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Abstract

We study the problem of learning a binary relation between two sets of objects
or between a set and itself� We represent a binary relation between a set of size n

and a set of size m as an n � m matrix of bits� whose �i� j� entry is � if and only
if the relation holds between the corresponding elements of the two sets� We present
polynomial prediction algorithms for learning binary relations in an extended on�line
learning model� where the examples are drawn by the learner� by a helpful teacher� by
an adversary� or according to a uniform probability distribution on the instance space�

In the �rst part of this paper� we present results for the case that the matrix of the
relation has at most k row types� We present upper and lower bounds on the number
of prediction mistakes any prediction algorithm makes when learning such a matrix
under the extended on�line learning model� Furthermore� we describe a technique
that simpli�es the proof of expected mistake bounds against a randomly chosen query
sequence�

In the second part of this paper� we consider the problem of learning a binary re�
lation that is a total order on a set� We describe a general technique using a fully
polynomial randomized approximation scheme �fpras� to implement a randomized ver�
sion of the halving algorithm� We apply this technique to the problem of learning a
total order� using a fpras for counting the number of extensions of a partial order� to
obtain a polynomial prediction algorithm that with high probability makes at most
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n lgn � �lg e� lgn mistakes when an adversary selects the query sequence� We also
consider the case that a teacher or the learner selects the query sequence�

Keywords� Machine Learning� Computational Learning Theory� On�line Learning�
Mistake�bounded Learning� Binary Relations� Total Orders� Fully Polynomial Ran�
domized Approximation Schemes

� Introduction

In many domains� it is important to acquire information about a relation between two sets�

For example� one may wish to learn a has�part� relation between a set of animals and a set

of attributes� We are motivated by the problem of designing a prediction algorithm to learn

such a binary relation when the learner has limited prior information about the predicate

forming the relation� While one could model such problems as concept learning� they are

fundamentally di�erent problems� In concept learning there is a single set of objects and the

learner�s task is to classify these objects� whereas in learning a binary relation there are two

sets of objects and the learner�s task is to learn the predicate relating the two sets� Observe

that the problem of learning a binary relation can be viewed as a concept learning problem

by letting the instances be all ordered pairs of objects from the two sets� However� the ways

in which the problem may be structured are quite di�erent when the true task is to learn

a binary relation as opposed to a classi�cation rule� That is� instead of a rule that de�nes

which objects belong to the target concept� the predicate de�nes a relationship between pairs

of object�

A binary relation is de�ned between two sets of objects� Throughout this paper� we

assume that one set has cardinality n and the other has cardinality m� We also assume that

for all possible pairings of objects� the predicate relating the two sets of variables is either true

��� or false ���� Before de�ning a prediction algorithm� we �rst discuss our representation

of a binary relation� Throughout this paper� we represent the relation as an n �m binary

matrix� where an entry contains the value of the predicate for the corresponding elements�

Since the predicate is binary�valued� all entries in this matrix are either � �false� or � �true��

The two�dimensional structure arises from the fact that we are learning a binary relation�

For the sake of comparison� we now brie�y mention other possible representations� One

could represent the relation as a table with two columns� where each entry in the �rst column

is an item from the �rst set and each entry in the second column is an item from the second
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set� The rows of the table consist of the subset of the potential nm pairings for which the

predicate is true� One could also represent the relation as a bipartite graph with n vertices

in one vertex set and m vertices in the other set� An edge is placed between two vertices

exactly when the predicate is true for corresponding items�

Having introduced our method for representing the problem� we now informally discuss

the basic learning scenario� The learner is repeatedly given a pair of elements� one from

each set� and asked to predict the corresponding matrix entry� After making its prediction�

the learner is told the correct value of the matrix entry� The learner wishes to minimize the

number of incorrect predictions it makes� Since we assume that the learner must eventually

make a prediction for each matrix entry� the number of incorrect predictions depends on the

size of the matrix�

Unlike problems typically studied where the natural measure of the size of the learner�s

problem is the size of an instance �or example�� for this problem it is the size of the matrix�

Such concept classes with polynomial�sized instance spaces are uninteresting in Valiant�s ����

probably approximately correct �PAC� model of learning� In this model� instances are cho�

sen randomly from an arbitrary unknown probability distribution on the instance space� A

concept class is PAC�learnable if the learner� after seeing a number of instances that is poly�

nomial in the problem size� can output a hypothesis that is correct on all but an arbitrarily

small fraction of the instances with high probability� For concepts whose instance space has

cardinality polynomial in the problem size� by asking to see enough instances the learner can

see almost all of the probability weight of the instance space� Thus it is not hard to show

that these concept classes are trivially PAC�learnable� One goal of our research is to build a

framework for studying such problems�

To study learning algorithms for these concept classes we extend the basic mistake bound

model ���� ��� ��� to the cases that a helpful teacher or the learner selects the query sequence�

in addition to the cases where instances are chosen by an adversary or according to a prob�

ability distribution on the instance space� Previously� helpful teachers have been used to

provide counterexamples to conjectured concepts ��� ��� or to break up the concept into

smaller sub�concepts ����� In our framework� the teacher only selects the presentation order

for the instances�

If the learner is to have any hope of doing better than random guessing� there must be

some structure in the relation� Furthermore� since there are so many ways to structure a
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binary relation� we give the learner some prior knowledge about the nature of this structure�

Not surprisingly� the learning task depends greatly on the prior knowledge provided� One

way to impose structure is to restrict one set of objects to have relatively few types�� For

example� a circus may contain many animals� but only a few di�erent species� In the �rst

part of this paper we study the case where the learner has a priori� knowledge that there are

a limited number of object types� Namely� we restrict the matrix representing the relation

to have at most k distinct row types� �Two rows are of the same type if they agree in all

columns�� We de�ne a k�binary�relation to be a binary relation for which the corresponding

matrix has at most k row types� This restriction is satis�ed whenever there are only k types of

objects in the set of n objects being considered in the relation� The learner receives no other

knowledge about the predicate forming the relation� With this restriction� we prove that any

prediction algorithm makes at least �� � ��km� nblg��k�c � �� � ��kblg��k�c mistakes in

the worst case for any �xed � � � � � against any query sequence�� So for � � ���� we get

a lower bound of km
� � �n� k

��blg k � �c on the number of mistakes made by any prediction

algorithm� If computational e�ciency is not a concern� the halving algorithm ��� ��� makes

at most km � �n � k� lg k mistakes against any query sequence� �The halving algorithm

predicts according to the majority of the feasible relations �or concepts�� and thus each

mistake halves the number of remaining relations��

We present an e�cient algorithm making at most km��n� k�blg kc mistakes in the case

that the learner chooses the query sequence� We prove a tight mistake bound of km� �n�
k��k��� in the case that the helpful teacher selects the query sequence �� When the adversary

selects the query sequence� we present an e�cient algorithm for k � � that makes at most

�m � n � � mistakes� and for arbitrary k we present an e�cient algorithm making at most

km�n
q
�k���mmistakes� We prove any algorithmmakes at least km��n�k�blg kcmistakes

in the case that an adversary selects the query sequence� and use the existence of projective

geometries to improve this lower bound to ��km��n�k�blg kc�minfnpm�mpng� for a large
class of algorithms� Finally� we describe a technique to simplify the proof of expected mistake

bounds when the query sequence is chosen at random� and use it to prove an O�km�nk
p
H�

expected mistake bound for a simple algorithm� �HereH is the maximumHamming distance

�Throughout this paper we use lg to denote log
�
�

�The mistake bound is a worst case mistake bound taken over all �consistent� learners� See Section � for

formal de�nitions�

�



between any two rows��

Another possibility for known structure is the problem of learning a binary relation on

a set where the predicate induces a total order on the set� �For example the predicate

may be ���� In the second half of this paper we study the case in which the learner

has a priori knowledge that the relation forms a total order� Once again� we see that the

halving algorithm ��� ��� yields a good mistake bound against any query sequence� This

motivates a second goal of this research� to develop e�cient implementations of the halving

algorithm� We uncover an interesting application of randomized approximation schemes to

computational learning theory� Namely� we describe a technique that uses a fully polynomial

randomized approximation scheme �fpras� to implement a randomized version of the halving

algorithm� We apply this technique� using a fpras due to Dyer� Frieze� and Kannan �	� and

Matthews ���� for counting the number of linear extensions of a partial order� to obtain a

polynomial prediction algorithm that makes at most n lg n � �lg e� lg n mistakes with very

high probability against an adversary�selected query sequence� The small probability of

making too many� mistakes is determined by the coin �ips of the learning algorithm and

not by the query sequence selected by the adversary� We contrast this result with an n � �

mistake bound when the learner selects the query sequence ����� and an n�� mistake bound

when a teacher selects the query sequence�

The remainder of this paper is organized as follows� In the next section we formally

introduce the basic problem� the learning scenario and the extended mistake bound model�

In Section � we present our results for learning k�binary�relations� We �rst give a motivating

example and present some general mistake bounds� In the following subsections we consider

query sequences selected by the learner� by a helpful teacher� by an adversary or at random�

In Section � we turn our attention to the problem of learning total orders� We begin by dis�

cussing the relationship between the halving algorithm and approximate counting schemes

in Section ���� In particular� we describe how a fpras can be used to implement an approxi�

mate halving algorithm� Then in Section ��� we present our results on learning a total order�

Finally� in Section � we conclude with a summary and discussion of related open problems�
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� Learning Scenario and Mistake Bound Model

In this section we give formal de�nitions and discuss the learning scenario used in this paper�

To be consistent with the literature� we discuss these models in terms of concept learning�

As we have mentioned� the problem of learning a binary relation can be viewed in this

framework by letting the instance space be all pairs of objects� one from each of the two sets�

A concept c is a Boolean function on some domain of instances� A concept class C is

a family of concepts� The learner�s goal is to infer some unknown target concept chosen

from some known concept class� Often C is decomposed into subclasses Cn according to

some natural dimension measure n� That is� for each n � �� let Xn denote a �nite learning

domain� Let X �
S
n��Xn� and x � X denote an instance� To illustrate these de�nitions�

we consider the concept class of monomials� �A monomial is a conjunction of literals� where

each literal is either some Boolean variable or its negation�� For this concept class n is just

the number of variables� Thus jXnj � �n where each x � Xn is chosen from f�� �gn and

represents the assignment for each variable� For each n � �� let Cn be a family of concepts on

Xn� Let C �
S
n�� Cn denote a concept class over X� For example� if Cn contains monomials

over n variables� then C is the class of all monomials� Given any concept c � Cn� we say

that x is a positive instance of c if c�x� � �� and x is a negative instance of c if c�x� � ��

In our example� the target concept for the class of monomials over �ve variables might be

x�x�x�� Then the instance ������ is a positive instance and ������ is a negative instance�

Finally� the hypothesis space of algorithm A is simply the set of all hypotheses �or rules� h

that A may output� �A hypothesis for Cn must make a prediction for each x � Xn��

A prediction algorithm for C is an algorithm that runs under the following scenario� A

learning session consists of a set of trials� In each trial� the learner is given an unlabeled

instance x � Xn� The learner uses its current hypothesis to predict if x is a positive or

negative instance of the target concept c � Cn and then the learner is told the correct

classi�cation of x� If the prediction is incorrect� the learner has made a mistake� Note that

in this model there is no training phase� Instead� the learner receives unlabeled instances

throughout the entire learning session� However� after each prediction the learner discovers�

the correct classi�cation� This feedback can then be used by the learner to improve its

hypothesis� A learner is consistent if� on every trial� there is some concept in Cn that agrees

both with the learner�s prediction and with all the labeled instances observed on preceding
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trials�

The number of mistakes made by the learner depends on the sequence of instances pre�

sented� We extend the mistake bound model to include several methods for the selection

of instances� A query sequence is a permutation � � hx�� x�� � � � � xjXnji of Xn where xt is

the instance presented to the learner at the tth trial� We call the agent selecting the query

sequence the director � We consider the following directors�

� Learner � The learner chooses �� To select xt� the learner may use time polynomial

in n and all information obtained in the �rst t� � trials� In this case we say that the

learner is self�directed �

� Helpful Teacher � A teacher who knows the target concept and wants to minimize

the learner�s mistakes chooses �� To select xt� the teacher uses knowledge of the target

concept� x�� � � � � xt��� and the learner�s predictions on x�� � � � � xt��� To avoid allowing

the learner and teacher to have a coordinated strategy� in this scenario we consider the

worst case mistake bound over all consistent learners� In this case we say the learner

is teacher�directed �

� Adversary � The adversary who selected the target concept chooses �� This adver�

sary� who tries to maximize the learner�s mistakes� knows the learner�s algorithm and

has unlimited computing power� In this case we say the learner is adversary�directed �

� Random � In this model� � is selected randomly according to a uniform probability

distribution on the permutations of Xn� Here the number of mistakes made by the

learner for some target concept c in Cn is de�ned to be the expected number of mistakes

over all possible query sequences� In this case we say the learner is randomly�directed �

We consider how a prediction algorithm�s performance depends on the director� Namely�

we let MBZ�A�Cn� denote the worst case number of mistakes made by A for any tar�

get concept in Cn when the query sequence is provided by Z� �When Z � adversary�

MBZ�A�Cn� � MA�Cn� in the notation of Littlestone ������ We say that A is a polynomial

prediction algorithm if A makes each prediction in time polynomial in n�
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� Learning Binary Relations

In this section we apply the learning scenario of the extended mistake bound model to the

concept class C of k�binary�relations� For this concept class the dimensionmeasure is denoted

by n and m� and Xn�m � f�� � � � � ng� f�� � � � �mg� An instance �i� j� is in the target concept

c � Cn�m if and only if the matrix entry in row i and column j is a �� So in each trial the

learner is repeatedly given an instance x from Xn�m and asked to predict the corresponding

matrix entry� After making its prediction� the learner is told the correct value of the matrix

entry� The learner wishes to minimize the number of incorrect predictions it makes during

a learning session in which the learner must eventually make a prediction for each matrix

entry�

We begin this section with a motivating example from the domain of allergy testing� We

use this example to motivate both the restriction that the matrix has k row types and the

use of the extended mistake bound model� We then present general upper and lower bounds

on the number of mistakes made by the learner regardless of the director� Finally� we study

the complexity of learning a k�binary�relation under each director�

��� Motivation� Allergist Example

In this section we use the following example taken from the domain of allergy testing to

motivate the problem of learning a k�binary�relation�

Consider an allergist with a set of patients to be tested for a given set of allergens� Each

patient is either highly allergic� mildly allergic� or not allergic to any given allergen� The

allergist may use either an epicutaneous �scratch� test in which the patient is given a fairly

low dose of the allergen� or an intradermal �under the skin� test in which the patient is given

a larger dose of the allergen� The patient�s reaction to the test is classi�ed as strong positive�

weak positive or negative� Figure � describes the reaction that occurs for each combination

of allergy level and dosage level� Finally� we assume a strong positive reaction is extremely

uncomfortable to the patient� but not dangerous�

What options does the allergist have in testing a patient for a given allergen� He could

just perform the intradermal test �option ��� Another option �option �� is to perform an

epicutaneous test� and if it is not conclusive� then perform an intradermal test� �See Figure �

for decision trees describing these two testing options�� Which testing option is best� If the
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Epicutaneous Intradermal

�Scratch� �Under the Skin�

Not Allergic negative negative

Mildly Allergic negative weak positive

Highly Allergic weak positive strong positive

Figure �� Summary of testing reactions for allergy testing example�
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Figure �� The testing options available to the allergist�

	



patient has no allergy or a mild allergy to the given allergen� then testing option � is best�

since the patient need not return for the second test� However� if the patient is highly allergic

to the given allergen� then testing option � is best� since the patient does not experience a

bad reaction� We assume the inconvenience of going to the allergist twice is approximately

the same as having a bad reaction� That is� the allergist has no preference to error in a

particular direction� While the allergist�s �nal goal is to determine each patient�s allergies�

we consider the problem of learning the optimal testing option for each combination of

patient and allergen�

The allergist interacts with the environment as follows� In each trial� the allergist is

asked to predict the best testing option for a given patient allergen pair� He is then told

the testing results� thus learning whether the patient is not allergic� mildly allergic or highly

allergic to the given allergen� In other words� the allergist receives feedback as to the correct

testing option� Note that we make no restrictions on how the hypothesis is represented

as long as it can be evaluated in polynomial time� In other words� all we require is that

given any patient allergen pair� the allergist decides which test to perform in a reasonable�

amount of time�

How can the allergist possibly predict a patient�s allergies� If the allergies of the patients

are completely random�� then there is not much hope� What prior knowledge does the

allergist have� He knows that people often have exactly the same allergies� so there is a set of

allergy types� that occur often� �We do not assume that the allergist has a priori knowledge

of the actual allergy types�� This knowledge can help guide the allergist�s predictions�

Having speci�ed the problem we discuss our choice of using the extended mistake bound

model to evaluate learning algorithms for this problem� First of all� observe that we want

an on�line model� There is no training phase here� the allergist wants to predict the correct

testing option for each patient allergen pair� Also we expect that the allergist has time to

test each patient for each allergen! that is� the instance space is polynomial�sized� Thus as

discussed in Section � the distribution�free model is not appropriate�

How should we judge the performance of the learning algorithm� For each wrong predic�

tion made� a patient is inconvenienced with making a second trip or having a bad reaction�

Since the learner wants to give all patients the best possible service� he strives to minimize

the number of incorrect predictions made� Thus we want to use the absolute mistake bound

success criterion� Namely� we judge the performance of the learning algorithm by the number
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of incorrect predictions made during a learning session in which he must eventually test each

patient for each allergen�

Up to now� the standard on�line model �using absolute mistake bounds to judge the

learners� appears to be the appropriate model� We now discuss the selection of the instances�

Since the allergist has no control over the target relation �i�e� the allergies of his patients��

it makes sense to view the feedback as coming from an adversary� However� do we really

want an adversary to select the presentation order for the instances� It could be that the

allergist is working for a cosmetic company and� due to restrictions of the Food and Drug

Administration and the cosmetic company� the allergist is essentially told when to test each

person for each allergen� In this case� it is appropriate to have an adversary select the

presentation order� However� in the typical situation� the allergist can decide in what order

to perform the testing so that he can make the best predictions possible� In this case� we want

to allow the learner to select the presentation order� One could also imagine a situation in

which an intern is being guided by an experienced allergist� and thus a teacher helps to select

the presentation order� Finally� random selection of the presentation order may provide us

with a better feeling for the behavior of an algorithm�

��� Learning k�Binary�Relations

In this section we begin our study of learning k�binary�relations by presenting general lower

and upper bounds on the mistakes made by the learner regardless of the director�

Throughout this section� we use the following notation� We say an entry �i� j� of the

matrix �Mij� is known if the learner was previously presented that entry� We assume without

loss of generality that the learner is never asked to predict the value of a known entry� We

say rows i and i� are consistent �given the current state of knowledge� if Mij � Mi�j for all

columns j in which both entries �i� j� and �i�� j� are known�

We now look at general lower and upper bounds on the number of mistakes that apply

for all directors� First of all� note that k � �m since there are only �m possible row types

for a matrix with m columns� Clearly� any learning algorithm makes at least km mistakes

for some matrix� regardless of the query sequence� The adversary can divide the rows into

k groups and reply that the prediction was incorrect for the �rst column queried for each

entry of each group� We generalize this approach to force mistakes for more than one row

of each type�
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n  rows

Figure �� The �nal matrix created by the adversary in the proof of Theorem �� All entries

in the unmarked area will contain the bit not predicted by the learner� That is� a mistake is

forced on each entry in the unmarked area� All entries in the marked area will be zero�

Theorem � For any � � � � �� any prediction algorithm makes at least �� � ��km �

nblg��k�c � �� � ��kblg��k�c mistakes regardless of the query sequence�

Proof� The adversary selects its feedback for the learner�s predictions as follows� For

each entry in the �rst blg��k�c columns the adversary replies that the learner�s response is

incorrect� At most �k new row types are created by this action� Likewise� for each entry in

the �rst �� � ��k rows the adversary replies that the learner�s response is incorrect� This

creates at most �� � ��k new row types� The adversary makes all remaining entries in the

matrix zero� �See Figure ��� The number of mistakes is at least the area of the unmarked

region� Thus the adversary has forced at least �� � ��km � nblg��k�c � �� � ��kblg��k�c
mistakes while creating at most �k � �� � ��k � k row types�

By letting � � �
� we obtain the following corollary�

Corollary � Any algorithm makes at least km
� ��n� k

��blg k � �c mistakes in the worst case

regardless of the query sequence�

If computational e�ciency is not a concern� for all query sequences the halving algo�

rithm ��� ��� provides a good mistake bound�

Observation � The halving algorithm achieves a km� �n� k� lg k mistake bound�
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Proof� We use a simple counting argument on the size of the concept class Cn�m� There

are �km ways to select the k row types� and k�n�k� ways to assign one of the k row types to

each of the remaining n� k rows� Thus jCn�mj � �kmk�n�k�� Littlestone ���� proves that the

halving algorithm makes at most lg jCn�mj mistakes� Thus the number of mistakes made by

the halving algorithm for this concept class is at most lg��kmk�n�k�� � km� �n� k� lg k�

In the remainder of this section� we study e�cient prediction algorithms designed to

perform well against each of the directors� In some cases we are also able to prove lower

bounds that are better than that of Theorem �� In Section ���� we consider the case that the

query sequence is selected by the learner� We study the helpful�teacher director in Section ����

In Section ��� we consider the case of an adversary director� Finally� in Section ��� we consider

when the instances are drawn uniformly at random from the instance space�

��� Self�Directed Learning

In this section we present an e�cient algorithm for the case of self�directed learning�

Theorem � There exists a polynomial prediction algorithm that achieves a km��n�k�blg kc
mistake bound with a learner�selected query sequence�

Proof� The query sequence selected simply speci�es the entries of the matrix in row�major

order� The learner begins assuming there is only one row type� Let "k denote the learner�s

current estimate for k� Initially "k � �� For the �rst row� the learner guesses each entry�

�This row becomes the template for the �rst row type�� Next the learner assumes that the

second row is the same as the �rst row� If he makes a mistake then the learner revises his

estimate for "k to be �� guesses for the rest of the row� and uses that row as the template for

the second row type� In general� to predict Mij� the learner predicts according to a majority

vote of the recorded row templates that are consistent with row i �breaking ties arbitrarily��

Thus� if a mistake is made� then at least half of the row types can be eliminated as the

potential type of row i� If more than
j
lg "k

k
mistakes are made in a row� then a new row type

has been found� In this case� "k is incremented� the learner guesses for the rest of the row�

and makes this row the template for row type "k � ��

How many mistakes are made by this algorithm� Clearly� at most m mistakes are made

for the �rst row found of each of the k types� For the remaining n� k rows� since "k � k� at

most blg kc mistakes are made�
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Observe that this upper bound is within a constant factor of the lower bound of Corol�

lary �� Furthermore� we note that this algorithm need not know k a priori� In fact� it obtains

the same mistake bound even if an adversary tells the learner which row to examine� and in

what order to predict the columns� provided that the learner sees all of a row before going

on to the next� As we will later see� this problem becomes harder if the adversary can select

the query sequence without restriction�

��� Teacher�Directed Learning

In this section we present upper and lower bounds on the number of mistakes made under

the helpful�teacher director� Recall that in this model� we consider the worst case mistake

bound over all consistent learners� Thus the question asked here is� what is the minimum

number of matrix entries a teacher must reveal so that there is a unique completion of the

matrix� That is� until there is a unique completion of the partial matrix� a mistake could

be made on the next prediction�

We now prove an upper bound on the number of entries needed to uniquely de�ne the

target matrix�

Theorem � The number of mistakes made with a helpful teacher as the director is at most

km� �n� k��k � ���

Proof� First� the teacher presents the learner with one row of each type� For each of the

remaining n�k rows the teacher presents an entry to distinguish the given row from each of

the k � � incorrect row types� After these km� �n � k��k � �� entries have been presented

we claim that there is a unique matrix with at most k row types that is consistent with

the partial matrix� Since all k distinct row types have been revealed in the �rst stage� all

remaining rows must be the same as one of the �rst k rows presented� However� each of the

remaining rows have been shown to be inconsistent with all but one of these k row templates�

Is Theorem � the best such result possible� Clearly the teacher must present a row of

each type� But� in general� is it really necessary to present k�� entries of the remaining rows

to uniquely de�ne the matrix� We now answer this question in the a�rmative by presenting

a matching lower bound�

Theorem � The number of mistakes made with a helpful teacher as the director is at least

minfnm� km� �n� k��k � ��g�
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5  row
types

0  0  0  0  0  0  0  0  0
1  0  0  0  0  0  0  0  0
0  1  0  0  0  0  0  0  0
0  0  1  0  0  0  0  0  0
0  0  0  1  0  0  0  0  0
0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0

Figure �� The matrix created by the adversary against the helpful teacher director� In this

example� there are � row types which appear in the �rst �ve rows of the matrix�

Proof� The adversary selects the following matrix� The �rst row type consists of all zeros�

For � � z � minfm� �� kg� row type z contains z � � zeros� followed by a one� followed by

m� z � � zeros� The �rst k rows are each assigned to be a di�erent one of the k row types�

Each remaining row is assigned to be the �rst row type� �See Figure ��� Until there is a

unique completion of the partial matrix� by de�nition there exists a consistent learner that

could make a mistake� Clearly if the learner has not seen each column of each row type�

then the �nal matrix is not uniquely de�ned� This part of the argument accounts for km

mistakes� When m� � � k� for the remaining rows� unless all of the �rst k � � columns are

known� there is some row type besides the �rst row type that must be consistent with the

given row� This argument accounts for �n� k��k � �� mistakes� Likewise� when m� � � k�

if any of the �rst m columns are not known then there is some row type besides the �rst

row type that must be consistent with the given row� This accounts for �n� k�m mistakes�

Thus the total number of mistakes is at least minfnm� km� �n� k��k � ��g�
Due to the requirement that mistake bounds in the teacher�directed case apply to all

consistent learners� we note that it is possible to get mistake bounds that are not as good

as those obtained when the learner is self�directed� Recall that in the previous section� we

proved a km � �n � k�blg kc mistake bound for the learner director� This bound is better

than that obtained with a teacher because the learner uses a majority vote among the known

row types for making predictions� However� a consistent learner may use a minority vote

��



and could thus make km� �n� k��k � �� mistakes�

��	 Adversary�Directed Learning

In this section we derive upper and lower bounds on the number of mistakes made when

the adversary is the director� We �rst present a stronger information�theoretic lower bound

on the number of mistakes an adversary can force the learner to make� Next� we present

an e�cient prediction algorithm that achieves an optimal mistake bound if k � �� We

then consider the related problem of computing the minimum number of row types needed

to complete a partially known matrix� Finally� we consider learning algorithms that work

against an adversary for arbitrary k�

We now present an information�theoretic lower bound on the number of mistakes made

by any prediction algorithm when the adversary selects the query sequence� We obtain this

result by modifying the technique used in Theorem ��

Theorem 	 Any prediction algorithm makes at least minfnm� km��n�k�blg kcg mistakes

against an adversary�selected query sequence�

Proof� The adversary starts by presenting all entries in the �rst blg kc columns �or m

columns if m � blg kc� and replying that each prediction is incorrect� If m � blg kc� this
step causes the learner to make nblg kc mistakes� Otherwise� this step causes the learner

to make nm mistakes� Each row can now be classi�ed as one of k row types� Next the

adversary presents the remaining columns for one row of each type� again replying that each

prediction is incorrect� For m � blg kc this step causes the learner to make k�m � blg kc�
additional mistakes� For the remaining matrix entries� the adversary replies as dictated by

the completed row of the same row type as the given row� So the number of mistakes made

by the learner is at least minfnm�nblg kc� km� kblg kcg � minfnm� km� �n� k�blg kcg�

��	�� Special Case� k � �

We now consider e�cient prediction algorithms for learning the matrix under an adversary�

selected query sequence� �Recall that if e�ciency is not a concern the halving algorithm

makes at most km� �n � k� lg k mistakes�� In this section we consider the case that k � ��

and present an e�cient prediction algorithm that performs optimally�
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Theorem 
 There exists a polynomial prediction algorithm that makes at most �m� n� �

mistakes against an adversary�selected query sequence for k � ��

Proof� The algorithm uses a graph G whose vertices correspond to the rows of the matrix

and that initially has no edges� To predictMij the algorithm ��colors the graph G� and then�

�� If no entry of column j is known� it guesses randomly�

�� Else if every known entry of column j is zero �respectively� one�� it guesses zero �one��

�� Else it �nds a row i� assigned the same color as i and known in column j� and guesses

Mi�j �

Finally� after the prediction is made and the feedback received� the graph G is updated by

adding an edge ii� to G for each row i� known in column j for which Mij �� Mi�j� Note that

one of the above cases always applies� Also� since k � �� it will always be possible to �nd a

��coloring�

How many mistakes can this algorithm make� It is not hard to see that cases � and �

each occur only once for every column� so there are at most m mistakes made in each of

these cases� Furthermore� the �rst case � mistake adds at least one edge to G� We now argue

that each case � mistake reduces the number of connected components of G by at least ��

We use a proof by contradiction� That is� assume that a case � mistake does not reduce the

number of connected components� Then it follows that the edge e � v�v� added to G must

form a cycle� �See Figure ��� We now separately consider the cases that this cycle contains

an odd number of edges or an even number of edges�

� Case �� Odd�length cycle� Since G is known to be ��colorable� this case cannot

occur�

� Case �� Even�length cycle� Before adding e� since v� and v� were connected by

an odd number of edges� in any legal ��coloring they must have been di�erent colors�

Since Step � of the algorithm picks nodes of the same color� an edge could have never

been placed between v� and v�� Thus we again have a contradiction�

In both cases we reach a contradiction� and thus we have shown that every case � mistake

reduces the number of connected components of G� Thus after at most n�� case � mistakes�
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Figure 	� The situation occurring if a case � mistake does not reduce the number of

connected components of G� The thick grey edges and the thick black edge show the cycle

created in G� Let e �shown as a thick black edge� be the edge added to form the cycle�

G must be fully connected and thus there must be a unique ��coloring� of G and no more

mistakes can occur� Thus� the worst case number of mistakes made by this algorithm is

�m� n� ��

Note that for k � � this upper bound matches the information�theoretic lower bound

of Theorem �� We also note that if there is only one row type then the algorithm given in

Theorem � makes at most m mistakes� matching the information�theoretic lower bound�

An interesting theoretical question is to �nd a linear mistake bound for constant k � �

when provided with a k�colorability oracle� However� such an approach would have to be

greatly modi�ed to yield a polynomial prediction algorithm since a polynomial�time k�

colorability oracle exists only if P � NP� Furthermore� even good polynomial�time ap�

proximations to a k�colorability oracle are not known ��� ����

The remainder of this section focuses on designing polynomial prediction algorithms for

the case that the matrix has at least three row types� One approach that may seem promising

is to make predictions as follows� Compute a matrix that is consistent with all known entries

and that has the fewest possible row types� Then use this matrix to make the next prediction�

We now show that even computing the minimum number of row types needed to complete

a partially known matrix is NP�complete� Formally� we de�ne the matrix k�complexity

problem as follows� given an n�m binary matrixM that is partially known� decide if there

is some matrix with at most k row types that is consistent withM � The matrix k�complexity

problem can be shown to be NP�complete by a reduction from graph k�colorability for any

�Two ��colorings under renaming of the colors are considered to be the same�
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Figure 
� An example of the reduction used in Theorem �� The graph G is the instance for

the graph coloring problem� The partial matrixM is the instance for the matrix complexity

problem� We note that there exists a matrix that is an completion of M that uses only three

row types� The corresponding ��coloring of G is demonstrated by the node colorings used in

G�

�xed k � ��

Theorem � For �xed k � �� the matrix k�complexity problem is NP�complete�

Proof� Clearly� this problem is in NP since we can easily verify that a guessed matrix has

k row types and is consistent with the given partial matrix�

To show that the problem is NP�complete� we use a reduction from graph k�colorability�

Given an instance G � �V�E� of graph k�colorability we transform it into an instance of the

matrix k�complexity problem� Let m � n � jV j� For each edge fvi� vjg � E� we add entries

to the matrix so that row i and row j cannot be the same row type� Speci�cally� for each

vertex vi� we set Mii � �� and Mji � � for each neighbor vj of vi� An example demonstrating

this reduction is given in Figure ��

We now show that there is some matrix of at most k row types that is consistent with

this partial matrix if and only if G is k�colorable� We �rst argue that if there is a matrix

M � consistent with M that has at most k row types then G is k�colorable� By construction�

if two rows are of the same type there cannot be an edge between the corresponding nodes�

So just let the node color for each node be the type of the corresponding row in M ��

�	



Conversely� if G is k�colorable� then there exists a matrixM � consistent with M that has

at most k row types� By the construction of M � if a set of vertices are the same color in G

then the corresponding rows are consistent with each other� Thus there exists a matrix with

at most k row types that is consistent with M �

��	�� Row�Filter Algorithms

In this section we study the performance of a whole class of algorithms designed to learn a

matrix with arbitrary complexity k when an adversary selects the query sequence� We say

that an algorithm A is a row��lter algorithm if A makes its prediction for Mij strictly as a

function of j and all entries in the set I of rows consistent with row i and de�ned in column

j� That is� A�s prediction is f�I� j� where f is some �possibly probabilistic� function� So� to

make a prediction for Mij� a row��lter algorithm considers all rows that could be the same

type as row i and whose value for column j is known� and uses these rows in any way one

could imagine to make a prediction� For example it could take a majority vote on the entries

in column j of all rows that are consistent with row i� Or� of the rows de�ned in column j�

it could select the row that has the most known values in common with row i and predict

according to its entry in column j� We have found that many of the prediction algorithms

we considered are row��lter algorithms�

Consider the simple row��lter algorithm� ConsMajorityPredict� in which f�I� j� computes

the majority vote of the entries in column j of the rows in I� �Guess randomly in the case of

a tie�� Note that ConsMajorityPredict only takes time linear in the number of known entries

of the matrix to make a prediction� We now give an upper bound on the number of mistakes

made by ConsMajorityPredict�

Theorem � The algorithm ConsMajorityPredict makes at most km�n
q
�k � ��m mistakes

against an adversary�selected query sequence�

Proof� For all i� let d�i� be the number of rows consistent with row i� We de�ne the potential

of a partially known matrix to be # �
Pn

i�� d�i�� We �rst consider how much the potential

function can change over the entire learning session�

Lemma � The potential function # decreases by at most k��
k
n� during the learning session�

Proof� Initially� for all i� d�i� � n� So #init � n�� Let C�z� be the number of rows of type z

for � � z � k� By de�nition� #	nal �
Pk

z�� C�z��� Thus our goal is to minimize
Pk

z�� C�z��
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under the constraint that
Pk

z�� C�z� � n� Using the method of Lagrange multipliers we

obtain that #	nal is minimized when for all z� C�z� � n�k� Thus #	nal � �n�k��k � n��k�

So $# � #init �#	nal � n� � n�

k
� k��

k
n��

Now that the total decrease in # over the learning session is bounded� we need to deter�

mine how many mistakes can be made without # decreasing by more than k��
k
n�� We begin

by noting that # is strictly non�increasing� Once two rows are found to be inconsistent� they

remain inconsistent� So to bound the number of mistakes made by ConsMajorityPredict we

must compute a lower bound on the amount # is decreased by each mistake� Intuitively�

one expects # to decrease by larger amounts as more of the matrix is seen� We formalize

this intuition in the next two lemmas� For a given row type z� let B�j� z� denote the set of

matrix entries that are in column j of a row of type z�

Lemma � The rth mistake made when predicting an entry in B�j� z� causes # to decrease

by at least ��r � ���

Proof� Suppose that this mistake occurs in predicting entry �i� j� where row i is of type

z� Consider all the rows of type z� Since r � � mistakes have occurred in column j� at

least r� � entries of B�j� z� are known� Since ConsMajorityPredict is a row��lter algorithm

these rows must be in I� Furthermore� ConsMajorityPredict uses a majority voting scheme�

and thus if a mistake occurs there must be at least r � � entries in I �and thus consistent

with row i� that di�er in column j with row i� Thus if a mistake is made� row i is found

to be inconsistent with at least r � � rows it was thought to be consistent with� When two

previously consistent rows are found to be inconsistent� # decreases by two� Thus the total

decrease in # caused by the rth mistake made when predicting an entry in B�j� z� is at least

��r � ���

%From Lemma �� we see that the more entries known in B�j� z�� the greater the decrease

in # for future mistakes on such entries� So� intuitively it appears that the adversary can

maximize the number of mistakes made by the learner by balancing the number of entries

seen in B�j� z� for all j and z� We prove that this intuition is correct and apply it to obtain

a lower bound on the amount # must have decreased after the learner has made � mistakes�

Lemma � After � mistakes are made� the total decrease in # is at least km
�

�
km

� �
��
�

Proof� From Lemma �� after the rth mistake made in predicting an entry from B�j� z�� the

total decrease in # from its initial value is at least
Pr

x�� ��x� �� � �r� ���� Let W �j� z� be
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the number of mistakes made in column j of rows of type z� The total decrease in # is at

least

D �
mX
j��

kX
z��

�W �j� z�� ���

subject to the constraint
Pm

j��

Pk
z��W �j� z� � ��

Using the method of Lagrange multipliers� we obtain thatD is minimized whenW �j� z� �
�
km

for all j and z� �Since any algorithm clearly must make km mistakes� � � km and thus

��km � ��� So the total decrease in # is at least

mX
j��

kX
z��

�
�

km
� �

��
� km

�
�

km
� �

��
�

We now complete the proof of the theorem� Combining Lemma � and Lemma � along

with the observation that # is strictly non�increasing� we have shown that

km
�
�

km
� �

��
� k � �

k
n��

This implies that � � km� n
q
�k � ��m�

We note that by using the simpler argument that each mistake� except for the �rst mistake

in each column of each row type� decreases # by at least �� we obtain a km� k��
�k
n� mistake

bound for any row��lter algorithm� Also� Manfred Warmuth ���� has independently given

an algorithm� based on the weighted majority algorithm of Littlestone and Warmuth ��	��

that achieves an O�km�n
p
m lg k� mistake bound� Warmuth�s algorithm builds a complete

graph of n vertices where row i corresponds to vertex vi and all edges have an initial weight

of �� To predict a value for �i� j� the learner takes a weighted majority of all active neighbors

of vi �vk is active if Mkj is known�� After receiving feedback� the learner sets the weight on

the edge from vi to vk to be � if Mkj �� Mij� Finally� if a mistake occurs the learner doubles

the weight of �vi� vk� if Mkj � Mij �i�e�� the edges to neighbors that predicted correctly�� We

note that this algorithm is not a row��lter algorithm�

Does ConsMajorityPredict give the best performance possible by a row��lter algorithm�

We now present an information�theoretic lower bound on the number of mistakes an adver�

sary can force against any row��lter algorithm�

Theorem  Any row��lter algorithm for learning an n�m matrix with m � n�� and k � �

makes ��n
p
m� mistakes when the adversary selects the query sequence�
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Figure �� A projective geometry for p � �� m� � ��

Proof� We assume that the adversary knows the learner�s algorithm and has access to any

random bits he uses� �One can prove a similar lower bound on the expected mistake bound

when the adversary cannot access the random bits��

Let m� � �p� � p � �� be the largest integer of the given form such that p is prime and

m� � m� Without loss of generality we assume in the remainder of this proof that the

matrix has m� columns and prove an ��n
p
m�� mistake bound� From Bertrand�s conjecture�

it follows from this result that the adversary has forced ��n
p
m� mistakes in the original

matrix�

Our proof depends upon the existence of a projective geometry & onm� points and lines ����

That is� there exists a set of m� points and a set of m� lines such that each line contains

exactly p�� points and each point is at the intersection of exactly p�� lines� Furthermore�

any pair of lines intersects at exactly one point� and any two points de�ne exactly one line�

�The choice of m� � p� � p � � for p prime comes from the fact that projective geometries

are only known to exist for such values�� Figure � shows a matrix representation of such a

geometry! an x� in entry �i� j� indicates that point j is on line i� Let &� denote the �rst

bn��c lines of &� Note that since m� � n�� all entries of &� are contained within M �

The matrix M consists of two row types� the odd rows are �lled with ones and the even

rows with zeros� Two consecutive rows of M are assigned to each line of &�� �See Figure ���

�Bertrand�s conjecture states that for any integer n � �� there exists a prime p such that n � p � �n�

Although this is known as Bertrand�s conjecture it was proven by Tchebychef in 
�	
�
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Figure �� The matrix created by the adversary in the proof of Theorem 	� The shaded

regions correspond to the entries in &�� The learner is forced to make a mistake on one of

the entries in each shaded rectangle�

We now prove that the adversary can force a mistake for each entry of &�� The adversary�s

query sequence maintains the condition that an entry �i� j� is not revealed unless line di��e
of &� contains point j� In particular� the adversary will begin by presenting one entry of

the matrix for each entry of &�� We prove that for each entry of &� the learner must predict

the same value for the two corresponding entries of the matrix� Thus the adversary forces a

mistake for the bn��c�p � �� � ��n
p
m�� entries of &�� The remaining entries of the matrix

are then presented in any order�

Let I be the set of rows that may be used by the row��lter algorithm when predicting

entry ��i� j�� Let I � be the set of rows that may be used by the row��lter algorithm when

predicting entry ��i� �� j�� We prove by contradiction that I � I �� If I �� I � then it must be

the case that there is some row r that is de�ned in column j and consistent with row �i� yet

inconsistent with row �i� � �or visa versa�� By de�nition of the adversary�s query sequence

it must be the case that lines dr��e and d��i� ����e � i of &� contain point j� Furthermore�

since ��i � �� j� is being queried� that entry is not known� Thus rows r and �i � � must

both be known in some other column j� since they are known to be inconsistent� Thus since

only entries in &� are shown� it follows that lines dr��e and i of &� also contain point j� for

j� �� j� So� this implies that lines dr��e and i of &� must intersect at two points giving a

contradiction� Thus I � I � and so f�I� j� � f�I �� j� for entry ��i� j� and entry ��i � �� j��
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Since rows �i and �i� � di�er in each column and the adversary has access to the random

bits of the learner� he can compute f�I� j� just before making his query and then ask the

learner to predict the entry for which the mistake will be made� This procedure is repeated

for the pair of entries corresponding to each element of &��

We use a similar argument to get an ��m
p
n� bound for m � n��� Combined with the

lower bound of Theorem � and Theorem 	 we obtain a ��km��n�k�blg kc�minfnpm�mpng�
lower bound on the number of mistakes made by a row��lter algorithm�

Corollary � Any row��lter algorithm makes ��km � �n � k�blg kc � minfnpm�mpng�
mistakes against an adversary�selected query sequence�

Comparing this lower bound to the upper bound proven for ConsMajorityPredict� we see

that for �xed k the mistake bound of ConsMajorityPredict is within a constant factor of

optimal�

Given this lower bound� one may question the �m�n�� upper bound for k � � given in

Theorem �� However� the algorithm described is not a row��lter algorithm� Also compared

to our results for the learner�selected query sequence� it appears that allowing the learner to

select the query sequence is quite helpful�

��
 Randomly�Directed Learning

In this section we consider the case that the learner is presented at each step with one of

the remaining entries of the matrix selected uniformly and independently at random� We

present a prediction algorithm that makes O�km� nk
p
H� mistakes on average where H is

the maximum Hamming distance between any two rows of the matrix� We note that when

H � ��m
k
� the result of Theorem � supersedes this result� A key result of this section is a

proof relating two di�erent probabilistic models for analyzing the mistake bounds under a

random presentation� We �rst consider a simple probabilistic model in which the requirement

that t matrix entries are known is simulated by assuming that each entry of the matrix is

seen independently with probability t
nm

� We then prove that any upper bound obtained on

the number of mistakes under this simple probabilistic model holds under the true model �to

within a constant factor� in which there are exactly t entries known� This result is extremely

useful since in the true model the dependencies among the probabilities that matrix entries

are known makes the analysis signi�cantly more di�cult�
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We de�ne the algorithm RandomConsistentPredict to be the row��lter algorithm where

the learner makes his prediction forMij by choosing one row i� of I uniformly at random and

predicting the value Mi�j� �If I is empty then RandomConsistentPredict makes a random

guess��

Theorem �� Let H be the maximum Hamming distance between any two rows of M � Then

the expected number of mistakes made by RandomConsistentPredict is O�k�n
p
H �m���

Proof� Let Ut be the probability that the prediction rule makes a mistake on the �t� ��st

step� That is� Ut is the chance that a prediction error occurs on the next randomly selected

entry given that exactly t other randomly chosen entries are already known� Clearly� the

expected number of mistakes is
PS��

t�
 Ut� where S � nm� Our goal is to �nd an upper bound

for this sum�

The condition that exactly t entries are known makes the computation of Ut rather messy

since the probability of having seen some entry of the matrix is not independent of knowing

the others� Instead� we compute the probability Vt of a mistake under the simpler assumption

that each entry of the matrix has been seen with probability t�S� independent of the rest of

the matrix� We �rst compute an upper bound for the sum
PS��

t�
 Vt� and then show that this

sum is within a constant factor of
PS��

t�
 Ut�

Lemma �
PS��

t�
 Vt � O�km � nk
p
H��

Proof� Fix t� and let p � t�S� Also� let d�i� be the number of rows of the same type as row

i� We bound V
 by � trivially� and assume henceforth that p � ��

By de�nition� Vt is the probability of a mistake occurring when a randomly selected

unknown entry is presented� given that all other entries are known with probability p� Since

each entry �i� j� is presented next with probability ��S� it follows that

Vt �
�

S

X
i�j

Rij

where Rij is the probability of a mistake occurring� given that entry �i� j� is unknown and

presented next�

Let Iij be the random variable describing the set of rows consistent with row i and known

in column j� and let Jij be the random variable describing the set of rows i� in Iij for which

Mij �� Mi�j � If Iij is nonempty� then the probability of choosing a row i� for whichMij ��Mi�j
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is clearly jJij j � jIijj� Thus� the probability of a mistake is just the expected value of this

fraction� assuming Iij �� 	�
Unfortunately� expectations of fractions are often hard to deal with� To handle this

situation� we therefore place a probabilistic lower bound on the denominator of this ratio�

i�e�� on jIijj� Note that if i and i� are of the same type� then the probability that i� � Iij is

just the chance p that �i�� j� is known� Since there are d�i� rows of type i �including i itself��

we see that Pr�jIijj � y� is at most the chance that fewer than y of the other d�i�� � rows

of the same type as i are in Iij� In other words� this probability is bounded by the chance

of fewer than y successes in a sequence of d�i� � � Bernoulli trials� each succeeding with

probability p�

We use the following form of Cherno� bounds� due to Angluin and Valiant ���� to bound

this probability�

Lemma 	 Consider a sequence of m independent Bernoulli trials� each succeeding with

probability p� Let S be the random variable describing the total number of successes� Then

for � � 	 � �� the following hold�

� Pr�S � �� � 	�mp� � e��
�mp��� and

� Pr�S � �� � 	�mp� � e��
�mp���

Thus� letting y � p�d�i�� ���� and applying this lemma� it follows that

Pr�jIijj � p�d�i�� ����� � e�p�d�i�������

Note that this bound applies even if d�i� � ��

Thus� we have

Rij � Pr�jIijj � y� � E

� jJij j
jIijj j jIijj � y

�
� Pr�jIijj � y�

� Pr�jIijj � y� �
E�jJij j j jIijj � y�

y
� Pr�jIijj � y�

� Pr�jIijj � y� �
E�jJij j�

y
�

So� to bound Rij � it will be useful to bound E�jJijj��
We have

E�jJij j� �
X

i� ��i�Mi�j ��Mij

Pr�i� � Iij��

��



If Mij �� Mi�j � then Pr�i� � Iij� is the chance that �i�� j� is known and that i and i� are

consistent� Entry �i�� j� is known with probability p� and i and i� are consistent if either

�i� j�� or �i�� j �� is unknown for each column j� �� j in which i and i� di�er� If h�i� i�� is the

Hamming distance between rows i and i�� then this probability is ��� p��h�i�i
�����

Combining these facts� we have�

Vt � �

S

X
i

X
j

e�p�d�i������ �
�

S

X
d�i���

X
j

P
i� ��i�Mi�j ��Mij

p�� � p��h�i�i
����

p�d�i� � ����

�
�

n

X
i

e�p�d�i������ �
�

S

X
d�i���

X
i� ��i

�h�i� i���� � p��h�i�i
����

d�i�� �

Recall that our goal is to upper bound the sum
PS��

t�
 Vt� Applying the above upper bound

for Vt we get

S��X
t�


Vt �
S��X
t�


�
�

n

X
i

e��t�S��d�i������
�
�

S��X
t�


	

 �

S

X
d�i���

X
i� ��i

�h�i� i��
d�i�� �

�� � �t�S���h�i�i
����

�
A � ���

We now bound the �rst part of the above expression� We begin by noting that

S��X
t�


�
�

n

nX
i��

e��t�S��d�i������
�

� �

n

nX
i��

�
� �

Z S



e��t�S��d�i������dt

�

� �

n

nX
i��

�
� �

��S

d�i�

�

where this last bound follows by evaluating the integral in the two cases that d�i� � � and

d�i� � �� This last expression equals

� � ��m
nX
i��

�

d�i�
� ��km� �

where the last step is obtained by rewriting the summation to go over all the row types�

there are d�i� terms for rows of the same type as row i! thus� each row type contributes � to

the summation�

We next bound the second part of expression ���� To complete the proof of the lemma

it su�ces to show that

S��X
t�


	

 �

S

X
d�i���

X
i� ��i

h�i� i��
d�i�� �

��� �t�S���h�i�i
����

�
A � O�nk

p
H��

We begin by noting that this expression is bounded above by

�

S

X
d�i���

X
i� ��i

h�i� i��
d�i�� �

	

� �

Z S




�
��

�
t

S

���h�i�i����
dt

�
A �

��



If h�i� i�� � � then this integral is trivially evaluated to be S� Otherwise� applying the

inequality ex � � � x we get

Z S




�
� �

�
t

S

���h�i�i����
dt �

Z S



exp

�
�
�
t

S

��
�h�i� i��� ��


dt� ���

A standard integral table ���� gives

Z �



exp

�
�
�
t

S

��
�h�i� i��� ��


dt �

S
p
�

�
q
h�i� i��� �

� ���

Combining these bounds� we have

Z S
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�
t

S
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dt � S

p
�q

�h�i� i��
���

for h�i� i�� � �� Thus� we arrive at an upper bound of

�

S

X
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X
i� ��i

h�i� i��
d�i�� �

�
� �
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This implies the desired bound�

To complete the theorem� we prove the main result of this section� namely� that the upper

bound obtained under this simple probabilistic model holds �to within a constant factor� for

the true model� In other words� to compute an upper bound on the number of mistakes

made by a prediction algorithm when the instances are selected according to a uniform

distribution on the instance space� one can replace the requirement that exactly t matrix

entries are known by the requirement that each matrix entry is known with probability t
nm

�

Lemma 

PS��

t�
 Ut � O
�PS��

t�
 Vt
�
�

Proof� We �rst note that

Vt �
S��X
r�


�
S

r

��
t

S

�r �
�� t

S

�S�r
Ur�

�	



To see this� observe that for each r� where r is the number of known entries� we need just

multiplyUr by the probability that exactly r entries are known assuming each entry is known

with probability of t�S� Therefore�

S��X
t�


Vt �
S��X
t�


S��X
r�


Ur

�
S

r

��
t

S

�r �
� � t

S
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���

�
S��X
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Ur

�
S��X
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�
S

r

��
t

S

�r �
�� t

S

�S�r�
�

Thus� to prove the lemma� it su�ces to show that the inner summation is bounded below

by a positive constant� By symmetry� assume that r � S�� and let y � S � r� Stirling�s

approximation implies that �
S

r

�
� '

�
SS

rryy

s
S

ry

�
�

Applying this formula to the desired summation we obtain that

SX
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�
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�S�r
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�s
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ry

SX
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�r �S � t
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� �

	
B

s
S

ry

p
ry�SX
x��

�
r � x

r

�r �y � x

y

�y�CA �

The last step above follows by letting x � t�r and reducing the limits of the summation� To

complete the proof that the inner summation of Equation � is bounded below by a positive

constant we need just prove that

�
r � x

r

�r �y � x

y

�y
� ����

for all � � x �
q
ry�S

Using the inequality � � x � ex� it can be shown that for � � y � �� � � y � e
y

��y � We

apply this observation to get that

�
r � x

r

�r �y � x

y

�y
�

�
� �

x

r

�r �
�� x

y

�y

� exp

��
� x

� � x
r

� x

� � x
y

��
� � exp

�
rx

r � x
� yx

y � x



� exp

� �x��r � y�

�r � x��y � x�


� exp

� �Sx�
�r � x��y � x�


�

��



Since x �
q
ry�S� it follows that Sx� � ry� Applying this observation to the above inequality

it follows that

�
r � x

r

�r �y � x

y

�y
� exp

� �ry
�r � x��y � x�



� exp

� �ry
ry � �y � r�x� x�



� exp

� �ry
ry � ry�S


� exp

� ��

�� �
S


�

Finally we note that for S � �� e
��

����S � e��� This completes the proof of the lemma�

Clearly Lemma � and Lemma � together imply that
PS��

t�
 Ut � O�km � nk
p
H�� giving

the desired result�

This completes our discussion of learning k�binary�relations�

� Learning a Total Order

In this section we present our results for learning a binary relation on a set where it is

known a priori that the relation forms a total order� One can view this problem as that of

learning a total order on a set of n objects where an instance corresponds to comparing which

of two objects is greater in the target total order� Thus this problem is like comparison�

based sorting except for two key di�erences� we vary the agent selecting the order in which

comparisons are made �in sorting the learner does the selection� and we charge the learner

only for incorrectly predicted comparisons�

Before describing our results� we motivate this section with the following example� There

are n basketball teams that are competing in a round�robin tournament� That is� each team

will play all other teams exactly once� Furthermore� we make the �admittedly simplistic�

assumption that there is a ranking of the teams such that a team wins its match if and only

if its opponent is ranked below it� A gambler wants to place a (�� bet on each game� if he

bets on the winning team he wins (�� and if he bets on the losing team he loses (��� Of

course� his goal is to win as many bets as possible�

We formalize the problem of learning a total order as follows� The instance space Xn �

f�� � � � � ng�f�� � � � � ng� An instance �i� j� in Xn is in the target concept if and only if object

i precedes object j in the corresponding total order�

��



If computation time is not a concern� then the halving algorithm makes at most n lg n

mistakes� However� we are interested in e�cient algorithms and thus our goal is to design an

e�cient version of the halving algorithm� In the next section we discuss the relation between

the halving algorithm and approximate counting� Then we show how to use an approximate

counting scheme to implement a randomized version of the approximate halving algorithm�

and apply this result to the problem of learning a total order on a set of n elements� Finally�

we discuss how a majority algorithm can be used to implement a counting algorithm�

��� The Halving Algorithm and Approximate Counting

In this section we review the halving algorithm and approximate counting schemes� We �rst

cover the halving algorithm ��� ���� Let V denote the set of concepts in Cn that are consistent

with the feedback from all previous queries� Given an instance x in Xn� for each concept in V
the halving algorithm computes the prediction of that concept for x and predicts according

to the majority� Finally� all concepts in V that are inconsistent with the correct classi�cation

are deleted� Littlestone ���� shows that this algorithm makes at most lg jCnj mistakes� Now

suppose the prediction algorithm predicts according to the majority of concepts in set V �� the

set of all concepts in Cn consistent with all incorrectly predicted instances� Littlestone ����

also proves that this space�e�cient halving algorithm makes at most lg jCnj mistakes�

We de�ne an approximate halving algorithm to be the following generalization of the

halving algorithm� Given instance x in Xn an approximate halving algorithm predicts in

agreement with at least 
jVj of the concepts in V for some constant � � 
 � ����

Theorem �� An approximate halving algorithm makes at most log������� jCnj mistakes for

learning Cn�

Proof� Each time a mistake is made� the number of concepts that remain in V are reduced

by a factor of at least � � 
� Thus after at most log������� jCnj mistakes there is only one

consistent concept left in Cn�

We note that the above result holds also for the space�e�cient version of the approximate

halving algorithm�

When given an instance x � Xn� one way to predict as dictated by the halving algorithm

is to count the number of concepts in V for which c�x� � � and for which c�x� � � and then

predict with the majority� As we shall see� using these ideas we can use an approximate

counting scheme to implement the approximate halving algorithm�

��



We now introduce the notion of an approximate counting scheme for counting the number

of elements in a �nite set S� Let x be a description of a set Sx in some natural encoding�

An exact counting scheme on input x outputs jSxj with probability �� Such a scheme is

polynomial if it runs in time polynomial in jxj� Sometimes exact counting can be done in

polynomial time! however� many counting problems are )P�complete and thus assumed to be

intractable� �For a discussion of the class )P see Valiant ������ For many )P�complete prob�

lems good approximations are possible ���� ��� ���� A randomized approximation scheme�

R� for a counting problem satis�es the following condition for all �� � � ��

Pr

� jSxj
�� � ��

� R�x� �� �� � jSxj�� � ��

�
� �� �

where R�x� �� �� is R�s estimate on input x� �� and �� In other words� with high probability�

R estimates jSxj within a factor of �� �� Such a scheme is fully polynomial if it runs in time

polynomial in jxj� �
�
� and lg �

�
� For further discussion see Sinclair �����

We now review work on counting the number of linear extensions of a total order� That

is� given a partial order on a set of n elements� the goal is to compute the number of total

orders that are linear extensions of the given partial order� We discuss the relationship

between this problem and that of computing the volume of a convex polyhedron� �For more

details on this subject� see Section ��� of Lov*asz ������ Given a convex set S and an element

a of 
n� a weak separation oracle

�� Asserts that a � S� or

�� Asserts that a �� S and supplies a reason why� In particular for closed convex sets in


n� if a �� S then there exists a hyperplane separating a from S� So if a �� S� the oracle

responds with such a separating hyperplane as the reason why a �� S�

We now discuss how to reduce the problem of counting the number of extensions of a partial

order on n elements to that of computing the volume of a convex n�dimensional polyhedron

given by a separation oracle� The polyhedron built in the reduction will be a subset of ��� ��n

�i�e� the unit hypercube in 
n� where each dimension corresponds to one of the n elements�

Observe that any inequality xi � xj de�nes a halfspace in ��� ��n� Let $�t� denote the

polyhedron obtained by taking the intersection of the halfspaces given by the inequalities of

the partial order t� �See Figure 	 for an example with n � ��� For any pair of total orders

t� and t�� the polyhedra $�t�� and $�t�� are simplices that only intersect in a face �zero

��



(0,0,0)

(0,0,1)

(0,1,1)

(0,1,0)

(1,0,0)
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(1,1,1)

(1,0,1)

x
yz

Figure � The polyhedron formed by the total order z � y � x�

volume�� a pair of elements� say xi and xj� that are ordered di�erently in t� and t� �such a

pair must exist� de�ne a hyperplane xi � xj that separates $�t�� and $�t��� Let Tn be the

set of all n+ total orders on n elements� Then

��� ��n �
�
t�Tn

$�t�� ���

In other words� the union of the polyhedra associated with all total orders yields the unit

hypercube� We have already seen that polyhedra associated with the t � Tn are disjoint� To

see that they cover all of ��� ��n observe that any point y � ��� ��n de�nes some total order

t� and clearly y � $�t�� Let P be a partial order on a set of n elements� %From Equation �

and the observation that the volumes of the polyhedra formed by each total order is equal� it

follows that the volume of the polyhedron de�ned by any total order is ��n+� Thus it follows

that for any partial order P

number of extensions of P

n+
� volume of $�P �� ���

Rewriting equation ���� we obtain that

number of extensions of P � n+ � �volume of $�P �� � ���

Finally� we note that the weak separation oracle is easy to implement for any partial

order� Given inputs a and S� it just checks each inequality of the partial order to see if a is

��



in the convex polyhedron S� If a does not satisfy some inequality then reply that a �� S and

return that inequality as the separating hyperplane� Otherwise� if a satis�es all inequalities�

reply that a � S�

Dyer� Frieze and Kannan �	� give a fully�polynomial randomized approximation scheme

�fpras� to approximate the volume of a polyhedron given a weak separation oracle� From

Equation � we see that this fpras for estimating the volume of a polyhedron can be easily

applied to estimate the number of extensions of a partial order� Furthermore� Dyer and

Frieze ���� prove that it is )P�hard to exactly compute the volume of a polyhedron given

either by a list of its facets or its vertices�

Independently� Matthews ���� has described an algorithm to generate a random linear

extension of a partial order� Consider the convex polyhedron K de�ned by the partial

order� Matthew�s main result is a technique to sample nearly uniformly from K� Given

such a procedure to sample uniformly from K� one can sample uniformly from the set of

extensions of a partial order by choosing a random point in K and then selecting the total

order corresponding to the ordering of the coordinates of the selected point� A procedure

to generate a random linear extension of a partial order can then be used repeatedly to

approximate the number of linear extensions of a partial order �����

��� Application to Learning

We begin this section by studying the problem of learning a total order under teacher�directed

and self�directed learning� Then we show how to use a fpras to implement a randomized

version of the approximate halving algorithm� and apply this result for the problem of

learning a total order on a set of n elements�

Under the teacher�selected query sequence we obtain an n�� mistake bound� The teacher

can uniquely specify the target total order by giving the n� � instances that correspond to

consecutive elements in the target total order� Since n� � instances are needed to uniquely

specify a total order� we get a matching lower bound� Winkler ���� has shown that under

the learner�selected query sequence� one can also obtain an n�� mistake bound� To achieve

this bound the learner uses an insertion sort� as described for instance by Cormen� Leiserson�

and Rivest ���� where for each new element the learner guesses it is smaller than each of the

ordered elements �starting with the largest� until a mistake is made� When a mistake occurs

this new element is properly positioned in the chain� Thus at most n � � mistakes will be

��



made by the learner� In fact� the learner can be forced to make at least n � � mistakes�

The adversary gives feedback using the following simple strategy� the �rst time an object

is involved in a comparison� reply that the learner�s prediction is wrong� In doing so� one

creates a set of chains where a chain is a total order on a subset of the elements� If c chains

are created by this process then the learner has made n� c mistakes� Since all these chains

must be combined to get a total order� the adversary can force c� � additional mistakes by

always replying that a mistake occurs the �rst time that elements from two di�erent chains

are compared� �It is not hard to see that the above steps can be interleaved�� Thus the

adversary can force n � � mistakes�

Next we consider the case that an adversary selects the query sequence� We �rst prove

an ��n lg n� lower bound on the number of mistakes made by any prediction algorithm� We

use the following result of Kahn and Saks ����� Given any partial order P that is not a total

order there exists an incomparable pair of elements xi�xj such that

�

��
� number of extensions of P with xi � xj

number of extensions of P
� �

��
�

So the adversary can always pick a pair of elements so that regardless of the learner�s pre�

diction� the adversary can report that a mistake was made while only eliminating a constant

fraction of the remaining total orders�

Finally� we present a polynomial prediction algorithm making n lg n��lg e� lg n mistakes

with very high probability� We �rst show how to use an exact counting algorithm R� for

counting the number of concepts in Cn consistent with a given set of examples� to implement

the halving algorithm�

Lemma � Given a polynomial algorithm R to exactly count the number of concepts in Cn

consistent with a given set E of examples� one can construct an e�cient implementation of

the halving algorithm for Cn�

Proof� We show how to use R to e�ciently make the predictions required by the halving

algorithm� To make a prediction for an instance x in Xn the following procedure is used�

Construct E� fromE by appending x as a negative example to E� Use the counting algorithm

R to count the number of concepts C� � V that are consistent with E�� Next construct E�

from E by appending x as a positive example to E� As before� use R to count the number

of concepts C� � V that are consistent with E�� Finally if jC�j � jC�j then predict that x

is a negative example! otherwise predict that x is a positive example�

��



Clearly a prediction is made in polynomial time� since it just requires calling R twice� It

is also clear that each prediction is made according to the majority of concepts in V�
We modify this basic technique to use a fpras instead of the exact counting algorithm

to obtain an e�cient implementation of a randomized version of the approximate halving

algorithm� In doing so� we obtain the following general theorem describing when the existence

of a fpras leads to a good prediction algorithm� We then apply this theorem to the problem

of learning a total order�

Theorem �� Let R be a fpras for counting the number of concepts in Cn consistent with a

given set E of examples� If jXnj is polynomial in n� one can produce a prediction algorithm

that for any � � � runs in time polynomial in n and lg �
�
and makes at most lg jCnj

�
� � lg e

n

�
mistakes with probability at least �� ��

Proof� The prediction algorithm implements the procedure described in Lemma � with the

exact counting algorithm replaced by the fpras R�n� �
n
� �
�jXnj�� Consider the prediction for an

instance x � Xn� Let V be the set of concepts that are consistent with all previous instances�

Let r� �respectively r�� be the number of concepts in V for which x is a positive �negative�

instance� Let "r� �respectively "r�� be the estimate output by R for r� �r��� Since R is a

fpras� with probability at least � � �
jXnj

r�

� � �
� "r� � �� � ��r� and

r�

� � �
� "r� � �� � ��r�

where � � ��n� Without loss of generality� assume that the algorithm predicts that x is a

negative instance� and thus "r� � "r�� Combining the above inequalities and the observation

that r� � r� � jV j� we obtain that r� � jV j
�������� �

We de�ne an appropriate prediction to be a prediction that agrees with at least jV j
��������

of the concepts in V � To analyze the mistake bound for this algorithm� suppose that each

prediction is appropriate� For a single prediction to be appropriate� both calls to the fpras R

must output a count that is within a factor of ��� of the true count� So any given prediction

is appropriate with probability at least �� �
jXnj� and thus the probability that all predictions

are appropriate is at least

� � jXnj
�

�

jXnj
�
� � � ��

Clearly if all predictions are appropriate then the above procedure is in fact an implemen�

tation of the approximate halving algorithm with 
 � �
�������� and thus by Theorem �� at
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most log������� jCnj mistakes are made� Substituting � with its value of �
n
and simplifying

the expression we obtain that with probability at least � � ��

) mistakes � lg jCnj
lg �

���
�

lg jCnj
lg
�
� � n�

n���n��

� � �	�

Since n�

n���n��
� �� �

n
�
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�
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Applying the inequalities lg
�
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� �� lg e

n
it follows that
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Finally� applying these inequalities to Equation 	 yields that

) mistakes � lg jCnj
lg
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�

Note that we could modify the above proof by not requiring that all predictions be

appropriate� In particular if we allow 	 predictions not to be appropriate then we get a

mistake bound of lg jCnj
�
� � lg e

n

�
� 	�

We now apply this result to obtain the main result of this section� Namely� we describe

a randomized polynomial prediction algorithm for learning a total order in the case that the

adversary selects the query sequence�

Theorem �� There exists a prediction algorithm A for learning total orders such that on

input � �for all � � ��� and for any query sequence provided by the adversary� A runs in

time polynomial in n and lg �
�
and makes at most n lg n��lg e� lg n mistakes with probability

at least � � ��

��



Proof Sketch� We apply the results of Theorem �� using the fpras for counting the number

of extensions of a partial order given independently by Dyer� Frieze and Kannan �	�� and by

Matthews ����� We know that with probability at least � � �� the number of mistakes is at

most lg jCnj
�
� � lg e

n

�
� Since jCnj � n+ the desired result is obtained�

We note that the probability that A makes more than n lg n � �lg e� lg n mistakes does

not depend on the query sequence selected by the adversary� The probability is taken over

the coin �ips of the randomized approximation scheme�

Thus� as in learning a k�binary�relation using a row��lter algorithm� we see that a learner

can do asymptotically better with self�directed learning versus adversary�directed learning�

Furthermore� while the self�directed learning algorithm is deterministic� here the adversary�

directed algorithm is randomized�

As a �nal note� observe that we have just seen how a counting algorithm can be used

to implement the halving algorithm� In her thesis� Goldman ���� has described conditions

under which the halving algorithm can be used to implement a counting algorithm�

� Conclusions and Open Problems

We have formalized and studied the problem of learning a binary relation between two sets

of objects and between a set and itself under an extension of the on�line learning model� We

have presented general techniques to help develop e�cient versions of the halving algorithm�

In particular� we have shown how a fully polynomial randomized approximation scheme can

be used to e�ciently implement a randomized version of the approximate halving algorithm�

We have also extended the mistake bound model by adding the notion of an instance selector�

The speci�c results are summarized in Table �� In this table all lower bounds are information�

theoretic bounds and all upper bounds are for polynomial�time learning algorithms� Also�

unless otherwise stated� the results listed are for deterministic learning algorithms�

%From Table � one can see that several of the above bounds are tight and several others

are asymptotically tight� However� for the problem of learning a k�binary�relation there is

a gap in the bound for the random and adversary �except k � �� directors� Note that the

bounds for row��lter algorithms are asymptotically tight for k constant� Clearly� if we want

asymptotically tight bounds that include a dependence on k we cannot only use two row

�	



Concept Lower Upper

Class Director Bound Bound Notes

Learner km
�

� �n� k
�
�blg k � �c km � �n� k�blg kc

Teacher km� �n� k��k � �� km� �n� k��k � ��

Binary Relation Adversary km � �n� k�blg kc O�km�n
p

m lg k� �

�k row types� Adversary �m� n� � �m� n� � k � �

Adversary �km��n�k� lg k�minfnpm�m
p
ng� km � n

p
�k � ��m row�	lter algorithm

Uniform Dist� km
�

� �n� k
�
�blg k � �c O�km� nk

p
H� avg� case� row�	lter alg�

Teacher n� � n� �

Total Order Learner n� � n� � y

Adversary �n lgn� n lgn� �lg e� lgn randomized algorithm

�Due to Manfred Warmuth� Note that if computation time is not a concern� we have shown that the

halving algorithm makes at most km� �n� k lg k mistakes�

yDue to Peter Winkler�

Table �� Summary of our results�

types in the matrix used for the projective geometry lower bound��

For the problem of learning a total order� all the above bounds are tight or asymptotically

tight� Although the fully polynomial randomized approximation scheme for approximating

the number of extensions of a partial order is a polynomial�time algorithm� the exponent on

n is somewhat large and the algorithm is quite complicated� Thus an interesting problem is

to �nd a practical� prediction algorithm for the problem of learning a total order� Another

interesting direction of research is to explore other ways of modeling the structure in a

binary relation� Finally� we hope to �nd other applications of fully polynomial randomized

approximation schemes to learning theory�
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