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Abstract

We present Lightweight Email Signatures (LES), a simple cryptographic architecture for authenti-
cating email. LES is an extension of DKIM, the recent IETF effort to standardize domain-based email
signatures. LES shares DKIM’s ease of deployment: they both use the DNS to distribute a single public
key for each domain. Importantly, LES supports common uses of email that DKIM jeopardizes: mul-
tiple email personalities, firewalled ISPs, incoming-only email forwarding services, and other common
uses that often require sending email via a third-party SMTP server. In addition, LES does not require
DKIM’s implied intra-domain mechanism for authenticating users when they send email.

LES provides these features using identity-based signatures. Each domain authority generates a
master keypair, publishes the public component in the DNS, and stores the private component securely.
Using this private component, the authority delivers to each of its users, via email, an individual secret
key whose identity string corresponds to the user’s email address. A sender then signs messages using
this individual secret key. A recipient verifies such a signature by querying the appropriate master public
key from the DNS, computing the sender’s public key, and verifying the signature accordingly. As an
added bonus, the widespread availability of user-level public keys enables deniable authentication, such
as ring signatures. Thus, LES provides email authentication with optional repudiability.

We built a LES prototype to determine its practicality. Basic user tests show that the system is
relatively easy to use, and that cryptographic performance, even when using deniable authentication, is
well within acceptable range.

1 Introduction

1.1 The State of Email & DKIM

Email has become a highly polluted medium. More than 75% of email volume is spam [34], and phishing
attacks — spoofed emails that trick users into revealing private information — are on the rise, both in volume
[4] and sophistication [24]. Email users are repeatedly warned that an email’s From: field cannot be trusted
[46], and that links distributed by email should not be followed [3, 37]. Still, studies show that users remain
highly vulnerable, even to low-tech phishing attempts [14].

Domain Keys & Identified Mail (DKIM) is a promising proposal for providing a foundation to solve
the phishing problem: domains are made cryptographically responsible for the email they send. Roughly,
bob@foo.com sends emails via outgoing.foo.com, which properly identifies Bob and signs the
email content. The public key is distributed via a DNS TXT record for .domainkeys.foo.com. The
details of how DKIM should handle mailing lists, message canonicalization, message forwarding, and other
thorny issues, are being resolved in the context of a recently-formed IETF Working Group [22].
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1.2 Lightweight Email Signatures

We propose Lightweight Email Signatures, abbreviated LES, as an extension to DKIM. We show how LES
preserves all of the major architectural advantages of DKIM, while offering three significant improvements:

1. Automatic Intra-Domain Authentication: DKIM assumes that outgoing. foo.com can tell its
users bob@foo.com and carol@foo.com apart, which is not a safe assumption in a number
of settings — e.g. university campuses or ISPs that authenticate only the sending IP address. (In
section 6, figure 4 highlights the concern.) By contrast, LES authenticates individual users within a
domain without requiring additional authentication infrastructure within foo . com.

2. Flexible Use of Email (Better End-to-End): LES allows Bob to send email via any outgoing mail
server, not just the official outgoing. foo.com mandated by DKIM. This is particularly impor-
tant when supporting existing use cases. Bob may want to alternate between using bob@foo.com
and bob@bar . com, while his ISP might only allow SMTP connections to its outgoing mail server
outgoing.isp.com. Bob may also use his university’s alumni forwarding services to send email
from bob@alum.univ.edu, though his university might not provide outgoing mail service.

3. A Privacy Option: LES enables the use of repudiable signatures to help protect users’ privacy.
Bellovin [7] and other security experts [40, 8] warn that digitally signed emails entail serious pri-
vacy consequences. We believe the option for repudiable signatures can alleviate these concerns.

In a nutshell, LES provides more implementation flexibility for each participating domain — in partic-
ular flexibility that addresses existing legitimate uses of email —, without complicating the domain’s public
interface. A LES domain exposes a single public key in the DNS, just like DKIM. Among its users, a LES
domain can implement DKIM-style, server-based signatures and verifications, or user-based signatures and
verifications where each user has her own signing key.

1.3 The LES Architecture

We now describe the LES architecture as diagrammed in figure 1.

The DKIM Baseline. A LES-signed email contains an extra SMTP header, Xx-LES-Signature, which
encodes a signature of a canonicalized version of the message. We leave to the DKIM Working Group the
details of this canonicalization — which includes the From: field, the subject and body of the message, and
a timestamp —, as they do not impact the specifics of LES. Verification of a LES-signed email is also quite
similar to the DKIM solution: the recipient retrieves the sender domain’s public key from a specially crafted
DNS record, and uses it to verify the claimed signature on the canonicalized message.

Limitations of DKIM. A DKIM domain uses a single key to sign all of its emails. This simple architecture
is what makes DKIM so appealing and easy to deploy. Not surprisingly, it is also the source of DKIM’s lim-
itations: users must send email via their approved outgoing mail server, and this outgoing mail server must
have some internal method of robustly distinguishing one user from another to prevent bob@foo . com from
spoofing carol@foo.com. LES aims to overcome these limitations while retaining DKIM’s deployment
simplicity.

User Secret Keys with Identity-Based Signatures. LES assigns an individual secret key to each user, so
that bob@foo. com can sign his own emails. This means Bob can use any outgoing server he chooses, and
outgoing. foo.com does not need to authenticate individual users (though it may, of course, continue
to use any mechanism it chooses to curb abusive mail relaying.)
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Figure 1: LES: (1) The domain keyservers for Alice and Bob publish their MPKs in the DNS (2) Alice’s domain sends
Alice her secret key SK 4, via email (3) Alice obtains the M PK for Bob’s domain, foo.com (4) Alice computes
Bob’s public key PK  (5) Alice signs her email with a ring signature and sends it to Bob (6) Bob obtains the M PK
for Alice’s domain, from the DNS (7) Bob extracts the From: field value, alice@wonderland. com, from the
email (8) Bob computes Alice’s public key PK 4, using the claimed identity string “alice@wonderland.com”
(9) Bob verifies the signature against the message and PK 4.

To maintain a single domain-level key in the DNS, LES uses identity-based signatures, a type of scheme
first conceptualized and implemented in 1984 by Shamir [47]. A LES domain publishes (in the DNS) a mas-
ter public key M P K and retains the counterpart master secret key M .SK. Bob’s public key, P Kgop,, can be
computed using M PK and an identification string for Bob, usually his email address “bob@foo.com”.
The corresponding secret key, S Kpop, is computed by Bob’s domain using M SK and the same identifi-
cation string. Note that, contrary to certain widespread misconceptions, identity-based signatures are well
tested and efficient. Shamir and Guillou-Quisquater signatures, for example, rely on the widely-used RSA
assumption and are roughly as efficient as normal RSA signatures.

One might argue that a typical hierarchical certificate mechanism, where the domain certifies user-
generated keypairs, would be just as appropriate here. There are some problems with this approach. First,
a user’s public-key certificate would need to be sent along with every signed message and would require
verifying a chain of two signatures, where the identity-based solution requires only one signature and one
verification operation. Second, with user-generated keypairs, it is much more difficult to use ring signatures
(or any of the known deniable authentication methods) between a sender and a receiver who has not yet
generated his public key. The identity-based solution ensures the availability of any user’s public key.

Distributing User Secret Keys via Email. LES delivers the secret key SKpo, by sending it via email
to bob@foo.com [18], using SMTP/TLS [21] where available. Thus, quite naturally, only someone with
the credentials to read Bob’s email can send signed emails with bob@foo.com as From address. Most



importantly, as every domain already has some mechanism for authenticating access to incoming email
inboxes, this secret-key delivery mechanism requires no additional infrastructure or protocol.

Privacy with Deniable Signatures. Privacy advocates have long noted that digital signatures present a
double-edged sword [7, 40, 8]: signatures may make a private conversation publicly-verifiable. The LES
framework supports many forms of deniable authentication [9] through its use of identity-based keys: Alice
can create a deniable signature using her secret key SKj1ice and Bob’s public key P Kg,p. Only Bob can
meaningfully verify such a signature. We note that this approach does not provide anonymity beyond that
of a normal, unsigned email. However, unlike DKIM and other signature proposals, LES does not make the
signature publicly-verifiable: only the email recipient will be convinced.

1.4 A Prototype Implementation

To determine the practical feasibility of deploying LES, we built a basic prototype, including a key server
and a plugin to the Apple Mail client. We deployed a real M PK in the DNS for csail.mit .edu, using
the Guillou-Quisquater identity-based scheme [19] for its simplicity, and ring signatures for deniability. We
then conducted a small test with nine users. Though our test was too small to provide complete, statistically
significant usability results, we note that most participants were able to quickly install and use the plugin
with no user-noticeable effect on performance.

Detailed performance numbers, in section 6, show that basic ring signature and verification operations
perform well within acceptable limits — under 40ms on an average desktop computer —, even before serious
cryptographic optimizations. A small keyserver can easily compute and distribute keys for more than 50,000
users, even when configured to renew keys on a daily basis.

The complete prototype’s source code is available upon request.

1.5 Previous and Related Work

The email authentication problem has motivated a large number of proposed solutions.

End-to-end digital signatures for email have repeatedly been proposed [5, 49] as a mechanism for making
email more trustworthy and thereby preventing spoofing attacks such as phishing. One proposal suggests
labeling email content and digitally signing the label [20]. Apart from DKIM, all of these past proposals
require some form of Public-Key Infrastructure, e.g. X.509 [17]. Alternatively, path-based verification has
been proposed in a plethora of initiatives. Those which rely on DNS-based verification of host IP addresses
were reviewed by the IETF MARID working group [23, 31, 30]. The latest proposal in this line of work is
SIDF [38].

A number of spam-related solutions have been suggested to fight phishing. Blacklists of phishing mail
servers are sometimes used [48, 32], as is content filtering, where statistical machine learning methods are
used to detect likely attacks [45, 33, 35]. Collaborative methods [16] that enable users to help one another
have also been proposed. LES can help complement these approaches.

1.6 This Paper

In section 2, we review the necessary cryptographic and systems building blocks. In section 3, we detail the
LES system based on these building blocks, specifically the identity-based key distribution infrastructure
and the repudiability option. We then explore the issue of technology adoption in section 4. In section 5,
we analyze the threats model for LES. We then describe our prototype and performance results in section 6,
and conclude in section 7.



2 Cryptographic and System Preliminaries
We now review and present new extensions to cryptographic and system building blocks involved in LES.

2.1 Identity-Based Signatures

In 1984, Shamir proposed the concept of identity-based signatures (IBS) [47]. Since then over a dozen
schemes have been realized based on factoring, RSA, discrete logarithm, and pairings. (See [6] for an
overview, plus a few more in [2].) Most IBS signatures can be computed roughly as fast as RSA signatures,
and those based on pairings can be 200 bits long for the equivalent security of a 1024 bit RSA signature.

IBS schemes were introduced to help simplify the key management problem. Here, a single master
authority publishes a master public key M P K and stores the corresponding master secret key M SK. Users
are identified by a character string id_string, which is typically the user’s email address. A user’s public
key PK can be publicly computed from M PK and id_string, while a user’s secret key SK is computed
by the master authority using M S K and the same id_string, then delivered to the user.

2.2 Ring Signatures from Any Keypairs

Ring signatures [11, 43] allow an individual to sign on behalf of a group of individuals without requiring any
prior group setup or coordination. Although rings can be of any size, consider the two party case. Suppose
Alice and Bob have keypairs (PKpice, SKpiice) and (PKpob, SKpop) respectively. Alice can sign on
behalf of the group “Alice or Bob” using her secret key S Kj1ice and Bob’s public key P Kgo,. Anyone can
verify this signature using both of their public keys. We require the property of signer-ambiguity [2]; that
is, even if Alice and Bob reveal their secret keys, no one can distinguish the actual signer.

In the full version of this paper, we describe a compiler for creating signer-ambiguous ring signatures
using keypairs of almost any type. That is, Alice may have a PGP RSA-based keypair and Bob may have
a pairing-based identity-based keypair, yet Alice can still create a ring signature from these keys! For our
purposes here, it does not matter ~ow this compiler works. It is enough to know that: (1) the security of
the resulting ring signature is equivalent to the security of the weakest scheme involved, and (2) the time to
sign (or verify) a ring signature produced by our compiler is roughly the sum of the time to sign (or verify)
individually for each key involved, plus an additional hash. See [2] for the technical details.

Using ring signatures for deniable authentication is not a new concept [43, 8]. The idea is that, if Bob
receives an email signed by “Alice or Bob,” he knows Alice must have created it. However, Bob cannot
prove this fact to anyone, since he could have created the signature himself. In section 3.4, we describe how
ring signatures are used to protect a user’s privacy in LES.

2.3 Email Secret-Key Distribution

Web password reminders, mailing list subscription confirmations, and e-commerce notifications all use
email as a semi-trusted messaging mechanism. This approach, called Email-Based Identity and Authen-
tication [18], delivers semi-sensitive data to a user by simply sending the user an email. The user gains
access to this data by authenticating to his incoming mail server in the usual way, via account login to
an access-controlled filesystem, webmail, POP3 [39], or IMAP4 [12]. For added security, one can use
SMTP/TLS [21] for the transmission.

3 Lightweight Email Signatures

We now present the complete design of LES, as previously illustrated in Figure 1.



3.1 Email Domain Setup

Each email domain is responsible for establishing the cryptographic keys to authenticate the email of its
users. The setup procedure for that master authority run by wonderland. com is defined as follows:

1. select one of the identity-based signatures (IBS) discussed in section 2.1. (For our section 6 experi-
ment, we chose the RSA-based Guillou-Quisquater IBS [19] because of its speed and simplicity.)

2. generate a master keypair (MPKwonderlanda MSKwonderland) for this scheme.

3. define key issuance policy Policy, which defines if and how emails from this domain should be signed.
(Details of this policy are defined in section 4.2.)

4. publish M P Ky onder1and and Policy in the DNS as defined by the DKIM specifications.

3.2 User Identities

Per the identity-based construction, a user’s public key PK can be derived from any character string
id_string that represents the user’s identity. We propose a standard format for ¢d_string.

Master Domain. In most cases, bob@foo . com obtains a secret key derived from a master keypair whose
public component is found in the DNS record for the expected domain, foo . com. However, in cases related
to bootstrapping (see section 4), Bob might obtain a secret key from a domain other than foo . comn.

For this purpose, we build a issuing_domain parameter into the user identity character string. Note
that foo . com should always refuse to issue secret keys for identity strings whose #ssuing_domain is not
foo.com. However, foo.com may choose to issue a key for alice@wonderland. com, as long as the
issuing_domain within the identity string is foo . com. We provide a clarifying example shortly.

Key Types. The LES infrastructure may be expanded to other applications in the future, such as encryp-
tion. To ensure that a key is used only for its intended purpose, we include type information in id_string.
Consider type, a character string composed only of lowercase ASCII characters. This type becomes part of
the overall identity string. For the purposes of our application, we define a single type: 1ightsig.

Key Expiration. In order to provide key revocation capabilities, the user identity string includes expiration
information. Specifically, ¢d_string includes the last date on which the key is valid: expiration_date, a
character string formatted according to ISO-8601, which include an indication for the timezone. For now,
we default to UTC for timezone disambiguation.

Constructing Identity Character Strings. An ¢d_string is thus constructed as:
(issuing_domainy, (email), (expiration_date), (type)
For example, a 2006 LES identity string for email address bob@foo . com would be:
foo.com,bobl@foo.com,2006-12-31, 1ightsig

If Bob obtains his secret key from a master authority different than his domain, e.g. 1ightsig.org,
his public key would necessarily be derived from a different id_string:

lightsig.org,bob@foo.com,2006-12-31, 1lightsig

Notice that 1ightsig.org will happily issue a secret key for that identity string, even though the
email address is not within the 1ight sig.org domain. This is legitimate, as long as the issuing_domain
portion of the id _string matches the issuing keyserver.



3.3 Delivering User Secret Keys

Each domain keyserver will choose its own interval for regular user secret key issuance, possibly daily,
weekly or monthly. These secret keys are delivered by email, with a well-defined format — e.g. XML with
base64-encoded key, including a special mail header — that the mail client will recognize. The most recent
key-delivery email is kept in the user’s inbox for all mail clients to access, in case the user checks his email
from different computers. The mail client may check the correctness of the secret key it receives against its
domain’s master public key, either using a specific algorithm inherent to most IBS schemes, or by attempting
to sign a few messages with the new key and then verifying those results. (For more details, see section 2.3.)

3.4 The Repudiability Option

The downside of signing email is that it makes a large portion of digital communication undeniable [7, 40, 8].
An off-the-record opinion confided over email to a once-trusted friend may turn into a publicly verifiable
message on a blog! We believe that repudiable signatures should be the default to protect a user’s privacy as
much as possible, and that non-repudiable signatures should be an option for the user to choose.

Numerous approaches exist for realizing repudiable authentication: designated-verifier signatures [25],
chameleon signatures [26], ring signatures [44], and more (see [9] for an overview of deniable authentication
with RSA). In theory, any of these approaches can be used. We chose the ring signature approach for two
reasons: (1) it fits seamlessly into our identity-based framework without creating new key management
problems, and (2) our ring signature compiler can create ring signatures using keys from different schemes,
as discussed in section 2.2. Thus, no domain is obligated to use a single (perhaps patented) IBS.

Let us explore why ring signatures are an ideal choice for adding repudiability to LES. Most repudiation
options require the sender to know something about the recipient; in ring signatures, the sender need only
know the receiver’s public key. In an identity-based setting, the sender Alice can easily derive Bob’s public
key using the M P K+o0.com fOr foo . com in the DNS and Bob’s id _string. Setting the issuing_domain to
foo.com, the type to 1ightsig, and the email field to bob@foo.com for Bob’s id_string is straight-
forward. For expiration_date, Alice simply selects the current date. We then require that domains be willing
to distribute back-dated secret keys (to match the incoming public key) on request to any of their members.
Few users will take this opportunity, but the fact that they could yields repudiability. Such requests for
back-dated keys can simply be handled by signed email to the keyserver.

This “Alice or Bob” authentication is valid: if Bob is confident that /e did not create it, then Alice must
have. However, this signature is also repudiable, because Bob cannot convince a third party that he did not,
in fact, create it. In section 4.1, we discuss what Alice should do if foo.com does not yet support LES,
and in section 4, we discuss methods for achieving more repudiability.

3.5 Signing & Verifying Messages

Consider Alice, alice@wonderland.com, and Bob, bob@foo.com. On date 2006-02-01, Alice
wants to send an email to Bob with subject (subject) and body (body). When Alice clicks “send,” her email
client performs the following actions:

1. prepare a message M to sign, using the DKIM canonicalization (which includes the From:, To:,
and Subject: fields, as well as a timestamp and the message body).

2. if Alice desires repudiability, she needs to obtain Bob’s public key:

(a) obtain M P Koo.com, the master public key for Bob’s domain foo . com, using DNS lookup.

(b) assemble id_stringg,,. an identity string for Bob using 2006-02-01 as the expiration_date:
foo.com,bob@foo.com,2006-02-01, lightsig



3.

(c) compute P Kgop, from M P Ksoo.com and id_stringg,,. (We assume that P Kpqp, contains a cryp-
tosystem identifier, which determines which IBS algorithm is used here.)

sign the message M using SKjiice, M PKyonderiand.con- Optionally, for repudiability, also use
PKgop and M P Ksoo.com With the section 2.2 compiler. The computed signature is o.

4. using the DKIM format for SMTP header signatures, add the Xx-LES-Signature containing o,

1d_StTing a1 ice> aNd 1d_Stringp.p -

Upon receipt, Bob needs to verify the signature:

1.

obtain the sender’s email address, alice@wonderland. com, and the corresponding domain name,
wonderland. com, from the email’s From field.

obtain M P K onder1and.com» Using DNS lookup (as specified by DKIM).

. ensure that PKj1;ce is correctly computed from the claimed id_string, ;.. and corresponding issu-

ing domain M P K onger1and.coms and that this id_string is properly formed (includes Alice’s email
address exactly as indicated in the From field, a valid expiration date, a valid type).

recreate the canonical message M that was signed, using the declared From, To, and Subject
fields, the email body, and the timestamp.

. If Alice applied an ordinary, non-repudiable signature, verify M, o, PKp1ice, M P Kyonderiand.con tO

check that Alice’s signature is valid.

. If Alice applied a repudiable signature, Bob must check that this signature verifies against both Alice’s

and his own public key following the proper ring verification algorithm [2]:

(a) ensure that P K3y, is correctly computed from the claimed id _stringg., and the DNS-advertised
M PK+oo.com, and that this id_string is properly formed (includes Bob’s email address, a valid
expiration date, a valid type).

(b) verity M, 0, PKp1ices M P Kyonderiand.cons PKpob, M PKtoo.com to check that this is a valid
ring signature for “Alice or Bob.”

If all verifications succeed, Bob can be certain that this message came from someone who is authorized to
use the address alice@wonderland.com. If the wonderland. com keyserver is behaving correctly,
that person is Alice.

3.6 LES vs. Other Approaches

The LES architecture provides a number of benefits over alternative approaches to email authentication.
We consider three main competitors: SIDF [38] and similar path-based verification mechanisms, S/MIME
[50] and similar certificate-based signature schemes, and DKIM, the system upon which LES improves. A
comparison chart is provided in table 1, with detailed explanations as follows:

1. Logistical Scalability: When a large organization deploys and maintains an architecture for signing

emails, it must consider the logistics of such a deployment, in particular how well the plan scales.
With SIDF or DKIM, domain administrators must maintain an inventory of outgoing mail servers and



Property | SIDF | SMIME | DKIM LES |

Logistical Scalability No No* No Yes
Deployable with Client Update Only No Yes No Yes
Deployable with Server Update Only Yes No* Yes Yes
Support for Third-Party SMTP Servers No Yes No Yes
Easy Support for Privacy Yes No No Yes
Email Alias Forwarding No Yes Yes Yes
Support for Mailing Lists that Modify Content | Good Poor Acceptable | Acceptable

Table 1: LES compared to other approaches for authenticating email. ¥: PGP and S/MIME can be adjusted
to issue keys from the server, somewhat improving the scalability.

ensure that each is properly configured. This includes having outgoing mail servers properly authen-
ticate individual users to prevent intra-domain spoofing. Meanwhile, with certificate-based signature
schemes, domain administrators must provide a mechanism to issue user certificates. By contrast, LES
does not require any management of outgoing mail servers or any additional authentication mecha-
nism. LES only requires domains to keep track of which internal email addresses are legitimate, a
task that each domain already performs when a user’s inbox is created.

Thus, LES imposes only a small incremental logistical burden, while DKIM, SIDF, and S/MIME
all require some new logistical tasks and potentially new authentication mechanisms. Note that it is
technically possible to use PGP in a way similar to LES, with email-delivered certificates, though the
PGP keyserver then needs to keep track of individual user keys where LES does not.

2. Deployment Flexibility: SIDF and DKIM can only be deployed via server-side upgrades, which
means individual users must wait for their domain to adopt the technology before their emails become
authentic. PGP can only be deployed via client-side upgrades, though one should note that many
clients already have PGP or S/MIME support built in. LES can be implemented either at the server,
like DKIM, or at the client, like PGP.

3. Support for Third-Party SMTP Servers: SIDF and DKIM mandate the use of pre-defined outgoing
mail servers. A user connected via a strict ISP may not be able to use all of his email personalities.
Incoming-mail forwarding services — e.g. alumni address forwarding — may not be usable if they do
not also provide outgoing mail service. PGP and LES, on the other hand, provide true end-to-end
functionality for the sender: each user has a signing key and can send email via any outgoing mail
server it chooses, regardless of the From email address.

4. Privacy: LES takes special care to enable deniable authentication for privacy purposes. SIDF, since it
does not provide a cryptographic signature, is also privacy-preserving. However, DKIM and S/MIME
provide non-repudiable signatures which may greatly affect the nature of privacy in email conversa-
tions. Even a hypothetical LES-S/MIME hybrid, which might use certificates in the place of identity-
based signatures, would not provide adequate privacy, as the recipient’s current public key would
often not be available to the sender without a PKI.

5. Various Features of Email: SIDF does not support simple email alias forwarding, while S/MIME,
DKIM, and LES all support it easily. SIDF supports mailing lists and other mechanisms that modify
the email body, as long as mailing list servers support SIDF, too. On the other hand, SMIME, DKIM,



and LES must specify precise behavior for mailing lists: if the content or From address changes,
then the mailing list must re-sign the email, and the recipient must trust the mailing list authority to
properly identify the original author of the message.

This is particularly difficult for S/MIME, which must assume that the mailing list has an S/MIME
identity, too, that recipients trust (this is related to the PKI requirement of S/MIME-like solutions).

LES provides a combination of advantages that is difficult to obtain from other approaches. Of course,
these features come at a certain price: LES suffers from specific threats that other systems do not have. We
explore these threats in section 5.

4 Technology Adoption

The most challenging aspect of cryptographic solutions is their path to adoption and deployment. The
deployment features of LES resembles those of DKIM: each domain can adopt it independently, and those
who have not yet implemented it will simply not notice the additional header information. However, in LES,
individual users can turn to alternate authorities to help sign emails before their own domain has adopted
LES.

4.1 Alternate Domain Authorities

Alice wishes to send an email to Bob. If both domains are LES-enabled, they can proceed as described in
section 3. What happens, however, if one of these elements is not yet in place?

Getting an Alternate Secret Key. Alice may want to sign emails before her domain wonderland. com
supports it. LES allows Alice to select an alternate master authority domain created specifically for this
purpose, e.g. 1lightsig.org. 1lightsig.orqg must explicitly support the issuance of external keys,
i.e. keys corresponding to email addresses at a different domain than that of the issuing keyserver. To obtain
such a key, Alice will have to explicitly sign up with 1ightsig. org, most likely via a web interface. Her
1d _string will read:

lightsig.org,alice@wonderland.com,2006-12-31,lightsig

Note that we do not expect 1ightsig.org to perform any identity verification beyond email-based au-
thentication: the requested secret key is simply emailed to the appropriate address.

A recognized, non-commercial organization would run 1ight sig. org, much like MIT runs the MIT
PGP Keyserver: anyone can freely use the service. Alternatively, existing identity services — e.g. Microsoft
Passport [36] or Ping Identity [42] — might issue LES keys for a small fee. Where PGP requires large, mostly
centralized services like the MIT PGP Keyserver, LES users may choose from any number of keyservers.

Of course, when Bob receives a LES email, he must consider his level of trust in the issuing keyserver,
especially when it is does not match the From: address domain. Most importantly, certain domains, e.g.
those of financial institutions, should be able to prevent the issuance of keys for its users by alternate domains
altogether. We return to this point shortly.

Bootstrapping Repudiability. When Alice wishes to send an email to Bob, she may notice that Bob’s
domain foo.com does not support LES. In order to obtain repudiability, however, she needs to compute a
public key for which Bob has at least the capability of obtaining the secret key counterpart. For this purpose,
Alice can use the same 1ightsig.org service, with Bob’s id_string as follows:
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lightsig.org,bob@foo.com,2006-02-01, lightsig

Note that Bob need not ever actually retrieve a secret key from the 1ightsig. org service. The mere
fact that he could potentially retrieve a secret key at any time is enough to guarantee repudiability for Alice.
Note also that, somewhat unintuitively, it makes sense to have Alice select the LES service to generate Bob’s
public key: in our setting, Bob’s public key serves Alice, not Bob, as it is an avenue for sender repudiability.

4.2 Announcing Participation: Domain Policies

In an early (April 2005) draft of the LES system, we considered how a domain would announce its use of
LES. Since then, DKIM has begun to consider this very same issue [22]. We defer to the DKIM effort for the
exact DNS-based policy architecture, and focus on the specific policy parameters that apply to the unique
features of LES.

Once an email domain decides to deploy LES, it needs to consider two aspects of its deployment:
InternalPolicy and ExternalPolicy. InternalPolicy defines how users of wonderland.com should
behave, in particular whether they are expected to sign their emails, and whether they can use keys issued by
other domains. It can also contain information on whether users are permitted to issue repudiable signatures.
EzxternalPolicy defines what services wonderland. com offers to users outside the domain, specifically
whether that domain is willing to issue keys to external users.

Thus, one would expect bigbank . com to issue strict policies on both fronts: users of bigbank .com
must non-repudiably sign all of their emails, and no external authorities are permitted. On the other hand,
lightsig.org would offer a more relaxed ExternalPolicy, offering to issue keys for external users,
and a small ISP without the immediate resources to deploy LES may offer an InternalPolicy, allowing its
users to obtain keys from other services, like 1ightsig.org, and certainly allowing its users to issue
repudiable signatures.

Using Domain Policies to Automatically Detect Spoofing. When Bob receives an email from Alice, he
may be faced with two possibly confounding situations: the message bears no signature, or the message
bears a signature signed with a PK for Alice derived from a different master authority than that of Alice’s
email address. This is where the use of LES domain policies comes into play: Bob must check the policy
advertised by Alice’s domain wonderland. com.

If the message bears no signature at all, but wonderland.com advertises an InternalPolicy that
requires signatures, Bob can safely consider the message a spoof and discard it. Similarly, if the message
bears a signature authorized by another domain, but wonderland. com advertises an FxternalPolicy that
bans the use of other authorities for its users, Bob can again safely discard the message.

In other cases where the policies are not so strict, there remains a grey area where Bob will have to make
a judgment call on whether to trust an unsigned email, or whether to trust the alternate issuing domain.
These cases may be solved by reputation systems and personal user preferences, though, of course, one
shouldn’t expect every case to be decidable with full certainty.

4.3 LES at the Server

LES can be deployed entirely at the client, as described in the past few pages. Alternatively, LES can be
deployed partially or entirely at the server level, mimicking DKIM, if the deploying domain so desires.

DNS M PK Lookups. An incoming mail server can easily look up the M PK records of senders when
emails are received. This M PK can be easily included in additional SMTP headers before delivering the
emails to the user’s mailbox. This is particularly useful for mail clients that may be offline when they finally
process the downloaded emails.
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Signature Verification. The incoming mail server can even perform the signature verification, indicating
the result by yet another additional SMTP header. The client would be saved the effort of performing the
cryptographic operations. This is particularly useful for low-resource clients, like cell phones or PDAs. In
cases where the incoming email clashes with the sending domain’s Policy, as illustrated in section 4.2, the
incoming mail server can confidently discard the fraudulent email before the user even downloads it!

Signature Creation. If a user sends email through his regular outgoing mail server, the signature can be
applied by that server. This optimization is also particularly useful for inexperienced users and low-resource
clients. This server-applied signature certifies the specific From: address, not just the email domain.

Transparent LES. Internet Service Providers (ISPs) can combine the previous optimizations to provide
all functionality at the server, as in DKIM. Home users can get all the benefits of LES without upgrading
their mail client or taking any action. This approach is even more appealing — and necessary — for web-
based email, particularly web-only email providers like Hotmail, Yahoo, and Gmail. A web client may
not provide the necessary framework to perform public-key cryptography. (This is changing rapidly with
advanced Javascript capabilities, but it is not yet guaranteed in every browser.) In these cases, the web server
is the only system component which can provide signing and verification functionality.

4.4 Forwarding, Multiple Recipients, and Mailing Lists

Just like DKIM, LES provides end-to-end signatures, which means that whenever the From and To ad-
dresses and other message components are preserved, the signature remains valid. Thus, email alias for-
warding is automatically supported by LES, like DKIM. Also like DKIM, a LES email to multiple recipients
is signed individually to each recipient.

The handling of signatures for mailing lists is currently under consideration by the DKIM working
group: should mailing list servers resign messages, or should signatures attempt to survive mailing lists
modifications? We defer to their approach for LES signatures, too. In this work, we only need to consider
the case of repudiable LES signatures in the context of mailing lists, which we address in the next section.

4.5 Advanced Repudiation via Evaporating Keys

LES offers repudiability because someone in possession of a secret key other than the message author’s
might have signed the message. When the recipient doesn’t present a proper avenue for repudiation, an
alternate approach is to set up an evaporating key. Perrig et al. [41], followed by Borisov et al. [8], proposed
evaporating keys in a MAC setting. The same trick can be done in the public key setting.

Evaporating keys in LES are implemented by special keyservers that declare, in their EzternalPolicy,
whether they issue keys with a special type in their id_string: 1taevap. Atregular intervals, e.g. at the
end of each day, these servers publish on a web site the secret-key component of the evaporating public key.
If Alice wishes to use an evaporating key, she does not need to notify the server: she simply computes the
appropriate public key against the server’s DNS-announced M P K, trusting that the server will evaporate
the key at the next given interval.

Even when Alice knows Bob’s public key, she can generate a three-party ring signature “Alice or Bob
or Evaporating Key,” where the key comes from a server that Alice trusts. This provides Alice with total
repudiability after the evaporation period. Of course, Bob may always refuse to accept such signatures.

Repudiability for Mailing Lists. Evaporating keys can provide repudiation for messages sent to mailing
lists. When Alice sends an email to a mailing list, she may not know the eventual recipients of the email. If
she signs with her secret key and an evaporating public key, recipients can trust Alice’s authorship as much
as they trust the evaporating domain, and Alice gains repudiability as soon as the evaporation interval comes
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to an end. Because email clients are not always aware of the fact that the recipient is a mailing list, one
possible option is to always create a three-way repudiable signature using Alice’s secret key, the recipient’s
public key, and an evaporating public key.

5 Threats

LES shares enough in architectural design with DKIM that both systems face a number of common threats.
At the same time, LES is different enough that we must examine the unique threats it faces, too.

5.1 Threats against DKIM and LES

Both DKIM and LES distribute a single domain-level key via the DNS. Thus, they share potential threats
surrounding this particular operation.

1. DNS Spoofing: since DNS is used to distribute domain-level public keys, it may come under in-
creased attack. An attacker might compromise DNS at any number of levels: hijacking the canonical
DNS record, all the way down to redirecting a single user’s DNS queries. Fortunately, high-level com-
promises will be quickly noticed and remedied, though, if an attacker sets a long-enough time-to-live
on the hijacked record, the corrupt DNS data may survive on downstream hosts for a few hours or
even days. During this period of time, spoofed emails would fool mail clients and servers alike.

Spoofing DNS at a more local level, affecting only a handful of users, is particularly worrisome as it
may go undetected for quite some time.

If these types of DNS attacks become more popular, it will become imperative to implement more
secure DNS options, such DNSSEC [15], or, as a stop-gap solution before a secure DNS alternative
is deployed, to provide certified keys in the DNS TXT records.

2. Domain Key Compromise: an attacker might compromise the domain’s secret key and then success-
fully sign emails from any address in that domain. If the attacker is careful to use this compromised
key with moderation, he may go unnoticed for quite some time. Once such a compromise is discov-
ered, of course, the remedy is relatively simple: generate a new key and update the DNS record.

As phishing attacks become more targeted and sophisticated, it will become important to strongly
secure the secret domain key, and possibly to renew it fairly regularly.

3. Zombie User Machine: an attacker might gain control of a user’s machine via one of the numerous
security exploits that turn broadband-connected machines into “zombies.” In this scenario, the attacker
can clearly send signed email exactly like the legitimate user. If an attacker makes moderate use of
this ability, it may take quite some time to detect the problem.

There is, of course, no complete solution against zombie user machines given that they can act exactly
like legitimate users. However, with DKIM or LES signatures, illegitimate behavior can eventually
be detected and traced to a single user account. Once this abuse has been detected, DKIM and LES
domain servers can take rapid action to shut down that user’s ability to send emails.

4. User Confusion: When a user receives a validly signed email, the email may still be a phishing attack.
A valid signature should not be interpreted as a complete reason to trust the sender, though of course
it should provide greater accountability for criminal actions. One notes that, as of August 2005, 83
percent of all domains with SIDF records were spammers [29].
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5.2 DKIM Threats Minimized by LES

With LES, the threat of a domain key compromise can be significantly reduced compared to DKIM. In
particular, whereas DKIM’s domain secret key must be available to an online server — the outgoing mail
server —, the generation of individual LES user keys can be performed by an offline machine that only acts
as a mail client. Even in the LES setting, where all cryptographic operations are done at the server level, the
domain could give the outgoing mailserver only user-level secret keys with short expiration dates, instead of
the master secret key. In that case, a compromise of the outgoing mail server would only yield the ability to
forge for a very short period of time, and the domain could recover from this compromise without needing
to update its DNS entry. For other benefits of LES over DKIM, see section 3.6.

5.3 Specific LES Threats

LES deploys user secret keys and repudiable signatures, both of which open the system up to new threats
that must be considered carefully during implementation and deployment.

1. User Secret Key Compromise: an attacker may obtain a specific user’s key, either by sniffing the
network near the user’s incoming mail server, breaking into the user’s inbox, or compromising the
user’s machine. The approach we propose here is to configure LES keys with near-term expiration
dates, maybe a day or two in advance, in order to limit the damage of a user secret key compromise.
With such a short lifespan, the lag time after a compromise discovery will likely be very short.

2. Denial of Service: an attacker may flood Alice’s inbox by submitting her email address to request a
user-level secret key for her from a host of alternate domains. (Recall that alternate domains do no
authentication beyond sending Alice email.) This attack might be mitigated by alternate domains first
checking if Alice’s domain permits her to use alternate domains before sending her a secret key.

3. More User Confusion: in addition to the user confusion LES shares with DKIM, a user may also
need to make decisions about whether to trust alternate domains or repudiable signatures. For exam-
ple, should Alice accept an email from bob@foo.com with a valid signature from issuing domain
phish.org? Or should Alice accept an email from bob@foo.com with a valid three-party ring
signature including Alice, Bob, and an evaporating key from phish.org? We recognize that many
of these issues may cause headaches for average users. These decisions should be simplified for the
users based on the domains’ InternalPolicy and FxternalPolicy which can be applied automatically
by the client software, reputation management systems, and user interface design.

6 Experimental Results

6.1 Implementation

In implementing LES, we had two goals in mind. First, we wanted to demonstrate that LES can be success-
fully incorporated into an existing DNS server and a modern mail client. Second, we wanted to show that
LES’s cryptographic computations perform quite reasonably.

We chose Guillou-Quisquater identity-based signatures, as they rely on the same RSA assumption as
widespread crypto today, and are relatively simple to implement using any generic math library.

On the keyserver, we used Python and the Python Cryptography Toolkit [27]. We built a simple web
service, using the CherryPy web toolkit [13], to let users sign up for keys. On the client, we built an
extension to Apple Mail 2.0 for Mac OS X 10.4 in Objective C, using the GNU Multi-Precision library [1]
for mathematical primitives and the LDNS [28] library for DNS lookups. As the Apple Mail API is not
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fully documented, we made great use of the GPGMail extension [10] as a model, and we borrowed their
user-interface icons. This extension is a dynamically-loaded library (in the case of Mac OS X, a bundle) that
intercepts message display and message send actions.

As this was a proof of concept, we assumed plaintext messages were sent to single recipients. Extending
this prototype to handle proper message canonicalization of all MIME messages, as well as multiple recipi-
ents, will eventually be implemented using exactly the same techniques as other email cryptography efforts
(DKIM, PGP, etc...). As none of these extensions are related to the underlying cryptography, we believe
they will not impact performance and usability.

We set up the client-side software to check every domain for a M PK, and to defaultto csail.mit .edu
when one wasn’t found. Emails from domains that do distribute a M PK were expected to be signed by
default (i.e., for our test, the presence of a M P K was interpreted as a strict InternalPolicy.) Thus, an email
from alice@wonderland.com was not expected to be signed, though any signature on it was obviously
checked. On the other hand, emails from csail.mit .edu were expected to be signed at all times, and a
lack of signature was actively signalled to the recipient.

6.2 User Testing of Prototype

A group of nine users was assembled to test our prototype during a one week period from January 20 to 27,
2006. Each participant used a Mac running OS X 10.4 and AppleMail 2.0. After reading a statement on
the purpose of the test, users were asked to sign an electronic consent form, double-click on an automatic
installation, and then go to a website to do a one-time key request for their email address. This request took
the place of a domain automatically sending the user a key by email. Requests were automatically processed
and, usually within one minute, a user received a secret key via email, as shown in Figure 2. The secret key
was automatically processed by the user’s mail client running our LES extension.

A user’s client then began automatically signing all outgoing messages and checking all incoming mes-
sages for valid signatures using LES. The two-party repudiability option was turned permanently on for all
users. A display at the top of each message let the user know whether a message was properly signed or not;
we provide examples in Figures 3 and 4. Users were asked to use their mail clients as normal and to report
any feedback. At the week’s end, they were asked to uninstall the software.

Apart from one user whose client-side configuration triggered an installer bug, users managed to install,
use, and uninstall LES without difficulty and reported no noticeable performance difference. Though our
group was not large enough to provide statistically-significant usability results, our experiment leads us to
believe that this approach is, at the very least, practical enough to pursue further.

User Feedback. We learned from our user test that our unoptimized signature headers of approximately
1500 bytes triggered errors with certain mail servers. A future version of LES will remedy this situation by
splitting the signature into multiple headers. Other users noticed that signatures on emails with attachments
and multiple recipients were not handled appropriately, though we knew this in advance. Overall, users did
notice when their client warned them that an email from csail.mit .edu should be signed but wasn’t.

6.3 Results

In addition to user tests, we measured the cryptographic performance of the system.

Experimental Setup. We ran server benchmarks on a single-processor, 3.2Ghz Intel Pentium 4 with 2
Gigs of RAM and 512MB of L2 cache, running Fedora Core Linux with kernel v2.6.9. We used Python
v2.3.3. We instrumented the Python code using the standard, built-in t ime it module, running each oper-
ation 1000 times to obtain an average performance rating. We did not make any overzealous attempt to cut
down the number of normally-running background processes.
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006 Lightweight Signature Key Delivery — Users =
Q KM (» T > N

Delete Junk Reply Reply All Forward Print

.« | This Message contains a Valid Secret Key for email address ben@mit.edu. It has been
"0 successfully stored.

From: Key Server <ben®@csail.mit.edu=
Subject: Lightweight Signature Key Delivery
Date: January 26, 2006 6:43:14 PM EST

To: Ben Adida <ben@mit.edu=

This message contains your Lightweight Signature Secret Key.
By the time you read this message, your mail client should have
already saved the key. Thus, you can delete this email.

== BEGIM LTA SECRET KEY ==
44950159184415311184726098125024570371987960966796
281696807032344001 203605999067 37737226391328831708
300261640658644880009562433666044248191349B0761677
33430045490344760022706569880241382B72854771961459 -
77731868060318031830122557994 707386234 773013955083

395819544 0266805B323169939582155715551337725676240 .
70298570 "

:\\.\d

== EMND LTA SECRET KEY ==

Figure 2: A screenshot of the secret key delivery email that was automatically processed by the LES extension in the
user’s AppleMail client.

806 Re: LTA Running? — Users =
kD SRS &
Delete Junk Reply Reply All Forward Print

« | Good Signature from srhohen@csail.mit.edu, as certified by csail.mit.edu, expires 2006-02-01.
‘D Repudiated Against sweis@csail.mit.edu, as certified by csail.mit.edu, expires 2006-01-22

] From: Susan Hohenberger <srhohen@csail.mitedu=
Subject: Re: LTA Running?
Date: January 22, 2006 11:08:32 PM EST
To: Stephen Weis <sweis@csail. mitedu=
: Ce: Ben Adida <ben@mit.edu=

1 Hi Steve,

Figure 3: An example of a well-signed email.

We ran client benchmarks on a 1.5Ghz Apple Powerbook G4 with 1.5Gigs of RAM, running Mac OS X
10.4.4. We instrumented the Objective C code using the built-in Cocoa call to Microseconds (), which
returns the number of microseconds since CPU boot. We ran each operation 1000 times to obtain an average
running time. Though we were not actively using other applications on the Powerbook during the test, we
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006
Q | S &

Delete Juni Reply Reply All Forward Print

Don't Forge E-mail — Users O |

l. Emails from Dick.Cheney@csail.mit.edu should be signed, according to the DNS. |

Vice President Dick Cheney <Dick.Cheney@csail. mit.edu=
Don't Forge E-mail

January 26, 2006 11:38:52 AM EST

Ben Adida <ben@csail.mitedu=

Hi Ben. Just a friendly reminder not to forge e-mail.

- Dick |

Figure 4: An example of a forged intra-domain email from a domain with a strict InternalPolicy, where, for the
purposes of our test, all emails should be signed.

also made no attempt to reduce the typically running background processes and other applications running
in a normal Mac OS X session.

Cryptographic Benchmarks. We obtained the following performance numbers in Table 2 on raw crypto-
graphic operations for either 1024 or 2048-bit RSA moduli with a public exponent size of 160 bits (Guillou-
Quisquater exponents cannot be small).

1024-bit modulus 2048-bit modulus
Operation Machine | Time (ms) ‘ Size (bytes) || Time (ms) ‘ Size (bytes)
Master Keypair Generation server 143 200 1440 300
User Secret Key Computation server 167 178* 1209 316*
User Public Key Computation client 0.03 178* 0.03 316*
Ring Signature of 100K message client 37 575* 210 1134*
Ring Verification of 100K message | client 37 N/A 211 N/A

Table 2: Performance estimates for an average of 1000 runs. The sizes do not include encoding overhead.
The symbol * indicates the number includes an estimated 50 bytes for the identity string of the user.

Optimizations. As this was a proof-of-concept, our implementation omitted a number of optimizations
that a real deployment would surely include:

1. User secret key generation involves an effective RSA exponentiation by the private exponent d. This
can usually be sped up by a factor of 4 using the standard Chinese Remainder Theorem optimization.

2. In our prototype, Guillou-Quisquater signatures are represented as a triple (, ¢, s), though technically
only (¢, s) is required, as ¢ can be recomputed from ¢ and s. This optimization would shorten the
signature by about 40%, without altering performance (as it stands, we verify that ¢ is correct by
recomputing it from c and s).

3. All of our user secret keys were encoded in decimal during the email distribution step (which meant
they were roughly 1380 bytes) rather than alphanumeric encoding (which could have compacted them
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to roughly 750 bytes).

6.4 Next Steps

The results of our experiment show that LES is practical enough to compete with existing signature schemes
in a realistic user setting, even when the two-party ring signature is used. However, as our user base was
small further investigation is needed. An in-depth user study could help define exactly how repudiable
signatures fit into the picture, how users interpret signature notifications in their email client, and whether
using LES actually does, in practice, reduce the probability that a user will fall victim to an email-based
phishing attack.

7 Conclusion

The plethora of proposed solutions to the email spoofing problem reveals a clear demand for trustworthy
email. DKIM is one of the most promising approaches yet, with a simple deployment plan, and reasonable
end-to-end support via the use of cryptographic signatures.

We have proposed Lightweight Email Signatures (LES), an extension to DKIM which conserves its de-
ployment properties while addressing a number of its limitations. LES allows users to sign their own emails
and, thus, to use any outgoing mail server they choose. This helps to preserve a number of current uses of
email that DKIM would jeopardize: choosing from multiple email personalities with a single outgoing mail
server because of ISP restrictions, or using special mail forwarding services, e.g. university alumni email
forwarding, that do not provide an outgoing mail server.

LES also offers better privacy protection for users. Each individual email address is associated with
a public key, which anyone can compute using only the domain’s master public key available via DNS.
With the recipient’s public key available, any number of deniable authentication mechanisms can be used,
in particular the ring signature scheme we propose.

Our prototype implementation shows that LES is practical. It can be quickly implemented using well-
understood cryptographic algorithms that rely on the same hardness assumptions as typical RSA signatures.

We are hopeful that proposals like DKIM and LES can provide the basic authentication foundation for
email that is so sorely lacking today. These cryptographic proposals are not complete solutions, however,
much like viewing an SSL-enabled web site is not a reason to fully trust the site. Reputation systems and
“smart” user interfaces will likely be built on the foundation that DKIM and LES provide. Without DKIM
or LES, however, such reputation systems would be nearly impossible.
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