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Abstract

We examine the problem of �nding a good expert from a sequence of experts� Each expert

has an �error rate�� we wish to �nd an expert with a low error rate� However� each expert�s

error rate is unknown and can only be estimated by a sequence of experimental trials� Moreover�

the distribution of error rates is also unknown� Given a bound on the total number of trials�

there is thus a tradeo� between the number of experts examined and the accuracy of estimating

their error rates�

We present a new expert	�nding algorithm and prove an upper bound on the expected error

rate of the expert found� A second approach� based on the sequential ratio test� gives another

expert	�nding algorithm that is not provably better but which performs better in our empirical

studies�

� Introduction

Suppose you are looking for an expert� such as a stock broker� You have limited resources and
would like to e�ciently �nd an expert who has a low error rate� There are two issues to face�
First� when you meet a candidate expert you are not told his error rate� but can only �nd this out
experimentally� Second� you do not know a priori how low an error rate to aim for� We give here an
algorithm to �nd a good expert given limited resources� and show that the algorithm is e�cient in
the sense that it �nds an expert that is almost as good as the expert you could �nd if each expert�s
error rate was stamped on his forehead �given the same resources��

If each expert�s error rate were stamped on his forehead then �nding a good expert would be
easy� Simply examine the experts one at a time and keep the one with the lowest error rate� If you
may examine at most n experts you will �nd the best of these n experts� whose expected error rate
we denote by bn� You cannot do any better than this without examining more experts�

Since experts do not typically come marked with their error rates� you must test each expert
to estimate their error rates� We assume that we can generate or access a sequence of independent
experimental trials for each expert�

If the number of available experts is �nite� you may retain all of them while you test them�
In this case the interesting issues are determining which expert to test next �if you cannot test
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all the experts simultaneously�� and determining the best expert given their test results� These
issues have been studied in reinforcement learning literature and several interesting algorithms have
been developed �see Watkins ��	
	�� Sutton ��		��� Sutton ��		��� and Kaelbling ��		�� for some
examples��

Here we are interested in the case where we may test only one expert at a time� The problems
in this case are� ��� what is the error rate of a 
good� expert� and ��� how long do we need to test
an expert until we are convinced that he is good or bad�

First consider the case that we have a predetermined threshold such that an error rate below
this threshold makes the expert 
good� �acceptable�� This is a well�studied statistical problem�
There are numerous statistical tests available to determine if an expert is good� we use the ratio
test which is the most powerful among them� The ratio test is presented in section ����

However� in our problem formulation we have no prior knowledge of the error rate distribution�
We thus do not have an error�rate threshold to de�ne a good expert� and so cannot use the ratio
test� The algorithm in section ��� overcomes this limitation by setting lower and lower thresholds
as it encounters better experts� Section � contains the main result of this paper� our algorithm
�nds an expert whose error rate is close to the error rate of the best expert you can expect to �nd
given the same resources�

Section � presents a similar expert��nding algorithm that uses the sequential ratio test �Wald
�	��� rather than the ratio test� Wald ��	��� shows empirically that the sequential ratio test is twice
as e�cient as the ratio test when the test objects are normally distributed� While the theoretical
bound we give for the sequential�ratio expert��nding algorithm is weaker than the bound for the
ratio�test expert��nding algorithm� empirical results with speci�c distributions in section � indicate
that the former algorithm performs better in practice�

� An AI Application� Learning World Models

Consider the problem of learning a world model where rules describe causal relationships of the
environment� A rule has the form

precondition � action � postcondition

with the meaning that if the preconditions are true in the current state and the action is taken�
then the postcondition will be true in the next state� These are predictive rules as in �Drescher
�	
	�� as opposed to the prescriptive rules in reinforcement learning �Watkins �	
	� Holland �	
��
or operators in Soar �Laird� Newell � Rosenbloom �	�
��

An algorithm to learn rules uses triples of previous state� S� action� A� and current state to
learn� It may isolate a postcondition� P � in the current state� and generate preconditions that
explain the postcondition from the previous state and action� For any precondition PC that is true
in state S� the rule PC� A� P has some probability p of predicting incorrectly� To learn a world
model� the algorithm must �nd the rules with low probability of prediction error� and discard rules
with high probability of prediction error�

The problem of �nding a good rule to describe the environment is thus an expert��nding prob�
lem� It �ts into the model discussed here since ��� each rule has an unknown error rate� ��� the
distribution of rules� error rates is unknown and depends both on the environment and the learning
algorithm� and ��� the learning algorithm can generate arbitrarily many rules�
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� Finding Good Experts from an Unknown Distribution

First� let us reformulate the expert��nding problem as a problem of �nding low error�rate coins
from an in�nite sequence c�� c�� � � � of coins� where coin ci has probability ri of 
failure� �tails� and
probability � � ri of 
success� �heads�� The ri�s are determined by independent draws from the
interval ��� ��� according to some unknown distribution� We want to �nd a 
good� coin� i�e� a coin
with small probability ri of failure �error�� We are not given the ri�s� but must estimate them using
coin �ips �trials��

The main result of this section is�

Theorem � There is an algorithm �algorithm FindExpert� such that when the error rates of
drawn coins are unknown quantities drawn from an unknown distribution� after t trials� with proba�
bility at least ����t� we expect to �nd a coin whose probability of error is at most bt� ln� t�O� �p

ln t
��

This theorem states that after t trials� we expect the algorithm to �nd an expert that is almost
as good as the best expert in a set of t� ln� t randomly drawn experts �who would have error rate
bt� ln� t�� We note that our result depends in a natural manner on the unknown distribution�

Recall that in t trials if the experts� error rates are known we can �nd the best of t experts� error
rates �bt�� Compared to this� our algorithm must examine fewer experts because it must spend
time estimating their error rates� For some distributions �such as for fair coins� bt� ln� t and bt are
equal� while for other distribution they can be quite far apart�

The rest of this section gives the ratio test and our algorithm for �nding a good expert�

��� The Ratio Test

Since we do not know the error rates of the coins when we draw them� we must estimate them by
�ipping the coins� If we knew that 
good� coins have error rate at most p�� we could use standard
statistical tests to determine if a coin�s error rate is above or below this threshold� Because it is
di�cult to test coins that are very close to a threshold� we instead use the ratio test� which tests
one hypothesis against another� In this case the hypotheses are that the coin has error rate at most
p�� versus that the coin has error rate at least p�� where p� is a �xed value less than p��

The Problem Given a coin with unknown rate of failure p�
Test if p � p� vs� p � p�� Accept if p � p�� Reject if p � p��

Requirements The probability of rejecting a coin does not exceed � if p � p�� and the probability
of accepting a coin does not exceed � if p � p��

�

The Test Let m be the number of samples� and fm be the number of failures in m samples� The
ratio test is

reject if fm � �p� �
q

ln ���
�m �m

accept otherwise

�We choose the ratio test since it has the most power� i
e
� for a given �� i
e
 it gives the least � 
probability of
accepting when the hypothesis H� is wrong 
see 
Rice �����
�
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��� An Algorithm for Finding a Good Expert

We know how to test if a coin is good given a threshold de�ning a good error rate� but when we
do not know the error�rate distribution we can not estimate the lowest error rate bt that we can
expect to achieve in t trials� The following algorithm overcomes this handicap by �nding better
and better coins and successively lowering the threshold for later coins�

The algorithm for �nding a good coin is the following�

Algorithm � FindExpert

Input� t� an upper bound on the number of trials �coin �ips� allowed�

Let BestCoin � Draw a coin�
Flip BestCoin ln� t times to �nd bp�
Set p� � bp�
Repeat until all t trials are used

Let p� � p� � ��p��� where ��p�� �
p
�� ln�t��

Let Coin � Draw a coin�
Test Coin using the ratio test�

Flip Coin m � ln� t times�
Accept if fm � �p� � ��p�����m�

If the ratio test accepted then
Set BestCoin � Coin�
Flip BestCoin an additional ln� t times to �nd an improved bp�
Set p� � bp�

Output BestCoin�

The proof that FindExpert satis�es the statement of Theorem � is too lengthy for this paper�
The following is a high level summary of the proof�

Description of the proof� Since the error�rate distribution is unknown� we do not have any
estimate of bt� so the algorithm uses better and better estimates� It starts with a random coin and
a good estimate of its error rate� It prepares a test to determine if a new coin is better than the
current coin �with high probability�� Upon �nding such a coin it prepares a stricter test to �nd a
better coin� and so on� We show that the time to test each coin is short� and thus we see many
coins� Since we almost always keep the better coin we can �nd a coin whose error rate is at most
the expected best error rate of the coins that the algorithm saw �plus a small correction��

� A Faster ��� Test for Experts

A disadvantage of the ratio test in the previous section is that the length of each test is �xed� This
length is chosen so as to guarantee �with high probability� a good determination as to whether the
tested coin has error rate at least � better than the current best coin� For coins that are much
better or much worse� it may be possible to make this determination with many fewer trials�

The sequential ratio test given by Wald ��	��� solves precisely this problem� After each coin
toss it assesses whether it is su�ciently sure that the tested coin is better or worse than the current
best coin� If not� the test continues� The sequential ratio test thus uses a variable number of �ips
to test a coin� One can hope that for same probability of erroneous acceptances and rejections� the
sequential ratio test will use fewer coin �ips than the ratio test� Although the worst case sample
size is larger for the sequential ratio test� Wald ��	��� shows that in experiments with normally
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distributed error rates the sequential test is on average twice as e�cient as the ratio test� Section
� gives our experimental results comparing expert��nding algorithms based on the ratio test and
on the sequential ratio test�

The rest of this section gives the sequential ratio test and the corresponding expert��nding
algorithm�

��� The Sequential Ratio Test

This section describes the sequential ratio test due to Wald ��	����

The Problem Given a coin with unknown failure rate p�
Test if p � p� vs� p � p�� Accept if p � p�� Reject if p � p��

Requirements The probability of rejecting a coin does not exceed � if p � p�� and the probability
of accepting a coin does not exceed � if p � p��

The Test Let m be the number of samples� and fm be the number of failures in m samples�
Reject if

fm �
log ���

�

log p�
p�
� log ��p�

��p�
�m

log ��p�
��p�

log p�
p�
� log ��p�

��p�
�

Accept if

fm �
log �

���
log p�

p�
� log ��p�

��p�
�m

log ��p�
��p�

log p�
p�
� log ��p�

��p�
�

Otherwise� draw another sample�

The sequential ratio test de�nes two lines with di�erent intercepts and the same slope� Above
the upper line is a reject region� Below the lower line is the accept region� The test generates a
random walk starting at the origin which terminates when it reaches one of the two lines�

��� Finding a Good Expert Using the Sequential Ratio Test

The algorithm for �nding a good coin using the sequential ratio test is as follows�
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Algorithm � SeqFindExpert�
Input� t� an upper bound on the number of trials allowed�

Let BestCoin � Draw a coin�
Flip BestCoin ln� t times to �nd bp�
Set p� � bp�
Repeat until all t trials are used�

Let p� � p� � ��p��� where ��p�� �
q

�p����p��
log t �

Let Coin � Draw a coin�
Test Coin using the sequential ratio test

with parameters p�� p�� and � � � � ��t��
If the sequential test accepts then

Set BestCoin � Coin�
Flip BestCoin log� t more times to �nd an improved bp�
Set p� � bp�

Output BestCoin�

Because the worst case number of coin �ips for the sequential ratio test is larger than the ��xed�
number of coin �ips for the ratio test� the bound we now prove for SeqFindExpert ratio test is
not as strong as the bound shown above for FindExpert�

Theorem � There is an algorithm �SeqFindExpert� such that when the coins are drawn accord�
ing to an unknown error�rate distribution� after t trials� with probability at least �� ��t� we expect
to �nd a coin whose probability of error is at most bt� log� t �O� �p

log t
��

Theorem � shows that algorithm SeqFindExpert� which uses the sequential ratio test to �nd
a low error�rate coin from coins drawn according to an unknown distribution� does almost as well
as we can do if coins were labeled with their error rates� but see only t� log� t coins� The proof of
Theorem � is similar to the proof of Theorem �� The bound in Theorem � is not as tight as the
bound for the FindExpert� In practice� however� SeqFindExpert often performs better because
the test lengths are much shorter than the worst case test length used to prove Theorem ��

For some distributions� such as the uniform distribution� the coins tested are typically much
worse than the current best� �After seeing a few coins the algorithm already has a fairly good coin
and most coins are much worse�� Thus� the sequential ratio tests will be short� When the error
rates are uniformly distributed we expect that the algorithm SeqFindExpert will see more coins
and �nd a better coin than FindExert� This argument is con�rmed by our empirical results below�
Our results also show the superiority of SeqFindExpert when the error rates are drawn from a
�truncated� normal distribution�

	 Empirical Comparison of FindExpert and SeqFindExpert

To compare the performance of FindExpert and SeqFindExpert we ran experiments for
uniform and normally distributed error rates� �The normal distribution was truncated to lie within
the interval ��� ���� Table � gives results for both algorithms on the uniform distribution� All results
reported are an average over ���� repeated executions of the algorithm� Table ��a� contains the
average of ���� runs each with trial limit t � ����� Table ��a� shows that the SeqFindExpert
algorithm had shorter average test lengths and therefore tested more experts� SeqFindExpert
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Coins Tested Test Length Best Estimated Best Actual

Error Rate Error Rate

FindExpert ��� �	 ���
� ���



SeqFindExpert �� �� ��	
� ��	�	
�a� Uniform distribution� limit of t � ���� trials�

Coins Tested Test Length Best Estimated Best Actual

Test Length Error Rate Error Rate

FindExpert �� ��� ���
� ���
�

SeqFindExpert ��� �� ��� �����

�b� Uniform distribution� limit of t � ����� trials�

Table �� Empirical Comparison of FindExpert and SeqFindExpert with the uniform distribu�
tion� The numbers in the tables are averaged over ���� runs�

was able to �nd experts with lower actual error rate ���	�	 on the average compared with ���


for FindExpert�� The table contains both the average actual error rate of the best experts that
the algorithm found and the average error rate from experiments for the same experts� Table ��b�
shows that given more time �t � ����� trials� to �nd a good expert SeqFindExpert performs
signi�cantly better than FindExpert� The average test length is much shorter and the resulting
best error rate is ����� compared with ���
��

Coins Tested Test Length Best Estimated Best Actual

Error Rate Error Rate

FindExpert �� �	 ����� ���	�

SeqFindExpert �	 �� ����� �����

�a� Normal distribution� limit of t � ���� trials�

Coins Tested Test Length Best Estimated Best Actual

Error Rate Error Rate

FindExpert 
� ��� ���	� �����

SeqFindExpert ��� �� ����� �����

�b� Normal distribution� limit of t � ����� trials�

Table �� Empirical Comparison of FindExpert and SeqFindExpert with the Normal Distribu�
tion �mean ���� variance ���� truncated at � and �� The numbers in the tables are averaged over
���� runs�

Experiments with the normal distribution used a normal with mean ��� and variance ���� These
results are reported in table �� Note that for this distribution most coins have error rate close to
��� Table ��a� reports the average of ���� executions with trial limit ����� It is interesting that the
SeqFindExpert both tested more experts and had a longer average test length� The long average
test is due to a few very long tests �to compare close experts�� but most tests are very short� As
expected� the average error probabilities of the best coin is lower for the SeqFindExpert algorithm�
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Table ��b� shows that with a longer limit of ����� trials the SeqFindExpert algorithm performs
much better than FindExpert� giving an average best error rate of ����� compared with ������

The experimental results in this section show that SeqFindExpert performs better than Find�
Expert for two distributions with di�erent characteristics� The experimental results agree with
the theoretical analysis in that some sequential tests are quite long �longer than the ratio tests��
but the experiments also show that on the average the sequential test lengths are short especially
when the trial limit is large� The average test length is short when the time limit is large because
the best expert is already much better than the average population�


 Conclusions

This paper presents two algorithms to �nd a low error expert from a sequence of experts with
unknown error�rate distribution� a problem that arises in many areas� such as the given example
of learning a world model consisting of good rules� The two algorithms FindExpert and Se�

qFindExpert are nearly identical� but use the ratio test and sequential ratio test respectively to
determine if an expert is good�

Theorem � shows that FindExpert �nds an expert which is the best expert of t� ln� t� given
trial limit t� This result is strong in the sense that it shows only a factor of ln� t loss from testing
over the best expert we could �nd in t trials if we knew the exact error rate of each expert�
Theorem � gives a weaker bound for SeqFindExpert� Empirical results in section �� on the other
hand� indicate that SeqFindExpert performs better than FindExpert in practice �at least for
the uniform and normal distributions��

The obvious open question from this work is to prove that SeqFindExpert expects to �nd a
lower error�rate expert for general or speci�c distributions than FindExpert�
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