Proxy-Based Security Protocols in Networked
Mobile Devices -

M. Burnside, D. Clarke, T. Mills, A. Maywah, S. Devadas, R. Rivest
MIT Laboratory for Computer Science
200 Technology Square, Cambridge, MA 02139 USA

{event, declarke, mills, amaywah, devadas, rivest }@mit.edu

ABSTRACT

We describe a resource discovery and communication sys-
tem designed for security and privacy. All objects in the
system, e.g., appliances, wearable gadgets, software agents,
and users have associated trusted software proxies that ei-
ther run on the appliance hardware or on a trusted com-
puter. We describe how security and privacy are enforced
using two separate protocols: a protocol for secure device-
to-proxy communication, and a protocol for secure proxy-
to-proxy communication. Using two separate protocols al-
lows us to run a computationally-inexpensive protocol on
impoverished devices, and a sophisticated protocol for re-
source authentication and communication on more powerful
devices.

We detail the device-to-proxy protocol for lightweight wire-
less devices and the proxy-to-proxy protocol which is based
on SPKI/SDSI (Simple Public Key Infrastructure / Simple
Distributed Security Infrastructure). A prototype system
has been constructed, which allows for secure, yet efficient,
access to networked, mobile devices. We present a quanti-
tative evaluation of this system using various metrics.

Keywords

authorization, certificate, certificate chain, certificate
chain discovery, mobile device, pervasive, protocol,
proxy, security, ubiquitous, wireless

1. INTRODUCTION

Attaining the goals of ubiquitous and pervasive comput-
ing [6, 2] is becoming more and more feasible as the number
of computing devices in the world increases rapidly. How-
ever, there are still significant hurdles to overcome when

*This work was funded by Acer Inc., Delta Electronics Inc.,
HP Corp., NTT Inc., Nokia Research Center, and Philips
Research under the MIT Project Oxygen partnership, and
by DARPA through the Office of Naval Research under con-
tract number N66001-99-2-891702.

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or afee.

SAC 2002, Madrid, Spain

Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

integrating wearable and embedded devices into a ubiqui-
tous computing environment. These hurdles include design-
ing devices smart enough to collaborate with each other,
increasing ease-of-use, and enabling enhanced connectivity
between the different devices.

When connectivity is high, the security of the system is
a key factor. Devices must only allow access to authorized
users and must also keep the communication secure when
transmitting or receiving personal or private information.

Implementing typical forms of secure, private communi-
cation using a public-key infrastructure on all devices is dif-
ficult because the necessary cryptographic algorithms are
CPU-intensive. A common public-key cryptographic algo-
rithm such as RSA using 1024-bit keys takes 43ms to sign
and 0.6ms to verify on a 200MHz Intel Pentium Pro (a 32-
bit processor) [30]. Some devices may have 8-bit micro-
controllers running at 1-4 MHz, so public-key cryptography
on the device itself may not be an option. Nevertheless,
public-key based communication between devices over a net-
work is still desirable.

This paper presents our approach to addressing these is-
sues. We describe the architecture of our resource discov-
ery and communication system in Section 2. The device-to-
proxy security protocol is described in Section 3. We review
SPKI/SDSI and present the proxy-to-proxy protocol that
uses SPKI/SDSI in Section 4. Related work is discussed in
Section 5. The system is evaluated in Section 6.

1.1 Our Approach

To allow the architecture to use a public-key security
model on the network while keeping the devices themselves
simple, we create a software proxy for each device. All
objects in the system, e.g., appliances, wearable gadgets,
software agents, and users have associated trusted software
proxies that either run on an embedded processor on the
appliance, or on a trusted computer. In the case of the
proxy running on an embedded processor on the appliance,
we assume that device to proxy communication is inherently
secure.! If the device has minimal computational power,>
and communicates to its proxy through a wired or wireless
network, we force the communication to adhere to a device-
to-proxy protocol (cf. Section 3). Proxies communicate with

'For example, in a video camera, the software that con-
trols various actuators runs on a powerful processor, and
the proxy for the camera can also run on the embedded
processor.

2This is typically the case for lightweight devices, e.g., re-
mote controls, active badges, etc.

each other using a secure proxy-to-proxy protocol based on
SPKI/SDSI (Simple Public Key Infrastructure / Simple Dis-
tributed Security Infrastructure). Having two different pro-
tocols allows us to run a computationally-inexpensive secu-
rity protocol on impoverished devices, and a sophisticated
protocol for resource authentication and communication on
more powerful devices. We describe both protocols in this

paper.

1.2 Prototype Automation System

Using the ideas described above, we have constructed a
prototype automation system which allows for secure, yet
efficient, access to networked, mobile devices. In this system,
each user wears a badge called a K21 which identifies the
user and is location-aware: it “knows” the wearer’s location
within a building. User identity and location information is
securely transmitted to the user’s software proxy using the
device-to-proxy protocol.

Devices themselves may be mobile and may change loca-
tions. Attribute search over all controllable devices can be
performed to find the nearest device, or the most appropri-
ate device under some metric.?

By exploiting SPKI/SDSI, security is not compromised as
new users and devices enter the system, or when users and
devices leave the system. We believe that the use of two dif-
ferent protocols, and the use of the SPKI/SDSI framework
in the proxy-to-proxy protocol has resulted in a secure, scal-
able, efficient, and easy-to-maintain automation system.

2. SYSTEM ARCHITECTURE

The system has three primary component types: devices,
proxies and servers. A device refers to any type of shared
network resource, either hardware or software. It could be
a printer, a wireless security camera, a lamp, or a software
agent. Since communication protocols and bandwidth be-
tween devices can vary widely, each device has a unique
proxy to unify its interface with other devices. The servers
provide naming and discovery facilities to the various de-
vices.

We assume a one-to-one correspondence between devices
and proxies. We also assume that all users are equipped
with K21s, whose proxies run on trusted computers. Thus
our system only needs to deal with devices, proxies and the
server network.

The system we describe is illustrated in Figure 1.

2.1 Devices

Each device, hardware or software, has an associated trust-
ed software proxy. In the case of a hardware device, the
proxy may run on an embedded processor within the de-
vice, or on a trusted computer networked with the device.
In the case of a software device, the device can incorporate
the proxy software itself.

Each device communicates with its own proxy over the
appropriate protocol for that particular device. A printer
wired into an Ethernet can communicate with its proxy
using TCP/IP. A wireless camera uses a wireless protocol
for the same purpose. The K21 (a simple device with a
lightweight processor) communicates with its proxy using
the particular device-to-proxy protocol described in Section

3For example, a user may wish to print to the nearest printer
that he/she has access to.

Server Network

Name Reifolution > Routing

Proxy-to-proxy protocol
(Section 4)

Play Tape
Event

Play Tape
Event

Proxy Farm

\VCR Proxy

Device-to-proxy Device-to-proxy
protocol protocol
(Section 3)

Device K21 VCR

Figure 1: System Overview

3. Thus, the device-side portion of the proxy must be cus-
tomized for each particular device.

2.2 Proxy

The proxy is software that runs on a network-visible com-
puter. The proxy’s primary function is to make access-
control decisions on behalf of the device it represents. It may
also perform secondary functions such as running scripted
actions on behalf of the device and interfacing with a direc-
tory service.

The proxy provides a very simple API to the device. The
sendToProzy() method is called by the device to send mes-
sages to the proxy. The sendToDevice() method is a called
by the proxy to send messages to the device. When a proxy
receives a message from another proxy, depending on the
message, the proxy may translate it into a form that can
be understood by the proxy’s particular device. It then for-
wards the message to the device. When a proxy receives a
message from its device, it may translate the message into a
general form understood by all proxies, and then forward the
message to other proxies. Any time a proxy receives a mes-
sage, before performing a translation and passing the mes-
sage on to the device, it performs the access control checks
described in Section 4.

For ease of administration, we group proxies by their ad-
ministrators. An administrator’s set of proxies is called a
proxy farm. This set specifically includes the proxy for the
administrator’s K21, which is considered the root proxy of
the proxy farm. When the administrator adds a new de-
vice to the system, the device’s proxy is automatically given
a default ACL, a duplicate of the ACL for the administra-
tor’s K21 proxy. The administrator can manually change
the ACL later, if he desires.

A noteworthy advantage of our proxy-based architecture
is that it addresses the problem of viruses in pervasive com-
puting environments. Sophisticated virus scanning software
can be installed in the proxy, so it can scan any code before
it is downloaded onto the device.

CommandEvent Used to instruct a device to turn on or
off, for example.

ErrorEvent Generated and broadcast to all listeners when
an error condition occurs.

StatusChangeEvent Generated when, for example, a de-
vice changes its location.

QueryEvent When a server receives a QueryEvent, it per-
forms a DNS (Domain Name Service) or INS lookup
on the query, and returns the results of the lookup in
a ResponseEvent.

ResponseEvent Generated in response to a QueryEvent.

Figure 2: Predefined Event Types

2.3 Serversand the Server Network

This network consists of a distributed collection of inde-
pendent name servers and routers. In fact, each server acts
as both a name server and a router. This is similar to the
name resolvers in the Intentional Naming System (INS) [1],
which resolve device names to IP addresses, but can also
route events. If the destination name for an event matches
multiple proxies, the server network will route the event to
all matching destinations.

When a proxy comes online, it registers the name of the
device it represents with one of these servers. When a proxy
uses a server to perform a lookup on a name, the server
searches its directory for all names that match the given
name, and returns their IP addresses.

2.4 Communication via Events

We use an event-based communication mechanism in our
system. That is, all messages passed between proxies are sig-
nals indicating that some event has occurred. For example,
a light bulb might generate light-on and light-off events. To
receive these messages, proxy x can add itself as an event-
listener to proxy y. Thus, when y generates an event, z will
receive a copy.

In addition, the system has several pre-defined event cate-
gories which receive special treatment at either the proxy or
server layer. They are summarized in Figure 2. A developer
can define his own events as well. The server network simply
passes developer-defined events through to their destination.

The primary advantage of the event-based mechanism is
that it eliminates the need to repeatedly poll a device to
determine changes in its status. Instead, when a change oc-
curs, the device broadcasts an event to all listeners. Systems
like Sun Microsystems’ Jini [26] issue “device drivers” (RMI
stubs) to all who wish to control a given device. It is then
possible to make local calls on the device driver, which are
translated into RMI calls on the device itself.

2.5 Resourcediscovery

The mechanism for resource discovery is similar to the
resource discovery protocol used by Jini. When a device
comes online, it instructs its proxy to repeatedly broadcast
a request for a server to the local subnetwork. The request
contains the device’s name and the IP address and port of its
proxy. When a server receives one of these requests, it issues
a lease to the proxy.* That is, it adds the name/IP address
pair to its directory. The proxy must periodically renew

4Handling the scenario where the device is making false
claims about its attributes in the lease request packet is

Proxy Farm Gateway Device 1
Device 2
Proxy 1 [
Gateway
Proxy 2
1 Device 3
Proxy 3 [
UDP RF

Figure 3: Device-to-Proxy Communication overview

its lease by sending the same name/IP address pair to the
server, otherwise the server removes it from the directory.
In this fashion, if a device silently goes offline, or the IP
address changes, the proxy’s lease will no longer get renewed
and the server will quickly notice and either remove it from
the directory or create a new lease with the new IP address.

For example, imagine a device with the name [name=foo]
which has a proxy running on 10.1.2.3:4011. When the de-
vice is turned on, it informs its proxy that it has come online,
using a protocol like the device-to-proxy protocol described
in Section 3. The proxy begins to broadcast lease-request
packets of the form ([name=foo], 10.1.2.3:4011) on the local
subnetwork. When (or if) a server receives one of these pack-
ets, it checks its directory for [name=foo]. If [name=foo] is
not there, the server creates a lease for it by adding the
name/IP address pair to the directory. If [name=foo] is in
the directory, the server renews the lease. Suppose at some
later time the device is turned off. When the device goes
down, it brings the proxy offline with it, so the lease request
packets no longer get broadcast. That device’s lease stops
getting renewed. After some short, pre-defined period of
time, the server expires the unrenewed lease and removes it
from the directory.

3. DEVICE-TO-PROXY PROTOCOL FOR
WIRELESSDEVICES

3.1 Oveview

The device-to-proxy protocol varies for different types of
devices. In particular, we consider lightweight devices with
low-bandwidth wireless network connections and slow CPUs,
and heavyweight devices with higher-bandwidth connections
and faster CPUs. We assume that heavyweight devices are
capable of running proxy software locally (i.e., the proxy
for a printer could run on the printer’'s CPU). With a local
proxy, a sophisticated protocol for secure device-to-proxy
communication is unnecessary, assuming critical parts of the
device are tamper resistant. For lightweight devices, the
proxy must run elsewhere. This section gives an overview of
a protocol which is low-bandwidth and not CPU-intensive
that we use for lightweight device-to-proxy communication.

3.2 Communication

Our prototype system layers the security protocol describ-
ed below over a simple radio frequency (RF) protocol. The

the subject of ongoing research.

RF communication between a device and its proxy is han-
dled by a gateway that translates packetized RF commu-
nication into UDP/IP packets, which are then routed over
the network to the proxy. The gateway also works in the
opposite direction by converting UDP/IP packets from the
proxy into RF packets and transmitting them to the device.

An overview of the communication is shown in Figure 3.
This figure shows a computer running three proxies; one for
each of three separate devices. The figure also shows how
multiple gateways can be used; device A is using a different
gateway from devices B and C.

3.3 Security

The proxy and device communicate through a secure chan-
nel that encrypts and authenticates all the messages. The
HMAC-MD5 [13][20] algorithm is used for authentication
and the RC5 [21] algorithm is used for encryption. Both
of these algorithms use symmetric keys; the proxy and the
device share 128-bit keys.

3.3.1 Authentication

HMAC (Hashed Message Authentication Code) produces
a MAC (Message Authentication Code) that can validate
the authenticity and integrity of a message. HMAC uses
secret keys, and thus only someone who knows a particular
key can create a particular MAC or verify that a particular
MAC is correct.

3.3.2 Encryption

The data is encrypted using the RC5 encryption algo-
rithm. We chose RC5 because of its simplicity and perfor-
mance. Our RC5 implementation is based on the OpenSSL
[16] code. RC5 is a block cipher; it usually works on eight-
byte blocks of data. However, by implementing it using
output feedback (OFB) mode, it can be used as a stream
cipher. This allows for encryption of an arbitrary number
of bytes without having to worry about blocks of data.

OFB mode works by generating an encryption pad from
an initial vector and a key. The encryption pad is then
XOR’ed with the data to produce the ciphertext. Since
XPY dY = X, the ciphertext can be decrypted by pro-
ducing the same encryption pad and XOR’ing it with the
ciphertext. Since this only requires the RC5 encryption rou-
tines to generate the encryption pad, separate encrypt and
decrypt routines are not required.

For our implementation, we use 16 rounds for RC5. We
use different 128-bit keys for encryption and authentication.

3.4 Location

Device location is determined using the Cricket location
system[18, 17]. Cricket has several useful features, includ-
ing user privacy, decentralized control, low cost, and easy
deployment. Each device determines its own location. It
is up to the device to decide if it wants to let others know
where it is.

In the Cricket system, beacons are placed on the ceilings
of rooms. These beacons periodically broadcast location
information (such as “Room 4011”) that can be heard by
Cricket listeners. At the same time that this information is
broadcast in the RF spectrum, the beacon also broadcasts
an ultrasound pulse. When a listener receives the RF mes-
sage, it measures the time until it receives the ultrasound
pulse. The listener determines its distance to the beacon

using the time difference.

4. PROXY TO PROXY PROTOCOL

SPKI/SDSI (Simple Public Key Infrastructure/Simple Dis-
tributed Security Infrastructure) [7, 22] is a security infras-
tructure that is designed to facilitate the development of
scalable, secure, distributed computing systems. SPKI/SDSI
provides fine-grained access control using a local name space
architecture and a simple, flexible, trust policy model.

SPKI/SDSI is a public key infrastructure with an egali-
tarian design. The principals are the public keys and each
public key is a certificate authority. Each principal can is-
sue certificates on the same basis as any other principal.
There is no hierarchical global infrastructure. SPKI/SDSI
communities are built from the bottom-up, in a distributed
manner, and do not require a trusted “root.”

4.1 SPKI/SDSI Integration

We have adopted a client-server architecture for the prox-
ies. When a particular principal, acting on behalf of a device
or user, makes a request via one proxy to a device repre-
sented by another proxy, the first proxy acts like a client, and
the second as a server. Resources on the server are either
public or protected by SPKI/SDSI ACLs. A SPKI/SDSI
ACL consists of a list of entries. Each entry has a subject
(a key or group) and a tag which specifies the set of opera-
tions that that key or group is allowed to perform. To gain
access to a resource protected by an ACL, a requester must
include, in his request, a chain of certificates demonstrating
that he is a member of a group in an entry on the ACL.®

If a requested resource is protected by an ACL, the princi-
pal’s request must be accompanied by a “proof of authentic-
ity” that shows that it is authentic, and a “proof of autho-
rization” that shows the principal is authorized to perform
the particular request on the particular resource. The proof
of authenticity is typically a signed request, and the proof of
authorization is typically a chain of certificates. The princi-
pal that signed the request must be the same principal that
the chain of certificates authorizes.

This system design, and the protocol between the proxies,
is very similar to that used in SPKI/SDSI’s Project Geron-
imo, in which SPKI/SDSI was integrated into Apache and
Netscape, and used to provide client access control over the
web. Project Geronimo is described in two Master’s theses
[3, 14].

4.2 Protocol

The protocol implemented by the client and server prox-
ies consists of four messages. This protocol is outlined in
Figure 4, and following is its description:

1. The client proxy sends a request, unauthenticated and
unauthorized, to the server proxy.

2. If the client requests access to a protected resource, the
server responds with the ACL protecting the resource®

5F([)r]examples of SPKI/SDSI ACLs and certificates, see [7]
or [3].

5The ACL itself could be a protected resource, protected by
another ACL. In this case, the server will return the latter
ACL. The client will need to demonstrate that the user’s
key is on this ACL, either directly or via certificates, before
gaining access to the ACL protecting the object to which
access was originally requested.

and the tag formed from the client’s request. A tagis a
SPKI/SDSI data structure which represents a set of re-
quests. There are examples of tags in the SPKI/SDSI
IETF drafts [7]. If there is no ACL protecting the re-
quested resource, the request is immediately honored.

3. (a) The client proxy generates a chain of certificates
using the SPKI/SDSI certificate chain discovery
algorithm [4, 3]. This certificate chain provides a
proof of authorization that the user’s key is au-
thorized to perform its request.

The certificate chain discovery algorithm takes
as input the ACL and tag from the server, the
user’s public key (principal), the user’s set of cer-
tificates, and a timestamp. If it exists, the algo-
rithm returns a chain of user certificates which
provides proof that the user’s public key is au-
thorized to perform the operation(s) specified in
the tag, at the time specified in the timestamp.
If the algorithm is unable to generate a chain be-
cause the user does not have the necessary certifi-
cates,” or if the user’s key is directly on the ACL,
the algorithm returns an empty certificate chain.
The client generates the timestamp using its local
clock.

(b) The client creates a SPKI/SDSI sequence [7] con-
sisting of the tag and the timestamp. It signs this
sequence with the user’s private key, and includes
a copy of the user’s public key in the SPKI/SDSI
signature. The client then sends the tag-time-
stamp sequence, the signature, and the certificate
chain generated in step 3a to the server.

4. The server verifies the request by:

(a) Checking the timestamp in the tag-timestamp se-
quence against the time on the server’s local clock
to ensure that the request was made recently.®

(b) Recreating the tag from the client’s request and
checking that it is the same as the tag in the tag-
timestamp sequence.

(c) Extracting the public key from the signature.

(d) Verifying the signature on the tag-timestamp se-
quence using this key.

(e) Validating the certificates in the certificate chain.

(f) Verifying that there is a chain of authorization
from an entry on the ACL to the key from the
signature, via the certificate chain presented. The
authorization chain must authorize the client to
perform the requested operation.

"If the user does not have the necessary certificates, the
client could immediately return an error. In our design,
however, we choose not to return an error at this point;
instead, we let the client send an empty certificate chain to
the server. This way, when the request does not verify, the
client can possibly be sent some error information by the
server which lets the user know where he should go to get
valid certificates.

8In our prototype implementation, the server checks that the
timestamp in the client’s tag-timestamp sequence is within
five minutes of the server’s local time.

(request)
1. Initial unauthenticated, unauthorized request

(ACL, tag)

2. Server verification fails. ACL and tag are
returned.

Client Proxy Server Proxy

({tag, timestamp}, , certificate chain)

3. Client uses ACL and tag to generate certificate
chain. Client signsrequest. Client sends
signed request with certificates.

(requested resource/ error)

EN

. Server verifiesrequest. If the request is
verified, it is honored. If the request does not
verify, it isdenied and an error isreturned.

Figure 4: SPKI/SDSI Proxy to Proxy Access Con-
trol Protocol

If the request verifies, it is honored. If it does not
verify, it is denied and the server proxy returns an error
to the client proxy. This error is returned whenever the
client presents an authenticated request that is denied.

The protocol can be viewed as a typical challenge-response
protocol. The server reply in step 2 of the protocol is a chal-
lenge the server issues the client, saying, “You are trying to
access a protected file. Prove to me that you have the cre-
dentials to perform the operation you are requesting on the
resource protected by this ACL.” The client uses the ACL
to help it produce a certificate chain, using the SPKI/SDSI
certificate chain discovery algorithm. It then sends the cer-
tificate chain and signed request in a second request to the
server proxy. The signed request provides proof of authentic-
ity, and the certificate chain provides proof of authorization.
The server attempts to verify the second request, and if it
succeeds, it honors the request.

The timestamp in the tag-timestamp sequence helps to
protect against certain types of replay attacks. For example,
suppose the server logs requests and suppose that this log is
not disposed of properly. If an adversary gains access to the
logs, the timestamp prevents him from replaying requests
found in the log and gaining access to protected resources.®

4.2.1 Additional Security Considerations

The SPKI/SDSI protocol, as described, addresses the is-
sue of providing client access control. The protocol does
not ensure confidentiality, authenticate servers, or provide
protection against replay attacks from the network.

The Secure Sockets Layer (SSL) protocol is the most wide-
ly used security protocol today. The Transport Layer Secu-
rity (TLS) protocol is the successor to SSL. Principal goals
of SSL/TLS [19] include providing confidentiality and data
integrity of traffic between the client and server, and provid-
ing authentication of the server. There is support for client

9In order to use timestamps, the client’s clock and server’s
clock need to be fairly synchronized; SPKI/SDSI already
makes an assumption about fairly synchronized clocks when
validity time periods are specified in certificates. An alter-
native approach to using timestamps is to use nonces in the
protocol.

SPKI/SDSI Access Control Protocol

Application Protocol

Key-Exchange Protocol with Server
Authentication

TCP/IP

Figure 5: Example Layering of Protocols

authentication, but client authentication is optional. The
SPKI/SDSI Access Control protocol can be layered over a
key-exchange protocol like TLS/SSL to provide additional
security. TLS/SSL currently uses the X.509 PKI to au-
thenticate servers, but it could just as well use SPKI/SDSI
in a similar manner. In addition to the features already
stated, SSL/TLS also provides protection against replay at-
tacks from the network, and protection against person-in-
the-middle attacks. With these considerations, the layering
of the protocols is shown in Figure 5. In the figure, ‘Applica-
tion Protocol’ refers to the standard communication proto-
col between the client and server proxies, without security.

SSL/TLS authenticates the server proxy. However, it does
not indicate whether the server proxy is authorized to accept
the client’s request. For example, it may be the case that
the client proxy is requesting to print a ‘top secret’ docu-
ment, say, and only certain printers should be used to print
‘top secret’ documents. With SSL/TLS and the SPKI/SDSI
Client Access Control Protocol we have described so far, the
client proxy will know that the public key of the proxy with
which it is communicating is bound to a particular address,
and the server proxy will know that the client proxy is au-
thorized to print to it. However, the client proxy still will
not know if the server proxy is authorized to print ‘top se-
cret’ documents. If it sends the ‘top secret’” document to be
printed, the server proxy will accept the document and print
it, even though the document should not have been sent to
it in the first place.

To approach this problem, we propose extending the SPKI-
/SDSI protocol so that the client requests authorization
from the server and the server proves to the client that it is
authorized to handle the client’s request (before the client
sends the document off to be printed). To extend the proto-
col, the SPKI/SDSI protocol described in Section 4.2 is run
from the client proxy to the server proxy, and then run in the
reverse direction, from the server proxy to the client proxy.
Thus, the client proxy will present a SPKI/SDSI certificate
chain proving that it is authorized to perform its request,
and the server proxy will present a SPKI/SDSI certificate
chain proving that it is authorized to accept and perform
the client’s request. Again, if additional security is needed,
the extended protocol can be layered over SSL/TLS.

Note that the SPKI/SDSI Access Control Protocol is an
example of the end-to-end argument [23]. The access control
decisions are made in the uppermost layer, involving only
the client and the server.

5. RELATED WORK

5.1 Deviceto Proxy Communication

The Resurrecting Duckling is a security model for ad-hoc

wireless networks [25, 24]. In this model, when devices be-
gin their lives, they must be “imprinted” before they can be
used. A master (the mother duck) imprints a device (the
duckling) by being the first one to communicate with it. Af-
ter imprinting, a device only listens to its master. During
the process of imprinting, the master is placed in physical
contact with the device and they share a secret key that is
then used for symmetric-key authentication and encryption.
The master can also delegate the control of a device to other
devices so that control is not always limited to just the mas-
ter. A device can be “killed” by its master then resurrected
by a new one in order for it to swap masters.

5.2 Proxy to Proxy Communication

Jini [26] network technology from Sun Microsystems cen-
ters around the idea of federation building. Jini avoids
the use of proxies by assuming that all devices and ser-
vices in the system will run the Java Virtual Machine. The
SIESTA project [8] at the Helsinki University of Technology
has succeeded in building a framework for integrating Jini
and SPKI/SDSI. Their implementation has some latency
concerns, however, when new authorizations are granted.
UC Berkeley’s Ninja project [27] uses the Service Discov-
ery Service [5] to securely perform resource discovery in a
wide-area network. Other related projects include Hewlett-
Packard’s CoolTown [9], IBM’s TSpaces [11] and University
of Washington’s Portolano [29].

5.3 Other projectsusing SPKI/SDSI

Other projects using SPKI/SDSI include Hewlett-Pack-
ard’s e-Speak product [10], Intel’s CDSA release [12], and
Berkeley’s OceanStore project [28]. HP’s eSpeak uses SPKI-
/SDSI certificates for specifying and delegating authoriza-
tions. Intel’s CDSA release, which is open-source, includes
a SPKI/SDSI service provider for building certificates, and a
module (AuthCompute) for performing authorization com-
putations. OceanStore uses SPKI/SDSI names in their nam-
ing architecture.

6. EVALUATION

6.1 HardwareDesign

Details on the design of a board that can act as the core
of a lightweight device, or as a wearable communicator, are
given in [15].

6.2 Device-to-Proxy Protocol

In this section we evaluate the device-to-proxy protocol
described in Section 3 in terms of its memory and processing
requirements.

6.2.1 Memory Requirements

Table 1 breaks down the memory requirements for vari-
ous software components. The code size represents mem-
ory used in Flash, and data size represents memory used
in RAM. The device functionality component includes the
packet and location processing routines. The RF code com-
ponent includes the RF transmit and receive routines as well
as the Cricket listener routines. The miscellaneous compo-
nent is code that is common to all of the other components.

The device code requires approximately 12KB of code
space and 1KB of data space. The security algorithms,
HMAC-MD5 and RC5, take up most of the code space.

Component Code Size | Data Size

(KB) (bytes)
Device Functionality 2.0 191
RF Code 1.1 153
HMAC-MD5 4.6 386
RC5 3.2 256
Miscellaneous 1.0 0

[Total | 11.9] 986 |

Table 1: Code and data size on the Atmel processor

[Function | Time (ms) [Clock Cycles |
RC5 encrypt
decrypt (n bytes) | 0.163n + 0.552 | 652n + 2208
HMAC-MD5
up to 56 bytes 11.48 45,920

Table 2: Performance of encryption and authentica-
tion code

Both of these algorithms were optimized in assembly, which
reduced their code size by more than half. The code could
be better optimized, but this gives a general idea of how
much memory is required. The code size we have attained
is small enough that it can be incorporated into virtually
any device.

6.2.2 Processing Requirements

The security algorithms put the most demand on the de-
vice. Table 2 breaks down the approximate time for each
algorithm as detailed in [15]. The RC5 processing time
varies linearly with the number of bytes being encrypted
or decrypted. The HMAC-MD5 routine, on the other hand,
takes a constant amount of time up to 56 bytes. This is
because HMAC-MDS5 is designed to work on blocks of data,
so anything less than 56 bytes is padded. Since we limit
the RF packet size to 50 bytes, we only analyze the HMAC-
MD?5 running time for packets of size less than or equal to
50 bytes.

6.3 SPKI/SDSI Evaluation

The protocol described in Section 4 is efficient. The first
two steps of the protocol are a standard request/response
pair; no cryptography is required. The significant steps
in the protocol are step 3, in which a certificate chain is
formed, and step 4, where the chain is verified. Table 3
shows analyses of these two steps. The paper on Certificate
Chain Discovery in SPKI/SDSTI [4] should be referred to for
a discussion of the timing analyses. The CPU times are ap-
proximate times measured on a Sun Microsystems Ultra-1
running SunOS 5.7.

7. CONCLUSIONS

We believe that the trends in pervasive computing are
increasing the diversity and heterogeneity of networks and
their constituent devices. Developing security protocols that
can handle diverse, mobile devices networked in various ways
represents a major challenge. In this paper, we have taken
a first step toward meeting this challenge by observing the
need for multiple security protocols, each with different char-
acteristics and computational requirements. While we have
described a prototype system with two different protocols,
other types of protocols could be included if deemed neces-

sary.

The two protocols we have described have vastly differ-
ent characteristics, because they apply to different scenar-
ios. The device-to-proxy protocol was designed to enable se-
cure communication of data from a lightweight device. The
SPKI/SDSI-based proxy-to-proxy protocol was designed to
provide flexible, fine-grained, access control between prox-
ies. The proxy architecture and the use of two different
protocols has resulted, we believe, in a secure, yet efficient,
resource discovery and communication system.

8. REFERENCES

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and
J. Lilley. The Design and Implementation of an
Intentional Naming System. Operating Systems
Review, 34(5):186-301, December 1999.

[2] G. Banavar, J. Beck, E. Gluzberg, J. Munson,

J. Sussman, and D. Zukowski. Challenges: An
Application Model for Pervasive Computing. In Proc.
ACM MOBICOM, August 2000.

[3] D. Clarke. SPKI/SDSI HTTP Server / Certificate
Chain Discovery in SPKI/SDSI. Master’s thesis,
Massachusetts Institute of Technology, 2001.

[4] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette,

A. Morcos, and R. L. Rivest. Certificate Chain
Discovery in SPKI/SDSI. Journal of Computer
Security, 2001. To appear.

[5] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and
R. Katz. An Architecture for a Secure Service
Discovery Service. In Proc. MOBICOM, August 1999.

[6] M. Dertouzos. The Future of Computing. Scientific
American, August 1999.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest,

B. Thomas, and T. Ylonen. Simple Public Key
Certificate. The Internet Society, July 1999. See
http://world.std.com/~cme/spki.txt.

[8] P. Eronen and P. Nikander. Decentralized Jini
Security. In Proc. of the Network and Distributed
System Security Symposium, February 2001.

[9] Hewlett-Packard. CoolTown. See
http://cooltown.hp.com.

[10] Hewlett-Packard. e-Speak. See
http://www.e-speak.hp.com.

[11] IBM. TSpaces: Intelligent Connectionware. See
http://www.almaden.ibm.com/cs/TSpaces.

[12] Intel. Intel Common Data Security Architecture. See
http://developer.intel.com/ial /security.

[13] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication. Internet
Request for Comments RFC 2104, February 1997.

[14] A. Maywah. An Implementation of a Secure Web
Client Using SPKI/SDSI Certificates. Master’s thesis,
Massachusetts Institute of Technology, 2000.

[15] T. Mills. An Architecture and Implementation of
Secure Device Communication in Oxygen. Master’s
thesis, Massachusetts Institute of Technology, 2001.

[16] OpenSSL. The OpenSSL Project.
http://www.openssl.org.

[17] N. Priyantha. Providing Precise Indoor Location
Information to Mobile Devices. Master’s thesis,
Massachusetts Institute of Technology, January 2001.

[18]

[19]
[20]

[21]

[22]

[23]

[24]

| Protocol step | Timing analysis | Approx CPU time

of certs, and I = length of longest subject.
However, the expected time is O(nl).

Cert chain discovery | The worst case is O(n°l), where n = number | 330ms, with n =2 and | = 2.

of certs.

Chain validation The worst case is O(n), where n = number | 200ms, with n = 2.

Table 3: Proxy-to-Proxy Protocol analysis.

N. Priyantha, A. Chakraborty, and H. Balakrishnan.
The Cricket Location-Support System. In Proc. ACM
MOBICOM, August 2000.

E. Rescola. SSL and TLS: Designing and Building
Secure Systems. Addison-Wesley, 2001.

R. Rivest. The MD5 Message-Digest Algorithm.
Internet Request for Comments RFC 1321, April 1992.
R. Rivest. The RC5 Encryption Algorithm. In Proc. of
the 1994 Leuven Workshop on Fast Software
Encryption, 2001.

R. L. Rivest and B. Lampson. SDSI - A Simple
Distributed Security Infrastructure. See
http://theory.lcs.mit.edu/ rivest/sdsil0.ps.

J. H. Saltzer, D. Reed, and D. D. Clark. End-to-End
Arguments in System Design. See
http://www.mit.edu/~Saltzer/publications/endtoend/.
F. Stajano. The Resurrecting Duckling — What next?
In Proc. of the 8th International Workshop on
Security Protocols, April 2000.

F. Stajano and R. Anderson. The Resurrecting
Duckling: Security Issues for Ad-hoc Wireless
Networks. In Proc. Security Protocols, 7th
International Workshop, 1999.

Sun Microsystems Inc. Jini Network Techonology.
http://www.sun.com/jini.

UC Berkeley. The Ninja Project: Enabling
Internet-scale Services from Arbitrarily Small Devices.
See http://ninja.cs.berkeley.edu.

UC Berkeley. The OceanStore Project: Providing
Global-Scale Persistent Data. See
http://oceanstore.cs.berkeley.edu.

University of Washington. Portolano: An Expedition
into Invisible Computing. See
http://portolano.cs.washington.edu.

M. Weiner. Performance Comparison of Public-key
Cryptosystems. RSA Laboratories’ CryptoBytes, 4(1),
1998.

