are also removed. These steps
not only make solutions more readable, but also allow exact string matches between solutions, after
additional cleaning steps later in the pipeline.

The following example illustrates the effect of this reformatting:
Student A Raw Code Student A Reformatted

def iterPower(base, exp):

’’’

base: int or float.

exp: int >= 0

returns: int or float, base^exp

’’’

result = 1

for i in range(exp):

result *= base

return result

def iterPower(base,exp):

result=1

for i in range(exp):

result*=base

return result

2. Execute solutions. Each solution is executed once, using the same test case. During each step
of the execution, the names and values of local and global variables, and also return values from
functions, are recorded as a program trace. There is one program trace per solution. For the purposes
of illustrating this pipeline, we will use the example of executing definitions of iterPower on a
base of 5.0 and an exp of 3.

Student Code with Test Case

def iterPower(base,exp):

#student code here

iterPower(5.0, 3)

3. Extract variable sequences. During the previous step, the Python execution logger [Guo 2013]
records the values of all in-scope variables after every statement execution in the Python program.
The resulting log is referred to as the program trace. For each variable in a program trace, we
extract the sequence of values it takes on, without considering how many statements were executed

2We used the PythonTidy package, by Charles Curtis Rhode. https://pypi.python.org/pypi/
PythonTidy/ Since our datasets are in Python, we use a Python-specific reformatting script. However, our approach is
not language-specific.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 9 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:10

before the variable’s value changed.
Student A Code with Test Case Program Trace for Student A Code

def iterPower(base,exp):

result=1

for i in range(exp):

result*=base

return result

iterPower(5.0, 3)

iterPower(5.0, 3)

base : 5.0, exp : 3

result=1

base : 5.0, exp : 3, result : 1

for i in range(exp):

base : 5.0, exp : 3, result : 1, i : 0

result*=base

base : 5.0, exp : 3, result : 5.0, i : 0

for i in range(exp):

base : 5.0, exp : 3, result : 5.0, i : 1

result*=base

base : 5.0, exp : 3, result : 25.0, i : 1

for i in range(exp):

base : 5.0, exp : 3, result : 25.0, i : 2

result*=base

base : 5.0, exp : 3, result : 125.0, i : 2

return result

value returned: 125.0

Variable Sequences for Student A Code

base: 5.0

exp: 3

result: 1, 5.0, 25.0, 125.0

i: 0, 1, 2

4. Identify common variables. We analyze all program traces, identifying which variables’ se-
quences are identical. We define a common variable to denote those variables that have identical
sequences across two or more program traces. Variables which occur in only one program trace are
called unique variables.

Student B Code with Test Case Variable Sequences for Student B Code

def iterPower(base,exp):

r=1

for k in xrange(exp):

r=r*base

return r

iterPower(5.0, 3)

base: 5.0

exp: 3

r: 1, 5.0, 25.0, 125.0

k: 0, 1, 2

Student C Code with Test Case Variable Sequences for Student C Code

def iterPower(base,exp):

result=1

while exp>0:

result*=base

exp-=1

return result

iterPower(5.0, 3)

base : 5.0

exp: 3

result : 1, 5.0, 25.0, 125.0

exp : 3, 2, 1, 0

For example, in Student A’s code and Student B’s code, i and k take on the same sequence of
values: 0,1,2. They are therefore considered the same common variable.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 10 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:11

Common Variables Unique Variables
(across Students A, B, and C) (across Students A, B, and C)

— 5.0:
base (Students A, B, C)

— 3:
exp (Students A, B)

— 1, 5.0, 25.0, 125.0:
result (Students A, C)
r (Student B)

— 0,1,2:
i (Student A)
k (Student B)

— 3,2,1,0:
exp (Student C)

5. Rename common and unique variables. A common variable may have a different name in each
program trace. The name given to each common variable is the variable name that is given most
often to that common variable across all program traces.

There are exceptions made to avoid three types of name collisions described in Section 4.2 that
follows. In the running example, the unique variable’s original name, exp, has a double underscore
appended to it as a modifier to resolve a name collision with the common variable of the same name,
referred to here as a Unique/Common Collision.

Common Variables, Named Unique Variables, Named
— base: 5.0

— exp: 3

— result: 1, 5.0, 25.0, 125.0

— i: 0,1,2 (common name tie broken by ran-
dom choice)

— exp__: 3,2,1,0

After common and unique variables in the solutions are renamed, the solutions are now called
clean.

Clean Student A Code (After Renaming) Clean Student B Code (After Renaming)

def iterPower(base,exp):

result=1

for i in range(exp):

result*=base

return result

def iterPower(base,exp):

result=1

for i in xrange(exp):

result=result*base

return result

Clean Student C Code (After Renaming)

def iterPower(base,exp__):

result=1

while exp__>0:

result*=base

exp__-=1

return result

6. Make stacks. We iterate through the clean solutions, making stacks of solutions that share an
identical set of lines of code. We compare sets of lines of code because then solutions with arbitrarily
ordered lines that do not depend on each other can still fall into the same stack. (Recall that the
variables in these lines of code have already been renamed based on their dynamic behavior, and all
the solutions have already been marked input-output correct by an autograder, prior to this pipeline.)
The solution that represents the stack is randomly chosen from within the stack, because all the clean
solutions within the stack are identical, with the possible exception of the order of their statements.

In the examples below, the clean C and D solutions have the exact same set of lines, and both
provide correct output, with respect to the autograder. Therefore, we assume that the difference in
order of the statements between the two solutions does not need to be communicated to the user. The

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 11 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:12

two solutions are put in the same stack, with one solution arbitrarily chosen as the visible cleaned
code. However, since Student A and Student B use different functions, i.e., xrange vs. range,
and different operators, i.e., *= vs. =,*, the pipeline puts them in separate stacks.

Stack 1 Clean Student A (After Renaming) Stack 2 Clean Student B (After Renaming)

def iterPower(base,exp):

result=1

for i in range(exp):

result*=base

return result

def iterPower(base,exp):

result=1

for i in xrange(exp):

result=result*base

return result

Stack 3 Clean Student C (After Renaming) Stack 3 Clean Student D (After Renaming)

def iterPower(base,exp__):

result=1

while exp__>0:

result=result*base

exp__-=1

return result

def iterPower(base,exp__):

result=1

while exp__>0:

exp__-=1

result=result*base

return result

Even though all the solutions we process in this pipeline have already been marked correct by
an autograder, the program tracing [Guo 2013] and renaming scripts occasionally generate errors
while processing a solution. For example, the script may not have code to handle a particular but
rare Python construct. Errors thrown by the scripts drive their development and are helpful for de-
bugging. When errors occur while processing a particular solution, we exclude the solution from our
analysis. Less than five percent of the solutions in each of our three problem datasets are excluded.

4.2. Variable Renaming Details and Limitations

There are three distinct types of name collisions possible when renaming variables to be consis-
tent across multiple solutions. The first, which we refer to as a common/common collision, occurs
when two common variables (with different variable sequences) have the same common name. The
second, referred to here as a multiple instances collision, occurs when there are multiple different
instances of the same common variable in a solution. The third and final collision, referred to as a
unique/common collision, occurs when a unique variable’s name collides with a common variable’s
name.

Common/common collision. If common variables cv1 and cv2 are both most frequently named i
across all program traces, we append a modifier to the name of the less frequently used common
variable. For example, if 500 program traces have an instance of cv1 and only 250 program traces
have an instance of cv2, cv1 will be named i and cv2 will be named iB.

This is illustrated below. Across all thousand of iterPower definitions in our dataset, a subset
of them created a variable that iterated through the values generated by range(exp). Student A’s
code is an example. A smaller subset created a variable that iterated through the values generated
by range(1,exp+1), as seen in Student E’s code. These are two separate common variables in
our pipeline, due to their differing value sequences. The common/common name collision arises be-
cause both common variables are most frequently named i across all solutions to iterPower. To
preserve the one-to-one mapping of variable name to value sequence across the entire iterPower
problem dataset, the pipeline appends a modifier, B, to the common variable i found in fewer
iterPower solutions. A common variable, also most commonly named i, which is found in even
fewer iterPower definitions, will have a C appended, etc.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 12 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:13

Student A (Represents 500 Solutions Student E (Represents 250 Solutions

def iterPower(base,exp):

result=1

for i in range(exp):

result*=base

return result

def iterPower(base,exp):

result=1

for i in range(1,exp+1):

result*=base

return result

Clean Student A (After Renaming) Clean Student E (After Renaming)

(unchanged)

def iterPower(base,exp):

result=1

for iB in range(1,exp+1):

result*=base

return result

Multiple-instances collision. We identify variables by their sequence of values (excluding consec-
utive duplicates), not by their given name in any particular solution. However, without considering
the timing of variables’ transitions between values, relative to other variables in scope at each step
of a function execution, it is not possible to differentiate between multiple instances of a common
variable within a single solution.

Rather than injecting a name collision into an otherwise correct solution, we chose to preserve
the author’s variable name choice for all the instances of that common variable in that solution. If an
author’s preserved variable name collides with any common variable name in any program trace and
does not share that common variable’s sequence of values, the pipeline appends a double underscore
to the authors preserved variable name, so that the interface, and the human reader, do not conflate
them.

In the following example, the solution’s author made a copy of the exp vari-
able, called it exp1, and modified neither. Both map to the same common variable,
expB. Therefore, both have had their author-given names preserved, with an under-
score appended to the local exp so it does not look like common variable exp.

Code with Multiple Instances of a Common Variable Common Variable Mappings

def iterPower(base,exp):

result=1

exp1=abs(exp)

for i in xrange(exp1):

result*=base

if exp<0:

return 1.0/float(result)

return result

iterPower(5.0,3)

Both exp and exp1 map to common

variable expB: 3

exp: 3

exp1: 3

All other variables map to common

variables of same name

base: 5.0

i: 0, 1, 2

result: 1, 5.0, 25.0, 125.0

Code with Multiple Instances Collision Resolved

def iterPower(base,exp__):

result=1

exp1=abs(exp__)

for i in xrange(exp1):

result*=base

if exp__<0:

return 1.0/float(result)

return result

iterPower(5.0,3)

Unique/common collision. Unique variables, as defined before, take on a sequence of values that
is unique across all program traces. If a unique variable’s name collides with any common variable

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 13 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:14

name in any program trace, the pipeline appends a double underscore to the unique variable name,
so that the interface, and the human reader, do not conflate them.

In addition to the example of this collision in the description of common and variable naming
in the previous section, we provide the example below. In this solution, the student added 1 to the
exponent variable before entering a while loop. No other students did this. To indicate that the
exp variable is unique and does not share the same behavior as the common variable also named
exp, our pipeline appends double underscores to exp in this one solution.

def iterPower(base,exp__):

result=1

exp__+=1

while exp__>1:

result*=base

exp__-=1

return result

4.3. Complexity of the Analysis Pipeline

Unlike previous pairwise AST edit distance-based clustering approaches that have quadratic com-
plexity both in the number of solutions and the size of the ASTs [Huang et al. 2013], our analysis
pipeline has linear complexity in the number of solutions and in the size of the ASTs. The Refor-
mat step performs a single pass over each solution for removing extra spaces, comments, and empty
lines. Since we only consider correct solutions, we assume that each solution can be executed within
a constant time that is independent of the number of solutions. The executions performed by the au-
tograder for checking correctness could also be instrumented to obtain the program traces, so code
is not unnecessarily re-executed. The identification of all common variables and unique variables
across the program traces takes linear time as we can hash the corresponding variable sequences
and then check for occurrences of identical sequences. The Renaming step, which includes han-
dling name collisions, also performs a single pass over each solution. Finally, the Stacking step
creates stacks of similar solutions by performing set-based equality of lines of code that can also be
performed in linear time by hashing the set of lines of code.

5. DATASET

For evaluating both the analysis pipeline and the user interface of OverCode, we use a dataset
of solutions from 6.00x, an introductory programming course in Python that was offered on edX
in fall 2012. We chose Python solutions from three exercise problems, and this dataset consists
of student solutions submitted within two weeks of the posting of the those three problems. We
obtained thousands of submissions to these problems, from which we selected all correct solutions
(tested over a set of test cases) for our analysis. The number of solutions analyzed for each problem
is shown in Figure 7.

— iterPower The iterPower problem asks students to write a function to compute the expo-
nential baseexp iteratively using successive multiplications. This was an in-lecture exercise for
the lecture on teaching iteration. See Figure 8 for examples.

— hangman The hangman problem takes a string secretWord and a list of characters
lettersGuessed as input, and asks students to write a function that returns a string where
all letters in secretWord that are not present in the list lettersGuessed are replaced with
an underscore. This was a part of the third week of problem set exercises. See Figure 9 for exam-
ples.

— compDeriv The compDeriv problem requires students to write a Python function to compute
the derivative of a polynomial, where the coefficients of the polynomial are represented as a python
list. This was also a part of the third week of problem set exercises. See Figure 10 for examples.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 14 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:15

Problem Description Total Submissions Correct Solutions

iterPower 8940 3875
hangman 1746 1118

compDeriv 3013 1433

Fig. 7. Number of solutions for the three problems in our 6.00x dataset.

IterPower Examples

def iterPower(base, exp):

result=1

i=0

while i < exp:

result *= base

i += 1

return result

def iterPower(base, exp):

t=1

for i in range(exp):

t=t*base

return t

def iterPower(base, exp):

x = base

if exp == 0:

return 1

else:

while exp >1:

x *= base

exp -=1

return x

def iterPower(base, exp):

x = 1

for n in [base] * exp:

x *= n

return x

Fig. 8. Example solutions for the iterPower problem in our 6.00x dataset.

Hangman Examples

def getGuessedWord(secretWord, lettersGuessed):

guessedWord = ’’

guessed = False

for e in secretWord:

for idx in range(0,len(lettersGuessed)):

if (e == lettersGuessed[idx]):

guessed = True

break

guessed = isWordGuessed(e, lettersGuessed)

if (guessed == True):

guessedWord = guessedWord + e

else:

guessedWord = guessedWord + ’_ ’

guessed = False

return guessedWord

def getGuessedWord(secretWord, lettersGuessed):

if len(secretWord) == 0:

return ’’

else:

if lettersGuessed.count(secretWord[0]) > 0:

return secretWord[0] + ’ ’ + getGuessedWord(secretWord[1:],

lettersGuessed)

else:

return ’_ ’ + getGuessedWord(secretWord[1:], lettersGuessed)

Fig. 9. Example solutions for the hangman problem in our 6.00x dataset.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 15 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:16

CompDeriv Examples

def computeDeriv(poly):

der=[]

for i in range(len(poly)):

if i>0:

der.append(float(poly[i]*i))

if len(der)==0:

der.append(0.0)

return der

def computeDeriv(poly):

if len(poly) == 1:

return [0.0]

fp = poly[1:]

b = 1

for a in poly[1:]:

fp[b-1] = 1.0*a*b

b += 1

return fp

def computeDeriv(poly):

if len(poly) < 2:

return [0.0]

poly.pop(0)

for power, value in

enumerate(poly):

poly[power] = value *
(power + 1)

return poly

def computeDeriv(poly):

index = 1

polyLen = len(poly)

result = []

while (index < polyLen):

result.append(float(poly[index]*index))

index += 1

if (len(result) == 0):

result = [0.0]

return result

Fig. 10. Example solutions for the compDeriv problem in our 6.00x dataset.

6. OVERCODE ANALYSIS PIPELINE EVALUATION

We now present the evaluation of OverCode’s analysis pipeline implementation on our Python
dataset. We first present the running time of our algorithm and show that it can generate stacks
within few minutes for each problem on a laptop. We then present the distribution of initial stack
sizes generated by the pipeline. Finally, we present some examples of the common variables iden-
tified by the pipeline and report on the number of cases where name collisions are handled during
the cleaning process. The evaluation was performed on a Macbook Pro 2.6GHz Intel Core i7 with
16GB of RAM.

Running Time The complexity of the pipeline that generates stacks of solutions grows linearly
in the number of solutions as described in Section 4.3. Figure 11 reports the running time of the
pipeline on the problems in the dataset as well as the number of stacks and the number of common
variables found across each of the problems. As can be seen from the Figure, the pipeline is able to
clean thousands of student solutions and generate stacks within few minutes for each problem.

Problem
Correct Running Initial Common

Solutions Time Stacks Variables

iterPower 3875 15m 28s 862 38
hangman 1118 8m 6s 552 106

compDeriv 1433 10m 20s 1109 50

Fig. 11. Running time, and the number of stacks and common variables generated by the OverCode backend implementa-
tion on our dataset problems.

Distribution of Stacks The distribution of initial stack sizes generated by the analysis pipeline
for different problems is shown in Figure 12. Note that the two axes of the graph corresponding to
the size and the number of stacks are shown on a logarithmic scale. For each problem, we observe
that there are a few large stacks and a lot of smaller stacks (particularly of size 1). The largest stack
for iterPower problem consists of 1534 solutions, whereas the largest stacks for hangman and
compDeriv consists of 97 and 22 solutions respectively. The number of stacks consisting of a
single solution for iterPower, hangman, and compDeriv are 684, 452, and 959 respectively.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 16 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 17 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:18

(a)

(b)

(c)

Fig. 13. The two largest stacks generated by the OverCode backend algorithm for the (a) iterPower, (b) hangman, and
(c) compDeriv problems.

then write a class forum post on the good and bad ways students solved the problem. Through this
study, we sought to test our first hypothesis:

— H1 Interface Satisfaction: Subjects will find OverCode easier to use, more helpful and less over-
whelming for browsing thousands of solutions, compared to the baseline.

7.1. OverCode and Baseline Interfaces

We designed two interfaces, referred to here as OverCode and the baseline. The OverCode interface
and backend are described in detail in Section 3. The baseline interface was a single webpage with
all student solutions concatenated in a random order into a flat list (Figure 16, left). We chose this
design to emulate existing methods of reviewing solutions, and to draw out differences between
browsing stacked and unstacked solutions. In the baseline, solutions appeared visually similar to
those in the OverCode interface (boxed, syntax-highlighted code), but the solutions were raw, in
the sense that they were not normalized for whitespace or variable naming differences. As in the
OverCode condition, subjects were able to use standard web-browser features, such as the within-
page find action.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 18 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:19

Common Variable Occurrence Sequence
Original Variable Names

Name Count Value

iterPower

result 3081 [1, 5.0, 25.0, 125.0] result, wynik, out, total, ans, acum, num, mult, output, · · ·
exp 2744 [3, 2, 1, 0] exp, iterator, app, ii, num, iterations, times, ctr, b, i, · · ·
exp 749 [3] exp, count, temp, exp3, exp2, exp1, inexp, old_exp, expr, x, · · ·
i 266 [0, 1, 2] i, a, count, c, b, iterValue, iter, n, y, inc, x,times, · · ·

hangman

letter 817 [’t’, ’i’, ’g’, ’e’, ’r’] letter, char, item, i, letS, ch, c, lett, · · ·
result 291 [‘ ‘, ’_’, ’_i’, ’_i_’, ’_i_e’, ’_i_e_’] result, guessedWord, ans, str1, anss, guessed, string, · · ·

i 185 [0, 1, 2, 3, 4] i, x, each, b, n, counter, idx, pos · · ·

found 76 [0, 1, 0, 1, 0] found, n, letterGuessed, contains, k, checker, test, · · ·

compDeriv

result 1186 [[0.0, 35.0, 9.0, 4.0]] result, output, poly_deriv, res, deriv, resultPoly, · · ·
i 284 [-13.39, 0.0, 17.5, 3.0, 1.0] i, each, a, elem, number, value, num, · · ·
i 261 [0, 1, 2, 3, 4, 5] i, power, index, cm, x, count, pwr, counter, · · ·

length 104 [5] length, nmax, polyLen, lpoly, lenpoly, z, l, n, · · ·

Fig. 14. Some examples of common variables found by our analysis across the problems in the dataset. The table also
shows the frequency of occurrence of these variables, the common sequence values of these variables on a given test case,
and a subset of the original variable names used by students.

Problem
Correct Common/Common Multiple Instances Unique/Common

Solutions Collisions Collisions Collisions

iterPower 3875 1298 25 32
hangman 1118 672 62 49

compDeriv 1433 928 21 23

Fig. 15. The number of common/common, multiple instances, and unique/common collisions discovered by our algorithm
while renaming the variables to common names.

Fig. 16. The baseline interface used in the Forum Post study (left) and the Coverage study (right).

7.2. Participants

We recruited participants by reaching out to past and present programming course staff, and adver-
tising on an academic computer science research lab’s email list. These individuals were qualified

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 19 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:20

to participate in our study because they met at least one of the following requirements: (1) were
current teaching staff of a computer science course (2) had graded Python code before, or (3) had
significant Python programming experience, making them potential future teaching staff.

Information about the subjects’ backgrounds was collected during recruitment and again at the
beginning of their one hour in-lab user study session. 12 people (7 male) participated, with a mean
age of 23.5 (σ = 3.8). Subjects had a mean 4 years of Python programming experience (σ =
1.8), and 75% of participants had graded student solutions written in Python before. Half of the
participants were graduate students, and other half were undergraduates.

7.3. Apparatus

Each subject was given $20 to participate in a 60 minute session with an experimenter, in an on-
campus academic lab conference room. They used laptops running MacOS and Linux with screen
sizes ranging from 12.5 to 15.6 inches, and viewed the OverCode and baseline interfaces in either
Safari or Chrome. Data was recorded with Google Docs and Google Forms filled out by participants.

7.4. Conditions

Subjects performed the main task of browsing solutions and writing a class forum post twice, once
in each interface condition, focusing on one of the three problems in our dataset (Section 5) each
time. For each participant, the third remaining problem was used during training, to reduce learning
effects when performing the two main tasks. The pairing and ordering of interface and problem
conditions were fully counterbalanced, resulting in 12 total conditions. The twelve participants were
randomly assigned to one of the 12 conditions, such that all conditions were tested.

7.5. Procedure

7.5.1. Prompt. The experimenter began by reading the following prompt, to give the participant
context for the tasks they would be performing:

We want to help TAs give feedback to students in programming classes at scale. For
each of three problems, we have a large set of students’ submissions (> 1000).
All the submissions are correct, in terms of input and output behavior. We’re going to
ask you to browse the submissions and produce feedback for students in the class. You’ll
do this primarily in the form of a class forum post.

To make the task more concrete, participants were given an example3 of a class forum post that
used examples taken from student solutions to explain different strategies for solving a Python
problem. They were also given print-outs of the prompts for each of the three problems in our
dataset, to reference when looking at solutions.

7.5.2. Training. Given the subjects’ extensive experience with web-browsers, training for the
baseline interface was minimal. Prior to using the OverCode interface, subjects watched a 3-4
minute long training video demonstrating the features of OverCode, and were given an opportu-
nity to become familiar with the interface and ask questions. The training session focused on the
problem that would not be used in the main tasks, in order to avoid learning effects.

7.5.3. Tasks. Subjects then performed the main tasks twice, once in each interface, focusing on a
different programming problem each time.

— Feedback for Students (15 minutes) Subjects were asked to write a class forum post on the good
and bad ways students solved the problem. The fifteen minute period included both browsing and
writing time, as subjects were free to paste in code examples and write comments as they browsed
the solutions.

3Our example was drawn from the blog “Practice Python: 30-minute weekly Python exercises for beginners,” posted
on Thursday, April 24, 2014, and titled “SOLUTION Exercise 11: Check Primality and Functions.” (http://
practicepython.blogspot.com)

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 20 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 21 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:22

— I liked having solutions collapsed (not having to deal with variable names, etc), and having rules
to allow me to collapse even further. This made it easy to see the "plurality" of solutions right
away; I spent most of the time looking at the solutions that only had a few instances.

When asked for suggestions, participants gave many suggestions on stacks, filtering, and rewrite
rules, such as:

— Enable the user to change the main stack that is being compared against the others.
— Suggest possible rewrite rules, based on what the user has already written, and will not affect the

answers on the test case.
— Create a filter that shows all stacks that do not have a particular statement.

8. USER STUDY 2: COVERAGE

We designed a second 12-person study, similar in structure to the forum post study, but focused on
measuring the coverage achieved by subjects when browsing and producing feedback on a large
number of student solutions. The second study’s task was more constrained than the first: instead
of writing a freeform post, subjects were asked to identify the five most frequent strategies used by
students and rate their confidence that these strategies occurred frequently in the student solutions.
These changes to the task, as well as modifications to the OverCode and baseline interfaces, enabled
us to measure coverage in terms of solutions read, the relevance of written feedback and the subject’s
perceived coverage. We sought to test the following hypotheses:

— H2 Read coverage and speed Subjects are able to read code that represents more student solutions
at a higher rate using OverCode than with the baseline.

— H3 Feedback coverage Feedback produced when using OverCode is relevant to more student
solutions than when feedback is produced using the baseline.

— H4 Perceived coverage Subjects feel that they develop a better high-level view of students’ un-
derstanding and misconceptions, and provide more relevant feedback using OverCode than with
the baseline.

8.1. Participants, Apparatus, Conditions

The coverage study shared the same methods for recruiting participants, apparatus and conditions
as the forum post study. 12 new participants (11 male) participated in the second study (mean age
= 25.4, σ = 6.9). Across those 12 participants, the mean years of Python programming experience
was 4.9 (σ = 3.0) and 9 of them had previously graded code (5 had graded Python code). There
were 5 graduate students, 6 undergraduates, and 1 independent computer software professional.

8.2. Interface Modifications

Prior to the second study, both the OverCode and baseline interfaces were slightly modified (see
differences in Figure 16) in order to enable measurements of read coverage, feedback coverage and
perceived coverage.

— Clicking on stacks or solutions caused the box of code to be outlined in blue. This enabled the
subject to mark them as read4 and enabled us to measure read coverage.

— Stacks and solutions were all marked with an identifier, which subjects were asked to include with
each piece of feedback they produced. This enabled us to more easily compute feedback coverage,
which will be explained further in Section 8.4.

— All interface interactions were logged in the browser console, allowing us to track both the sub-
ject’s read coverage over time, as well as their usage of other features, such as the creation of
rewrite rules to merge stacks.

— Where it differed slightly before, we changed the styling of code in the baseline condition to
exactly match the code in the OverCode condition.

4In the OverCode condition, this replaced the done checkboxes, in that clicking stacks caused the progress bar to update.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 22 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 23 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 24 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 25 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 26 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 27 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:28

dataset. While a low self-reported confidence score did not necessarily correlate with low feedback
coverage, these results suggest that OverCode enables the teacher to gauge the impact that their
feedback will have.

10. FUTURE WORK

10.1. Context and Audience

Currently, we have used OverCode to look at solutions from an introductory programming course.
We have yet to explore how well it scales to increasingly complex code solutions. OverCode enabled
higher feedback coverage on one of the two more complicated problems in the Coverage Study;
applying the OverCode system to even more complicated code will demonstrate how well it scales
up, and may also expose the need for new pipeline and interface features that be addressed. One
foreseeable complication is the need to handle complex variable values.

OverCode could also readily handle more programming languages. For a language to be dis-
playable in OverCode, one would need (1) a logger of variable values inside tested functions, (2) a
variable renamer and (3) a formatting standardization script.

OverCode could be integrated with the autograder that tests functions for input-output correct-
ness. The execution could be performed once in such a way that it serves both systems, since both
OverCode and many autograders require actually executing the code on specified test cases. If inte-
grated into the autograder, users of OverCode could also give ‘power feedback’ by writing line- or
stack-specific feedback that could be sent back to students along with the input-output test results.

Finally, OverCode may also provide benefit to students, not just the teaching staff, after students
have solved the problem on their own, like Cody. However, the current interface may need to be
adjusted for use by non-expert students, instead of teaching staff.

10.2. User Interface Improvements

Our user study participants produced a variety of suggestions for additional features. In addition
to those but unmentioned by users, variable renaming obscures pedagogically relevant information.
The user-tested UI does not include access to raw solutions represented by a stack’s cleaned code, or
to the original variable names represented by a common variable name. This can be accomplished
by adding tooltips and dropdown menus. This may also be part of better communicating to users
that they are looking at cleaned, not raw, code.

10.3. Backend Improvements

When the program tracing, renaming, or reformatting scripts generate an error while processing
a solution, we exclude the solution from our analysis. Less than five percent of solutions were
excluded from each problem, but that can be reduced further by adding support for handling more
special cases and language constructs to these library functions.

Also, our current backend analysis computes the set of common variables by comparing the
sequence of values the variables take over a single test case, but this can be easily generalized
and extended to work over multiple test cases. The definition of common variables would then be
slightly modified to be those variables that take the same set of sequence of values.

11. CONCLUSION

We have designed the OverCode system for visualizing thousands of Python programming solu-
tions to help instructors explore the variations among them. Unlike previous approaches, OverCode
uses a lightweight static and dynamic analysis to generate stacks of similar solutions and uses vari-
able renaming to present cleaned solutions for each stack in an interactive user interface. It allows
instructors to filter stacks by line occurrence and to further merge different stacks by composing
rewrite rules. Based on two user studies with 24 current and potential teaching assistants, we found
OverCode allowed instructors to more quickly develop a high-level view of students’ understanding
and misconceptions, and provide feedback that is relevant to more students. We believe an informa-

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 28 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:29

tion visualization approach is necessary for instructors to explore the variations among solutions at
the scale of MOOCs, and OverCode is an important step towards that goal.

12. ACKNOWLEDGMENTS

This material is based, in part, upon work supported by the National Science Foundation Gradu-
ate Research Fellowship (grant 1122374), the Microsoft Research Fellowship, the Bose Foundation
Fellowship, and by Quanta Computer as part of the Qmulus Project. Any opinions, findings, con-
clusions, or recommendations in this paper are the authors’, and do not necessarily reflect the views
of the sponsors.

REFERENCES

Sumit Basu, Chuck Jacobs, and Lucy Vanderwende. 2013. Powergrading: a Clustering Approach to Amplify Human Effort
for Short Answer Grading. TACL 1 (2013), 391–402.

Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier. 1998. Clone Detection Using Ab-
stract Syntax Trees. In Proceedings of the International Conference on Software Maintenance (ICSM ’98). IEEE Com-
puter Society, Washington, DC, USA, 368–377.

Michael Brooks, Sumit Basu, Charles Jacobs, and Lucy Vanderwende. 2014. Divide and correct: using clusters to grade short
answers at scale. In Learning at Scale. 89–98.

Matheus Gaudencio, Ayla Dantas, and Dalton D.S. Guerrero. 2014. Can Computers Compare Student Code Solutions As
Well As Teachers?. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education (SIGCSE

’14). ACM, New York, NY, USA, 21–26.

Elena L. Glassman, Ned Gulley, and Robert C. Miller. 2013. Toward Facilitating Assistance to Students Attempting Engi-
neering Design Problems. In Proceedings of the Tenth Annual International Conference on International Computing

Education Research (ICER ’13). ACM, New York, NY, USA.

Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program Visualization for CS Education. In Proceeding

of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA,
579–584.

Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas J. Guibas. 2013. Syntactic and Functional Variability of a Million
Code Submissions in a Machine Learning MOOC. In AIED Workshops.

Andrew Luxton-Reilly, Paul Denny, Diana Kirk, Ewan Tempero, and Se-Young Yu. 2013. On the differences between
correct student solutions. In Proceedings of the 18th ACM conference on Innovation and technology in computer science

education (ITiCSE ’13). ACM, New York, NY, USA, 177–182.

F. Marton, A.B.M. Tsui, P.P.M. Chik, P.Y. Ko, and M.L. Lo. 2013. Classroom Discourse and the Space of Learning. Taylor
& Francis.

Aditi Muralidharan and Marti Hearst. 2011. Wordseer: Exploring language use in literary text. Fifth Workshop on Human-

Computer Interaction and Information Retrieval (2011).

Aditi Muralidharan and Marti A Hearst. 2013. Supporting exploratory text analysis in literature study. Literary and linguistic

computing 28, 2 (2013), 283–295.

Aditi S. Muralidharan, Marti A. Hearst, and Christopher Fan. 2013. WordSeer: a knowledge synthesis environment for textual
data. In CIKM. 2533–2536.

Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas J. Guibas. 2014. Codewebs: scalable homework search for
massive open online programming courses. In WWW. 491–502.

Kelly Rivers and Kenneth R. Koedinger. 2013. Automatic Generation of Programming Feedback; A Data-Driven Approach.
In AIED Workshops.

Jeffrey M. Rzeszotarski and Aniket Kittur. 2012. CrowdScape: interactively visualizing user behavior and output. In UIST.
55–62.

Dennis Shasha, JT-L Wang, Kaizhong Zhang, and Frank Y Shih. 1994. Exact and approximate algorithms for unordered tree
matching. IEEE Transactions on Systems, Man and Cybernetics 24, 4 (1994), 668–678.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated feedback generation for introductory pro-
gramming assignments. In PLDI. 15–26.

Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowledge. IEEE Trans. Softw. Eng. 10, 5 (Sept.
1984), 595–609.

Ahmad Taherkhani, Ari Korhonen, and Lauri Malmi. 2012. Automatic recognition of students’ sorting algorithm implemen-
tations in a data structures and algorithms course. In Proceedings of the 12th Koli Calling International Conference on

Computing Education Research. ACM, 83–92.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 29 of 30 Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:30

Ahmad Taherkhani and Lauri Malmi. 2013. Beacon-and Schema-Based Method for Recognizing Algorithms from Students’
Source Code. JEDM-Journal of Educational Data Mining 5, 2 (2013), 69–101.

Songwen Xu and Yam San Chee. 2003. Transformation-Based Diagnosis of Student Programs for Programming Tutoring
Systems. IEEE Trans. Softw. Eng. 29, 4 (2003), 360–384.

13. AUTHOR STATEMENT ABOUT PRIOR PUBLICATIONS

Two work-in-progress abstracts by the same authors have appeared previously, both titled “Feature
engineering for clustering student solutions.” One abstract appeared in the Learning at Scale 2014
poster track, and the other in the CHI 2014 Learning Innovations at Scale workshop. Those abstracts
used the same dataset of Python solutions used in this submission.

Otherwise, virtually all of the current submission is new work which was not discussed in those
abstracts: the OverCode visualization, its implementation, and the empirical evaluations.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 30 of 30Transactions on Computer-Human Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

